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Abstract

We study the existence of radial ground state solutions for the problem

−div

( ∇u√
1 + |∇u|2

)
= uq, u > 0 in R

N,

u(x) → 0 as |x| → ∞,

N � 3, q > 1. It is known that this problem has infinitely many ground states when q � N+2
N−2 , while no

solutions exist if q � N
N−2 . A question raised by Ni and Serrin in [W.-M. Ni, J. Serrin, Existence and non-

existence theorems for ground states for quasilinear partial differential equations, Atti Convegni Lincei 77
(1985) 231–257] is whether or not ground state solutions exist for N

N−2 < q < N+2
N−2 . In this paper we prove

the existence of a large, finite number of ground states with fast decay O(|x|2−N) as |x| → +∞ provided
that q lies below but close enough to the critical exponent N+2

N−2 . These solutions develop a bubble-tower
profile as q approaches the critical exponent.
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1. Introduction

This paper deals with the question of finding radially symmetric solutions u = u(|x|) of the
following prescribed mean curvature equation:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
−div

( ∇u√
1 + |∇u|2

)
= uq in R

N,

u > 0 in R
N,

lim|x|→+∞u(x) = 0.

(1)

We refer to these solutions as ground states. Radial (singular) solutions of (1) when uq is replaced
by κu have been studied in the context of the analysis of capillary surfaces [2,3,6,11,14,18,24,
27]. Existence and nonexistence of radial ground states for problem (1) when q > 1 has been
considered by several authors. Ni and Serrin in [20,21] established that if 1 < q � N/(N − 2)

no positive solutions exist. On the contrary, if q � (N + 2)/(N − 2) there is a continuum of
solutions [20]. For any q , radial ground states must satisfy the upper bound u(0) < (4Nq)1/(q+1),
see [1,26].

Whether or not ground states of problem (1) exist in the range

N

N − 2
< q <

N + 2

N − 2
(2)

was left as an open question in [21]. Partial progress was achieved by Clément, Mitidieri and
Manásevich in [5] who proved a Liouville type theorem for problem (4), with q in the range (2):
there is an explicit positive constant C(N,q) such that no radial ground state u exists with u(0) <

C(N,q). In addition, let us recall that for the standard Lane–Emden–Fowler problem⎧⎪⎨
⎪⎩

−�u = uq in R
N,

u > 0 in R
N,

lim|x|→+∞u(x) = 0
(3)

ground states do not exist if q < N+2
N−2 as established by Gidas and Spruck in [16]. Finally note

that replacing uq by −au + uq there exists exponentially decaying ground states for sufficiently
small a > 0 and q in the range (2), see [7,25].

In this paper we will prove that, in striking opposition to the above facts, many ground states
of problem (1) do exist if q is less than but sufficiently close to (N +2)/(N −2). Thus we assume
in what follows that N � 3 and consider the problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
−div

( ∇u√
1 + |∇u|2

)
= u

N+2
N−2 −ε in R

N,

u > 0 in R
N,

lim|x|→+∞u(x) = 0,

(4)

where ε > 0 is a small parameter. We have the validity of the following result which in particular
states that an increasingly large number of solutions exist as ε gets smaller and smaller.
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Theorem 1. Given k � 1 there exists a number εk > 0 such that for all 0 < ε < εk there exists a
radially symmetric solution uε to problem (4) which asymptotically takes the form

uε(x) = γ

k∑
j=1

(
1

(1 + (αj ε
j− N+2

2N )
4

N−2 |x|2)

)N−2
2

εj− N+2
2N αj

(
1 + o(1)

)
, (5)

where o(1) → 0 uniformly in R
N as ε → 0. Here the αj ’s are (explicit) positive constants and

γ = (N(N − 2))
N−2

4 .

We recall that the “bubbles”

wm(x) = γ

(
1

(1 + m
4

N−2 |x|2)

)N−2
2

m, m > 0,

constitute all radial positive solutions of the equation �w + w
N+2
N−2 = 0. The solutions found in

Theorem 1 constitute at main order superposition of k “flat” bubbles with small maximum values
which approach zero uniformly as ε → 0. The bubble-tower phenomenon, with tall elements, has
been detected in slightly supercritical problems for the Laplacian operator in [9,10,13,15].

The question of existence of ground states for (4) remains open for the full range (2). We
could mention the possible analogy existing between this problem and

⎧⎪⎨
⎪⎩

−�u = uq + us in R
N,

u > 0 in R
N,

lim|x|→+∞u(x) = 0
(6)

with q lying in the range (2) and s > (N + 2)/(N − 2). It was proven in [4] the existence of a
number q̄ ∈ (N/(N − 2), (N + 2)/(N − 2)), such that no ground states of problem (6) exist if
q ∈ (N/(N − 2), q̄), while they do if q ∈ [q̄, (N + 2)/(N − 2)), with increasing number of them
as q approaches (N + 2)/(N − 2). We conjecture that a similar fact holds for problem (4).

The proof of Theorem 1 follows a scheme close in spirit to that in [9]. It is based on a trans-
formation of the ODE equivalent to the problem of finding radially symmetric solutions, via an
Emden–Fowler type transformation, after which the problem of finding the desired solution be-
comes equivalent to that of finding a multibump solution in which the centers are located toward
+∞, at the same time far away one to each other. The ε-dependent location of the bumps is then
derived as stationary configurations for critical points of the energy functional along a suitable
manifold of approximate solutions. This procedure gets rigorously carried out via a Lyapunov–
Schmidt procedure broadly used in elliptic singular perturbation problems starting with [12],
after which actual critical points of the full energy are found close to those on the approximate
manifold. The phenomenon here described has resemblance with spike clustering as found for
instance in [8,19,22,23].

We carry out this program in what remains of this paper.



M. del Pino, I. Guerra / J. Differential Equations 241 (2007) 112–129 115
2. The set up and energy computations

2.1. Scaling

For the analysis we shall study the problem

−
(

ηN−1 fη√
1 + εf 2

η

)
η

= ηN−1f q for η > 0, (7)

fη(0) = 0, f (η) → 0 as η → ∞, (8)

which is the radial form of problem (1) under the scaling

f (η) := ε
− 1

q+1 u(r) and η = ε
1
2

q−1
q+1 r.

In particular we study fε solution of

−
(

ηN−1 fη√
1 + εf 2

η

)
η

= ηN−1f
N+2
N−2 −ε for η > 0. (9)

In terms of fε, the expansion (5) takes the form

fε(η) = γ

k∑
j=1

(
1

(1 + (αj εj−1)
4

N−2 |η|2)

)N−2
2

εj−1αj

(
1 + o(1)

)
, (10)

where o(1) → 0 uniformly in R
N as ε → 0. Here α1 = Λ−1

1 and αi = Λ−1
1

∏i
j=2 Λj for

i = 2, . . . , k, where Λi are explicitly given at the end of Section 3. See Fig. 1 for numerical
solutions of (9)–(8) of the form (10) with k = 1,2,3.

Note that this scaling is invariant for the Emden–Fowler variable, so η
2

q−1 f (η) = r
2

q−1 u(r).

For q � (N + 2)/(N − 2) by the Ni and Serrin result [20], we have existence for (7) with the
initial boundary values

f (0) = γ > 0 and fη(0) = 0 (11)

provided that ε is small. Because (7) is a regular perturbation of Eq. (7) with ε = 0, the solution f

of (7) with initial values (11) has the property that f → uγ as ε → 0, uniformly in compact sets
[0,R], where uγ solves (7) with ε = 0 and initial values (11). It was shown in [17] that when
q > (N + 2)/(N − 2) the solution uγ has infinitely many oscillations in the Emden–Fowler
variable for q close to (N + 2)/(N − 2), so the behavior of f will be close to that as we see in
Fig. 2. The case q = (N + 2)/(N − 2) is more delicate. By the previous argument the solution f

converges uniformly, as ε → 0, to the unique solution of (3) in [0,R]. But we can say more, we
conjecture that the structure of f is given by (10) with k = ∞, as we see numerically in Fig. 2.
Consequently as ε → 0 the first bubble will remain in the same position and the others will move
towards infinity in slow manner.
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Fig. 1. Ground state solutions of Eq. (9) in the Emden–Fowler variable for k = 1,2,3, for ε small. It is not seen here, but
the first bumps are moving to the left as k increase, as shown by the formula of tk .

Fig. 2. Ground states of (7) with f (0) = 0.9 and ε small, plotted in the Emden–Fowler variable. For q = (N +2)/(N −2)

(regular line), the solution is conjectured to be a superposition of infinitely many bumps. For q > (N + 2)/(N − 2) (thick
line), the solution behaves as Eq. (3), here we draw the case q near (N + 2)/(N − 2).
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2.2. Emden–Fowler transformation

For the analysis we make the following change of variables

v(s) = τ−2/(p−1−ε)ητ f (η), η = es/τ , τ = 2

p − 1
,

where p = (N + 2)/(N − 2). This gives

fη(η) = τ 1+2/(p−1−ε)η−τ−1(v′ − v) =
√


e−(p+1)s(v′ − v),

where 
 = τ
2 p+1−ε

p−1−ε . Note that 
 → τN as ε → 0. Using this, problem (9) becomes

⎧⎨
⎩

(
v′ − v√

1 + ε
e−(p+1)s(v′ − v)2

)′
+ v′ − v√

1 + ε
e−(p+1)s(v′ − v)2
+ vp−εesε = 0 on R,

v > 0, v(s) → 0 as s → ±∞.

(12)

The functional associated to problem (12) is given by

Eε(w) =
∞∫

−∞

1

ε


(√
1 + ε
e−(p+1)s(w′ − w)2 − 1

)
e(p+1)s ds

− 1

p + 1 − ε

∞∫
−∞

wp+1−εeεs ds

but we have the Taylor’s expansion

1

ε


(√
1 + ε
e−(p+1)s(w′ − w)2 − 1

)
e(p+1)s

= 1

2
(w′ − w)2 − ε

8

e−(p+1)s(w′ − w)4

+ ε2e−2(p+1)s
∞∑

m=3

Dε(m,N)εm−3e−(m−3)(p+1)s (w′ − w)2m

(2m)! ,

where Dε(m,N) = (−
)m−1(2m − 1)
∏m−2

j=1 (2j + 1)2. This yields

Eε(w) = Iε(w) − ε

8



∞∫
−∞

e−(p+1)s(w′ − w)4 ds + ε2Jε(w) (13)

with
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Iε(w) = 1

2

∞∫
−∞

(w′ − w)2 ds − 1

p + 1 − ε

∞∫
−∞

eεs |w|p−ε+1 ds, (14)

Jε(w) =
∞∑

m=3

εm−3Dε(m,N)

∞∫
−∞

e−(m−1)(p+1)s (w′ − w)2m

(2m)! ds. (15)

Let us consider the unique solution U(s) to the problem

⎧⎨
⎩

U ′′ − U + Up = 0 on (−∞,∞),

U ′(0) = 0,

U > 0, U(s) → 0 as s → ±∞,

(16)

which is the well-known function,

U(s) = CN cosh

(
2s

N − 2

) 2−N
2

with CN =
(

N

N − 2

)(N−2)/4

. (17)

Let us consider points −∞ < ξ1 < ξ2 < · · · < ξk . We look for a solution of (12) of the form

v(s) =
k∑

i=1

U(s − ξi) + φ,

where φ is small. Note that v(s) ∼ ∑k
i=1 U(s − ξi) solves (12) if and only if (going back in the

change of variables)

f (η) ∼ γ

k∑
i=1

(
1

1 + e− 4ξi
N−2 η2

)N−2
2

e−ξi

solves (9).
Let us write

Ui(s) = U(s − ξi), w =
k∑

i=1

Ui. (18)

We shall work out asymptotics for the energy functional associated at the function w, assuming
that the numbers ξi are very far apart but at comparable distances from each other.

We make the following choices for the points ξi :

ξ1 = logΛ1,

ξi+1 − ξi = −log ε − logΛi+1, i = 1, . . . , k − 1, (19)

where the Λi ’s are positive parameters. For notational convenience, we also set

Λ = (Λ1,Λ2, . . . ,Λk).
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The advantage of the above choice is the validity of the expansion of the energy Eε defined by
(13) given as follows.

Lemma 1. Fix a small number δ > 0 and assume that

δ < Λi < δ−1 for all i = 1, . . . , k. (20)

Let w be given by (18). Then, with the choice (19) of the points ξi , there are positive numbers
ai , i = 0, . . . ,4, depending only on N (which have the explicit expressions (29)) such that the
following expansion holds:

Eε(w) = ka0 + εΨk(Λ) − ka4ε + εθε(Λ), (21)

Ψk(Λ) = −ka2 logΛ1 − a3Λ
−(p+1)

1 +
k∑

i=2

[
(k − i + 1)a2 logΛi − a1Λi

]
, (22)

and as ε → 0, the term θε(Λ) converges to 0 uniformly and in the C1-sense on the set of Λi ’s
satisfying constraints (20).

Proof. We will estimate the different terms in the expansion of Eε(w) with V defined by (18),
for the ξi ’s given by (19)–(20). Let Iε be the functional in (14). We may write

Iε(w) = I0(w) − 1

p + 1

∞∫
−∞

(
eεs − 1

)|w|p+1 ds + Aε,

Aε =
(

1

p + 1
− 1

p − ε + 1

) ∞∫
−∞

eεs |w|p+ε+1 ds + 1

p + 1

∞∫
−∞

eεs
(|w|p+1 − |w|p−ε+1)ds.

Then, we find that

Aε = −kε

(
1

p + 1

∞∫
−∞

Up+1 logU ds + 1

(p + 1)2

∞∫
−∞

Up+1 ds

)
+ o(ε). (23)

On the other hand, for the same reason, we have

∞∫
−∞

(
eεs − 1

)
wp+1 ds = ε

∞∫
−∞

swp+1 ds + o(ε)

= ε

(
k∑

i=1

ξi

) ∞∫
−∞

Up+1 ds + o(ε). (24)

Now, we have the validity of the identity
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I0(w) =
k∑

i=1

I0(Ui) + 1

p + 1
B, (25)

where

B =
∞∫

−∞

[
k∑

i=1

U
p+1
i −

(
k∑

i=1

Ui

)p+1

+ (p + 1)
∑
i<j

U
p
i Uj

]
ds.

Indeed we have

∞∫
−∞

(W ′ − W)2 ds =
∞∫

−∞
|W ′|2 ds +

∞∫
−∞

|W |2 ds

for W = w, U1 . . .Uk and so

1

p + 1
B −

∞∫
−∞

[
k∑

i=1

U
p+1
i −

(
k∑

i=1

Ui

)p+1]
ds

=
∑
i<j

∞∫
−∞

(
U ′

i U ′
j + UiUj

)
ds

=
∑
i<j

∞∫
−∞

(−U ′′
i + Ui

)
Uj ds =

∑
i<j

∞∫
−∞

U
p
i .Uj ds.

To estimate this latter quantity, we consider the numbers

μ1 = −∞, μl = 1

2
(ξl−1 + ξl), l = 2, . . . , k, μk+1 = +∞,

and decompose B as B = −C0 + C1 where

C0 = (p + 1)
∑

1�l�k
j>l

μl+1∫
μl

U
p
l Uj dx.

We follow the argument in [9,10] and find that C1 = o(ε). Let us now estimate C0. We have for
l = 1, . . . , k that

μl+1∫
μl

U
p
l Ul+1 ds =

μl+1−ξl∫
μl−ξl

Up(s)U
(
s − (ξl+1 − ξl)

)
ds.

On the other hand, according to (17), it is directly checked that
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∣∣U(s − ξ) − 2(N−2)/2 CN e−|ξ−s|∣∣ = O
(
e−p |ξ−s|)

as ξ → +∞. We conclude then that

C0 = (p + 1)

k−1∑
l=1

e−|ξl+1−ξl |2(N−2)/2 CN

∞∫
−∞

esU(s)p ds + o(ε).

This yields

B = −a1

k−1∑
l=1

e−|ξl+1−ξl | + o(ε) (26)

with a1 = 2(N−2)/2CN

∫ ∞
−∞ esU(s)p ds.

Continuing our estimate of Iε(w), we have now to consider I0(Ui) for i = 1, . . . , k. We find

I0(Ui) = a0 = 1

2

∞∫
−∞

(|U ′|2 + U2)dx − 1

p + 1

∞∫
−∞

Up+1 dx for all i � 2. (27)

Finally, as for the last term in the decomposition (13), we easily check that

∞∫
−∞

e−(p+1)s(w′ − w)4 ds = e−(p+1)ξ1

∞∫
−∞

e−(p+1)s
∣∣U ′(s) − U(s)

∣∣4
ds + o(ε). (28)

Summarizing, we obtain from estimates (23)–(28) the validity of the following expansion:

Eε(w) = ka0 − a1

k∑
l=1

e−|ξl+1−ξl | − a2ε

(
k∑

i=1

ξi

)

− εa3e
−(p+1)ξ1 − ka4ε + o(ε).

Here the constants ai , i = 0, . . . ,4, depend only on N and can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = 1
2

∫ ∞
−∞(|U ′|2 + U2) dx − 1

p+1

∫ ∞
−∞ Up+1 ds,

a1 = 2(N−2)/2CN

∫ ∞
−∞ esUp ds,

a2 = 1
p+1

∫ ∞
−∞ Up+1 ds,

a3 = 1
8

(
N−2

2

)N ∫ ∞
−∞ e−(p+1)s(U ′ − U)4 ds,

a4 = 1
p+1

∫ ∞
−∞ Up+1 logU ds + 1

(p+1)2

∫ ∞
−∞ Up+1 ds.

(29)

These constants can be explicitly computed using the explicit expression for U given by (17) and
the identity
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∞∫
−∞

cosh

(
2

N − 2
s

)−q

e− 2
N−2 αs ds = 2q−2(N − 2)

�(
q−α

2 )�(
q+α

2 )

�(q)

for all q > max{α,−α}. The above decomposition of Eε finally reads

Eε(w) = ka0 + εΨk(Λ) − ka4ε + o(ε),

with Ψk given by (22). In fact, the term o(ε) is uniform on the Λi ’s satisfying (20). A further
computation along the same lines shows that differentiation with respect to the Λi ’s leaves the
term o(ε) of the same order in the C1-sense. This concludes the proof of Lemma 1. �

Before proving existence, let us analyze the critical points of Ψk :

Ψk(Λ) = ϕk
1(Λ1) +

k∑
i=2

ϕi(Λi),

ϕk
1(t) = −ka2 log t − a3t

−(p+1) and ϕi(t) = (k − i + 1)a2 log t − a1t.

Now the equation ϕk
1(t)′ = 0 yields

t = tk :=
(

(p + 1)b1

k

) 1
p+1

with b1 = a3

a2
,

which is a maximum for ϕk
1 .

On the other hand, each of the functions ϕj has exactly one nondegenerate critical point,
a maximum,

t = (k − j + 1)b2 for each j = 2, . . . , k,

with b2 = a2/a1. Now we compute b1 and b2. We find that

a1 = 2N−2(N − 2)C
2N

N−2
N

�(N
2 )

�(N+2
2 )

, a2 = (N − 2)2

N
C

2N
N−2
N 2N−3 �(N

2 )2

�(N)
,

a3 = 2N−5(N − 2)N+1C4
N

�(N+4
2 )�( 3N−4

2 )

�(2N)

and we obtain

b1 = a3

a2
= 1

4
(N − 2)

N
2 +1N

N
2 −1 �(N)�(N+4

2 )�( 3N−4
2 )

�(N
2 )2�(2N)

and

b2 = a2

a1
= N − 2

2

�(N
2 )�(N+2

2 )

N�(N)
.



M. del Pino, I. Guerra / J. Differential Equations 241 (2007) 112–129 123
Lemma 2. The function Ψk(Λ) has exactly one critical point, given by

Λ∗ = (
tk, (k − 1)b2, (k − 2)b2, . . . , b2

)
.

This critical point is nondegenerate.

3. Linear theory

Let us consider points −∞ < ξ1 < ξ2 < · · · < ξk and a large number R > 0, which is for now
arbitrary, such that

ξi+1 − ξi > R for all i = 1, . . . , k − 1. (30)

Associated to these points we consider the functions

Ui(x) = U(x − ξi), Zi(x) = U ′(x − ξi)

and, for a number 0 < σ < 1 the norms

‖h‖∗∗ = sup
x∈R

(
k∑

j=1

e−σ |x−ξi |
)−1∣∣h(x)

∣∣, ‖φ‖∗ = ‖φ‖∗∗ + ‖φ′‖∗∗ + ‖φ′′‖∗∗.

In this notation the dependence of the norms on the points ξi and the number σ is understood but
will not be made explicit as long as it does not create confusion. Let us denote

w =
k∑

i=1

Ui. (31)

Given a function h for which ‖h‖∗∗ < +∞ we consider the problem of finding a function φ such
that for certain constants c1, . . . , ck the following equation holds

⎧⎪⎪⎨
⎪⎪⎩

φ′′ + pwp−1φ − φ = h +
k∑

i=1

ciZiχi in R,

lim|x|→+∞φ(x) = 0,

(32)

where χi(x) = 1 if |x − ξi | < R
2 and = 0 otherwise.

Our main result in this section is the following.

Proposition 1. There exist positive numbers R and C such that if the points ξi satisfy con-
straints (30), then for all h with ‖h‖∗∗ < +∞, problem (32) has a solution φ =: T (h), which
defines a linear operator of h and satisfies

∥∥T (h)
∥∥∗ � C‖h‖∗∗ and |ci | � C‖h‖∗.



124 M. del Pino, I. Guerra / J. Differential Equations 241 (2007) 112–129
Proof. For the proof of this result we will consider first the basic case k = 1, ξ1 = 0, namely the
problem

{
φ′′ + pUp−1φ − φ = h + cZχ in R,

lim|x|→+∞φ(x) = 0, (33)

where Z = U ′, χ(x) = 1 if |x| < R
2 and = 0 otherwise. We will find a solution of this problem

by means of an explicit formula.
The function Z solves the homogeneous equation

φ′′ + pUp−1φ − φ = 0, x ∈ R.

Its asymptotic behavior is given by

Z(x) ∼ e−|x| as |x| → +∞.

One can find a second, linearly independent solution Z̃(x) of this equation normalized such that
the (constant) Wronskian Z̃Z′ − ZZ̃′ is identically equal to 1. Its asymptotic behavior is then
given by

Z̃(x) ∼ e|x| as |x| → +∞.

For a bounded function h with ‖h‖∗∗ < +∞ let us choose the constant c as

c = −
∫ ∞
−∞ h(s)Z(s) ds∫ ∞
−∞ Z(s)2χ ds

.

The formula of variation of parameters then gives us a solution φ of problem (33) as

φ(x) := T0(h) = −Z(x)

x∫
0

h̃(s)Z̃(s) ds + Z̃(x)

x∫
−∞

h̃(s)Z(s) ds, (34)

where h̃ = h + cZχ . Observe that with this choice of c we have
∫ ∞
−∞ h̃(s)Z(s) ds = 0 and thus,

if we just allow R > 1, we find a constant C independent of R such that

∥∥T0(h)
∥∥∗ � C‖h‖∗∗.

T0 of course defines a linear operator in h. We want to use this operator in order to construct,
by linear perturbations, an inverse with similar properties for the full equation (32). First, we
observe that the problem

⎧⎨
⎩

φ′′ + pU
p−1
j φ − φ = h + cZjχj in R,

lim|x|→+∞φ(x) = 0 (35)
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has a solution given by

φ := Tj (h) = τξj
T (τ−ξj

h),

where τξh(x) = h(x + ξj ), which satisfies a similar bound, provided that R > 1. In order to solve
problem (32) we consider now a smooth cut-off function η(s) with η(s) = 1 if s < 1 and = 0 if
s > 2. We also set

ηj (x) = η
(|x − ξj |/R

)
.

We look for a solution φ of the form

φ =
∑

ηjφj + ψ, (36)

where φj ’s and ψ solve the following coupled linear system:

−ψ ′′ +
(

1 − f (w)

(
1 −

k∑
j=1

χj

))
ψ = g(φ1, . . . , φk, h), (37)

with

g(φ1, . . . , φk, h) =
k∑

j=1

(
2η′

jφ
′
j + η′′

j φj + ηj

(
f (w) − f (wj )

))
φj −

(
1 −

k∑
j=1

χj

)
h, (38)

and

φ′′
j + (

f (wj ) − 1
)
φj = −f (w)χjψ + χjh + cjZjχj , j = 1, . . . , k. (39)

Here we have denoted f (w) = pwp−1. Let us assume that ‖φj‖∗ is finite for all j . Then Eq. (37)
has a unique bounded solution ψ for R large enough. More precisely, we see that if σ ′ < σ then

∣∣g(φ1, . . . , φk, h)
∣∣ � e−αR

[
‖h‖∗∗ +

k∑
j=1

‖φj‖∗e−σ ′|x−ξj |
]
,

for some α > 0 depending on σ and σ ′. Since for all R large enough we have that f (w)(1 −∑
j χj )) becomes as small as we wish, then by the use of a suitable barrier we get as well that

this solution ψ satisfies

∣∣ψ(x)
∣∣ � Ce−αR

k∑
j=1

e−σ ′|x−ξj |.

ψ defines a linear operator of the k + 1-tuple (φ1, . . . , φk, h). Thus, in order to get a solution of
problem (32) we just need to solve the linear system
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φj = Tj

(−f (w)χjψ(φ1, . . . , φk, h) + hχj

)
, j = 1, . . . , k. (40)

Let us observe that, by construction, if σ − σ ′ < p − 1, then

∥∥f (w)χjψ(φ1, . . . , φk,0)
∥∥∗∗ � Ce−αR

k∑
j=1

‖φj‖∗.

Using this, the boundedness of the operator Tj and Banach fixed point theorem, the existence of
a unique solution (φ1, . . . , φk) follows, which besides satisfies

k∑
j=1

‖φj‖∗ � C‖h‖∗∗.

This k-tuple determines φ given by (36), as a linear operator in h with the desired bounds. This
concludes the proof of the proposition. �
4. Proof of Theorem 1

We start by restating problem (12) in the following way.

{
S(v) := v′′ − v + vp−εesε + M1(v) = 0 on (−∞,∞),

v > 0, v(s) → 0 as s → ±∞,
(41)

where

M1(v) = −ε
e−(p+1)s

2

v′ − v

(1 + ε
e−(p+1)s(v′ − v)2)
3
2

(−(p + 1)(v′ − v)2 + 2(v′ − v)v′′)

+ (v′′ − v)

(
1 − 1√

1 + ε
e−(p+1)s(v′ − v)2

)
. (42)

We consider now points ξi chosen according to formula (19)–(20) and the function w defined by
(31) for these ξi ’s. We shall look for a solution to (41) of the form

v = w + φ

for a small ε > 0. We write problem (41) in terms of φ as

{
φ′′ + pwp−1φ − φ = R − N1(φ) − N2(φ) in R,

lim|x|→+∞φ(x) = 0, (43)

where

R = S(w), N1(φ) = M1(w + φ) − M1(w)

and
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N2(φ) = [
(w + φ)p−εesε − (w + φ)p

] + (w + φ)p − wp − pwp−1φ.

Instead of dealing directly with (43) we consider the intermediate nonlinear problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ′′ + pwp−1φ − φ = R − N1(φ) − N2(φ) +
k∑

j=0

ciZiχi in R,

lim|x|→+∞φ(x) = 0.

(44)

Let T be the operator defined in Proposition 1. Then we obtain a solution of (44) if φ solves the
fixed point problem

φ = T
(
R − N1(φ) − N2(φ)

)
. (45)

Let us be more explicit in what regards to the size of the expression for the error of approximation
of w. We have that

R = wp−εesε −
k∑

i=1

U
p
i

− ε
e−(p+1)s

2

w′ − w
(1 + ε
e−(p+1)s(w′ − w)2)3/2

(−(p + 1)(w′ − w)2 + 2(w′ − w)w′′)

+ (w′′ − w)

(
1 − 1√

1 + ε
e−(p+1)s(w′ − w)2

)
. (46)

From this expression we directly check the validity of the following estimate:

‖R‖∗∗ � Cελ

with 0 < λ < 1. Let us consider the region of all functions φ of class C2 for which ‖φ‖∗ � Mελ

for a large constant M . We check directly that for φ1, φ2 in this region we have

∥∥N1(φ1) − N1(φ2)
∥∥∗∗ + ∥∥N2(φ1) − N2(φ2)

∥∥∗∗ � Cεα‖φ1 − φ2‖∗.

We conclude from these estimates and the boundedness of the operator T that the fixed point
problem (45) actually has a unique solution φ in the region ‖φ‖∗ � Mελ for some suitably
chosen M . The dependence of φ on the points ξ is by construction continuous. It only remains
to choose these points in such a way that the constants ci are all zero.

Testing Eq. (44) against Zi for i = 1, . . . , k, we obtain an almost diagonal system for the
relations ci = 0 for all i. In fact we obtain that these relations hold if

∞∫
RZi + o(ε) = 0 for all i = 1, . . . , k, (47)
−∞
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where the term o(ε) encodes a continuous function of the parameters Λi which approaches zero
uniformly in the considered range as ε → 0. Let us observe that

∞∫
−∞

RZi =
∞∫

−∞
S(w)∂ξi

w = ∂ξi
Eε(w).

According to the expansion in C1-sense found for Eε(w) in Lemma 1, we then have that system
(47) takes the form

ε
(∇Ψk(Λ) + o(1)

) = 0,

where the quantity o(1) goes to zero uniformly on the considered region for the parameters
Λi and depends continuously on them. We recall that according to Lemma 2 the functional Ψk

possesses one and only one critical point Λ∗, which is nondegenerate. The above equation thus
have a solution which lies close to Λ∗. The proof of the theorem is concluded.
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