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We study the equation{
−�+

����D
2u� = f�x� u� in ��

u = 0 on ���

in general smooth bounded domain �, and show it possesses nontrivial solutions
provided that:

• f is sublinear, or
• f is superlinear and the equation admits a priori bounds.

The existence result in the superlinear case is based on a new Liouville type theorem
for −�+

����D
2u� = up in a half-space.

Keywords Fully nonlinear equations; Nonproper; Sublinear; Sublinear
equations.

Mathematics Subject Classification 35J60; 35J65; 37C25.

1. Introduction

This article is a contribution to the study of uniformly elliptic fully nonlinear elliptic
equations of the form

F�x� u�Du�D2u� = 0� (1.1)

The existence of solutions of (1.1) has been extensively investigated for coercive
(or proper) uniformly elliptic operators F , mainly through adaptations of Perron’s
Method—see for example Crandall et al. (1992) and Caffarelli et al. (1996).
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988 Quaas and Sirakov

However, relatively little is known when the assumption of coercivity (that is,
monotonicity in u) is dropped. On the other hand, when the second order operator
is linear or in divergence form, a vast number of existence results are known.

In this article, we focus on the model problem{
−�+

����D
2u� = f�x� u� in ��

u = 0 on ���
(1.2)

where � is a bounded regular domain in �N , and �+
��� is the extremal Pucci

operator (Pucci, 1966), with parameters 0 < � ≤ �, defined by

�+
����M� = �

∑
ei>0

ei + �
∑
ei<0

ei� (1.3)

for any symmetric N × N matrix M ; here ei = ei�M�� i = 1� � � � � N� denote the
eigenvalues of M . All results we obtain can be restated for equation (1.2), with �+

���

replaced by �−
��� (�−

��� is defined by exchanging the places of � and � in (1.3)), see
also the remark at the end of this section. Pucci’s operators are extremal in the sense
that

�+
����M� = sup

A∈�
tr�AM�� �−

����M� = inf
A∈�

tr�AM�� (1.4)

where � denotes the set of all symmetric matrices whose eigenvalues lie in the
interval 	���
. For more details on these operators we refer for example to the
monograph of Cabre and Caffarelli (1995). Notice that �+

��� is not in divergence
form.

Pucci’s extremal operators appear for example in the context of stochastic
control when the diffusion coefficient is a control variable, see for example the book
of Bensoussan and Lions (1982).

The study of (1.2) has been taken up only very recently in Felmer and Quaas
(2004) and Quaas (2004), where some results about existence of solutions in a ball
or in a convex domain are proven (see Remark 2 after Theorem 1.6).

When � = � = 1, �±
��� coincide with the Laplace operator, so that (1.2) becomes

the classical equation {
−�u = f�x� u� in ��

u = 0 on ���
(1.5)

For this equation and, in general, for equations involving divergence form
operators existence results can be obtained by variational methods—see for
example the survey articles Lions (1982) and Rabinowitz (1986). Another successful
approach for studying existence of solutions of (1.5) are topological methods.
General references on this topic are the book Deimling (1985) and the survey article
Mawhin (1999).

Our approach to study the existence problem for (1.2) falls into the group of
topological methods and is based on the degree theory for compact operators in
positive cones (Krasnoselskii, 1964). This approach has been successfully applied
by many authors to a variety of problems. Of special interest to us is the work of

D
ow

nl
oa

de
d 

by
 [

G
az

i U
ni

ve
rs

ity
] 

at
 2

1:
30

 3
0 

A
pr

il 
20

15
 



Existence Results for Nonproper Elliptic Equations 989

de Figueiredo et al. (1982), where an abstract existence theorem appears on which
we base our arguments (see Theorem 4.1 in Section 4).

Next we list our results. A standing assumption on the nonlinearity f�x� u� will
be the following condition:

f is a Hölder continuous function on �× 	0���� such that f�x� 0� = 0
and f�x� s� ≥ −�s for some � ≥ 0 and all s ≥ 0� x ∈ �� (f0)

First, we show that (1.2) has a positive solution provided the problem is
sublinear, in the sense that

lim sup
u→�

f�x� u�

u
< 
+

1 < lim inf
u→0

f�x� u�

u
≤ �� uniformly in x ∈ �� (H0)

Here 
+
1 > 0 denotes the first eigenvalue of the Pucci operator �+

���, associated
to a positive eigenfunction. The existence of 
+

1 is studied by Felmer and Quaas
(2004) when � is ball, and by Quaas (2004) for any regular bounded domain.
More properties of 
+

1 are established in the recent article by Busca et al. (2005).
In Section 2 we quote the results from these papers that we need.

Theorem 1.1. Suppose (f0) and (H0) hold. Then problem (1.2) has a positive classical
solution.

Remarks. 1. A typical nonlinearity which satisfies (f0) and (H0) is the function
f�x� u� = a�x�up� where 0 < p < 1 and a�x� is bounded between two positive
constants.

2. Theorem 1.1 seems to be the first result in the literature which concerns
sublinear equations involving the Pucci operator.

Next we turn to superlinear equations, that is, equations in which the
nonlinearity satisfies

lim sup
u→0

f�x� u�

u
< 
+

1 < lim inf
u→�

f�x� u�

u
≤ �� uniformly in x ∈ �� (H0)

In order to state the existence theorem, we consider the family of problems
obtained from (1.2) by replacing f�x� u� with f�x� u+ t�, for t ≥ 0. Let At denote the
set of non-negative classical solutions for any such problem and let �t =

⋃
0≤s≤t As.

Theorem 1.2. Suppose (f0) and (H0) hold. Suppose in addition that for each t ≥ 0
there exist a constant C depending only on t�� and f such that

�u�L���� ≤ C for all u ∈ �t� (1.6)

Then, problem (1.2) has a positive classical solution.

Remark. In the sequel we shall consider nonlinearities with power-like growth at
infinity, in which case it is enough to have condition (1.6) only for t = 0, that is, to
assume equation (1.2) admits a priori bounds.
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990 Quaas and Sirakov

Theorem 1.2 settles the existence question provided a priori bounds exist.
Consequently, we next concentrate on getting such bounds for (1.2). We use the
blow-up method of Gidas and Spruck (1981), which has turned to be the most
powerful tool for obtaining a priori bounds in more classical situations. The most
important drawback of this method is that it depends on availability of nonexistence
results (we shall refer to these as Liouville type theorems) for equations of type (1.2),
when � is the whole space or a half-space, and such results are often difficult to get.
We note that ever since the fundamental work of Gidas and Spruck (1981), there has
been a multitude of Liouville type results for equations of the type �u+ f�u� = 0.

Let us recall the recent progress in proving Liouville type theorems for
equations involving Pucci’s operator, a very interesting question by itself.

First, Cutri and Leoni (2000) studied the problem{
�+

����D
2u�+ up = 0 in �N

u ≥ 0 in �N �
(1.7)

where p > 1. They obtained the following Liouville type theorem.

Theorem 1.3 (Cutri and Leoni, 2000). Suppose N ≥ 3 and set

p+ �= Ñ

Ñ − 2
� with Ñ = �

�
�N − 1�+ 1�

If 1 < p ≤ p+ (or 1 < p < � if Ñ ≤ 2), then the only viscosity supersolution of (1.7)
is u ≡ 0.

Next, in the radial case a Liouville type theorem for a larger range of p can
be obtained for solutions (as opposed to just supersolutions) of (1.7). Felmer and
Quaas (2003) proved the following theorem.

Theorem 1.4 (Felmer and Quaas, 2003). Let N ≥ 3. Then there exists a number p+
∗ >

p+ > 1 such that if 1 < p < p+
∗ then (1.7) does not have a nontrivial radially symmetric

classical solution.

An explicit expression for p+
∗ in terms of ����N is not known. When the

parameters � and � are equal, one gets p+
∗ = pN , where pN = �N + 2�/�N − 2� is

the usual Sobolev critical exponent. Note that in the case � < � we have p+
∗ >

max�pN � p
+�, so there is a gap between the exponents of Theorems 1.3 and 1.4. It is

an open problem to show that (1.7) has no solutions in the range p+ < p < p+
∗ (the

result of Gidas and Spruck, 1981 states that this is the case when � = �).
Another important type of nonexistence results concern problems in a half

space. In particular, they are needed for the blow-up method to work in arbitrary
smooth domains. This question has been completely open up to now for fully
nonlinear equations.

We establish the following Liouville type theorem in the half space. We denote
�N

+ = �x ∈ �N 	 xN > 0�.

D
ow

nl
oa

de
d 

by
 [

G
az

i U
ni

ve
rs

ity
] 

at
 2

1:
30

 3
0 

A
pr

il 
20

15
 



Existence Results for Nonproper Elliptic Equations 991

Theorem 1.5. Suppose N ≥ 3 and set

p̃+ = ��N − 2�+�

��N − 2�−�
�

Then the problem

�+
����D

2u�+ up = 0 in �N
+�

u = 0 on ��N
+

(1.8)

does not have a nontrivial non-negative bounded solution, provided 1 < p ≤ p̃+ (or
1 < p < � if ��N − 2� ≤ �). Observe that p̃+ > p+, so Theorem 1.5 is valid for a
larger range of p in comparison with Theorem 1.3.

A theorem of this type for the equation �u+ f�u� = 0 was first obtained by
Dancer (1992). We are going to prove Theorem 1.5 by using a (simplified) version
of the proof of Caffarelli et al. (1997), who showed that solutions of �u+ f�u� = 0
in a half space which are at most exponential at infinity are necessarily monotone in
xN . Once this is proven, we show that it is possible to pass to the limit as xN → �,
and that this leads us to a solution of the same problem in �N−1, which permits the
use of Liouville type theorems in the whole space.

Remark. The monotonicity results used in proof of Theorem 1.5 can be applied to
much more general nonlinearities. See Theorem 3.1 in Section 3.

The following existence result is a consequence of Theorem 1.2 and the Liouville
type results.

Theorem 1.6. Assume N ≥ 3, f does not depend on x, satisfies the hypotheses (f0),
(H0), and

there exist p ∈ �1� p+
 and a constant C∗ > 0 such that lim
s→+�

f�s�

sp
= C∗� (f1)

Then there exists a positive classical solution of (1.2).

Remarks. 1. The range of p in (f1) is given by the range of nonexistence of
solutions of (1.7). Should this range be subsequently extended, our results would
automatically imply that Theorem 1.6 holds for p in the new range.

2. Using an argument based on Theorem 1.4, Felmer and Quaas showed that
Theorem 1.6 is valid for p ∈ �1� p+

∗ �, provided � is a ball, see Felmer and Quaas
(2003, 2004). In this case the problem admits a radial positive solution. Further,
Theorem 1.4 was proven in Quaas (2004) in the case of a convex domain. In this
case, the maximum of the solution to (1.2) is away from the boundary, so the
Liouville type theorem in the half space is not needed to establish the a priori
bounds.

The plan of the article is as follows. In Section 2 we review some known results
about linear operators and Pucci’s operator. In Section 3 we prove a monotonicity
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992 Quaas and Sirakov

result and the Liouville type theorem in the half space, Theorem 1.5. In Section 4
we describe the abstract setting that we use, and deduce our existence results.

We stress once more that all results can be restated for �−
��� instead of

�+
���, replacing the first eigenvalue 
+

1 and the exponents p+ by the corresponding
values for �−

���. Finally, our results extend to more general equations of the type
F�D2u�Du� = f�x� u�, provided one can define a suitable notion of first eigenvalue
for the uniformly elliptic operator F . This was recently done in Quaas and Sirakov
(2006).

2. Preliminaries

We start by recalling a classical lemma of C. Pucci, see Pucci (1966) or Cabre and
Caffarelli (1995).

Lemma 2.1. For a fixed function v ∈ W 2�N
loc ��� there exists a symmetric measurable

matrix A�x� ∈ � (� is defined in (1.4)), such that

�+
����D

2v� = LAv�

where LA is the second order linear elliptic operator associated to A, that is
LA = ∑

aij�x��ij = tr�AD2�·��� The same result holds for �−
���.

Let L = LA +∑
bi�i + c�x� be a linear elliptic operator in nondivergence form

with bounded measurable coefficients. We are going to use the following Harnack-
type inequality, obtained by Krylov and Safonov, see for example Krylov (1987).

Theorem 2.1. Let BR be a ball of radius R in �N , and denote by B2R the concentric
ball of radius 2R. Let u ∈ W 2�N �B2R� and f ∈ LN�B2R� satisfy u ≥ 0 in B2R and Lu = f
in B2R. Then

sup
BR

u ≤ C
{
inf
BR

u+ R�f�LN �B2R�

}
�

where C depends only on N��� �, and on the bounds for c�x� and bi�x�.

Now we state a consequence of a maximum principle for narrow unbounded
domains, obtained by Cabré (see Cabre, 1995 and Theorem 5.3 in Cabre, 2002).

Theorem 2.2. Suppose that � is between two parallel hyperplanes at a distance d.
If d is small enough (depending only on bounds for the coefficients of L) then the
maximum principle holds for L = LA +∑

bi�i + c�x� in �, in the sense that whenever
u ∈ W 2�N

loc ��� ∩ L���� satisfies Lu ≤ 0 in � and lim infx→�� u�x� ≥ 0, we have u ≥ 0
in � .

The following version of Hopf’s boundary lemma holds.

Lemma 2.2. Let � be a regular domain and let u ∈ W 2�N
loc ��� ∩ C��̄� be a non-

negative solution to

�−
����D

2u�+ c�x�u ≤ 0 in � (2.9)
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Existence Results for Nonproper Elliptic Equations 993

with c�x� ∈ L����. Then either u vanishes identically in � or u�x� > 0 for all x ∈ �.
Moreover, in the latter case for any x0 ∈ �� such that u�x0� = 0,

lim sup
t↘0

u�x0 − t��− u�x0�

t
< 0�

where � is the outer normal to ��.

Remark. For a general strong maximum principle for degenerate convex elliptic
operators, see Bardi and Da Lio (1999).

We are going to use the following results for Pucci operators (for the proofs of
which we refer for example to Cabre and Caffarelli, 1995 and Caffarelli et al., 1996).

Theorem 2.3. If the function u is a viscosity solution to the equation

−�+
����D

2u� = g�x� (2.10)

in a ball B2R and g ∈ Lp�B2R� for some p ≥ N then u ∈ W 2�p�BR� and one has the
interior estimate

�u�W 2�p�BR�
≤ C

(�u�L��B2R�
+ �g�Lp�B2R�

)
�

If g ∈ C� for some � ∈ �0� 1� then u ∈ C2�� and

�u�C2���BR�
≤ C

(�u�L��B2R�
+ �g�C��B2R�

)
�

In addition, if (2.10) is satisfied in a regular domain and u = 0 on the boundary of the
domain then u satisfies a C�-estimate up to the boundary.

We note that the results in Theorem 2.3 strongly depend on the fact that Pucci’s
operator is a convex function of the Hessian.

Theorem 2.4. Suppose un and gn are sequences of continuous functions such that un is
a solution (or subsolution, or supersolution) of the equation

−�+
����D

2un� = gn�x�

in a domain �. Suppose un and gn converge uniformly on compact subsets of � to
functions u and g. Then u is a solution (or subsolution, or supersolution) in � of

−�+
����D

2u� = g�x��

Recently, the following results on existence of first eigenvalue for the Pucci
operator were proven in Quaas (2004) and Busca et al. (2005).

Theorem 2.5. Consider the problem
�+

����D
2u�+ 
u = 0 in ��

u > 0 in ��

u = 0 on ���

(2.11)
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994 Quaas and Sirakov

If we define


+
1 = sup�
 ∈ � 	 ∃� ∈ W 2�N

loc ��� ∩ C��� such that � > 0
and �+

����D
2��+ 
� ≤ 0 in ��

then there exists a function �+
1 ∈ C2��� ∩ C��� such that the couple �
+

1 � �
+
1 � is a

solution of (2.11). In addition, any other couple �
� u� which satisfies (2.11) is of the
form �
+

1 � k�
+
1 �, for some k > 0.

Theorem 2.6. The operator �+
����D

2·�+ 
 satisfies the maximum principle for 
 < 
+
1 ,

in the sense that if u ∈ W 2�N
loc ��� ∩ C��� is a solution of{

�+
����D

2u�+ 
u ≥ 0 in ��

u ≤ 0 on ���
(2.12)

for some 
 < 
+
1 , then u ≤ 0 in �.

3. A Liouville Type Theorem in the Half Space

Theorem 3.1. Suppose we have a nontrivial classical bounded solution of
�+

����D
2u�+ f�u� = 0 in �N

+�
u ≥ 0 in �N

+�
u = 0 on ��N

+�
(3.13)

where f�u� is a locally Lipschitz continuous function with f�0� ≥ 0. Then

�u

�xN
> 0 in �N

+�

Proof. Suppose u is a solution of (3.13), u 
≡ 0, 0 ≤ u ≤ M . Note that u satisfies the
equation

�+
����D

2u�+ c�x�u = −f�0� ≤ 0 in �� (3.14)

where c�x� ∈ L���� (c�x� is bounded by a Lipschitz constant of f on 	0�M
) is
defined by

c�x� = f�u�x��− f�0�
u�x�

if u�x� 
= 0� c�x� = 0 if u�x� = 0�

Hence u is strictly positive in �N
+ , by Lemma 2.2.

We use the moving planes method of Alexandrov (1962), developed in the
framework of partial differential equations by Serrin (1971), Gidas (1981), and
Berestycki and Nirenberg (1991).

For each � we denote

T� = �x ∈ �N
+ 	 xN = ��� �� = �x ∈ �N

+ 	 0 < xN < ��
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Existence Results for Nonproper Elliptic Equations 995

and introduce the functions

u��x� = u�y� 2� − xN �� w��x� = u��x�− u�x�� x = �y� xN ��

defined in ��. Since for any pair of symmetric N × N matrices M�N the inequality

�−
����M − N� ≤ �+

����M�−�+
����N�

holds, we have that w� satisfies

�−
����D

2�w���+ c��x�w� ≤ 0 in ��� (3.15)

where c��x� ∈ L���� is defined by

c��x� =
f�u��x��− f�u�x��

u��x�− u�x�
if u��x� 
= u�x��

and c�x� = 0 if u��x� = u�x�. We clearly have w� ≥ 0 on ���. By Lemma 2.1 we can
use Theorem 2.2 to infer that if � is small enough, then w� ≥ 0 in ��. Hence

�∗ = sup�� 	w
 ≥ 0 in �
 ∀
 < �� > 0�

Using Hopf’s lemma we conclude that w� > 0 in �� and

�u

�xN
= −1

2

�w�

�xN
> 0 on T�

for each 0 < � ≤ �∗. Therefore, the theorem is proven if we show that �∗ = +�.
Suppose for contradiction that �∗ is finite. By Lemma 2.1 and Theorem 2.2 we

can fix �0 > 0 such that �−
����D

2·�+ c��x� satisfies the maximum principle in the
domain ��∗+�0

\��∗−�0
.

Lemma 3.1. There exist �0 ∈ �0� �0
, such that for each � ∈ �0� �0� we have

w�∗+� ≥ 0 in ��∗−�0
\��0

�

Suppose this lemma is proven. Then we can apply Theorem 2.2 and Lemma 2.1
to inequality (3.15) in ��∗+�\��∗−�0

and in ��0
to conclude that w�∗+� ≥ 0 in ��∗+� for

each � ∈ �0� �0�. This contradicts the maximal choice of �∗ and proves Theorem 3.1.

Proof of Lemma 3.1. Suppose the lemma is false, that is, there exist sequences
�m → 0 and x�m� = (

y�m�� x
�m�
N

) ∈ ��∗−�0
\��0

such that

w�∗+�m
�x�m�� < 0� (3.16)

We can suppose that x�m�
N → x0N ∈ 	�0� �

∗ − �0
 as m → �.
We define the functions

u�m��y� xN � = u
(
y + y�m�� xN

)
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996 Quaas and Sirakov

and, respectively

w
�m�
� �y� xN � = u�m��y� 2� − xN �− u�m��y� xN ��

Note that u�m� satisfies the same equation as u, and respectively an equation like
(3.14). So we can infer from Theorem 2.3 that

�u�m��W 2�p�K� ≤ C�

for each compact set K in the closure of �N
+ (the constant C depends on K, M ,

and on a Lipschitz constant of f on 	0�M
). It follows from embedding theorems,
together with Theorems 2.3 and 2.4, that u�m� converges uniformly to a classical
solution ũ of (3.13), and ũ also satisfies an equation like (3.14).

By the strong maximum principle we have that either ũ is strictly positive in �N
+

(note that this is the only possibility if f�0� 
= 0) or ũ vanishes identically in �N
+ .

Suppose first that ũ is strictly positive in �N
+ . By what we have already shown, we

know that w�m�
� �y� xN � = w��y + y�m�� xN � > 0 in �� for all � ≤ �∗. Hence the limit

function w̃� = limm→� w
�m�
� is non-negative in �� for all � ≤ �∗.

So we can repeat the moving planes argument for ũ, and get �̃∗ ≥ �∗, where �̃∗

is to ũ what �∗ is to u. Since w̃� satisfies an inequality like (3.15) we can apply the
strong maximum principle and get, as before, that w̃� > 0 in �� for all � ≤ �̃∗. On
the other hand, by continuity and (3.16), we have w̃�∗�0� x0N � = 0, and x0N ∈ �0� �∗ −
�0
, a contradiction.

Suppose next ũ ≡ 0 in �N
+ . We fix the rectangular domains

Q1 =
{
x ∈ �N

+ 	 − 1 < x1 < 1� � � � �−1 < xN−1 < 1� �0 < xN < 2�∗ + 1
}
�

Q2 =
{
x ∈ �N

+ 	 − 2 < x1 < 2� � � � �−2 < xN−1 < 2�
�0

2
< xN < 2�∗ + 2

}
�

Since um converges uniformly to zero in Q2, we can suppose that u�m� ≤ 1 in Q2.
We set

�m = u�m�
(
0� x�m�

N

)
and v�m� = u�m�

�m
�

Now, by (3.13) the function v�m� satisfies

�+
����D

2v�m��+ f�u�m��

u�m�
v�m� = 0 in Q2� (3.17)

By applying Lemma 2.1 and Theorem 2.1 in these cubes we infer

sup
Q1

w�m� ≤ C1 inf
Q1

w�m� ≤ C1�

Next we recall that w�∗ ≥ 0 in ��∗ , which implies

v�m��y� xN � ≤ v�m��y� 2�∗ − xN � ≤ C1� for �y� xN � ∈ ��∗ �
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Existence Results for Nonproper Elliptic Equations 997

Hence

�v�m��L��Q� ≤ C1�

where

Q = {
x ∈ �N

+ 	 − 1 < x1 < 1� � � � �−1 < xN−1 < 1� 0 < xN < 2�∗ + 1
}
�

By applying Theorems 2.3 and 2.4 to (3.17) we get that v�m� ⇒ v on compacts
and v satisfies

�+
����D

2v�+ lv ≤ 0�

where l = lim inf t↘0
f�t�

t
. By the strong maximum principle v vanishes identically in

Q or v > 0 in Q. The first possibility is excluded by v�0� x0N � = 1.
Introduce the functions

z��y� xN � = v�y� 2� − xN �− v�y� xN �

defined in �� ∩Q for all � ≤ �∗ + 1/2. We have, by continuity,

z�
∗ ≥ 0 and z�

∗
�0� x0N � = 0�

Since �−
����D

2z�
∗
�+ lz�

∗ ≤ 0 the strong maximum principle implies z�
∗ = 0 in

��∗ ∩Q. This contradicts the fact that v = 0 on �xN = 0� and v > 0 on �xN = 2�∗�.
�

Theorem 3.2. Under the hypotheses of Theorem 3.1, if the problem

�+
����D

2u�+ f�u� = 0 (3.18)

has a nontrivial non-negative bounded solution in �N
+ such that u = 0 on ��N

+ , then the
same problem has a positive solution in �N−1.

Proof. Note that it is known how to deduce Theorem 3.2 from Theorem 3.1 when
the Pucci operator is replaced by the Laplacian—then one multiplies by cut-off
functions whose supports are strips going to infinity, and uses integration by parts.
We can of course not use this approach, since Pucci’s operators are not variational.

Suppose u is a solution of (3.18), u 
≡ 0, 0 ≤ u ≤ M . For each x = �y� xN � in the
strip �1 = �0 < xN < 1� we set

un�y� xN � = u�y� xN + n��

Now un satisfies the same equation as u so, using once more the regularity and
convergence results (Theorems 2.3 and 2.4), we see that un converges uniformly on
compact subsets of �1 to a function ũ which satisfies

�+
����D

2ũ�+ f�ũ� = 0 in �1� (3.19)
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998 Quaas and Sirakov

However, the monotonicity result of Theorem 3.1 trivially implies that ũ is
independent of the xN -variable. This means that the last line and column of D2ũ
contain only zeros, so the N -dimensional Pucci operator applied to this matrix is
actually �N − 1�-dimensional, and we have (3.19) in �N−1. �

4. Existence Results

4.1. The Setting

The proofs of our existence theorems are an application of degree theory for
compact operators in cones. This theory, essentially developed by Krasnoselskii
(1964), has often been used to show that such operators possess fixed points. We
are going to use an extension of Krasnoselskii results, due to Benjamin (1971) and
Nussbaum (1973), in the form that have been stated in the article of de Figueiredo
et al. (1982).

We start by recalling the abstract setting in de Figueiredo et al. (1982). Let K be
a closed cone with nonempty interior in the Banach space �E� � · ��. Let � � K → K
and F � K × 	0��� → K be compact operators such that ��0� = 0 and F�x� 0� =
��x� for all x ∈ K. Then the following theorem holds (see Proposition 2.1 and
Remark 2.1 in de Figueiredo et al., 1982).

Theorem 4.1. Assume there exist numbers R1 > 0, R2 > 0, and T > 0 such that
R1 
= R2, and

(i) x 
= ���x� for all 0 ≤ � ≤ 1 and �x� = R1,
(ii) F�x� t� 
= x for all �x� = R2 and all t ∈ 	0�+��,
(iii) F�x� t� 
= x for all x ∈ BR2

and all t ≥ T .

Then � has a fixed point x ∈ K such that �x� is between R1 and R2.

Note that (i) implies that iC��� BR1
� = 1, while (ii) and (iii) imply iC��� BR2

� = 0,
where iC is the Krasnoselskii index and BR = �x ∈ K � �x� = R�, so Theorem 4.1
follows from the excision property of the index.

We set E = �u ∈ C��� 	 u = 0 on ��� and K = �u ∈ E 	 u ≥ 0 in ��. It is clear
that solving (1.2) is equivalent to finding a fixed point in K of � � K → K, defined by

��u��x�
def= ��f�x� u�x��+ �u�x��� x ∈ ��

where � is the inverse of −�±
����D

2·�+ �·. It is easy to see, with the help of standard
existence results for proper (� ≥ 0) fully nonlinear elliptic equations, combined with
Theorems 2.3 and 2.4, that � is well defined and compact (for details see Quaas,
2004).

4.2. Sublinear Equations. Proof of Theorem 1.1

We define the operator F as

F�u� t��x� = ��f�x� u�x��+ �u�x�+ t�+
1 �x��� (4.20)

where �+
1 is the positive eigenfunction of �+

���, see Theorem 2.5.
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Existence Results for Nonproper Elliptic Equations 999

Note that hypothesis (H0) implies that there exist constants � > 0, r > 0 and
k > 0 such that for all x ∈ �

f�x� t� ≥ �
+
1 + ��t if t ≤ r� f�x� t� ≤ �
+

1 − ��t + k for all t ≥ 0�

We are going to show that conditions (i), (ii), and (iii) in Theorem 4.1 are
satisfied by F�u� t�, under the hypotheses of Theorem 1.1.

Let us prove (ii) and (iii). By the definition of F we have

F�u� t� = u ⇔ −�+
����D

2u� = f�x� u�+ t�+
1 �

Hence, if �u� ≤ r, we have

−�+
����D

2u� ≥ �
+
1 + ��u+ t�+

1 (4.21)

≥ �
+
1 + ��u ≥ 0 (4.22)

By the strong maximum principle u ≡ 0 or u > 0 in �. If u > 0 (4.22) contradicts
the definition of 
+

1 (see Theorem 2.5). If u ≡ 0, (4.21) implies t = 0, so (ii) and (iii)
are satisfied.

Next, we are going to prove (i). We claim that there exists R > 0 such that for
all � ∈ 	0� 1


u = ���u� implies �u� ≤ R�

Suppose this claim is false, that is, there exist sequences �n ∈ 	0� 1
 (say �n → �) and
un ∈ K such that

�un� → � and −�+
����D

2un�+ �un = �n�f�x� un�+ �un��

Set vn = �un�−1un. Then vn satisfies

−�+
����D

2vn� = gn�x��

where

gn = �n

f�x� un�

un

vn + ���n − 1�vn�

so

	gn�x�	 ≤ ��n�

+
1 − ��+ ���n − 1��vn +

k�n

�un�
�

so gn is bounded. By imbedding theorems and Theorem 2.3 the sequence vn
converges uniformly to a function v such that �v� = 1. By applying Theorem 2.4 to

−�+
����D

2vn� ≤ ��n�

+
1 − ��+ ���n − 1��vn +

k�n

�un�
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1000 Quaas and Sirakov

we get

−�+
����D

2v� ≤ �
+
1 − ��v

(since � ∈ 	0� 1
), which contradicts the maximum principle, Theorem 2.6.
In the end, we have proved (i), (ii), and (iii) with R1 = R, R2 = r. �

4.3. Superlinear Equations. Proof of Theorems 1.2 and 1.6

Now we define the operator F as

F�u� t��x� = ��f�x� u�x�+ t�+ �u�x���

First we show that condition (i) in Theorem 4.1 is satisfied. This is the content
of the following proposition.

Proposition 4.1. There is R1 > 0 so that the equation

−�+
����D

2u�+ �u = ��f�x� u�+ �u� in �
(4.23)

u > 0 in �� u = 0 on ���

� ∈ 	0� 1
, has no solution u with 0 < �u�� < R1.

Proof. We argue by contradiction. Let ��un� �n��n∈� be a sequence of positive
solution to (4.23) such that �un�� → 0 as n → +�. Define vn = un/�un��, then we
have, as before, that vn satisfies

−�+
����D

2vn� = �n

f�un�

un

vn + ���n − 1�vn in ��

and �vn�� = 1. By (H0) we can find R1 > 0 such that

f�u� ≤ �
+
1 − ��u if �un� < R1�

Then we can argue as in the sublinear case, to conclude that we find
vn → v uniformly in �, �v�� = 1, and v satisfies −�+

����D
2v� ≤ �
+

1 − ��v, which
contradicts the maximum principle. �

In order to prove condition (iii) in Theorem 4.1, we state the following
proposition.

Proposition 4.2. There exists a constant T > 0 so that if

F�u� t� = u ⇔ −�+
����D

2u� = f�x� u+ t� (4.24)

possesses a solution u ∈ K, then

0 ≤ t ≤ T�
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Existence Results for Nonproper Elliptic Equations 1001

Proof. By (H0) we can fix � > 0 and T > 0 such that if t ≥ T then f�t� ≥ �
+
1 + ��t.

Hence if (4.24) has a solution u ∈ K for some t ≥ T , then

−�+
����D

2�u+ t�� ≥ �
+
1 + ���u+ t��

By the definition of 
+
1 this implies u+ t = 0, that is t = 0 and u ≡ 0. �

Note that the proof of this proposition also implies (ii) is verified for t ≥ T .
Then we complete the proof of Theorem 1.2 by noticing that condition (1.6) implies
(ii) for t ≤ T .

Finally, in order to prove Theorem 1.6 we are going to show that hypothesis
(f1) implies (1.6).

Proposition 4.3. Let u be a C2��� solution of the equation (4.20) with t ≥ 0. For each
t0 there exists a constant C depending on f and �, such that if u is a C2��� solution
of the equation (4.24) with 0 ≤ t ≤ t0, then

�u�� ≤ C�

Proof. We argue by contradiction. Let ��un� tn��n∈� be a sequence of positive
solution to (4.20) such that 0 ≤ tn ≤ t0 (we can suppose tn converges), and �un�� →
+� as n → +�.

Let us define

vn�x� =
1
Mn

un

(
xn + xM

1−p
2

n

)
� (4.25)

with un�xn� = Mn = max� un. Then vn satisfies

−�+
����D

2vn� =
f�un + tn�

M
p
n

in �n = M
p−1
2

n ��− xn��

and �vn�� = 1. It is standard to see that �n tends to �N or �N
+ . By the regularity

result, Theorem 2.3, we have that, up to a subsequence, vn ⇒ v in compact sets
of �N or �N

+ . By hypothesis (f1) we have that f�un + tn�/M
p
n → C∗vp, so v ∈ K is

classical bounded solution of

�+
����D

2v�+ C∗vp = 0 in �N �

or of {
�+

����D
2v�+ C∗vp = 0 in �N

+�

u = 0 on ��N
+�

with p ≤ p+. However, this contradicts Theorem 1.3 or Theorem 1.5, since we have
�v� = 1. �
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