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Abstract Let � be a bounded, smooth domain in R
2. We consider the functional

I (u) =
∫

�

eu2
dx

in the supercritical Trudinger–Moser regime, i.e. for
∫
�

|∇u|2dx > 4π . More precisely,
we are looking for critical points of I (u) in the class of functions u ∈ H1

0 (�) such that∫
�

|∇u|2 dx = 4π k (1+α), for small α > 0. In particular, we prove the existence of 1-peak
critical points of I (u) with

∫
�

|∇u|2dx = 4π(1 + α) for any bounded domain �, 2-peak
critical points with

∫
�

|∇u|2dx = 8π(1 + α) for non-simply connected domains �, and
k-peak critical points with

∫
�

|∇u|2dx = 4kπ(1 + α) if � is an annulus.

Mathematics Subject Classification (2000) Primary 46E35 · 35J15

1 Introduction

The Trudinger–Moser inequality concerns the limiting case p = N of the Sobolev embed-

dings W 1,p(�) ⊂ L
N p

N−p (�), where � ⊂ R
N is an open domain. If p = N , the Sobolev
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544 M. del Pino et al.

space W 1,N (�) embeds into any Lq(�), but easy examples show that W 1,N (�) �⊂ L∞(�).
The maximal growth of integrability for functions u ∈ W 1,N (�) has been determined by
Pohozaev [27] and Trudinger [32]: it is of exponential type, more precisely, for a bounded
domain in � ⊂ R

N one has

u ∈ W 1,N
0 (�) ⇒

∫

�

eu2
dx < ∞

This inequality was sharpened by Moser [26] as follows:

sup
‖∇u‖N ≤1

∫

�

eμ|u|N ′
dx

{ ≤ C |�|, if μ ≤ μN

= +∞ if μ > μN

(1.1)

where N ′ = N
N−1 and μN = Nω1/(N−1)

N−1 with ωN−1 the measure of the unit sphere in R
N .

We recall that in the Sobolev case there is a loss of compactness at the limiting Sobolev
exponent p∗, and the supremum

sup
‖∇u‖p≤1

∫

�

|u|p∗
dx

is not attained for any � �= R
N . Lions [24] showed that also for (1.1) there is a loss of

compactness at the limiting exponent μ = μN . But, despite the loss of compactness and in
contrast to the Sobolev case, Carleson–Chang proved in [10] that the supremum

sup
‖∇u‖N ≤1

∫

�

eμN |u|N ′
dx

is attained for the ball� = B1(0). In [12] an alternative proof of this result was given, show-
ing that there is a close parallel to the famous result of Brezis–Nirenberg [9] on perturbations
of the Sobolev embedding. Struwe showed in [29] that the Carleson–Chang result continues
to hold if� is a small perturbation of the ball; Flucher [20] then proved that the result is true
on general bounded domains � ⊂ R

2, and Lin [23] extended the result to general bounded
domains in R

N .
Numerical evidence given by Monahan [25] suggested that in the case N = 2 (for� being

the ball) the Trudinger–Moser functional

I (u) =
∫

�

e|u|2 dx, ‖∇u‖2
2 = μ (1.2)

admits a local maximum and a mountain-pass critical value in the supercritical regime, i.e.
forμ > μ2 = 4π and near 4π . In the cited paper, Struwe was able to prove that this is indeed
the case for almost every μ in some interval (4π,μ0). The situation may be visualized as
follows, where u(p) and u(μ) denote the respective critical points (Fig. 1).

Recently, Lamm–Robert–Struwe [22] have studied the heat-flow associated to the Tru-
dinger–Moser functional, and they proved that for t → ∞ the solutions either converge
strongly to a solution of the associated stationary Trudinger–Moser equation, or there is the
formation of “standard bubbles”. This quantization is in correspondence to the results of Adi-
murthi–Struwe [5], Adimurthi–Druet [4] and Druet [18] concerning the blow-up behavior of
sequences of solutions of the associated elliptic equations. Using this characterization of the
solutions of the heat-flow, Lamm–Robert–Struwe prove the existence of local maxima and
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Beyond the Trudinger–Moser supremum 545

Fig. 1 Approaching criticality in the Sobolev and the Moser case

saddle point solutions in the supercritical regime μ ∈ (4π,μ0) for the functional (1.2), thus
completing the result of Struwe in [29].

In recent years a very successful method has been developed for studying elliptic equa-
tions in critical or supercritical regimes, see e.g. the survey [16]. The main idea is to try to
guess the form of the solution (using the shape of the “standard bubble”), then linearize the
equation at this approximate solution and use a Lyapunov–Schmidt reduction to arrive at a
reduced finite dimensional variational problem, whose critical points yield actual solutions of
the equation. In this paper we use this method to study the functional (1.2) in the supercritical
regime. To state the results, we define the Green’s function G(x, y) of the problem

−�x G = 8πδy(x), x ∈ �,
(1.3)

G(x, y) = 0, x ∈ ∂�,
and H its regular part defined as

H(x, y) = 4 log
1

|x − y| − G(x, y). (1.4)

Then from [4], it follows that the Robin function x 
→ H(x, x) has a strict minimum ξ0 ∈ �.
We prove the following results.

Theorem 1.1 Let � ⊂ R
2 be a bounded domain.

There exists μ1 > 4π such that for μ ∈ (4π,μ1) the functional I (u) restricted to the
sphere Sμ = {u ∈ H1

0 (�) : ∫
�

|∇u|2dx = μ} has a critical value with corresponding
positive solution uμ.

Furthermore, there exist a point ξμ ∈ �,with ξμ → ξ0, the minimum of Robin’s function,
as μ → 4π, and a positive number mμ with mμ → m ∈ (0,∞), as μ → 4π, such that

uμ(x) = (μ− 4π)1/4
[
mμG(x, ξμ)+ o(1)

]
,

where o(1) → 0 as μ → 4π uniformly on compact sets of � \ {ξ0}.
In the next theorem we give a result near and above the critical energy level 8π ; again,

there exist critical levels with corresponding positive solutions with two blow-up points,
provided the domain has non-trivial topology:
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546 M. del Pino et al.

Theorem 1.2 Assume that � ⊂ R
2 is bounded and not simply connected. Then there exists

μ2 > 8π such that for μ ∈ (8π,μ2) the functional I (u) restricted to Sμ has a critical value
with a corresponding positive solution uμ which blows up around two points ξ1, ξ2 ∈ �, as
μ → 8π . More precisely, there exist mi,μ > 0 and ξiμ ∈ �, for i = 1, 2, such that

mi,μ → mi ∈ (0,∞) as μ → 8π,

ξiμ → ξi as μ → 8π, with ξ1 �= ξ2,

and

uμ = (μ− 8π)
1
4
[
m1μG(x, ξ1μ)+ m2μG(x, ξ2μ)+ o(1)

]
where o(1) → 0 uniformly on compact sets of � \ {ξ1, ξ2}, as μ → 8π .

If � is an annulus we can look for solutions with symmetry, with several points of blow-up.

Theorem 1.3 Let 0 < a < b and� = B(0, b)\ B(0, a). Fix a positive integer k. Then there
exists μk > 4π k such that for μ ∈ (4π k, μk) the functional I (u) restricted to Sμ has a
critical value with corresponding positive solution uμ which is invariant under rotations of
angle 2π

k and which blows-up around k points arranged on the vertices of a regular polygon
as μ → 4π k. More precisely, there exist points ξ jμ, for j = 1, . . . , k, such that

ξ jμ = rμξ̂ j for all j = 1, . . . , k, with rμ → r0 as μ → 4π k

where

ξ̂ j = e
2π( j−1)

k i j = 1, . . . , k,

and r0 is the minimum of the function

r ∈ (a, b) → H(r ξ̂1, r ξ̂1)−
∑
i>1

G(r ξ̂1, r ξ̂i ).

There exists a positive number mμ, with mμ → m ∈ (0,∞) as μ → 4π k, such that the
solution uμ satisfies

uμ(x) = (μ− 4π k)
1
4

⎡
⎣mμ

k∑
j=1

G(x, ξ jμ)+ o(1)

⎤
⎦

where o(1) → 0 uniformly on compact sets of � \ ⋃k
j=1{r0e

2π( j−1)
k i }, as μ → 4π k.

The critical points uμ found in Theorems 1.1–1.3 correspond to solutions of the equation

−�u = μ
ueu2

∫
�

u2eu2 in �, u = 0 on ∂� (1.5)

This equation is related, but not equivalent, to the equation

−�u = λ ueu2
in �, u = 0 on ∂� (1.6)

Critical growth equations of form (1.6) (and generalizations) have been extensively studied
in recent years. The free functional associated with (1.6) is

Jλ(u) =
∫

�

|∇u|2dx − λ

∫

�

eu2
dx .
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Beyond the Trudinger–Moser supremum 547

In [1,13] existence results for Eq. 1.6 were given using variational methods (in the spirit of
Brezis–Nirenberg), working with the functional Jλ(u). On the other hand, in [4,5,18] the
asymptotic behavior of (certain) sequences of solutions uλ of (1.6) was studied, and it was
found that Jλ(uλ) → 4kπ as λ → 0, for some k ≥ 0, while the question whether such
families of solutions exist for k ≥ 1 was left open. A positive answer was given in [17] in
the case k = 1, 2, showing that there exists a family of solutions uλ to problem (1.6) which
blows up near a minimizer of the Robin’s function H(ξ, ξ) in the case k = 1, and with two
bubbles in the case k = 2 provided � is not simply connected.

The proofs of Theorems 1.1–1.3 are related to the proofs in [17], and for some details we
will refer to that paper.

2 A first approximation and outline of the argument

Let us fix an integer k ≥ 1. For a small number α > 0 we consider the set

Mα = {u ∈ H1
0 (�) :

∫

�

|∇u|2 = 4π k (1 + α) }. (2.1)

Our problem is to find critical points of the functional

I (u) =
∫

�

eu2
dx (2.2)

constrained to the manifold Mα . This is equivalent to finding a solution u ∈ H1
0 (�) to the

nonlocal problem

� u + 4π k (1 + α)∫
�

u2eu2 dx
u eu2 = 0 in �, u = 0 on ∂�. (2.3)

Or equivalently, this reduces to find solutions u to the semilinear elliptic problem

� u + λ u eu2 = 0 in �, u = 0 on ∂�, (2.4)

which furthermore satisfy the constraint

λ = 4π k (1 + α)∫
�

u2eu2 dx
. (2.5)

Let us consider k distinct points ξ1, ξ2, . . . , ξk in� and k positive numbers m1,m2, . . . ,mk,

such that, for a certain given δ > 0 small, we have

dist(ξ j , ∂�) > δ, |ξi − ξ j | > δ, δ < m j < δ−1. (2.6)

For points ξ j and parameters m j satisfying (2.6), we define new parameters μ j as follows

log 8μ2
j := −2 log 2m2

j − H(ξ j , ξ j )+
∑
i �= j

mi m
−1
j G(ξi , ξ j ), (2.7)

where G denotes the Green’s function for the Laplace operator with zero Dirichlet boundary
conditions in�, and H its regular part (1.4). Observe that relation (2.7) defines a diffeomor-
phism between μ j and m j (for a proof of this fact we refer to the end of Sect. 4). For λ small
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and positive and for parameters m j as above, we introduce another parameter, denoted by ε j

and defined by

log ε−4
j := 1

2m2
jλ

− 2 log 2m2
j . (2.8)

Observe that ε j → 0 as λ → 0. With these definitions, we introduce the function

U (x) := √
λ

k∑
j=1

m j

[
log

1

(μ2
jε

2
j + |x − ξ j |2)2

− Hj (x)

]
. (2.9)

In (2.9) the function Hj is defined as follows{
�Hj = 0, in �,
Hj (x) = log 1

(μ2
j ε

2
j +|x−ξ j |2)2 , for x ∈ ∂�.

This gives in particular that U = 0 on ∂�. Let us observe that from elliptic estimates,

Hj (x) = H(x, ξ j )+ O(ε2
jμ

2
j ),

uniformly in �, as ε j → 0, where H is defined in (1.4). Hence, far from the points ξ j ,

log
1

(μ2
jε

2
j + |x − ξ j |2)2

− Hj (x) = G(x, ξ j )+ O(ε2
jμ

2
j ), (2.10)

so that, far from the points ξ j ,

U (x) = √
λ

⎛
⎝ k∑

j=1

m j G(x, ξ j ) + o(1)

⎞
⎠ as λ → 0, (2.11)

where o(1) → 0 as λ → 0.
To describe the function U in a neighborhood of ξ j , we introduce the functions

w j (x) := wμ j

(
x − ξ j

ε j

)
(2.12)

with

wμ(y) := log
8μ2

(μ2 + |y|2)2 . (2.13)

The functions wμ,μ > 0, are the radially symmetric solutions of the Liouville equation

�w + ew = 0 in R
2. (2.14)

Thus in a small neighborhood of a given ξ j , say in |x − ξ j | < δ, as a consequence of the
definition of the parameters μ j and ε j given respectively in (2.7) and (2.8), we see that

U (x) = √
λ
{

m j [w j (x)+ log ε−4
j − log 8μ4

j − Hj (x)] +
∑
i �= j

[mi G(x, ξi )+ O(ε2
i )]

}

= √
λ
{

m j [w j (x)+ log ε−4
j − log 8μ4

j − H(ξ j , ξ j )]
+

∑
i �= j

mi G(ξ j , ξi )+ O(|x − ξ j |)+
∑

i

O(ε2
i )]

}

= m j
√
λ
[
w j (x)+ log ε−4

j + 2 log 2m2
j + θ(x)

]
, (2.15)
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Beyond the Trudinger–Moser supremum 549

where θ is a smooth function such that

θ(x) = O(|x − ξ j |)+
∑

j

O(ε2
j ).

The aim of this paper is to construct a solution to Problem (2.3), or equivalently to Problem
(2.4)–(2.5), of the form

u = U + φ,

where φ is a lower order correction. Observe that by construction U = 0 on ∂�, thus φ = 0
on ∂�. We will do this when k = 1 (see Theorem 1.1), when k = 2 and � is not simply
connected (see Theorem 1.2), and for arbitrary k when � is an annulus (Theorem 1.3).

The first part of our argument is the construction of the function φ. For any λ > 0 small,
points ξ j and parameters m j satisfying (2.6) we find φ as solution to the nonlinear problem
(2.4) when projected on a proper subspace of H1

0 (�). Let us be more precise.
The linearized equation at w j (see (2.12)) of the Liouville equation (2.14) is given by

�ψ + ew jψ = 0 in R
2. (2.16)

It is well known (see [8]) that all bounded solutions to (2.16) are given by

z0 j (y) = ∂μwμ j (y), zl j (y) = ∂ylwμ j (y), l = 1, 2.

Hence, expanding variables, the functions

Zi j (x) := zi j

(
x − ξ j

ε j

)
, i = 0, 1, 2 (2.17)

are all the admissible solutions to

L j (φ) = �φ + ε−2
j ew jφ = 0.

Let us further introduce a large but fixed number R0 > 0 and a non-negative function ζ(ρ)
with ζ(ρ) = 1 if ρ < R0 and χ(ρ) = 0 if ρ > R0 + 1. We denote

ζ j (x) = ε−2
j ζ

(∣∣∣∣ x − ξ j

ε j

∣∣∣∣
)
. (2.18)

The function φ will be a solution to problem (2.4) projected on the subspace of the functions
in H1

0 (�) which are L2-orthogonal to all ζ j Zi j , for j = 1, . . . , k, i = 0, 1, 2.
Using the notations: m := (m1, . . . ,mk) and ξ := (ξ1, . . . , ξk), we have the validity of

the following.

Proposition 2.1 Let δ > 0 be fixed. There exist λ0 > 0 and C > 0 such that, for any
0 < λ < λ0, for any points ξ1, . . . , ξk and parameters m1, . . . ,mk satisfying (2.6), and for
parameters μ j and ε j defined by (2.7) and (2.8), there exists a solution φ = φ(λ, ξ,m) to
the Nonlinear Projected Problem

�(U + φ)+ λ(U + φ)e(U+φ)2 = √
λ

2∑
i=0

k∑
j=1

ci j Zi jζ j , in �, (2.19)

φ = 0, on ∂�, (2.20)∫

�

Zi jζ jφ = 0, for all i, j, (2.21)
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for certain constants ci j = ci j (λ, ξ,m), that depend on λ, ξ and m. Furthermore, the func-
tion which to each (ξ,m) associates φ ∈ C(�) solution to (2.19)–(2.21) is of class C1 and
we have the validity of the following estimates

‖φ‖∞ ≤ Cλ
3
2 (2.22)

and

‖Dξ φ‖∞ ≤ Cλ
3
2 , ‖Dmφ‖∞ ≤ Cλ

3
2 . (2.23)

Moreover the function which to each (ξ,m) associates ci j is of class C1 and we have the
validity of the following estimates

|ci j | ≤ Cλ, |Dξ ci j | ≤ Cλ, |Dmci j | ≤ Cλ. (2.24)

We will prove Proposition 2.1 in Sect. 3.
Given the result in Proposition 2.1 we thus observe that the function U + φ, where U

is given by (2.9) and φ is given by Proposition 2.1, is a solution to our problem (2.3), or
equivalently to (2.4)–(2.5), if there exists a proper choice of λ, of the points ξ j and of the
parameters m j , j = 1, . . . , k, such that

λ = 4πk(1 + α)∫
�
(U + φ)2e(U+φ)2 and ci j = 0 for all i, j, (2.25)

or equivalently∫

�

|∇(U + φ)|2 dx = 4πk(1 + α) and ci j = 0 for all i, j. (2.26)

In Sect. 4 we will show the validity of

Proposition 2.2 Let R be the set of points and parameters (ξ,m) satisfying (2.6). Under the
same assumptions of Proposition 2.1, there exists α0 > 0 and a subregion R′ of R such that
for all 0 < α < α0 and for all (ξ,m) ∈ R′ there exists a function λ = λ(α, ξ,m) such that∫

�

|∇(U + φ)|2 dx = 4πk(1 + α) for all α > 0, α → 0 (2.27)

Furthermore, λ is a smooth function of the free parameter α, of the points ξ1, . . . , ξk, and of
the parameters m1, . . . ,mk. Moreover λ → 0 asα → 0 for points ξ1, . . . , ξk and parameters
m1, . . . ,mk belonging to R′.

With this definition of λ, we have that

Dξ,m I (U + φ) = 0 �⇒ ci j = 0 for all i, j. (2.28)

In (2.27)–(2.28) the function U is defined in (2.9) and φ is given by Proposition 2.1.

Given the choice of λ satisfying (2.27), for all α > 0 small, Proposition 2.2 gives that
U + φ is a solution to our problem if we can find (ξ,m) to be a critical point of the function

g(ξ,m) := I (U + φ). (2.29)

This will be done in Sect. 5 in the case k = 1 for any domain �, in Sect. 6 in the case k = 2
and � a not simply connected domain, and in Sect. 7 in the case of arbitrary k ≥ 1 and � an
annulus.
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3 Proof of Proposition 2.1

The results in Proposition 2.1 are contained in our previous work [17], where we construct
solutions uλ to

�u + λueu2 = 0 in �, u > 0 in �, u = 0 on ∂�, (3.1)

for any λ > 0 small. Given a certain configuration of points ξ1, . . . , ξk in � and a certain
choice of the parameters m1, . . . ,mk, these solutions uλ behave as

uλ(x) = √
λ

⎛
⎝ k∑

j=1

m j G(x, ξ j ) + o(1)

⎞
⎠

where o(1) → 0 on each compact subset of �̄ \ {ξ1, . . . , ξk}.
For completeness, we will sketch the principal steps of the proof of Proposition 2.1 in this

Section.
It is convenient for our purpose to rewrite Problem (2.19)–(2.21) using the substitution

U + φ = √
λ(Ũ + φ̃) and f (Ũ ) = λŨeλŨ 2

so that we get

L(φ̃) = −E − N (φ̃)+
2∑

i=0

k∑
j=1

ci j Zi jζ j , in �, (3.2)

φ̃ = 0, on ∂�, (3.3)∫

�

Zi jζ j φ̃ = 0, for all i, j. (3.4)

Here L is the linear operator defined as

L(φ̃) = �φ̃ +
⎡
⎣ k∑

j=1

ε−2
j ew j (x)

⎤
⎦ φ̃, (3.5)

with ε j defined in (2.8) and w j in (2.12), and E and N (φ̃) are given respectively by

E = �Ũ + f (Ũ ), (3.6)

and

N (φ̃) = [ f (Ũ + φ̃)− f (Ũ )− f ′(Ũ )φ̃] +
⎡
⎣ f ′(Ũ )−

k∑
j=1

ε−2
j eω j (x)

⎤
⎦ φ̃. (3.7)

We want to find a small solution φ̃ to the nonlinear problem (3.2)–(3.4). To do so two key
steps are needed: to establish an invertibility theory for the linear operator L in suitable spaces
of functions and to determine the size of the error term E in the corresponding norm.

We start by analyzing the error term E . To estimate the size of the right hand side of
Eq. 3.2, and in particular of the error term E , we introduce the following L∞-weighted norm
for bounded functions defined in �. Let us set

ρ(x) :=
k∑

j=1

ρi χBδ(ξ j )(x)+ 1,

123
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where χ denotes the characteristic function and

ρ j (x) = cγ j

⎧⎨
⎩
(

1 + 1

γ j
(|w j | + 1)

) (
1 + 1

γ j
(1 + |w j |)

)
e
w2

j
2γ j − 1

⎫⎬
⎭ ε−2

j ew j , (3.8)

where γ j = log ε−4
j . Observe that if |x − ξ j | > δ for any j, then ρ(x) = 1, while if

|x − ξ j | = O(ε j ), then ρ(x) = ε−2
j ew j . Define

‖h‖∗ = sup
x∈�

ρ(x)−1|h(x)|. (3.9)

We claim that

‖E‖∗ ≤ Cλ. (3.10)

Indeed, we observe first that in the region |x − ξ j | < δ, for some fixed j, we have

−�Ũ = m jε
−2
j ew j +

k∑
i=1

O(ε2
i ). (3.11)

On the other hand, thanks to the definition of the parameters μ j and ε j given by (2.7) and
(2.8), and thanks to the expansion of U given by (2.15) in the region we are considering, we
get

f (Ũ ) = m j (1 + 2λm2
jw j + O(λ))ew j ε−2

j eλm2
jw

2
j (1 +�λ(x)),

where

1 +�λ(x) ≤ (1 + Cλ|w j |)
for some constant C > 0. Hence, the error of approximation E near ξ j is given by

E(x) = m jε
−2
j ew j

{
1 − (1 + 2m2

jλw j + O(λ))em2
jλw

2
j
(
1 + O

(
λw j )

))} +
∑

i

O(ε2
i ).

In particular, observe that for |x − ξ j | = O(ε) we have that E(x) ∼ λε−2
j ew j . On the other

hand, for |x − ξ j | > δ for all j we clearly have that |E(x)| ≤ Cλ, as a direct consequence
of (2.11). These facts give (3.10); for more details on these estimates, cf. [17, Sect. 2].

Next we will establish an invertibility theory for the linear operator L . Given h ∈ L∞(�),
we consider the linear problem of finding a function φ such that for certain scalars ci j , i =
0, 1, 2, j = 1, . . . , k, it satisfies

L(φ) = h +
2∑

i=0

k∑
j=1

ci j Zi jζ j , in �, (3.12)

φ = 0, on ∂�, (3.13)∫

�

Zi jζ jφ = 0, for all i, j. (3.14)

Consider the norm

‖φ‖∞ = sup
x∈�

|φ(x)|.
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Proposition 3.1 Let δ > 0 be fixed. Under the same assumptions of Proposition 2.1, for
any h ∈ L∞(�), there is a unique solution φ =: Tλ(h) to problem (3.12)–(3.14) for all λ
positive and sufficiently small. Moreover

‖φ‖∞ ≤ C‖h‖∗. (3.15)

We omit the proof of Proposition 3.1, since it can be obtained with minor changes from
the proof of Proposition 2.1 in [17].

We proceed then to prove Proposition 2.1.
Proof of Proposition 2.1 To solve problem (3.2)–(3.4) in L∞(�), we recast it in fixed point
form

φ̃ = Tλ(−E − N (φ̃)) := A(φ̃), (3.16)

where Tλ is the operator in Proposition 3.1. We will show that A has a fixed point in the set
B = {φ̃ / ‖φ̃‖∞ ≤ Mλ} for a sufficiently large and fixed M and all small λ.

We recall the definition of N (φ) in (3.7),

N (φ) = f (Ũ + φ)− f (Ũ )φ − f ′(Ũ )+
[

f ′(Ũ )−
∑

j

ε−2ew j

]
φ2.

Since f ′(Ũ ) = λ(2λŨ 2 + 1)eλŨ 2
, we have that f ′(Ũ ) = O(λ) away from the points

ξ j . Repeating the corresponding computations to obtain the estimate of ‖E‖∗ in (3.10), we
readily get that

∥∥∥ f ′(Ũ )−
∑

j

ε−2ew j

∥∥∥∗ ≤ Cλ. (3.17)

Furthermore, for any φ ∈ B we write f (Ũ + φ)− f (Ũ )− f ′(Ũ )φ = f ′′(Ũ+tφ)
2 φ2 for some

0 ≤ t ≤ 1. Using again the computations to obtain the estimate of ‖E‖∗ in (3.10), we readily
get that ‖ f ′′(Ũ )‖∗ ≤ C . Using a Taylor expansion we find that

‖N (φ̃)‖∗ ≤ C‖φ̃‖2∞ + Cλ‖φ̃‖∞. (3.18)

This estimate, Proposition 2.3, and estimate (3.10) imply that A(B) ⊂ B, for a sufficiently
large and fixed M and all small λ. Indeed, if φ ∈ B, then

‖A(φ̃)‖∞ = ‖Tλ(−E − N (φ̃))‖∞ ≤ c
(
‖E‖∗ + ‖N (φ̃)‖∗

)
≤ Cλ(1 + λ)

for some proper positive constants c and C, independent of λ. Thus, choosing M in the
definition of B large, but independent of λ, we get that if φ̃ ∈ B then A(φ̃) ∈ B. Besides, a
direct computation gives that, for any φ̃1, φ̃2 in B, we have

N (φ̃1)− N (φ̃2) =
[

f (Ũ + φ̃1)− f (Ũ + φ̃2)− f ′(Ũ )(φ̃1 − φ̃2)
]

+
[

f ′(Ũ )−
∑

j

ε−2ew j

]
(φ̃1 − φ̃2).

Estimate (3.17) readily gives
∥∥∥∥
[

f ′(Ũ )−
∑

j

ε−2ew j

]
(φ̃1 − φ̃2)

∥∥∥∥∗
≤ Cλ‖φ̃1 − φ̃2‖∞
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for some constant C > 0. On the other hand, for some 0 ≤ t ≤ 1, we have that[
f (Ũ + φ̃1)− f (Ũ + φ̃2)− f ′(Ũ )(φ̃1 − φ̃2)

]
= f ′′(Ũ + t (φ̃1 − φ̃2))[φ̃1 − φ̃2]2.

Since ‖ f ′′(Ũ + t (φ̃1 − φ̃2))‖∗ ≤ C, for some positive constant C, we get readily∥∥∥
[

f (Ũ + φ̃1)− f (Ũ + φ̃2)− f ′(Ũ )(φ̃1 − φ̃2)
]∥∥∥∗ ≤ C‖φ̃1 − φ̃2‖2∞.

Thus it is directly checked that the operator A has a small Lipschitz constant in B for all
small λ. Indeed, for any φ̃1 and φ̃2 in B,

‖A(φ̃1)− A(φ̃2)‖∞ ≤ c‖N (φ̃1)− N (φ̃2)‖∗

≤ cλ
(

1 + ‖φ̃1 − φ̃2‖∞
)

‖φ̃1 − φ̃2‖∞ ≤ Cλ‖φ̃1 − φ̃2‖∞

for constants c,C positive and independent of λ.
Thus, the contraction mapping principle leads to a solution φ̃ of (3.2)–(3.4) with ‖φ̃‖∞ ≤

Cλ. This gives (2.22). The C1-dependence of the function φ̃ on the points ξ, the parameter
m and the corresponding estimates (2.23) can be obtained as in [17, Sect. 4].

We will next show the validity of (2.24). Let us fix h ∈ {0, 1, 2} and l ∈ {1, . . . , k}. Multi-
ply Eq. 3.3 against Zhlζl and integrate all over�. Since

∫
�

Zi jζ j Zhlζl = Cε−2
l δ jl(1+o(1)),

with C a positive constant, and o(1) → 0 as λ → 0, we have that

chlε
−2
l C(1 + o(1)) =

∫

�

L(φ̃)Zhlζk +
∫

�

E Zhlζk +
∫

�

N (φ̃)Zhlζk . (3.19)

We will estimate each of the terms in the right hand side of the above formula. Using the
definition of the cut off functions ζl in (2.18), the definition of the ‖ · ‖∗-norm in (3.9) and
the estimate (3.10), we first observe that∣∣∣∣∣∣

∫

�

E Zhlζk

∣∣∣∣∣∣ ≤ C‖E‖∗
∫

B(ξl ,σεl )

ε−2
l ewl |Zhl |ζl ≤ Cλε−2

l ,

for some σ > 0 and C > 0, independent of λ. On the other hand, we have∣∣∣∣∣∣
∫

�

N (φ̃)Zhlζk

∣∣∣∣∣∣ ≤ C‖N (φ̃)‖∗
∫

B(ξl ,σεl )

ε−2
l ewl |Zhl |ζl ≤ Cλ2ε−2

l ,

since (3.18) holds and ‖φ̃‖∞ ≤ Cλ. Since �Zhl + ε−2
l ewl Zhl = 0, a double integration by

parts in the remaining term in (3.19) yields to

∫

�

L(φ̃)Zhlζk =
⎡
⎣2

∫

�

∇Zhl∇ζl +
∫

�

Zhl�ζl

⎤
⎦ (1 + o(1)).

A direct computation shows that | ∫
�

∇Zhl∇ζl |, |
∫
�

Zhl�ζl | ≤ Cλε−2
l . Thus, combining

all the above estimates in (3.19), yields the validity of the first one of the estimates in
(2.24). Next we will estimate Dξ ci j . To fix the ideas, we will consider Dξ11 ci j . Define
Z = ∂ξ11φ, Z̃ = Z + ∑

a,b αa,b Zabζb, where

αab =
∫
�
φ∂ξ11(Zabζb)∫
�
(Zabζb)2

.
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As shown in [17, Sect. 4], we have that
∫
�

Z̃ Zi jζ j = 0 for all i, j, Z̃ = 0 on ∂� and

L(Z̃) = −∂ξ11

⎛
⎝ k∑

j=1

ε−2
j ew j

⎞
⎠ φ̃ +

∑
i, j

ci j∂ξ11(Zi jζ j )

+
∑

αab L(Zabζb)+
∑
i, j

∂ξ11(ci j )Zi jζ j .

Arguing as before, we get that

|∂ξ11 ci j | ≤ C‖Z̃‖∞ ≤ C‖∂ξ11 φ̃‖∞,

which, together with (2.23), readily gives |∂ξ11 ci j | ≤ Cλ. The remaining estimates in (2.24)
on |Dmci j | can be obtained in a similar way, so we omit the details. This concludes the proof
of the Proposition. ��

4 Proof of Proposition 2.2

We start with the following.

Proposition 4.1 Let δ > 0 be a fixed small number, let U be the function defined in (2.9)
and φ the function given by Proposition 2.1. Assume the parameters μ j and ε j are defined
as in (2.7) and (2.8), and assume that λ is a free parameter. Then, as λ → 0, the following
expansions hold true∫

�

|∇(U + φ)|2 dx = 4πk
{
1 + λ fk(ξ,m)+ λ2�λ(ξ,m)

}
, (4.1)

where

fk(ξ,m) = 2

⎡
⎣ k∑

j=1

m2
j

(
b + 2 log 2m2

j + H(ξ j , ξ j )
)

−
∑
i �= j

mi m j G(ξi , ξ j )

⎤
⎦ (4.2)

with b = 2 log 8 − 2 > 0. Furthermore, as λ → 0,

∫

�

e(U+φ)2 dx = |�| + 16π
k∑

j=1

m2
j + λ

k∑
j=1

m2
j

∫

�

G2(x, ξ j ) dx + λ2�λ(ξ,m). (4.3)

In (4.1) and (4.3),�λ(ξ,m) denotes a smooth function, uniformly bounded together with its
derivatives, as λ → 0, for (ξ,m) satisfying constraint (2.6).

Proof We write∫

�

|∇(U + φ)|2 dx =
∫

�

|∇U |2 + 2
∫

�

∇U∇φ dx +
∫

�

|∇φ|2.

In [17] Lemma 6.1, formula (6.11), we showed that

∫

�

|∇U |2 = 4πk

⎧⎨
⎩1 + λ fk(ξ,m)+

k∑
j=1

ε2
j log

1

ε j
θλ(ξ,m)

⎫⎬
⎭ , (4.4)
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where fk is the function defined in (4.2) and θλ is a smooth function, uniformly bounded, as
λ → 0, in the region for (ξ,m) satisfying (2.6). In [17, Lemma 6.1], we also showed that

Dξ

⎛
⎝
∫

�

|∇U |2
⎞
⎠ = 4πkλDξ ( fk(ξ,m))+

k∑
j=1

ε2
j log

1

ε j
θλ(ξ,m), (4.5)

Dm

⎛
⎝
∫

�

|∇U |2
⎞
⎠ = 4πkλDm ( fk(ξ,m))+

k∑
j=1

ε2
j log

1

ε j
θλ(ξ,m), (4.6)

where again θλ denotes a smooth function, uniformly bounded, as λ → 0, in the region for
(ξ,m) satisfying (2.6). Observe that, given the definition of the parameters ε j in (2.8), in
(4.4), (4.5) and (4.6) we get that ε2

j log 1
ε j

= o(λ3). In order to get (4.1), we are left with

the estimate of 2
∫
�

∇U∇φ dx + ∫
�

|∇φ|2. Observe first that 2
∫
�

∇U∇φ dx + ∫
�

|∇φ|2 ≤
2
[∫
�

∇U∇φ dx + ∫
�

|∇φ|2] .
If we multiply Eq. (2.19) against φ and then integrate on�,we get through an integration

by parts
∫

�

∇U∇φ dx +
∫

�

|∇φ|2 = λ

∫

�

(U + φ)e(U+φ)2φ, (4.7)

since we recall that φ = 0 on ∂� and the orthogonality conditions (2.21) hold. By (2.22) we

have ‖φ‖∞ ≤ Cλ
3
2 , for some fixed constant C independent of λ, and hence
∣∣∣∣∣∣
∫

�

(U + φ)e(U+φ)2φ

∣∣∣∣∣∣ ≤ Cλ
3
2

∣∣∣∣∣∣
∫

�

(U + φ)e(U+φ)2
∣∣∣∣∣∣ .

Now, a Taylor expansion on the last integral also gives,
∣∣∣∣∣∣
∫

�

(U + φ)e(U+φ)2φ

∣∣∣∣∣∣ ≤ Cλ| f rac32

∣∣∣∣∣∣
∫

�

UeU 2

∣∣∣∣∣∣ + λ3C. (4.8)

We now write, for some δ > 0 small,

∫

�

UeU 2
dx =

∫

�\∪ j B(ξ j ,δ
√
ε j )

UeU 2 +
k∑

j=1

∫

B(ξ j ,δ
√
ε j )

UeU 2
.

Since in the region � \ ∪ j B(ξ j , δ
√
ε j ) the function U (x) satisfies U (x) = √

λ(
∑

j m j

G(x, ξ j )+ o(1)), with o(1) → 0 as λ → 0, a Taylor expansion gives

∫

�\∪ j B(ξ j ,δ
√
ε j )

UeU 2 = √
λ

k∑
j=1

m j

∫

�

G(x, ξ j )

⎡
⎢⎣1 + λ

⎛
⎝ k∑

j=1

m j G(x, ξ j )

⎞
⎠

2
⎤
⎥⎦ (1 + o(1))

= √
λ

k∑
j=1

m j

∫

�

G(x, ξ j ) dx(1 + o(1)).
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Let us now fix an index j . We write∫

B(ξ j ,δ
√
ε j )

UeU 2 =
∫

B(ξ j ,δε j | log ε j |)
UeU 2 +

∫

B(ξ j ,δ
√
ε j )\B(ξ j ,δε j | log ε j |)

UeU 2 = I1 + I2.

We estimate first I1. Performing the change of variables y = x−ξ j
ε j

and using the notations

Vj (y) = 2γ j U (ε j y + ξ j )− 2γ 2
j and γ j = log ε−4

j , we have

I1 = ε2
j

γ j
eγ

2
j

∫

B(0,δ| log ε j |)
(Vj (y)+ 2γ 2

j )e
Vj (y)+

V 2
j (y)

4γ 2
j dy

= 2ε2
j e
γ 2

j
√
λm j

∫

B(0,δ| log ε j |)
ω j (y)e

ω j (y)(1 + o(1))

= 2m3
j

√
λ

∫

R2

ω(y)
8

(1 + |y|2)2 dy(1 + o(1)).

On the other hand

|I2| ≤ C
√
λ

δε
− 1

2
j∫

δ| log ε j |

1

r4 e

log2 r

γ 2
j r dr

(t = log r)

= C
√
λ

log δ+ γ j
8∫

log( δ4 )+log γ j

e
−2t+ 4t2

γ 2
j dt ≤ C

√
λ

log δ+ γ j
8∫

log( δ4 )+log γ j

e−t dt ≤ Cλ
3
2 . (4.9)

We thus conclude that ∫

�

UeU 2
dx = √

λ�λ(ξ,m)(1 + o(1)) (4.10)

where�λ(ξ,m) is bounded together with its derivatives in the considered region, as λ → 0.
This fact, together with (4.7) and (4.8), gives∫

�

∇U∇φ dx +
∫

�

|∇φ|2 = λ3�λ(ξ,m).

We conclude that estimate (4.1) holds in the C0-sense. Next we show the C1-closeness in
estimate (4.1), namely we prove that

Dξ

∫

�

|∇(U + φ)|2 dx = 4πkλDξ fk(ξ,m)+ λ2�λ(ξ,m) (4.11)

and

Dm

∫

�

|∇(U + φ)|2 dx = 4πkλDm fk(ξ,m)+ λ2�λ(ξ,m), (4.12)
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for a function �λ(ξ,m) which is bounded in the considered region, as λ → 0. The proof
of (4.12) follows the lines of the proof of (4.11). For this reason, we will focus only on the
proof of (4.11).

An integration by parts gives that

Dξ

∫

�

|∇(U + φ)|2 dx = −2
∫

�

(U + φ)�Uξ − 2
∫

�

(U + φ)�φξ .

By definition, far from the points ξ j , say in |x − ξ j | > δ for any j, the function U writes

as U (x) = √
λ
(∑k

j=1 m j G(x, ξ j )+ o(1)
)
, while in each set |x − ξ j | ≤ δ, j = 1, . . . , k,

one has that U (x) ≥ a
√
λ for some positive number a. We refer to (2.9), (2.11), (2.15). On

the other hand, Proposition 2.1 gives that ‖φ‖∞ ≤ Cλ
3
2 for some positive constant C . Thus

we get that

Dξ

∫

�

|∇(U + φ)|2 dx = −2

⎛
⎝
∫

�

U�Uξ )(1 + λO(1)

⎞
⎠ − 2

⎛
⎝
∫

�

U�φξ )(1 + λO(1)

⎞
⎠ ,

where O(1) is a continuous function of ξ and m, which is uniformly bounded, in the con-
sidered region, as λ → 0.

Observe now that, using a further integration by parts, we have
∣∣∣∣∣∣
∫

�

U�φξ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫

�

�Uφξ

∣∣∣∣∣∣ ≤ C‖φξ‖∞
∫

�

|�U |.

Now taking into account (3.11) and (2.11), it is straightforward to show that
∫
�

|�U | ≤ C
√
λ

for some positive constant C . We thus conclude that
∣∣∣∣∣∣
∫

�

U�φξ

∣∣∣∣∣∣ ≤ Cλ2,

and thus, recollecting the previous estimates, we conclude that

Dξ

∫

�

|∇(U + φ)|2 dx = 2
∫

�

∇U∇ DξU + λ2�λ(ξ,m)

= Dξ

∫

�

|∇U |2 + λ2�λ(ξ,m) (4.13)

where again�(ξ,m) is uniformly bounded, for ξ and m varying in the corresponding region,
as λ → 0. From (4.13) and (4.5) we deduce the validity of (4.11) and henceforth the validity
of (4.1).

Let us now evaluate
∫
�

e(U+φ)2 . A Taylor expansion, together with estimate (4.10), gives
that

∫

�

e(U+φ)2 =
∫

�

eU 2 + λ2�λ(ξ,m). (4.14)

123



Beyond the Trudinger–Moser supremum 559

Now we write

∫

�

eU 2
dx =

⎡
⎢⎣

k∑
j=1

∫

B(ξ j ,δ
√
ε j )

eU 2
dx

⎤
⎥⎦ + Aλ. (4.15)

Since in the region � \ ∪ j B(ξ j , δ
√
ε j ) we have

U (x) = √
λ

⎛
⎝∑

j

m j G(x, ξ j )+ o(1)

⎞
⎠ ,

with o(1) → 0 as λ → 0, a Taylor expansion gives

Aλ =
∫

�\∪ j B(ξ j ,δ
√
ε j )

⎡
⎣1 + λ

k∑
j=1

m2
j G

2(x, ξ j )

⎤
⎦ (1 + o(1))

= |�| + λ

k∑
j=1

m2
j

∫

�

G2(x, ξ j ) dx + λ2�λ(ξ,m).

Now, we write∫

B(ξ j ,δ
√
ε j )

eU 2
dx =

∫

B(ξ j ,δε j | log ε j |)
eU 2

dx +
∫

B(ξ j ,δ
√
ε j )\B(ξ j ,δε j | log ε j |)

eU 2
dx

= I1 + I2.

We will show next that

I1 = 16πm2
j + λ�λ(ξ,m), I2 = λ�λ(ξ,m) (4.16)

for some function �λ, uniformly bounded together with its derivatives, as λ → 0. Indeed,
performing the change of variables y = x−ξ j

ε j
and using the notations Vj (y) = 2γ j U (ε j y +

ξ j )− 2γ 2
j and γ j = log ε−4

j , we have

I1 = ε2
j e
γ 2

j

∫

B(0,δ| log ε j |)
e

Vj (y)+
V 2

j (y)

4γ 2
j dy

= 2m2
j

∫

R2

8

(1 + |y|2)2 dy + λ�λ(ξ,m) = 16πm2
j [1 + λ�λ(ξ,m)] .

On the other hand

|I2| ≤ C

δε
− 1

2
j∫

δ| log ε j |

1

r4 e

log2 r

γ 2
j r dr = O(λ),

by the calculations in (4.9).
We can thus conclude that estimate (4.3) holds true in C0-sense. The C1-closeness in (4.3)

can be obtained proceeding as in the proof of the C1-closeness in (4.1). We leave the details
to the reader. ��
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We are now ready to give the proof of Proposition 2.2.
Proof of Proposition 2.2. Let R′ be the subset of R defined as follows

R′ = {(ξ,m) ∈ R : fk(ξ,m) �= 0}.
Replacing expansion (4.1) into (2.27), we see that (2.27) gives

λ fk(ξ,m)+ λ2�λ(ξ, λ) = α. (4.17)

In R′, the relation (4.17) defines λ as a function of α, ξ and m, which is smooth in (ξ,m) in
the region R′. Furthermore, as α → 0, we have

λ = α

fk(ξ,m)
+ α2

f 3
k (ξ,m)

�α(ξ,m),

where �α is a smooth function of (ξ,m), which is uniformly bounded together with its
derivatives, in the region R′, as α → 0.

Assume now (2.27). We shall prove (2.28). Let us define the functional

J (u) = 1

2

∫

�

|∇u|2 − λ

2

∫

�

eu2

for functions u ∈ H1
0 (�). Under our assumptions, we have that

J ′(U + φ)[∂(U + φ)] = 0, (4.18)

where with ∂ we either denote the partial derivative with respect to m j for any j = 1, . . . , k,
or the partial derivative with respect to ξ j i for j = 1, . . . , k, i = 1, 2.

Indeed, a direct computation gives

J ′(U + φ)[∂(U + φ)] =
∫

�

∇(U + φ)∇(∂(U + φ))− λ

∫

�

(U + φ)e(U+φ)2∂(U + φ)

= 1

2
∂

⎛
⎝
∫

�

|∇(U + φ)|2
⎞
⎠ − λ

2
∂

⎛
⎝
∫

�

e(U+φ)2
⎞
⎠ = 0,

where we used the fact that ∂
(∫
�

|∇(U + φ)|2) = 0 since (2.27) holds, and the assumption

that ∂
(∫
�

e(U+φ)2
)

= 0.

Let us now consider the following change of variables

1√
λ
(U + φ)(x) = mlvl

(
x − ξl

εl

)
+ 1

2mlλ

for some l = 1, . . . , k. A direct consequence of (2.15) is

vl(y) = wμl (y)+
∑

j

(
O(|εl y + ξl − ξ j |)+ O(ε2

j )
)
, for |y| ≤ δ

εl
. (4.19)

A straightforward computation gives that

J (U + φ) = Il(vl),
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where

Il(vl) = m2
l

2

∫

�l

|∇vl |2 dx − m2
l

∫

�l

evl eλm2
l v

2
,

with �l = �−ξl
εl

. Furthermore,

J ′(U + φ)[∂(U + φ)] = I ′
l (vl)[∂vl ]. (4.20)

Now, since (U + φ) solves (2.19) in �, we see that vl(y) solves in �l

mlε
−2
l

[
�ṽl +evl (1+2λm2

l vl)e
λm2

l v
2
l

]
=

∑
i j

ci jζ

(
εl y+ξl − ξ j

ε j

)
ε−2

j zi j

(
εl y+ξl − ξ j

ε j

)
.

Thus from (4.18) and (4.20) we get

0 = I ′
l (ṽl)[∂vl ]

=
∑

i j

⎛
⎜⎝
∫

�l

ζ(
εl y + ξl − ξ j

ε j
)ε−2

j zi j (
εl y + ξl − ξ j

ε j
)∂vl dy

⎞
⎟⎠ ci j .

Now assume that ∂ = ∂m1 . Fix two indices i and j . To compute the coefficient in front of
ci j in the above expression, we choose l = j and obtain
∫

�l

ζ

(
εl y + ξl − ξ j

ε j

)
ε−2

j zi j

(
εl y + ξl − ξ j

ε j

)
Dm1vldy = ∂μ j

∂m1

∫

R2

z2
0 j (y) dy (1 + o(1)) .

Thus we conclude that, for any h = 1, . . . , k,

0 =
∑

j

⎛
⎜⎝ ∂μ j

∂mh

∫

R2

z2
0 j (y) dy

⎞
⎟⎠ c0 j (1 + o(1)) .

If we now assume that ∂ = ∂ξab for a = 1, 2, b = 1, . . . , k, a direct argument shows on the
other hand that

0 =
∑

j

⎛
⎜⎝ ∂μ j

∂ξab

∫

R2

z2
0 j (y) dy

⎞
⎟⎠ c0 j +

⎛
⎜⎝
∫

R2

z2
1 j (y) dy

⎞
⎟⎠ cab (1 + o(1)) .

We can conclude that Dξ,m I (ξ,m) = 0 implies the validity of a system of equations of the
form ⎡

⎣∑
j

∂μ j

∂mh
c0 j

⎤
⎦ (1 + o(1)) = 0, j = 1, . . . , k, (4.21)

⎡
⎣A

∑
j

∂μ j

∂ξab
c0 j + cab

⎤
⎦ (1 + o(1)) = 0, a = 1, 2, b = 1, . . . , k, (4.22)

for some fixed constant A, with o(1) small in the sense of the L∞ norm as λ → 0. The
conclusion of the Lemma follows if we show that the matrix (Dmμ j ) j of dimension k × k is
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invertible in the range for the points ξ j and parameters m j we are considering. Indeed, this
fact implies unique solvability of (4.21). Inserting this in (4.22) we get unique solvability of
(4.22).

We will now show that (Dmμ j ) is invertible. Consider the definition of the μ j ’s, in terms
of m j ’s and points ξ j given in (2.7). These relations correspond to the gradient Dm F(m, ξ)
of the function F defined as follows

F(m, ξ) = 1

2

k∑
j=1

m2
j

[
log 2m2

j − log 8μ2
j − 1 − H(ξ j , ξ j )

]
+

∑
i �= j

G(ξi , ξ j )mi m j .

It is natural to perform the change of variable s j = m2
j . With abuse of notation, the above

function now reads as follows

F(s, ξ) = 1

2

k∑
j=1

s j

[
log 2s j − log 8μ2

j − 1 − H(ξ j , ξ j )
]

+
∑
i �= j

G(ξi , ξ j )
√

si s j .

This is a strictly convex function of the parameters s j , for parameters s j uniformly bounded
and uniformly bounded away from 0 and for points ξ j in � uniformly far away from each

other and from the boundary. For this reason, the matrix
(
∂2 F
∂si ∂s j

)
is invertible in the range of

parameters and points we are considering. Thus, by the implicit function theorem, relation

(2.7) defines a diffeomorphism betweenμ j and m j . This fact gives the invertibility of
(
∂μ j
∂ml

)
we were aiming at.

This concludes the proof of Proposition 2.2. ��

5 Proof of Theorem 1.1

In this section we assume that � is a bounded domain with smooth boundary and we let
k = 1. Thus in this case the point ξ ∈ � and the parameter m ∈ R+ satisfy the constraints

dist(ξ, ∂�) > δ, δ < m < δ−1. (5.1)

Condition (2.27) reduces to

λ f1(ξ,m)+ λ2�λ(ξ,m) = α (5.2)

where

f1(ξ,m) = 2m2(b + 2 log 2m2 + H(ξ, ξ)). (5.3)

In (5.2), �λ(ξ,m) is a smooth function, uniformly bounded together with its derivatives,
as λ → 0, for (ξ,m) satisfying constraint (2.6). For simplicity we introduce the change of
variables s = m2. Observe that, for any ξ ∈ �, the function s → b + 2 log 2s + H(ξ, ξ) is

strictly monotone in (0,∞), it has a unique zero s̄ = s̄(ξ) = 1
2 e

−b+H(ξ,ξ)
2 , it is negative for

0 < s < s̄ and strictly positive for s > s̄. We thus conclude that in the region

(ξ, s) ∈ R′ = {(ξ, s) : ξ ∈ �, s > s̄(ξ)},
where f1(ξ, s) is strictly positive, relation (5.2) defines λ as a smooth function of α and (ξ, s).
More precisely,

λ = α

f1(ξ, s)
+ α2 f1(ξ, s)3�α(ξ, s)
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where�α is a smooth function of (ξ, s), uniformly bounded together with its derivatives, as
α → 0.

Replacing (5.3) and (5.2) in (4.3) for k = 1, we get that

g(ξ, s) :=
∫

�

e(U+φ)2 dx = |�| + 16πs + α
∫
�

G2(x, ξ) dx

2(b + 2 log 2s + H(ξ, ξ))

+
(

α

2s(b + 2 log 2s + H(ξ, ξ))

)2

�α(ξ, s), (5.4)

where �α is a smooth function which is uniformly bounded together with its derivatives in
the region R′.

As a consequence of (5.2) and of Proposition 2.2, we have that the function u = U + φ,

where U is defined in (2.9) and φ is given by Proposition 2.1, is a solution to our problem
(2.3) if we establish the existence of a critical point (ξ, s) for the function g given by (5.4).

We claim that, given δ > 0, for all α > 0 small enough, the function

ϕα(ξ, s) := |�| + 16πs + α
∫
�

G2(x, ξ) dx

2(b + 2 log 2s + H(ξ, ξ))
(5.5)

has a critical point in the region dist(ξ, ∂�) > δ and s̄(ξ)+δ√α < s < s̄(ξ)+δ−1√α,with

value
(
|�| + 8πe− b+H(ξ,ξ)

2

)
(1+ O(

√
α)), as α → 0, in the region considered. Furthermore,

we show that this critical point situation is stable under proper small C1 perturbation of ϕα: to
be more precise, any functionψ such that ‖ψ−ϕα‖∞ +‖∇ψ−∇ϕα‖∞ ≤ Cα in the region
considered, also has a critical point. This fact will conclude the proof of Theorem 1.1 since,
in the above region, the function g(ξ, s) given by (5.4) is a proper small C1 perturbation of
ϕα as α → 0 in the sense described above.

Thus what is left of this section is devoted to prove the existence of a C1-stable critical
point situation for ϕα (see Proposition 4.1).

Consider the new change of variable t = s − s̄, so that t > 0 in the region we are
considering. In this new variable, the function ϕα takes the form

ϕα(ξ, t) = |�| + 16π(s̄ + t)+ α
∫
�

G2(x, ξ) dx

2 log(1 + t
s̄ )

. (5.6)

Let H0 > 0 be the minimum value of the function H inside �. Let δ > 0 be such that the
set �δ := {ξ ∈ � : H(ξ, ξ) < H0 + 10δ} is strictly contained in �.

Let

D = �δ × R+

and let B = �̄ δ
2
× [δ√α, δ−1√α] and B0 = �̄ δ

2
× {δ√α, δ−1√α}. Consider the set � of all

functions φ ∈ C(B, D) such that there exists ψ ∈ C([0, 1] × B; D) with

ψ(0, ·) = I dB , ψ(1, ·) = φ, ψ(t, ·)|B0
= I dB0 .

Define

sup
φ∈�

inf
(ξ,t)∈B

ϕα(ξ, t) = c.

Observe that the value c is strictly positive, as a direct consequence of the definition of ϕα
in the region considered. We will show that, given δ > 0 small, for all α > 0 small enough,
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(a)

inf
(ξ,t)∈B0

ϕα(ξ, t) > c

(b) there exists K > 0 independent of δ > 0 such that

c < K

(c) if δ > 0 is small enough, then for any (ξ, t) ∈ ∂D such that ϕα(ξ, t) = c there exists a
tangent vector τ to ∂D such that

∇ϕα(ξ, t) · τ �= 0.

Under the conditions (a), (b), (c), a critical point (ξ̄ , t̄) for ϕα with ϕα(ξ̄ , t̄) = c exists, as
a standard deformation argument involving the negative gradient flow of ϕα shows. This
structure is clearly preserved for small C1(D̄)-perturbations of ϕα and hence a stable critical
point situation for the functional g, which is C1-close to ϕα, is established.

Proof of (a) We start with the following observations. For any given ξ, since α > 0 the func-
tion t → ϕα(ξ, t) is strictly convex and positive in (0,∞), thus it has a unique minimum

which we denote by t̄ = t̄(ξ). This minimum is non degenerate, namely ∂2

∂2t
ϕα(ξ, t̄) �= 0, as

a direct computation shows. From ∂tϕα(ξ, t̄) = 0 we get that

log2
(

1 + t̄

s̄

) (
1 + t̄

s̄

)
= α

∫
�

G2(x, ξ) dx

32π s̄
. (5.7)

The function h̃(r) := log2(1+r) (1+r) is strictly monotone in (0,∞) and a Taylor expansion
gives

h̃(r) = r2 + o(r2) as r → 0.

In particular, as α → 0, from (5.7) we obtain

t̄ =
√
αs̄

√∫
�

G2(x, ξ) dx
√

32π
+ o(

√
αs̄). (5.8)

Choosing, if necessary, a smaller δ, we may assume that, for any ξ ∈ �δ, we have that

δ

2

√
α ≤ t̄(ξ) ≤ δ−1

2

√
α.

In particular, this fact gives the validity of (a). ��
Proof of (b) Inserting (5.8) in (5.5), we get

ϕα(ξ, t̄) = |�| + 16π s̄(ξ)+ ϕ̃α(ξ), (5.9)

where

ϕ̃α(ξ) = √
αs̄

⎡
⎢⎢⎣4

√√√√π

2

∫

�

G2(x, ξ)+
√
α
∫
�

G2(x, ξ)

2
√

s̄ log

(
1 +

√
α
∫
� G2(x,ξ)√
32π s̄

)
⎤
⎥⎥⎦ + o(

√
αs̄).

(5.10)
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From (5.9) we thus get the following estimates for ϕα(ξ, t̄(ξ))

ϕα(ξ, t̄(ξ)) := |�| + 16πe− b+H(ξ,ξ)
2 + O(

√
α). (5.11)

From this we conclude that there exists a constant M independent of δ such that

c ≤ sup
ξ∈�

(
|�| + 16πe− b+H(ξ,ξ)

2 + M
)
.

Thus (b) is proven. ��
Proof of (c) We argue by contradiction: assume that for a sequence δ → 0, points (ξ, t)with
ϕα(ξ, t) = c and (ξ, t) ∈ ∂D we have that ∇ϕα(ξ, t) · τ = 0 for any tangent vector τ to ∂D.
Since c is uniformly bounded above and below away from zero, we have that t is uniformly
bounded above and away from 0. Thus we assume that ∂tϕα(ξ, t̄) = 0 (otherwise we would
get a contradiction right away). But if this is the case, our function ϕα(ξ, t̄) is given by (5.9),

or equivalently (5.11). Now, since ξ → e− b+H(ξ,ξ)
2 has a maximum in the region�δ,we have

the existence of a tangent vector τ to ∂�δ such that ∇ϕα(ξ, t̄) · τ �= 0. This concludes our
argument, and also the proof of Theorem 1.1. ��

6 Proof of Theorem 1.2

In this section we assume that � is not simply connected and that k = 2. In this case
ξ = (ξ1, ξ2) ∈ �2 and m = (m1,m2) ∈ R

2+ satisfy

dist(ξi , ∂�) > δ, |ξ1 − ξ2| > δ, δ < mi < δ−1 (6.1)

for some given δ > 0 small, but independent of α. We denote

�2
δ = {ξ = (ξ1, ξ2) ∈ �2 : dist(ξi , ∂�) > δ, |ξ1 − ξ2| > δ}. (6.2)

Condition (2.27) reduces to

λ f2(ξ,m)+ λ2�(ξ,m) = α (6.3)

where

f2(ξ,m) = 2

⎡
⎣ 2∑

j=1

m2
j (b + 2 log 2m2

j + H(ξ j , ξ j ))− m1m2G(ξ1, ξ2)

⎤
⎦ . (6.4)

From now on, we will use the change of variables m2
j = s j , j = 1, 2.

We will next describe the set

Z = {(ξ, s) ∈ �2 × R
2+ : ξ1 �= ξ2, s1s2 �= 0, f2(ξ, s) = 0}. (6.5)

For any fixed ξ = (ξ1, ξ2) ∈ �2, with ξ1 �= ξ2, there exists a unique intersection in R
2+

between the set

Zξ = {s ∈ R
2+ : s1s2 �= 0, f2(ξ, s) = 0} (6.6)

and the lines s2 = ts1, for any 0 < t < ∞. This gives a parametrization of the curve
described by Zξ . Namely

Zξ = {s = (s1, s2) ∈ R
2+ : s1 = 1

2
eφ(ξ,t), s2 = t

2
eφ(ξ,t), 0 < t < ∞}
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where

φ(ξ, t) =
√

tG(ξ1, ξ2)− (1 + t)b − H(ξ1, ξ1)− t H(ξ2, ξ2)− 2t log t

2(1 + t)
. (6.7)

In particular, the set Zξ is a smooth curve in R
2+,which is diffeomorphic to {s2

1 +s2
2 = 1}∩R

2+,
and it divides R

2+ into two connected components, one bounded and the other unbounded. In
the unbounded component f2 is positive. We call this region Z+

ξ and we denote by Z+
δ the

region given by

Z+
δ = {(ξ, s) ∈ �2

δ × R
2+ : s1s2 �= 0, f2(ξ, s) > 0}.

In Z+
δ relation (6.3) defines λ as a smooth function of the free parameter α and of the points

(ξ, s). More precisely,

λ = α

f2(ξ, s)
+ α2

f2(ξ, s)3
�α(ξ, s)

where�α is a smooth function of (ξ, s), uniformly bounded together with its derivatives, as
α → 0.

Replacing (6.4) and (6.3) in (4.3) for k = 2, we get that

g(ξ, s) :=
∫

�

e(U+φ)2 dx = |�| + 16π(s1 + s2)+ αh(ξ, s)

f2(ξ, s)

+
(

α

f2(ξ, s)

)2

�α(ξ, s), (6.8)

where

h(ξ, s) = s1

∫

�

G2(x, ξ1) dx + s2

∫

�

G2(x, ξ2) dx, (6.9)

f2 is defined in (6.4) and�α is a smooth function which is uniformly bounded together with
its derivatives in Z+

δ , as α → 0.
As a consequence of Proposition 2.2, we have that the function u = U + φ, where U is

defined in (2.9) and φ is given by Proposition 2.1, is a solution to our problem (2.3) if we
establish the existence of a critical point (ξ, s) for the function g given by (6.8). We will
devote the rest of this Section to prove the above assertion.

We first introduce a further change of variables. For any fixed ξ ∈ �2
δ , we consider

the connected region Z+
ξ in R

2+ where f2(ξ, s) > 0. We perform the following change of

variable: for any ξ ∈ �2
δ and t ∈ (0,∞), we define s = (1 + r)s̄, where

s̄ = (s̄1(ξ, t), s̄2(ξ, t)) =
(

eφ(ξ,t)

2
,

t eφ(ξ,t)

2

)
(6.10)

with φ given by (6.7), and r ∈ R. In particular, s̄ ∈ Zξ and if r > 0 then (1 + r)s̄ ∈ Z+
ξ .

In the new variables (ξ, t, r) the function g takes the form

g(ξ, t, r) = |�| + 16π(1 + r)(s̄1 + s̄2)

+αh(ξ, (1 + r)s̄)

f2(ξ, (1 + r)s̄)
+

(
α

f2(ξ, (1 + r)s̄)

)2

�α(ξ, (1 + r)s̄). (6.11)
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Finding critical points for g(ξ, s), for ξ ∈ �2
δ and s ∈ Z+

ξ , is equivalent to finding critical

points for g(ξ, t, r) for ξ ∈ �2
δ and (t, r) ∈ R

2+.
We claim that, given δ > 0, for all α > 0 small enough, the function

ϕα(ξ, t, r) := |�| + 16π(1 + r)(s̄1 + s̄2)+ αh(ξ, (1 + r)s̄)

f2(ξ, (1 + r)s̄)
(6.12)

has a critical point in the region dist (ξi , ∂�) > δ, |ξ1 − ξ2| > δ, δ < t < δ−1 and δ
√
α <

r < δ−1√α, with value (|�| + O(1)) (1 + O(
√
α)), as α → 0, in the region considered.

Furthermore, we show that this critical point situation is stable under proper small C1 pertur-
bation ofϕα: to be more precise, any functionψ such that ‖ψ−ϕα‖∞+‖∇ψ−∇ϕα‖∞ ≤ Cα
in the region considered, also has a critical point. Since g is properly C1-close to ϕα (see
Proposition 4.1) this fact will conclude the proof of Theorem 1.2.

Let us fix a small number δ > 0 to be chosen later. We define D to be

D = �̂2
δ × R

2+, where �̂2
δ = {y ∈ �2/dist (y, ∂�2) > δ}. (6.13)

Denote by�1 a bounded nonempty component of R
2 \ �̄ and assume that 0 ∈ �1. Consider

a closed, smooth Jordan curve γ contained in � which encloses �1. We let S be the image
of γ and B = S × S × [δ, δ−1] × [δ√α, δ−1√α]. Thus B is a closed and connected subset
of D. Define B0 = S × S × [δ, δ−1] × {δ√α, δ−1√α}.B0 is a closed subset of B.

Let � be the class of all maps � ∈ C(B,D) with the property that there exists a function
� ∈ C([0, 1] × B,D) such that

�(0, ·) = IdB , �(1, ·) = �, �(t, ·)|B0
= Id|B0

. (6.14)

Then we define

C = sup
�∈�

inf
z∈B

ϕα(�(z)). (6.15)

We will show that, given δ > 0 small, for all α > 0 small enough,

(a)

inf
B0
ϕα(ξ, t, r) > C

(b) there exists K > 0 independent of δ > 0 such that

C < K

(c) if δ > 0 is small enough, then for any (ξ, t, r) ∈ ∂D such that ϕα(ξ, t, r) = C there
exists a tangent vector τ to ∂D such that

∇ϕα(ξ, t, r) · τ �= 0.

As in Sect. 5, the conditions (a), (b) and (c) yield a critical point (ξ̄ , t̄, r̄) for ϕα with
ϕα(ξ̄ , t̄, r̄) = C, by a standard deformation argument involving the negative gradient flow
of ϕα . This structure is preserved for small C1(D̄)-perturbations of ϕα and hence we have a
stable critical point situation for the functional g, which is C1-close to ϕα .

Proof of (a) We claim that, given δ > 0 small, for any ξ ∈ �2, with dist(ξi , ∂�) > δ, |ξ1 −
ξ2| > δ, and t ∈ R

+ the function r → ϕα(ξ, t, r) has a non degenerate minimum in
[δ√α, δ−1√α]. Indeed, observe that in this region, the function ϕα takes the form

ϕα(ξ, t, r) = ϕ̃α(ξ, t, r)+ α�α(ξ, t, r) (6.16)
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where

ϕ̃α(ξ, t, r) = |�| + 16π(1 + r)(s̄1 + s̄2)+ αh(ξ, s̄)

[∂s1 f2(ξ, s̄)s̄1 + ∂s2 f2(ξ, s̄)s̄2]r
and �α(ξ, t, r) is a smooth function, uniformly bounded together with its derivatives, as
α → 0. A direct computation gives

∂s1 f2(ξ, s̄) = 2

(
b + 2 log 2s̄1 + 2 + H(ξ1, ξ1)−

√
s̄2

2
√

s̄1
G(ξ1, ξ2)

)
,

∂s2 f2(ξ, s̄) = 2

(
b + 2 log 2s̄2 + 2 + H(ξ2, ξ2)−

√
s̄1

2
√

s̄2
G(ξ1, ξ2)

)

and, since f2(ξ, s̄) = 0, we get that

∂s1 f2(ξ, s̄)s̄1 + ∂s2 f2(ξ, s̄)s̄2 = 4(s̄1 + s̄2).

Observe that, in the region we are considering, we have that m < s̄1 + s̄2 < m−1, for a certain
positive constant m depending on δ, but independent of α. Inserting the above computation
in ϕ̃α, we get

ϕ̃α(ξ, t, r) = |�| + 16π(1 + r)(s̄1 + s̄2)+ αh(ξ, s̄)

4(s̄1 + s̄2)r
.

Since α > 0 and h > 0, the function r → ϕ̃α(ξ, t, r) has a critical point r̄ given by

r̄ =
√

h(ξ, s̄)

8
√
π(s̄1 + s̄2)

√
α,

which is a non degenerate minimum, since

∂2
r ϕ̃α(ξ, t, r̄) = αh(ξ, s̄)

8(s̄1 + s̄2)r̄3 > 0.

Choosing, if necessary, a smaller δ, we may assume that, for any ξ ∈ �̂2
δ and δ ≤ t ≤ δ−1,

we have that

δ

2

√
α ≤ r̄(ξ, t) ≤ δ−1

2

√
α.

In particular, this fact gives the validity of (a). ��
Proof of (b) Inserting the value of r̄ in ϕ̃α, see (6.16), we get

ϕ̃α(ξ, t, r̄) = |�| + 16π(s̄1 + s̄2)+ √
α 2

√
π

√
h(ξ, t)+ O(α),

and thus from (6.16) and (6.10)

ϕα(ξ, t, r̄) = |�| + 16π(s̄1 + s̄2)+ O(
√
α)

= |�| + 8π(1 + t)eφ(ξ,t) + O(
√
α). (6.17)

To prove (b), we need to show the existence of K > 0 independent of small δ such that if
� ∈ �, then there exists a point z̄ ∈ B for which

ϕα(�(z̄)) ≤ K . (6.18)
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We write

z = (z1, z2, z3, z4), �(z) = (�1(z),�2(z),�3(z),�4(z)),

with

(z1, z2), (�1(z),�2(z)) ∈ �̂2
δ , z3, z4, �3(z), �4(z) ∈ R+.

Since by definition (6.14) the map � keeps B0 fixed, we have that for any (z1, z2) ∈ S × S
and z3 ∈ [δ, δ−1], there exists ẑ4 ∈ [δ√α, δ−1√α] so that for this z

ϕα(�(z)) ≤ |�| + 8π(1 +�3(z))e
φ(�1(z),�2(z),�3(z)) + O(

√
α).

We now claim that for any z3 ∈ R
2+ there exists a ẑ ∈ S × S such that �1(ẑ, z3, ẑ4) and

�2(ẑ, z3, ẑ4) have antipodal directions, more precisely

�1(ẑ, z3, ẑ4)

|�1(ẑ, z3, ẑ4)| = Rπ
�2(ẑ, z3, ẑ4)

|�2(ẑ, z3, ẑ4)| , (6.19)

where Rπ denotes a rotation in the plane of an angleπ . This implies the existence of a number
M > 0, which depends only on �, such that G

(
�1(ẑ, z3, ẑ4),�2(ẑ, z3, ẑ4)

) ≤ M . This
yields by (6.7)

ϕα(�(ẑ, z3, ẑ4)) ≤ |�| + 8πe− b
2 (1 + t)e− t log t

1+t ≤ K

for some explicit number K , which depends on M, but is independent of δ. This gives
estimate (6.18).

We prove (6.19) by a degree argument. For fixed z3, consider an orientation-preserv-
ing homeomorphism h : S1 → S1 and the map f : S1 × S1 → S1 × S1 defined as
f (ζ ) = ( f1(ζ ), f2(ζ )) with

f1(ζ1, ζ2) = �1(h(ζ1), h(ζ2), z3, ẑ4)

|�1(h(ζ1), h(ζ2), z3, ẑ4)| , f2(ζ1, ζ2) = �2(h(ζ1), h(ζ2), z3, ẑ4)

|�2(h(ζ1), h(ζ2), z3, ẑ4)| .

If we show that f is onto, we get in particular the validity of (6.19).
By (6.14) there exists a map � ∈ � such that �(1, ·) = �. Let �i (t, ·) denote the

components of the map � and set �̃i (t, ξ1, ξ2) = �i (t, ξ2, ξ2, z3, ẑ4). We then have �̃i ∈
C([0, 1] × S1 × S1,�2

δ ), �̃i (0, ·) = IdS1×S1 and �̃i (1, ·) = �i , i = 1, 2. We now define a
homotopy F : [0, 1] × S1 × S1 → S1 × S1 by

F1(t, ζ ) = �̃1(t, h(ζ1), h(ζ2))

|�̃1(t, h(ζ1), h(ζ2))|
and F2(t, ζ ) = �̃2(t, h(ζ1), h(ζ2))

|�̃2(t, h(ζ1), h(ζ2))|
.

Note that F(1, ζ ) = f (ζ ) and

F(0, ζ ) = (h(ζ1), h(ζ2)).

This function defines a homeomorphism of S1 × S1, which we regard as embedded in R
3,

parametrized as follows:

ζ : (θ1, θ2) ∈ [0, 2π)2 
→ (ρ1 cos θ1, ρ1 sin θ1, 0)+ (0, ρ2 cos θ2, ρ2 sin θ2),

for 0 < ρ2 < ρ1. The map f defined above can be read in the introduced variables as

f (ζ ) = (ρ1 f1(ζ ), 0)+ (0, ρ2 f2(ζ )),
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and it can be extended to a continuous map f̃ : T → T, where T is the solid torus described
by

(θ1, θ2, ρ) ∈ [0, 2π)2 × [0, ρ2] 
→ (ρ1 cos θ1, ρ1 sin θ1, 0)+ (0, ρ cos θ2, ρ sin θ2),

with

f̃ (ζ, ρ) = (ρ1 f1(ζ ), 0)+ (0, ρ f2(ζ )).

Note that f̃ is homotopic to a homeomorphism of T, along a deformation which maps
∂T = S1 × S1 into itself. This implies that deg( f̃ , T, P) �= 0 for all P lying in the interior
of T . This implies that f is onto: indeed, taking (θ∗

1 , θ
∗
2 ) ∈ [0, 2π)2 and ρ∗ ∈ (0, ρ2), there

exist ζ ∗∗ ∈ S1 × S1 and ρ∗∗ ∈ (0, ρ2) such that

(ρ1 f1(ζ
∗∗), 0)+ (0, ρ∗∗ f2(ζ

∗∗)) = (ρ1 cos θ∗
1 , ρ1 sin θ∗

1 , 0)+ (0, ρ∗ cos θ∗
2 , ρ

∗ sin θ∗
2 ),

which implies that f1(ζ
∗∗) = (cos θ∗

1 , sin θ∗
1 ), f2(ζ

∗∗) = (cos θ∗
2 , sin θ∗

2 ) and ρ∗ = ρ∗∗.
Thus f is onto, and this concludes the proof of (6.19). ��
Proof of (c) Consider (ξ, t, r) ∈ ∂D with ϕα(ξ, t, r) = C. Since C is uniformly bounded
above and below away from zero, we have that r is uniformly bounded above and away
from 0. Thus we may assume that ∂rϕα(ξ, t, r̄) = 0 (otherwise we would get the result right
away). But if this is the case, our function ϕα(ξ, t, r̄) takes the form (6.17). Let us set

ψ(ξ, t) = |�| + 8π(1 + t)eφ(ξ,t). (6.20)

We argue by contradiction. Let us assume there exist a sequence δ = δn → 0 and points
(ξn, tn, r̄(ξn, tn)) ∈ ∂D such that ψ(ξn, tn) = C and ∇ψ(ξn, tn) · τ = 0 for all tangent vector
τ to ∂D.

Passing to a subsequence, if necessary, we have that (ξn, tn) → (ξ̄ , t̄) ∈ �̄2 × R+, with
(ξ̄ , t̄) ∈ ∂ (

�̄2 × R̄+
)

andψ(ξ̄ , t̄) = C. We will show the existence of a vector τ �= 0, tangent
to the boundary of �̄2 × R̄+ such that ∇ψ(ξ̄ , t̄) · τ �= 0, reaching thus a contradiction.

We start with the following observation: given any ξ = (ξ1, ξ2), the function t ∈
(0,∞) 
→ ψ(ξ, t) has a unique non degenerate maximum t̂ = t̂(ξ). Indeed, observe that

lim
t→0+ ψ(ξ, t) = 8πe− b+H(ξ1,ξ1)

2 , lim
t→+∞ψ(ξ, t) = 8πe− b+H(ξ2,ξ2)

2 ,

∂tψ(ξ, t) = 4πe
φ(ξ,t)
(1+t) [�(ξ, t)+ H(ξ1, ξ1)− H(ξ2, ξ2)] (6.21)

where

�(ξ, t) = 1 − t

2
√

t
G(ξ1, ξ2)− 2 log t.

The function t → �(ξ, t) is monotone decreasing in (0,∞),

lim
t→0+ �(ξ, t) = +∞, lim

t→+∞ �(ξ, t) = −∞
and

∂t�(ξ, t) = − t + 1

2t
√

t
G(ξ1, ξ2)− 2

t
< 0, for all t > 0.

Let t̂ = t̂(ξ) be the unique non degenerate maximum point ofψ(ξ, t), defined by the relation

1 − t̂

2
√

t̂
G(ξ1, ξ2)− 2 log t̂ = H(ξ2, ξ2)− H(ξ1, ξ1). (6.22)
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A key fact is that there exists a positive constant c > 0, independent of δ, such that
c < t̂ < c−1. This fact is a direct consequence of the definition of t̂ given by (6.22) and of
the following property: there exists a positive number C, independent of δ, such that

∣∣∣∣ H(ξ2, ξ2)− H(ξ1, ξ1)

2G(ξ1, ξ2)

∣∣∣∣ ≤ C. (6.23)

We postpone the proof of (6.23).
Assume now first that (ξ̄ , t̄) ∈ ∂

(
�̄2 × R̄+

)
, with ξ̄ ∈ �2. This implies that tn →

0 or tn → ∞. In both cases, thanks to the above discussion and to (6.21), we get that
|∇tψ(ξn, tn)| ≥ M, for some positive fixed M, as n → ∞. We thus get the result.

Let us consider now the case in which dist(ξ2, ∂�) = δ. As δ → 0, this fact implies that
H(ξ2, ξ2) → ∞, but then we must also have that |ξ1 − ξ2| → 0 to keep the value of ψ
bounded. By construction we have dist(ξ1, ∂�) ≥ δ. Two cases arise: if ∇tψ(ξ, t̄) �= 0, then
we can choose τ parallel to ∇tψ(ξ, t̄). Otherwise, we are in the case in which ∇tψ(ξ, t̄) = 0.
This implies that t̄ = t̂ . What is left of this proof concerns the analysis of this case.

We recall that the case we are discussing is the following: dist(ξ2, ∂�) = δ, ξ1 → ξ2,

with dist(ξ1, ∂�) ≥ δ,∇tψ(ξ, t̄) = 0, with t̄ = t̂ . Inserting the value of t̄ given by (6.22)
into the expression of ψ, we get

ψ(ξ, t̄(ξ)) = 8πe−b(1 + t̄)e
√

t̄G(ξ1,ξ2)−2H(ξ1,ξ1)
4

We assume by contradiction that

∇ξ2ψ(ξ, t̄) · τ = 0 (6.24)

for any vector τ tangent to ∂�δ at ξ2, where �δ = {x ∈ � : dist(x, ∂�) = δ}. Taking into
account (6.22) we have that

∇ξψ(ξ, t̄) = ψ(ξ, t̄)

√
t̄∂ξG(ξ1, ξ2)− 2∂ξ H(ξ1, ξ1)

4
.

We denote ρ = |ξ1 − ξ2| → 0. Only two cases may occur, namely δ
ρ

→ ∞ or δρ ≤ c0, for
some constant c0. We shall show that in both cases relation (6.24) is impossible.

Let us assume first that δ
ρ

→ ∞ and define

x j = ξ2 − ξ j

ρ
for j = 1, 2

and x̃ j = limδ→0 x j . Let us define

ϕ̃(x1, x2) = ϕ2(ξ1 + ρx1, ξ2 + ρx2, s).

Since away from the boundary the function H(x, x) is bounded, we get

lim
δ→0

∇ξ2ϕ2(ξ + ρx) = −C∂xl j log
1

|x̃1 − x̃2| �= 0

contradicting (6.24). Thus, we necessarily have that δ
ρ

is bounded. The interesting case is
when ξ1 ∈ ∂�δ . If not, we can reproduce the argument above to reach a contradiction. The
case δ = o(ρ) cannot happen because of (6.23). Let us assume then that δ

ρ
→ c. We consider

the scaled domain �̃ = δ−1�, whose associated Green’s function G̃ and regular part H̃ are
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given by (6.26). In this scaled domain the number t defined by relation (6.22) remains away
from 0 and 1, since the quantity

H̃(ξ2, ξ2)− H̃(ξ1, ξ1)

2G̃(ξ1, ξ2)

remains bounded. Furthermore, after a rotation and translation, we may assume that ξ̃2 :=
ξ2
δ

→ (0, 1), ξ̃1 := ξ1
δ

→ (a, 1), for some a > 0, as δ → 0 and the domain �̃ becomes
the half-plane x2 > 0. Under this condition, we see that the derivative of ϕ2 in the direction
e = (0, 1) is not 0, reaching again a contradiction with (6.24), and the proof is concluded.

In the rest of this proof, we will show the validity of (6.23). We assume by contradiction
that

0 ≤ H(ξ2, ξ2)− H(ξ1, ξ1)

2G(ξ1, ξ2)
→ +∞. (6.25)

We have δ = dist(ξ2, ∂�). Let us denote d1 = dist(ξ1, ∂�), and d = |ξ1 − ξ2|. Condi-
tion (6.25) implies that d1 and d → 0, with δ = o(d1) and δ = o(d). Let us consider the
expanded domain �̃ = δ−1� and observe that for this domain its associated Green’s function
and regular part are given by

H̃(x1, x2) = 4 log δ + H(δx1, δx2), G̃(x1, x2) = G(δx1, δx2). (6.26)

Furthermore, dist(ξ2, ∂�) = δ implies dist
(
ξ2
δ
, ∂�̃

)
= 1. After a rotation and translation,

we assume that ξ2
δ

= (0, 1) and as δ → 0 the domain �̃ becomes the half-plane x2 > 0. We
denote respectively by G0 and H0 Green’s function and its regular part, associated to the half
plane x2 > 0. The expressions for G0 and H0 are explicit:

H0(x, y) = 4 log
1

|x − ȳ| , ȳ = (y1,−y2)

where y = (y1, y2), and

G0(x, y) = 4 log
1

|x − y| − 4 log
1

|x − ȳ| .

We thus compute the expression in (6.25)

0 ≤ H(ξ2, ξ2)− H(ξ1, ξ1)

2G(ξ1, ξ2)
= H̃( ξ2

δ
,
ξ2
δ
)− H̃( ξ1

δ
,
ξ1
δ
)

2G̃( ξ1
δ
,
ξ2
δ
)

=
H0((0, 1), (0, 1))− 4 log δ

|ξ1−ξ̄1| + o(1)

4 log δ
|ξ1−δ(0,1)|

= O(1),

but this is in contradiction with (6.25). ��

7 Proof of Theorem 1.3

In this section we assume that � = B(0, b) \ B(0, a) with 0 < a < b and we fix an integer
k. We look for a solution to Problem (2.4)–(2.5), or equivalently for a critical point of the
functional I (u) constrained to Sμ, for μ > 4πk (see (1.2)), in the class of functions that are
invariant under rotations of angle 2π

k .
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To be more precise, we build a solution of the form

u(x) = U (x)+ φ(x)

where U (x) is given by (2.9), with the following choice for the points ξ j and the parameters
m j

ξ j = re
2π( j−1)

k i , m j = m for all j = 1, . . . , k

with r > 0,m > 0. Recall that the function φ is a solution to the nonlinear Problem (2.19)–
(2.21).

Since by construction the function U is invariant under rotations of 2π
k and it is even in

the x2-direction, a direct consequence of the uniqueness of φ guaranteed by Proposition 2.1
is that the function φ shares the same symmetries. These facts, together with the uniqueness
of φ, imply that the constants ci j that appear in Eq. 2.19 satisfy the following conditions

ci j = ci1 for all j = 2, . . . , k, for all i = 0, 1, 2

and

c21 = 0.

We thus conclude that if we work in the class of functions that are invariant under rotations
of 2π

k and even in the x2-direction, the function U + φ is a solution to (2.4)–(2.5) if there
exists a proper choice of λ, r > 0 and m > 0 such that∫

�

|∇(U + φ)|2 dx = 4π k(1 + α), and c01 = c11 = 0.

From Proposition 4.1 we deduce that the first of the above conditions reduces to

λ fk(r,m)+ λ2�λ(r,m) = α (7.1)

where

fk(r,m) = 2 k m2

[
b + 2 log(2m2)+ H(ξ1, ξ1)−

∑
i>1

G(ξ1, ξi )

]

and�λ(r,m) is a smooth function of the variables r,m,which is uniformly bounded together
with its derivatives, as λ → 0, in the region a + δ < r < b − δ, δ < m < δ−1 for any given
δ > 0.

For simplicity we introduce the change of variables s = m2, and we define H(r) =
H(ξ1, ξ1) and G(r) = ∑

i>1 G(ξ1, ξi ). The function fk gets rewritten as

fk(r, s) = 2 k s
[
b + 2 log 2s + H(r)− G(r)

]
.

For any r ∈ (a, b), let s̄ = s̄(r) = 1
2 e− b+H(r)−G(r)

2 . In the region

(r, s) ∈ R′ = {(r, s) : r ∈ (a, b), s > s̄(r)},
fk(r, s) is strictly positive and relation (7.1) defines λ as a smooth function of α and (r, s).
More precisely,

λ = α

fk(r, s)
+ α2

fk(r, s)3
�α(r, s)
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where �α is a smooth function of (r, s) uniformly bounded, together with its derivatives, as
α → 0.

Inserting this information into (4.3) we get that

g(r, s) :=
∫

�

e(U+φ)2 dx = |�| + 16π k s + α
∫
�

G2(x, ξ1) dx

2(b + 2 log 2s + H(r)− G(r))

+
(

α

2s(b + 2 log 2s + H(r)− G(r))

)2

�α(r, s), (7.2)

where �α is a smooth function which is uniformly bounded together with its derivatives in
the region R′.

As a consequence of Proposition 2.2 and the symmetries of the function U + φ, we have
that u = U + φ is a solution to Problem (2.4)–(2.5) if we establish the existence of a critical
point (r, s) for the function g given by (7.2).

Arguing as in Sect. 5 we will prove that, given δ > 0, for all α > 0 small enough, the
function

ϕα(r, s) := |�| + 16π k s + α
∫
�

G2(x, ξ1) dx

2(b + 2 log 2s + H(r)− G(r))
(7.3)

has a critical point in the region a+δ < r < b−δ and s̄(r)+δ√α < s < s̄(r)+δ−1√α,with

value |�| + 8πe− b+H(r)−G(r)
2 + O(

√
α), as α → 0, in the region considered. Furthermore,

we show that this critical point situation is stable under proper small C1 perturbation of ϕα:
to be more precise, any function ψ such that ‖ψ − ϕα‖∞ + ‖∇ψ − ∇ϕα‖∞ ≤ Cα in the
region considered, also has a critical point. This fact will conclude the proof of Theorem 1.3.

Thus what is left of this section is devoted to prove the existence of a C1-stable critical
point situation for ϕα .

Consider the new change of variable t = s − s̄, so that t > 0 in the region we are
considering. In this new variable, the function ϕα takes the form

ϕα(r, t) = |�| + 16π k (s̄ + t)+ α
∫
�

G2(x, ξ1) dx

2 log(1 + t
s̄ )

. (7.4)

Since the points ξ j are uniformly separated from each other, the function G(r) is bounded
from above in the interval (a, b). Since limr→a H(r) = limr→b H(r) = ∞, the function
H(r) − G(r) has a minimum r0 in (a, b). Let δ > 0 and define the set Iδ := {r ∈ (a, b) :
h(r) < H(r0)− G(r0)+ 10δ}. Let

D := Iδ × R+,

B := Ī δ
2
×[δ√α, δ−1√α] and B0 := Ī δ

2
×{δ√α, δ−1√α}. Consider the set � of all function

φ ∈ C(B, D) such that there exists ψ ∈ C([0, 1] × B; D) with

ψ(0, ·) = I dB , ψ(1, ·) = φ, ψ(t, ·)|B0
= I dB0 .

Define

sup
φ∈�

inf
(r,t)∈B

ϕα(r, t) = c.

The value c is strictly positive, as a consequence of the definition of ϕα in the region consid-
ered. As in Sect. 5 one proves that for given δ > 0 small and for all α > 0 small enough,
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(a) inf(r,t)∈B0 ϕα(r, t) > c
(b) there exists K > 0 independent of δ > 0 such that c < K
(c) if δ > 0 is small enough, then for any (r, t) ∈ ∂D such that ϕα(r, t) = c there exists a

tangent vector τ to ∂D such that ∇ϕα(r, t) · τ �= 0.

From (a), (b) and (c) one obtains as in Sect. 5 a critical point (r̄ , t̄) for ϕα with ϕα(r̄ , t̄) = c,
by a standard deformation argument involving the negative gradient flow of ϕα . This structure
is clearly preserved for small C1(D̄)-perturbations of ϕα, and hence a stable critical point
situation for the functional g, which is C1-close to ϕα, is established.

This concludes the proof of Theorem 1.3. ��
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