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Abstract

We consider the problem of finding positive solutionsaf + Au + u? = 0 in a bounded, smooth
domaing2 in R3, under zero Dirichleboundary conditions. Hergis a number close to the critical
exponent 5 and & A < 1. We analyze the role of Green’s function af+ 2 in the presence of
solutions exhibiting single anahultiple bubbling behavior at orgoint of the domain when either
or A are regarded as parameters. As a special case of our results, we findithatif< 11, where
A* is theBrezis—Nirenberg numbet.e., the smallest value af for which least energy solutions for
q =5 exist, then this problem is solvablegif> 5 andg — 5 is sufficiently small.

0 2004 Elsevier SAS. All rights reserved.

Résumé

Nous considérons le probleme de I'existence de solutions positivas deru + u? = 0 dans un
domaine borné, régulie2 deR3, avec conditions de Dirichlet nulles au bord. 4cést un nombre
proche de I'exposant critique 5 etOr < A1. Nous analysons le r6le de la fonction de Grees A
en présence de solutions qui mettent en évidence un comportement de type simple bulle ou bulle
multiple quand soity, soit A sont considérés comme paramétres. Comme cas particulier de nos
résultats, nous trouvons que pouf < A < A1, ou A* est lenombre de Brezis—Nirenberge., la
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plus petite valeur dé pour laquelle des solutions d’énergie minimale pgut 5 existent, alors le
probléme posséde des solutiong si 5 et sig — 5 est suffisamment petit.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Let 2 c R3 be a bounded domain with smooth boundary. This paper deals with
construction of solutions to the boundary value problem:

Au+tu+u?=0 ing2.
u>0 in 2, (1.1)
u=0 onos2.

Integrating the equation against a first eigenfunction of the Laplacian yields that a
necessary condition for solvability of (1.1) is< A1. On the other hand, if Xk ¢ <5
and O< X < A1, a solution may be found as follows. Let us consider the Rayleigh quotient:

Jo IVul® = [ luf?
([ lujathy2/@+D

05 (u) = u € H3($2)\ {0}, (1.2)

and set:

S, = inf 0, (u).
ueH}(2)\(0}

The constant; is achieved thanks to compactness of Sobolev embeddipg:ib, and

a suitable scalar multiple of it turns out to be a solution of (1.1). The gase5 is
considerably more delicate: far = 5 compactness of the embedding is lost while for

g > 5 there is no such embedding. This obstruction is not just technical for the solvability
guestion, but essential. Pohozaev [19] showed tha? ifs strictly star-shaped then no
solution of (1.1) exists if. < 0 andg > 5. Let Sg be the best constant in the critical
Sobolev embedding,

3 2

Vu

So= inf fgﬂil
ueCH®RI\(0} ([ u|8)1/3

Let us consideg =5 in (1.2) and the number:

A*=inf{x > 0: S, < So}. (1.3)
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In the well-known paper [5], Brezis and Nirenberg established that® < A1 and, as
a consequence, that is achieved foi* < A < A1, hence (1.1) is solvable in this range.
Whens2 is a ball they find that* = A1/4 and that no solution exists far< A*.

Let us assume now that> 5. In this case Sobolev embedding fails and the quantity
S, may only be interpreted as zero. Thus, no direct variational approach applies to find
existence of solutions. Consequences of the analysis of this paper are the following
existence and multiplicity results for Problem (1.1) in the super-critical regime when
is sufficiently close to 5.

Theorem 1.(a) Assume thak™ < A < A1, whereA* is the number given bgl.3). Then
there exists a numbef > 5 such that Problen(l.1)is solvable for any € (5, q1).

(b) Assume tha®? is a ball and that\* = 11/4 < A < A1. Then, giverk > 1 there exists
a numberg; > 5 such that Problenil.1)has at leask radial solutions for any; € (5, gx).

While the result of Part (a) resembles that by Brezis and Nirenberg wherb, in
reality the solution we find has a very different nature: it blows ug ds5 developing
a single bubblearound a certain point inside the domain. The other solutions predicted
by Part (b) blow-up only at the origin but exhibitultiple bubbling Let us make this
terminology somewhat more precise. Byplawing-up solutiorfor (1.1) near the critical
exponent we mean an unbounded sequence of solutjpo$ (1.1) for A = A,, bounded,
andg = g, — 5. Setting:

M, = ot mgaxun = oflun(xn) — 400

with « > 0 to be chosen, we see then that the scaled function
— - n*l 2
Un(y)EMn 1Mn(xn+Mn @=D/ y)s
satisfies

Av, + UZ” + Mni(qnil))\nvn =0

in the expanding domaire, = M}gqu)/z(g — x,). Assuming for instance that, stays
away from the boundary a®, elliptic regularity implies thelocally over compacts around

the origin,v, converges up to subsequences to a positive solution of
Aw+uw=0

in entire space, witlw (0) = maxw = «. Itis known, see [8], that for the convenient choice
o = 34 this solution is explicitly given by:
31/4

J1+z2

w(z) =
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which corresponds precisely to an extremal of the Sobolev consgasge [2,24]. Coming
back to the original variabl we expect then that “neay,” the behavior ofu, (y) can be
approximated as

34y,

un(y) =
" VI MAx —x,2

Since the convergence in expanded variables is only local over compacts, it is not clear how
far fromx, the approximation (1.4) holds true, even if only one maximum pgjrexists.

We say that the solution, (x) is asingle bubbléf (1.4) holds with 1) — 0 uniformly

in £2.

The solution predicted by Part (a) of Theorem 1 has this property around a point of the
domain that will be precised below, while those of Part (b) have the form of a “tower” of
single bubbles centered at the origin. As we shall see, radial symmetry is not needed for
the presence of these solutions: just symmetry with respect to the three coordinate planes
around one point of the domain suffices.

The results of [6] concerning asymptotic analysis of radial solutions in a ball when
the exponent approaches critical from belouggest that the object ruling the location of
blowing-up in single-bubble solutions of (1.1)Bobin’s functiong; defined as follows.

Let 1 < A1 and consider Green'’s functida®, (x, y), solution for any givenx € 2 of

(1+0(D)). (1.4)

—AyGA—Asz&C, yGQ,
Gi(x,y) =0, y €.

Let Hy(x,y)=I'(y —x) — G,.(x,y) with I'(z) = 1/(4r|z|), be its regular part. In other
words, H, (x, y) can be defined as the unique solution of the problem:

AyHy, +AH, =A"'(x —y), y€S,
H,=I(x—-Yy), y€os2.

Let us consider Robin’s function @, , defined as

gn(x) = H;(x, x).
It turns out thag, (x) is a smooth function (we provide a proof of this fact in Appendix A)
which goes tot-oo asx approachess2. Its minimum value is not necessarily positive. In
fact this number is strictly decreasingin It is strictly positive when is close to 0 and

approaches-oco asi 1 A1. Itis suggested in [6] and recently proved by Druet in [14] that
the numbei* given by (1.3) can be characterized as

A= sup{k > 0: rr}ZingA > O}. (1.5)

Besides, it is shown in [14] that least energy solutiepgfor A | A* constitute a single-
bubble with blowing-up near the set whegge attains its minimum value zero.
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We consider here the role abntrivial critical valuesof g, in existence of solutions of
(1.2). In fact their role is intimate, not only in the critical cage- 5 and in the sub-critical
g =5 — ¢. More interesting, their connection with solvability of (1.1) for powers above
critical is found. In fact a phenomenon apparently unknown even in the case of the ball is
established, which puts in evidence an amusing duality between the sub- and super-critical
cases.

The meaning we give of a nontrivial critical value gf is as follows: letD be an open
subset off2 with smooth boundary. We recall thgs links nontrivially in D at critical
level G, relative to B and By if B and By are closed subsets &f with B connected and
Bo C B such that the following conditions hold: if we sBt= {® € C(B, D): ®|p, = Id},
then

supg.(y) < Gr = inf supg (@ (»)). (1.6)
y€Bo QZSEFyEB

and for ally € 3D such thatg; (y) = G,, there exists a vectar, tangent todD aty such
that

Vgi(y) -ty #0. (1.7)

Under these conditions a critical poine D of g, with g, (¥) = G, exists, as a standard
deformation argument involving the negative gradient flowgpshows. Condition (1.6)
is a general way of describing a change of topology in the level{ggts ¢} in D taking
place atc = G, , while (1.7) prevents criticality at th level collapsing into the boundary. It
is easy to check that the above conditions hold if:

inf g, (x) < inf _g,(x), or supg,(x)> sup gx(x),
xeD x€dD xeD xedD

namely the case of (possibly degenejdbcal minimum or maximum points g¢f,. The

level G, may be taken in these cases respectively as that of the minimum and the maximum
of g; in D. These hold also i§; is C-close to a function with a nondegenerate critical
pointinD. We callG, a nontrivial critical level ofg;, in D.

Theorem 2.Let us assume that there is a &tvhereg; has a nontrivial critical level, .

(a) Assume thafi, < 0,9 =5+¢. Then Problen{l.1)is solvable for all sufficiently small
¢ > 0. More precisely, there exists a solutiap of (1.1) of the form,

Y4y,

5( =
el V1+ M3y —e|?

whereo(1) — 0 uniformly in2 ase — 0,

M, =8/2(—Gy)e 1, (1.9)

and¢. € D is such thatg, (¢.) — Gx, Vga () — 0, ase — 0.

(1+0(D)), (1.8)
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(b) Assume thag; > 0, g =5 — ¢. Then Problen{l1.1) has a solution:, of (1.1)exactly
as in Part(a) but with M, = 8,/2G; ¢~ 1.

We observe that Theorem 1, Part (a) follofxem Part (a) of the above result making
use of the characterization (1.5) of the numbér The result of Part (b) recovers the
asymptotics found for the radial solution @f.1) when $2 is a ball and O< A < A1/4 in
Theorem 1 of [6].

Our next result shows in particular thstlutions with multiplebubbling from above
the critical exponent in a domain exitihg symmetries exist. We say th& c RS is
symmetric with respect to the coordinate plaifder all (y1, y2, y3) € £2 we have that

(—=y1,¥2,¥3), (1, —¥2, ¥3), (¥1, y2, —¥3) € £2.
If 0 € £2, one defines:
A* =inf{r > 0: g.(0) < 0}.

Theorem 3. Assume tha0 € £2, and that$2 is symmetric with respect to the coordinate
planes.

(a) Assume thak* < A < A1 and letg = 5+ &. Then, giverk > 1, there exists for all
sufficiently smalk > 0 a solutionu, of Problem(1.1) of the form,

k
340,

1M

whereo(1) — O uniformly in2 and forj =1, ...k,

322\ k= ) 4
MjSES,/Z(—g)\(O))kl( = ) (k—1)!81/2 7

(b) Assume thay = 5. Then for allx > A* sufficiently close ta.* there exists a solution
u;), of Problem(1.1)of the form,

e (x) = (1+o0(1),

31/4]‘4)L

U (x) = ———
1+ Mix|2
whereM), = 3,/ 3*(—g(0)~1.

The solution predicted by Part (a) is a superpositiok béibbles with respective blow-
up orders?=J, j =1,..., k. We observe that in the case of a bdll= 1* = 11/4 and
Theorem 2, Part (b) thus follows.

(1+0(1)),
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Part (b) shows that a domain may possBsszis—Nirenberg numbesther thani*,
where a bubbling branch of solutions at the critical exponent stems to the right. We remark
that %2.(0) < 0 (see Appendix A), so that actually; ~ (. — i*)~%2. Without any
symmetry assumption, our next result states that a similar phenomenon holds true at any
numberi = g for which g;, has either a local minimizery @ nondegenerate critical point
with value zero.

Theorem 4.Assume thay = 5 and that for a numbek = 1, one of the two situations
holds

(a) Either there is an open, bounded g2bf 2 such that
0= i%fgxo < nggko.
(b) Or there is azp € §2 such that

8n0(0) =0, Vgu,() =0,
and D?g;,,(¢o) is nonsingular.
Then for allx > g sufficiently close ta.g there exists a solution, of Problem(1.1)
of the form,
31/4]‘4)L

u) (x) =
V1+ Mix — 512

whereo(1) — 0 uniformly in £2 asi | Ao. Here ¢, € D in case(a) and ¢, — &o in

case(b). Besides,
A0
M, =8| ———,
=P e

A_(A—20) < —81(8) S AL (A — Ao)

(1+0(D)), (1.10)

with

for certain positive constants ..

The rest of this paper will be devoted to the proofs of Theorems 2—-4. The proofs
actually provide more accuraieformation on the solutions found, in particular about the
asymptotics for the solutions in Theorem 2 when we allow for instgneeé andix moves
left toward)*, case in which two single-bubble solutions are observed with blow-up orders
~g—1l/4

Bubbling at or near the critical exponent in its relation with Green’s function of the
domain has been broadly considered in the literature. In particular, we refer the reader
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to [3,4,15,17,20-22], and also to [1,18,23] ahdit references for related results under
Neumann boundary conditions. Conditions (1(6)7) were used in [13] in the construction
of spike-patterns in nonlinear Shrédinger equations.

The analogues of the results of this paper for dimension 4 in the super-critical case
are somewhat different and we will treat them in a separate work. It should be remarked that
whenN > 4 we have that* = 0, and single-bubbling as | 0 analogous to Theorem 5
around a nondegenerate critical point of the funciggrwas established by Rey in [20].
The phenomenon of multi-bubbling in the radial case in higher dimensions was described
in [11], and, with purely ODE methods, in [12]. Also through an ODE approach, multi-
bubbling in the radial case was described in [9] in an equation at the critical exponent with
a weight which was taken as the parameter. Bubbling from above the critical exponent
wheni = 0 in domains exhibiting small holes was found in [10].

2. Energy expansion of single bubbling

Given a point € R® and a positive number, we denote in what follows:
31/4
Wy (y) = 2
V1tu2y-¢f?

which correspond to all positive solutions of the problem:

~1/2

Aw+w®=0 inRS
The solutions we look for in Theorems 2, 3, Part (b), and 4 have the #gsm~ w,. ; ()
where¢ € §2 andu is a very small number. Itis natural to correct this initial approximation
by a term that provides Dirichlet boundamgraitions. We assume in all what follows that
0 <X < A1. We definer, ;(y) to be the unique solution of the problem:

AT[;L,( + )\TL’,L,; = —)\wﬂ,; in 2 with Tt = —Wu,t onos2. (21)

Fix a small positive number and a point € £2. We consider as a first approximation of
the solution one of the form:

Unc()=wu e +mpuc. (2.2)
Observe tha/ = U, ; satisfies then the equation:
AU +U+w, =0 in2,  U=0 onas.

Classical solutions to (1.1) correspondtitical points of the energy functional,

1 A 1
Egp(u)= §/|Du|2— E/W— q—+1/ |91, (2.3)
2 2 2
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If there was a solution very close @, .+ for a certain pair(u*, ¢*), then we would
formally expectE, ; to be nearly stationary with respect to variationg@f¢) on U, ¢
around this point. Under this intuitive basisséems important to understand critical points
of the functional(u, ¢) — E,4 ;. (Uy,¢). Next we will find explicit asymptotic expressions
for this functional. Foy =5 we have the following result.

Lemma 2.1.For anyo > 0, asu — 0, the following expansion holds
Es:(Upc) = ao+aipngi(¢) + azph — azp?ef(0) + 1770, 0),  (24)
where forj =0,1,2,i = 0,1, i + j < 2, the functionu/ - ?,a 70(w, ¢) is bounded
uniformly on all smallx and¢ in compact subsets 2. Thea;’s are explicit constants,
given by relationg2.11)below.
The proof of this expansion makes use of the following lemma which establishes

the relationship between the functions . (y) and the regular part of Green’s function,
H, (¢, y). Letus consider the (unique) radial solutibg(z) of the problem in entire space,

{ ADo = —23Y41//T+ P - 1/lz]] inRS,

Do— 0 as|z| — oo.
ThenDy(z) is aC%* function withDg(z) ~ |z|log|z| as|z| — +oo.

Lemma 2.2.For anyo > 0 we have the validity of the following expansiorgas> 0:
WPy () = —4x3Y (¢, ) +MDO<y p ;) + 120, 3. 0),

where forj =0,1,2,i =0,1,i + j < 2, the functlon;u ot
uniformly ony € £2, all small x and¢ in compact subsets 62

e 19(/1 v, ¢) is bounded

I

Proof. We recall thatf, (y, ¢) satisfies the equation:

{AyHA +AH, =AT"'(y —¢), yes2,
Hy(y,$)=T'(y =), y€ae,

wherer (z) = z, while m,, . satisfies:

A +Ar =—dw, o in§2,
T=—wy,. onos2.

Let us setD1(y) = uDo(~1(y — ¢)) so thatD; satisfies:
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—ADy =AY wu () - 4x3Y4r (v — 0)] ing,
Dy~ u’logu onds2 asu — O.
Let us write:
S1(0) = 12, (9) + 4n3Y4HL(E, y) — Da(y).
With the notations of Lemma 2.2, this means
S1(0) = 1?70, y, ©).

Observe that foy € 952, asu — 0,

_ 1 1 _
w2 0 () + 43V, (gL y) = 31/4[ > s~ } ~ully ¢
Vie+ly—¢2 1y —¢l
Using the above equations we find tisatsatisfies:
AS1+AS1=—-AD1 in 2, 2.5)
S1=0(u?logu) asu — 0 0onds2. '

Let us observe that, for any> 3,

fIDl(y)Ipdy<u”+3f|l?o(z)|pdz,
2 R3

so that||D1]lrr < C,ut*3/P. Since 0< A < A1, elliptic estimates applied to Eq. (2.5)
yield that, for anyo > 0, || S1]lec = O(2~7) uniformly on ¢ in compact subsets a®.
This yields the assertion of the lemma foj = 0.

Let us consider now the quantifg = 9, S1. Then we have:

{ AS2 +ASy; =—10; D1 in 2,

S, =O(u?logu) asp — 0 onas. (2.6)

Now, 8; D1(y) = —VDo((y — ¢)/u), so that for any > 3/2,
/mm@W®<ﬁ”fW%@V%
22 R3

We conclude from these facts thfz || o = O(u?~?) for anyo > 0. This gives the proof

of the lemmafor =1, j = 0. Let us set nowsz = 19, S1. Then
AS3+AS3=—Aud,D in £2, 2.7)
S3=0O(u?logu) asu — 0 0onds. '
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Now,

10, D1(y) =u8ﬂ[/ﬂ)o<y ; C)} — M(DO+§O)(Y ,: Z)’

Whereﬁo(z) =z - VDp(z). Thus, similarly as the estimate 68 itself we obtain again
1S3]lc = O(u?~?) for any o > 0. The proof of the remaining estimates comes after
applying again.d,, to the equations obtained fép and S3 above, and the desired result
comes after exactly the same argemts. This completes the proofm

Proof of Lemma 2.1. Let us decompose:

Es;(Upe) =1+ +11l + 1V +V + VI,
1 2 1 6
I:\/‘|:§|Dw#’§| —éw'u’;i|,
2

Il =f[Dw,L,¢Dn,L,; —wi’;ﬂﬂ,;],

2
1 2
" = > [I1D7yc|” = Mwpe + 7 0) e ],
2
A
|V=—§ Wy + 7T, ) Wyt
2
5 4 _2
V= —Efwu,z”u,c’
2
1 6 6 5 4 2
VI = 6 /[(wlhi T ) = Wy = Bwp T — 15w“’§n“*5]'
2

Multiplying equationAw,,  + wz’c =0 by w,  and integrating by parts if2 we get:

125/ 30 wu,;—l—é/wlu

082 2
5 [ vy [ub -3 [ b
082 R3 RS\_Q

Hered/dv denotes the derivative along the unit outgoing normal at a poidtxfTesting
equationAw,, ; + wi ¢ =0 now againstr, ;, we find:
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awu,; Bwﬂ,;
I :/ v T[l/ul :_/ ov w/%{’

82 82

where we have used the fact thgt ; solves Eq. (2.1). Testing (2.1) against ; and
integrating by parts, we get:

1 [om 1 (on
1 == n.¢ =__f u.g )
2/ v T 2 v Wi
982

82

Recalling thalV = w, ¢ + 7, ¢ solves:
—(AU+ M) =wy . N, U=0 0nas,
by multiplying this equation byr,, ., we get:
10U 1 5
IV = é / 8—])11)“’; — E/wy"cﬂ#’g.
a0 Q2

Now, as forVI, we see from the mean value formula that

1
VI = —10/ ds(l—s)z/(wu,; +snu,;)3n3’§.
0 2

Adding up the expressions obtained abéw¥| we get so far

1 1 5
Es5,(U) = 3 / wﬁ’g - E/wi,lnﬂi ~ 3 / wﬁ’grri; +R1, (2.8)
R3 2 2
where
1 1
Ri= —3 / wg’g - 10/ ds(l—s)z/(wu,; +snﬂ,;)3n3’§. (2.9)
R3\2 0 2

We will expand further the second and third integrals in the right-hand side of (2.8).
(1) Using the change of variabje= ¢ 4+ uz and callings2,, = w82 — ¢) we find that

A= / wz,;”u,l dy = u/ wio(z)u_l/znﬂ,;({ + pz)dz.
2 2u

From Lemma 2.2, we have the expansion:

125, (€ + nz) = —4n3YAH(C + pz, ©) + uDo() + nZ 0 (1, ¢ + uz, ).
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We also have, according to Appendix A,

by
H (& +nz, o) =g.(8)+ gulzl +01(Z, ¢ + pz),

whered is a function of clas€'2 with 61(¢, ¢) = 0. Using these facts we obtain then that

31/4
= —4r 3" g, (¢) / w3 o) dz + p? f w3 o(2) [%(z) - TMZq dz + R
R3 R3

with

Ra= M/ w3 o(@[01(8, ¢ + p2) + 1701, ¢, ¢ + u2)]dz
2y

31/4
- / wio(z) [DO(Z) - TMZ|:| dz

R3\£2,

+ 473Y4 g5 (0) / w3 o(2) dz. (2.10)
R3\$2,,

To clean up the above expression foa bit further, let us recall that

1 1
smpeste] L 1]

itz 2l

so that,

/ w3 oDo(2) = — / Aw1,0Do(2)

R3 R3
1 1
S R O
]R[ R3 <l L+ 12l

Combining these relations we get:

A=—473Y%0,(¢) f w3 o(2) dz
]R3

1 1 1
2, ql/4 5
— u A3 /[wl o(z)( - ) + - w3 O(Z)|Z|i| dz + Ro.
s 2 2 s
4 Izl 14z
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(2) Let us consider now:

_ 4 2
C:/wﬂ’;ﬂ%Z
2

=u f w‘f,oﬂﬁ,;(é“ +pz)dz
2y

_ 2
=u? / w] o[ —4n Y H,. (¢, ¢ + pz) + uDo+ uP 70 (1, ¢, ¢ + 12)]°,
2u
which we expand as
czu%ﬁgn@ﬂéﬂ/ﬁﬁo+na
R3
Combining relation (2.8) and the above expressions we then get:

) 1_ 5

Es 3 (Us;) = ag + a1pugs (§) + aphu® — azpu®g?(¢) + Ry — 5R2—5Ra,

where

1
6
40 =73 / W10
]RS

a1 = 27131/4/ wio,

R3
31/4 [ (1 1 )+15|qd
ap = —— wio| — — —— —wj olz] [dz,
2 e |z] /1+|Z|2 2710

az= 4071231/2/ wio.

R3

(3) We need to analyze the size of the remaind@fs More precisely we want to
establish the estimate,

Jj aiJrj R 0] 3—0o
128 W | = (l/« ),
foreachj =0,1,2,i =0,1,i + j < 2,1 =1,2,3, uniformly on all smallx and¢ in
compact subsets @2. This needs a corresponding anayfer each of the individual terms
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arising in the expressions f@;. Since several of these computations are similar, we shall
only carry in detail those that appear as most representative.
In (2.9) let us consider for instance the integral:

1
6 _ 32 3
emse [
f s (2 +1y —¢?»3
R3\ Q2 R3\Q

From this expression it easily follows that

) 8i+j 6 3
j _
H aciops f Wi =O0),
R3\2

uniformly in ¢ in compact subsets a?.
In (2.10), let us consider the term:

B=p / w3 0(@)[01(5. ¢ + p2) + u? 0. £, ¢ + pz)|de = By + Ba.
2u
Let us observe that
Bzzufwio(z)uz_GO(,u,C,Z+MZ)dZ=M_G/wio<%)9(ﬂ,§,)’)d)’-
2 2

The size of this quantity in absolute value is clearly® ). We have then that

0 By = Iy + I,

121 = —/,Lia f /LilD(W?ﬁo) <%>9(/L’ C’ y) dy’
2

2

Sinced; 6(uw, ¢, y) is uniformly bounded fot ranging on compact subsets@f By is of
size Qu3~7). Now, using symmetry,

Lp=p>™° f D(w o) [0, €. & +p2) =0, £, 0)] — >0, ¢, 0) f D(w3 )
2, R3\ 2,

=M2_GfD(wio)[Q(u,C,Z+uz)—9(u,§,§)]+0(ﬂs)-
o
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Now, 6 is symmetric ing andy, hence has bounded derivative over compacts with respect
to each of its arguments. Thus

§2 f DS ) @0, ¢, ¢ +12) — 0, ¢, )] g

24

<Cu?° / /L|D(wi0)(z)||z|dz+C/L27" / |Z|76dZ=O(M370).

izl <8 lz|>$8

Let us consider nov8;. We can expand,

01(¢, ¢ + uz) = uc-z+ 0208, ¢ + uz),

for a constant vectar, wheref, is aC? function with |62(¢, y)| < C|¢ — y|2. Observe that
by symmetry,

MZ/ w3 o(2)C- 20z = —p? f w3 o(2)C- 20z = O(13).
‘QH Rs\ﬂu

From here it easily follows thak; = O(u3log ). Let us decompose it as

B1 = B11+ B2,
_ _ -5/2
Bi=3/2 2/(1+u 2ly = ¢12) 62z, y) dy.
2
-5/2
Bio=—3%2,3 f (12 +1y —¢P) 2 — ) -cdy;
R3\$2

B1o has derivatives with respect gouniformly bounded by Qu3). As for the first integral,

B11= Mz\/Wio(y /_L ;‘)92((’ y) dy’
2

we obtain thad, B11 can be written ag;11+ 1112 with

hii= M_sf D(w3,) <%>92(§, y)dy,
2

l112= /fz/ wio(y ; gh)3;92(4“, y)dy.
Q
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Let us estimate the second integral:

1112=M_2fwio<y/:§>3;92(§a)’) dy=ufwio(z)3;92(§,§ + pz) dz.
2 2

We have that
0:602(¢, ¢ + pnz) = pAz + O(qulz),

whereA = Dgez(g, £), where we have used the expansion fjr made in Appendix A.
Replacing the above expression and making use of symmetry we get/ithat
O(uBlogp). As for the integralB11, we observe that after an integration by parts,

h11=0(u3) — n 2 / wio(y ; ‘“)ayez@, y) dy.
2

The integral in the above expression can be treated in exactly the same \Bay, and

we thus findd; B = O(u39) uniformly over compacts of? in the variable; variable. In
analogous way, we find similar bounds o8, B. The same type of estimate does hold for
second derivativeazaﬁB and Mzang. As an example, let us estimate, as a part of the
latter, the quantitycd, I21. We have:

noyIo1=—pndy, |:/L_1_U / D(in) (%)9(,“, ¢y dy:|

2

= (1+a)121+lfa/M_lDz(wio)<%) : (%)9(/& ¢, y)dy
2

_/Ll(’/D(in)(%) 96 (1, &, y) dy.
2

Let us consider the term,

M"/ulDz(Wi’,o)<u) : <%>9(M,§,Y) dy,
2

n

the others being estimated in exactly the samay as before. The observation is that the
estimate of this integral by @3-7) goes over exactly as that one before for, where we
simply need to replace the functidi(w3 ;)(z) by D*(w3 )z - z which enjoys the same
properties used in the former computation. Corresponding estimates for the remaining
terms inR, andR3 are obtained with similar computations, so that we omit them.
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Summarizing, we have the validity of the desired expansion (2.4), which with the aid of

the formula
7 ro\ dr DEFIEY
14r2) poetl 2I'(q) '
0

has constantsg; given by:

1
dOIZ 372, a1=8v37% ax=+37% a3=120/37* O (2.12)

Our second result complements the estimate above, now allgniadpe very close to
5 from above or from below.

Lemma 2.3.ConsiderU; , and E, ; defined respectively bf2.2) and (2.3). Then, as
uw— 0,

Eq(Uy.o) = ao+ aiug(§) + azp?i — asp?g2(¢) + (q — 5)laslogu + as]
+(q — 5201, 11, @) + 13022, 11, 9), (2.12)
where forj =0,1,2,i =0,1,i + j<2,1=1, 2,

i+j

0riow’

! 01(¢. 14, q)

is bounded uniformly on all small, |g — 5| small and; in compact subsets 6. Hereay,
ai, a, az are given by(2.11) a4 = ~/372/16 andas is another constant, whose expression

is given below in the proof.

Proof. Observe that

1 1 1
Eq3(Upe) — Esp(Up ) = 6 / US,Z - meZt :
Q Q

The desired estimate follows form (2.4), after Taylor expanding end estimating the
remaining terms similarly to the proof of the previous lemma. More precisely, we estimate:

1 1
Egi(Uue) = Esp(Une) = (g — 5)[3—6 f Upc— 3 / Ut . log UM} +0(g —5),
2 22

which after lengthy computations gives (2.12) with
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aq = 1—2/11)1’0(2) dZ == T,
R3
1 6
as = 36 wy o(2)[6 logwio—1]dz. O (2.13)
R3

The above established expansions provide the presence of critical points for the
functional (i, ¢) — E4 . (Uy,) under the assumptions of the theorems. These critical
points are still present for suitable small perturbations of the functional. We discuss these
issues in the next section.

3. Critical single-bubbling

The purpose of this section is to establish that in the situations of Theorems 2 and 4
there are critical points af, , (U,..;) as computed in (2.12) which persist under properly
small perturbations of the functional. As we shall rigorously establish later, this analysis
does provide critical points of the full functional, ,, namely solutions of (1.1), close to
a single bubble of the forry,, ..

First case Let us consider first the situation gent in Theorem 2, Part (a). We let then
q =5+ ¢. Let D be the set wherg, is assumed to have nontrivial linking with negative
critical valueg, . Itis not hard to check, by redefinirige sets involved that we may actually
assume; (¢) < —8 <0 onD. Itis convenient to considet defined by:

4l (3.1)
a1 g(¢)

whereas anda; are the constants in the expansion (2.12).

Lemma 3.1.In the situation of Theorerg, Part (a), for u given by(3.1), consider a
functional of the form

Ve(A, ) = Esien(Upg) +€60:(A, 0),
for A > 0and¢ € D. DenoteV = (34, 9;) and assume that
0] + [VOe| + [VOA6:| — O (3.2)
uniformly on(¢, A) ase — 0, with
§<A<8 G <8
for any givens. Theny, has a critical point(Ag, ¢.) with ¢, € D,

Ae =1, 8.(8) = Gr, Vgu(g) — 0.
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Proof. The expansion given in Lemma 2.3 implies:

Ye(A, ) an+a4e[—A +logA +Iog(— L ﬂ
&r(2)

+a4e[log<%) +loge + @} +0:(A, 0),
a a4

wheref, still satisfies (3.2). The main term in the above expansion is the functional,

Yo(A,0)=—A+logA+ |Og<—i>,
&%)

which obviously has a critical point since it has a nondegenerate maximunatm = 1
andg, nontrivially links inD. Consider the equation:

0AYe(A,2) =0,
which has the form
A=1+01)6.(A,¢),

where the functiord, has a continuous, uniformly bounded derivative(ifi, ¢) in the
considered region. It then follows that for eagle D there exists a uniqua = A.(¢),
function of classC! satisfying the above equation which has the form:

Ae() =14+0(D)B: (%),

where B, and its derivative are uniformly bounded in the considered region. Clearly we
get a critical point ofi. if we have one of the functiongl— . (A.(¢), ¢). Observe that
onD,

ws(As(é‘)a C) =C¢ +a45[|09<—gx—%{)) + 0(1):|,

where dg) is small uniformly onD in the Cl-sense and. is a constant. The linking
structure is thus preserved, and a critical paint D of the above functional with the
desired properties thus existso

We observe that the associated buldsle; , wherey is given by (3.1) and witly = ¢,
has then precisely the form of that in (1.8)—(1.9) in Theorem 1, Part (a).

Second casd.et us consider the situation in Part (b). leee 5 — ¢ and assume now
thatg, has nontrivial linking in a seb with critical valueg, > 0. Again, we may assume
g, > 8 > 0 onD and set the change of variables,

as 1
8_
a1 g(¢)

(3.3)
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In this case we get the following result:

Lemma 3.2.In the situation above of TheorePart (b), for u given by(3.3), consider a
functional of the form

VYe(A,8)=Es—(Up,c) +€0:(A, 0)

for A > 0and¢ € D. Assume that

10c] + 1VOe| + [Vl | — O
uniformly on(A, ¢) ase — 0, with

b<A<sh @)=
Theny. has a critical point(A,, ¢.) with ¢, € D,

Ae =1, (%) —> G, Vgu(t) — 0.
Proof. For A > 0 and¢ € D now we find the expansion:
Ve(A, §) =ao+ase[A —log A +log(g:.(0))]

- a48[|09(%> +loge + @} +e6:(A, §),
al as

whered, satisfies (3.2). The main term in the expansion has now a nondegenerate minimum
at A = 1. The rest of the proof is identical to that of Lemma 3.1

Third case Let us consider the situation in Theorem 4 where gow5. Let us assume
the situation (a) of local minimizer:

0= xiQngxo(x) < xiegfpgxo(x)-
Then fori close torg, A > Ag, we will have:
xig)gx(X) < —A —A0).
Let us consider the shrinking set:

A
D, = {y eD: gi(x) < —E(A—Ao)}.

Assume > A is sufficiently close td.g so thatg, = —%(A — Ap) ON3D;.



1426 M. del Pino et al. / J. Math. Pures Appl. 83 (2004) 1405-1456

Now, let us consider the situation of Part (b). Sing€:) has a nondegenerate critical
point atA = Ap and¢ = o, this is also the case at a certain critical painfor all A close
to Ao where|¢;, — ¢ol = O(A — Ap).

Besides, for some intermediate point

£.(8) = 8.(¢0) + Dg (1) (¢ — C0) = A(h — Ao) + O(A — Ag)

foracertainA > 0. Let us consider the baﬂg with centerz;, and radiug (A — Ag) for fixed
and smallp > 0. Then we have tha, (¢) > %(A —X) forall ¢ B},. In this situation we
setD, = B},.

It is convenient to make the following relabeling of the paramgtdret us set:

_ @ &©)
"= 2a2 M A (34)

where¢ € D,. The result we have now is the following:

Lemma 3.3.Assume the validity of one of the conditidiag or (b) of Theorem4, and
consider a functional of the form,

Vi(A, O) = Es;(Upo) + £1.(6)6,(A, 0),
wherepu is given by(3.4)and
011 + IVOL + [VIaO:| — O (3.5)

uniformly onz € D; and A € (8, 871). Theny; has a critical point(Ay, ¢;,) with &, € D;,
A)\ — 1.

Proof. Using the expansion for the energy wjthgiven by (3.4) we find now that

@ 21.(0)?
A

o [—24 + A%+ 2()%6:.(A, O,

Yi(A,¢) = Es ;. (U ) =ao+

whered, satisfies property (3.5). Observe then that, = 0 if and only if
A=1+40(1)0,(A,¢),
whered, is bounded irC1-sense. This implies the existence of a unique solution close to 1

of this equationA = A, (¢) = 1+ o(1) with o(1) small inC?! sense. Thus we get a critical
point of ¢, if we have one of

Pa(©) =¥ (A2(0), &) = a0+ cgi.()*[1+ 0o(D)]
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with o(1) uniformly small in Cl-sense and > 0. In the case of Part (a), i.e., of the
minimizer, it is clear that we get a local maximum in the redIgnand therefore a critical
point.

Let us consider the case (b). With the same definitiorpfoas above, we have:

Vpi(@) = g1(0)[Ver + 0D ].

Consider a point € 0D, = 83},. Then|Vg, (o) = |D?%g.(X) (¢ — &)| = ap(h — Ag), for
somea > 0. We also have; (¢) = O(A — Ag). We conclude that for alt € (0, 1), the
function Vg, + to(1)g, does not have zeros on the boundary of this ball, provided that
A — Ao is small. In conclusion, its degree on the ball is constant alo&gnce forr =0 is

not zero, thanks to nondegeneracy of the critical pgintve conclude the existence of a
zero of Vp,(¢) insideD,. O

4. The method

Our purpose in what follows is to find in eacfithe situations stated in the theorems,
solutions with single or multiple bubbling for some well choger 2, which at main
order look like:

k

UZZ(wM,; + T 0), (4.1)
i=1

with u1 small and, in casé > 1, also withu;+1 < u;. This requires the understanding
of the linearization of the equation arouttis initial approximation. It is convenient
and natural, especially in what concemsiltiple bubbling to recast the problem using
spherical coordinates around the pdjrdand a transformation which takes into account the
natural dilation invariance of the equation at the critical exponent. This transformation is a
variation of the so-called Emden—Fowler transformation, see [16].

Let ¢ be a point in$2. We consider spherical coordinates= y(p, ©) centered at
given by:

p=ly—¢| and @=2"°
ly = ¢l
and the transformatiof defined by:
v(x, 0) =T ) (x,0) =226 u(; + 6 20). (4.2)

Denote byD the-dependent subset §f= R x S2 where the variablest, ®) vary. After
these changes of variables, Problem (1.1) becomes:

AN v+ —v+dre P v+, €97 =0 inD,
v>0 inD, v=0 ondD 4.3)
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with
T 2—(q=9/2
Here and in what follows,= % We observe then that
T (wp,o)(x, ©)=W(x —§),
where
W)= (12Y4e ™ (1+ e %) % = 3Y4[cosh2x)]
andu = e~ %, The functionW is the unique solution of the problem:

W' —W+W>=0 on(—o0,00),

W'(0) =0,

W>0, W(kx)—0 asx— too.
We see also that setting:

Her =T () withp=e%,

thenIT = I1¢ ; solves the boundary value problem:

—(BA@ + 1" — T+ 4 =4re Wk —£) inD,
I=-W(x-—%&) onaD.

An observation useful to fix ideas is that this transformation leaves the energy functional
associated invariant. In fact associated to (4.3) is the energy:

L[,
Jg.(v) 52f|v@v|2+§f[lv 2+ [v)?]
D

D

Y Sy
D 1 D

If v="7 (1) we have the identity:
4Eq,k(”) = Jq,k(v)-

Let¢ € £2 and consider the numbers0&) < & < --- < &. Set:

k
Wi)=Wx —&), M=y, Vi=W;+IL, V=) V.
i=1
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We observe then that = 7 (U) whereU is given by (4.1) andi; = e %i. Thus finding

a solution of (1.1) which is a small perturbation @fis equivalent to finding a solution
of (4.3) of the formv = V + ¢ whereg is small in some appropriate sense. Then solving
(4.3) is equivalent to finding such that,

{ L(¢)=—N(¢)—R,

¢=0 ondD,
where
L(p)=4A520+¢" — ¢ +4h e Mo+ qeq g5 ya-ly
N(§) =g €179 [(V + )% — VI —qVi~1p],
and

k
R= qu(q—S)x Vi — Z Wi5' (4.5)
i=1

Rather than solving (4.3) directly, we consider first the following intermediate problem:
Given pointsé = (&1, ..., &) € R* and a pointz € £2, find a functiong such that for
certain constants;,

L(¢)=—N($)— R+ ;cijZij inD,
$»=0 onaD, (4.6)
IpZij¢pdxdO =0 foralli, j,

where theZ;; span an “approximate kernel” fdr. They are defined as follows:

Let z;; be given byz;;(x,®) =T (z;), i =1,...,k, j=1,...,4, wherez;; are
respectively given by:

8 .
Zi./(y)=—a€__wm,;(y), j=1....3
J

0
; = ] —— . ) | = 1, ceey k,
zia(y) = [ o Wy e (¥),

with u; = e=%i, We recall that for each the functiong;; for j =1, ..., 4, span the space
of all bounded solutions of the linearized problem:

Az + 5wt

wi = 0 inRS.

A proof of this fact can be found for instance in [20]. This implies thathis satisfy:

4A322,'j + Z;/j —Zjj + 5Wi42i,/ =0.
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Explicitly, we find that setting:

—-3/2 -3/2

Z(x) = (12473 (1+ e74) Y% = 342 [cosh2n) | 77,
we get:

Zl./:Z(‘x_él)@jv j:1,2,3, Zi4:W/(-x_§i).
Observe that
f z;;z; =0 forl#j.
RxS2

TheZ;; are corrections af;; which vanish for very large. Letn (s) be a smooth cut-off
function with

nm(s)=0fors <M, npy(s)=1fors>M+1.
We define:
Zij=(1—nux — &)z,
whereM > 0 is a large fixed number. We will see that with these definitions, Problem (4.6)
is uniquely solvable if the pointg, ¢ satisfy appropriate constrains aqds close enough
to 5. After this is done, the remaining task is to adjust the parametearglé; in such a
way that all constants;; = 0. We will see that this is indeed possible under the different
assumptions of the theorems.
5. The linear problem
In order to solve Problem (4.6) it is necessary to understand first its linear part. Given a

function/, we consider the problem of findirggsuch that for certain real numberg the
following is satisfied:

L(@)=h+3 ;cijZij inD,

$=0 ondD, (5.1)

IpZij¢=0 foralli, j.

Recall thatl. defined by (4.5) takes the expression:

L(¢) =4Ag¢ +¢" — ¢ +4re ¥ ¢ +qc, 9797V 1y,
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We need uniformly bounded solvability in propenictional spaces for Problem (5.1), for
a proper range of thg’s and¢. To this end, it is convenient to introduce the following
norm. Given an arbitrarily small but fixed number- 0, we define:

k
Ifle=sup @Y fx,0)] witho@x) =" ekl
(x,@)eD P}

We shall denote by, the set of continuous functiongon D such that] f |, is finite.

Proposition 5.1. Fix a small numbers > 0 and take the cut-off parametés > 0 of
Sectiond large enough. Then there exist positive numbersp, Ro, and a constan€ > 0
such that iflg — 5| < ¢,

0< A< A —6, dist(¢,d8) > do, (5.2)
and the number8 < &1 < & < --- < & satisfy

Ro<é£&1, Ro< 12|2k(§i+1 - &) (5.3)

with & < 8o/|qg — 5| if ¢ # 5, then for anyh € C¥(D) with || k|« < +o00, Problem(5.1)
admits a unique solutiopt = T'(h). Besides,

IT®|, <Clinlls and |eij| < Clihlls.
For the proof we need the following result:

Lemma 5.1. Assume the existence of sequen@ss,cn, (An)neN, (Cn)neN, (§)neN,
1<i <k, such thate, — 0, A, € (0, A1 — §), dist(¢,,082) > 61 and0 < &7 < &5 < ---
< & with

§ — +oo, (61— &) > +oo, & =o0(e;),

min
1<i<k
such that for certainy, with |¢, — 5| < ¢,, certain functionsp, andh, with |4, ||« — O,
and scalarsj;, one has

L(¢n) =h, + Zi,j C?]-Z?j,
¢n=0 onab, (5.4)

IpZij¢ndx =0 forall i, j.

Here the functionsZ. are given in terms of;; as in Sectiost and the cut-off parameter
M > Qis chosen large enough. Then

lim ”d’n ”* =0.
n—00
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Proof. We will establish first the weaker assertion that
lim ”d’n ”oo =0.
n—>oo

By contradiction, we may assume thigl, | .o = 1. Recall thatD > (x, 6) is a subset of
RT x S2. We will establish first that linL, o clf’j = 0. Fix a numberM > 0 such that
the region{x > M} is contained inD and consider(x), a smooth cut-off function with
nx)=0if x <M andn(x) =1 forx > M + 1 as in the previous section. Testing the
above equation againsgt! , and integrating by parts twice we get the following relation:

Im?

[@asez, v, 2, + 5wz 0.+ [[2)'n + 20 e
D D
b [ 2, + (e, V- 5WE)Z, i,
D

=/hn27m+zc;;/nzg,27m.
D Ll D

The first integral on the left-hand side of the above equality is zero, while the other three
can be bounded by(i)| ¢, |l.o and therefore go to 0 as— oo. The same is true for the
first integral in the right-hand side. The definition of tﬁg’s makes this linear system in

thec;;’s “almost diagonal” as — oo. We conclude then that lim, », ¢, = 0 as desired.

Now let (x,, ®,) € D be such thawy,(x,, ®,) = 1, so that¢, maximizes at this
point. We claim that, fomn large enough, there exi® > 0 andi € {1, ..., k} such that
lx, — &'l < R. We argue by contradiction and suppose that- £'| — +oo asn — +00
foranyi =1,...,k. Then eitherlx,| — 400 or |x,| remains bounded. Assume first that
|x,| — +o0. Let us define:

Gn(x, ©) = Pu(x + X, O).

Then, from elliptic estimatesg, converges uniformly over compacts to a nontrivial
solutiong of

4A2¢p+¢" —p=0 inRxS?
¢—0 as|(x, ®)| — oo.

For a functiong(y) defined inR3\ {0}, let us denote:
To(g)(x, 0) =v2e 7 g(e720).
Then the function) defined by the relatiop = 7o(v/) satisfies:

Ay =0 inR3\{0}.
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Moreover,|¢ |« = 1, translates intoy (y)| < |y| /2. It follows thatis extends smoothly
to 0, to a harmonic function ifR® with this decay condition, hencé = 0, yielding a
contradiction.

Assume now thaltx, | is bounded. Hence, up to subsequence, the fungijaonverges
uniformly over compacts to a nontrivial solution of

AANg@p+¢" —p+4re¥p=0 inD,
=0 onaD,

for somex € [0, A1). But this implies thatp = 0, since the functiony = 7-1(¢) is
identically 0 in$2 because it solves:

Ay +rp =0 in2\{c},
v =0 onos2,

with the additional conditiony (y)| < C|y|~Y/2 for somex such that 0< & < A1. We
again reach a contradiction, @the claim is thus proved. Hence, there exists an integer
le{l,...,k}and a positive numbet > 0 such that, for. sufficiently large|x, —&'| < R.

Let againJ),, (x, @) = ¢, (x + &', ©). This relation implies tha‘fsn converges uniformly
over compacts t¢ which is a nontrivial, bounded solution of the problem:

Agpp+¢" —¢+5W% =0 inRx S?
and also satisfies:

/ ¢z (1 — nu(x)) dx dO =0, (5.5)
RxS2

wherez,, (x, ©®) = To(z,,) With
1
Zm(y) = 9y, w10(y), m=123, z(y) = Ewl,o()’) +y-Vwioy).

This means that the functiop = 75‘1(<13) is a nontrivial solution of
Ay +5wi g =0 inR3\ {0}

with [ (y)| < Cly|~Y2for all y. Thus we get a classical solutionlt? \ {0} which decays

at infinity and hence equasslinear combination of the,,’s. It follows that¢ is a linear

combination of thez,,'s. But then the orthogonality relations (5.5) impgly= 0, at least for

M > 0 large enough, again a contradiction. We have thus pripglthc — 0 asn — oo.
Next we shall establish thét, ||« — 0. Let us write:

L(p) =4Ap¢ +¢" — ¢+ dre ¥ . (5.6)
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Let us observe that Eq. (5.4) takes the form:
L(¢n) = gn

with g, (x, ®) = —c4,qn glan—9)x an”_1¢n +h, + Zi’j cf'/ Z;;. Hence

k

|gn(x. ©)| < Gu=1n y_ &A=
i=1

with 1, — 0. We claim that the operatat satisfies the Maximum Principle in the
following sense:

If ¢ is bounded, continuous iR, ¢ € H(D N {x < R}) for any R > 0 and satisfies
L(¢) <0in the weak sense i and¢ > 00ondD, theng > 0.

To see this, let us observe thatit= 7 () theny satisfies:

Ay +Ary <0 in2)\{¢}

in the weak sense, antl/(y)| < Cly — ¢|~Y2. Fix a small number > 0. Then
U(y) = —vGu(C,y) if |y — ¢| < Cv?, for some eventually larger constagt Let
2 =2\ B, Cv?). If vis small enough, then we have< A1(2). Thus L satisfies
maximum principle in2 and thereforey (y) > —vG,.(¢, y) forall y € 2 \ {¢}. Lettingv
go to zero, the desired assertion follows.

Sincex < A1, there is a unique bounded solutigrof

ANgpp+¢" —p+4ePp=—e* inD,
¢=0 onabD,

and it satisfiesp < C(1+ |x|) e~*. Indeedp = 7 (¥), wherey solves:

¥ =0 onasg.
Observe thaZ = v + 2%/2log|x — ¢| satisfies:

AZ+A1Z=2%2\logly —¢| in$2,
Z=—logly —¢| onos2,

so thatZ is at least of clas€>%(£2). This gives the required assertion tor
Let us consider now the quantity:

k
Sp = Knn (Z ef(lfa)lesi‘ + K e(lo')élq_s) .

i=1
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Direct substitution shows thdi(s,) < —G, in weak sense, provided thAtis chosen large
enough but independent af From Maximum Principle, we obtain then that < s,.
Similarly we obtaing, > —s,. Since, as welk, < CG,, this shows thafl¢, ||« — 0, and
the proof of Lemma 5.1 is completed

Proof of Proposition 5.1. Let us consider the space:
H= !q& € H}(D): /Z,-jqbdx =0 for all i,j}
D

endowed with the usual inner product:

1
6, 9] = 2fv@¢ Yoy + Ef(cp’x// o).
D

D

Problem (5.1) expressed in weak form is equivalent to that of findiggaZ such that
(¢, ¥]= /[cqq e¥dryily L 4y e g+ h]yde forally e H.

With the aid of Riesz’s representation theorem, this equation gets, rewrittdnitnthe
operational formp = K (¢) + i, for certaink € H, whereK is a compact operator iff .
Fredholm’s alternative guarantees gquee solvability of this problem for ang provided
that the homogeneous equatipr= K (¢) has only the zero solution i . Let us observe
that this last equation is precisely equivalent to (5.1) wita 0. Thus existence of a unique
solution follows. The bounded salbility in the sense of th¢ |.-norm follows after an
indirect argument from the previous lemmaz

Before proceeding, let us see how this resalhslates in terms of the original variables
in £2. Consider the functiony (y) defined ins2 for which 7 (¢) = v, where7 is given by
(4.2). Theny satisfies Problem (5.1) if and only+f satisfies:

AY +qU Y+ 2y =g+ Y 5 (L in 2\ (g),
¥ =0 onag, (5.7)

Jo wzijﬁdy =0,

where 7(ly — ¢|%¢) = h and n*(y) = nt(|y — ¢|/w) is a family of smooth cut-off
functions with

nl(s)zlfors <8, nl(s)=0f0rs > 26. (5.8)
The size of is determined by in the definition ofZ;;. Observe that

k
lg)| < Whllely = 2172772y w7 ().
i=1
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Thus what we have proved in Proposition 5.1 can be restated like this:
If |h]l« < 400 then (5.7) has a unique solutignwhich satisfies,

k
W] < Clikllly = 1772 w7 (),

i=1
and given anyg > 0, there exists a consta@tsuch that

1— 2
y—¢l>80 = |vm| <l

Hence as well, from the equation satisfied in this region and elliptic estimates,
1-0)/2
VY )] < Cllalleps ™2, (5.9)

It is important, for later purposes, to undinsd the differentiability of the operator
T :h — ¢, with respect to the variablés and¢ . Let us assume that conditions (5.2), (5.3)
hold. Fixh € C, and let¢p = T'(h). Let us recall thap satisfies the equation:

L@)=h+) cijZij,
i,j

and the vanishing and orthogonality conditiorts, $ome (uniquely determined) constants
¢;j- We want to compute derivatives gfwith respect to the parameteysandé. Let us
begin with differentiation with respect . A main observation is that the functios;

do not exhibit explicit dependence gn Formal differentiation then yields that = 9;,¢
should satisfy:

L(X)=Y; ;¢jZij —q(g — Deg€47*VI~2[9,V]p in D,
X=B8B onaD,
IpZijX=0 foralli, j,
where
B=T(@,¥) =23,y (¢ +e20),
with ¢ = 7 () and (formally)c;; = d;,¢;;. Let us consider the equation:
L(Y)=0 inD, Y=B onaD,
whereL is given by (5.6). This problem far = 7 (Y) is equivalent to:
AY +1Y =0 inD, Y=0yy ondD
and, according to estimate (5.9), has a unique solution with

> 1— 2
1V lloo < Cllalp 772,
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sothat|Y (x, ®)| < C|lh|l, € * e~ 1=2)%1 and in particular]| Y || < C|lAl|x.
Let us look closer intd,, V. SinceW; does not exhibit dependence pywe get that

k
0V =" 3T,
i=1

By definition of I1;,
A ITi(x, ©) = 8 T[my, o1 =€ %0 [, (¢ + €2 0)],
wherep; = e~%i. Let us recall the expansion we found fgy, . in Lemma 2.2:
Tuc(C +€20) = u}?[~4n3Y4H, (¢, ¢ + €2 0)

+ uiDo(€ 2 50) + u2 " R(¢ + €20, i, ¢)]-

In particular we see thab; IT; (x, ®)| < C e~§ e~* and conclude that
|97V~ 8, Vig |, < Cligll < Clinll.

We observe, incidentally, that in the same way we get:

|dg,8: T; (x, @)| < Cedi g™,
We shall use this below for the computation of derivatives with respegt to

Let us fix anumbeM > 0 such that the regiofx > M} is contained inD and consider

ny (x), a smooth cut-off function withy,(x) =0 if x < M andny (x) =1 forx > M + 1.
Let us consider the constants defined as

Zdij/nMZijZlk:—/ZlkY-
Li Db D

This linear system has a unique solution since it is almost diagonal. We also have:
\dij| < ClIh|«. ConsiderH = X —Y — Y, - dijnu Zi;. Then

L(H):Zi,jéijzij‘i‘f in D,
H=0 onoD, (5.10)
[pZijH=0 foralli, j

with

== _dijLtmZij)+qcg €9 [=VIly 4 (g — VI, V]g.
ij
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The above equation has indeed a unique soluticior certain constants; provided that
the assumptions of Proposition 5.1 are fulfillétlis computation is not just formal. Indeed
one gets, as arguing directly by definition shows,

Y=Y+ dijnuZij+T(f),
iJ

so that||d; ¢ |« < Cliallx.
Let us now differentiate with respect &,. Let us consider (x), a smooth cut-off
function as above. For a givére {1, ..., k}, we consider the constahy, defined as

blmflzlmlanE/(l)aS[Zlm
D D

and the function:
4
f = — Z [blmL(nMZlm) + Clm3§1 Zlm] + qcq e(t[*5)xas[ (til)(b’
m=1

one can then directly check th&g ¢ is given by:

4
85[¢ =T(H+ Z bimMm Zim,

m=1

and that|dg ¢ ||« < C||h]l«. Letus denot& = [dg, ;1. Then we have proved thiVe ||, <
C| h|«. Examining the above differentiation with respectttowe see that we may also
apply it to V¢, so that]|9: Vo ||« < CllA||«. Actually, elaborating a bit more we get as well
continuity of these derivatives in thenorm.

On the Banach spae&. of all functionsy in C(D) for which |||« < oo, T defines
a continuous linear map dk.. It is easily checked that the map, ¢) — T is continuous
into £(C). Moreover, we have the validity of the following result:

Proposition 5.2.Under the assumptions of Propositibri, the derivative/T andd: VT
exist and define continuous functions of the g&ir¢). In particular, there is a constant
Co > 0, uniform in points(§, ¢), satisfying the constraints in Propositi&nl, such that

IVT I« + 19 VT ||« < Co.

6. Solving the nonlinear problem

In this section we will solve Problem (4.6). We assume that the conditions in Proposi-
tion 5.1 hold. We have the following result:
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Lemma 6.1.Under the assumptions of Propositibrithere exist numbeksg > 0, C1 > 0,
such that it and¢ are additionally such tha§R|.. < co, then Problen{4.6)has a unique
solution¢ which satisfies

@1l < CallR]lx.
Proof. In terms of the operatdf defined in Proposition 5.1, Problem (4.6) becomes:
¢ =T(N(¢) +R)=A(9), (6.1)
whereN (¢) andR were defined in (4.5) and (4.5). For a givRnlet us consider the region:
Fy={pcC(D): gl <yIRIl+}
for somey > 0, to be fixed later. From Proposition 5.1, we get:
|A@ |, < Co[|[N@) |, + IRl

On the other hand we can represent
1
N(p) =cq€97q(g - 1) f (L= de[V + 1917 %42,
0
so that (makingg — 5 smaller if necessary)N(¢)| < C1|¢|2, and hence|N (@) ||, <
C1||¢||§. Itis also easily checked that satisfies, foky, ¢ € F,,
[N@1) — N(¢2)|, < Cay I RIIxlI¢1 — b2l
Hence for a constantfz depending orCo, C1, C2, we get:

lA@) |, < C3[y2IRIl + 1]IIR ]l
|A(¢1) — A(¢2) |, < Cav IR« 1 — d2lls

With the choices:

= 2C3, Rl <co=—,
Y 3, IR« <co 4c2

we get thatA is a contraction mapping of, , and therefore a unique fixed pointéfexists
in this region. O

Since R depends continuously for the-norm in the pair(¢, ¢), the fixed point
characterization obviously involves the map, ) — ¢. We shall next analyze the
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differentiability of this map. Assume for instance that the partial derivaljyg¢ exists.
Then, formally, withc = ¢, €975%¢(q — 1),

1
I N(¢) = ce 977 f (L—1)de[(g — DIV + 1§17 3(Vy, + 13,,0)¢?
0

+2[V + 161720, 00]-

As we have seen in the previous sectiofy, = Z’;zl g ITg; ¢ is uniformly bounded:
Hence we conclude:

|85 N (@), < CLIBN« + 105Dl ]l1plls < CLIRI + 105Dl IR 14
Also observe that we have:
3¢ = (95 T)(N(¢) + R) + T (9 [N () + R])
so that, using Proposition 5.2,
191l < C[|N @) + R, + [0 N (@), + 13 RIl]

for some constanf’ > 0. Reducing the constang for which || R|. < ¢ if necessary, we
conclude from the above computation that

1351l < CLUIRILx + 113 Rl ]-

A similar computation shows that, as well:

13,1l < CLIRILx + 113 Rl ]-

The above computation can be made rigorous by using the implicit function theorem in
the space, and the fixed point representation (6.1) which guaran@esegularity in

(&, ¢). This differentiation procedure can be iterated to obtain second derivatives. This can
be summarized as follows:

Lemma 6.2.Under the assumptions of Propositiérill and Lemméb.1 consider the map
(¢,¢) — ¢ into the spaceC,. The partial derivativesV¢ and Va:¢ exist and define
continuous functions of the pa(§, ¢). Besides, there is a constafit> 0, such that

IVOlls + 1V Pl < C(IRIx + IVRI + V3 RIl).

The size ofp and of its derivatives is proportional to the corresponding size® for

After Problem (4.6) has been solved, we will find solutions to the full problem (4.3)
if we manage to adjust the paig, ¢) in such a way that;;(¢,¢) =0 for all i, j. This
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is thereduced problemA nice feature of this system of equations is that it turns out to
be equivalent to finding critical points of a functional of the p@ir¢) which is close, in
appropriate sense, to the energy of the single or multiple-bubbbi&e make this precise

in the next section for the case of single-bubbling; 1.

7. Variational formulation of the reduced problem for k =1

In this section we assunike= 1 in Problem (4.6). We omit the subscript 1inc¢;;, Z;;
and¢;. Thenin order to obtain a solution of (4.3) we need to solve the system of equations:

cj(,0)=0 forallj=1,...,4 (7.2)

If (7.1) holds, therv =V + ¢ will be a solution to (4.3). This system turns out to be
equivalent to a variational problem, as we discuss next.

Let us consider the functiond}, , in (4.4), the energy associated to Problem (4.3). Let
us define:

F(u,0)=Jga(V+¢), p=e2%, (7.2)

wherep = ¢ (&, ¢) is the solution of Problem (4.6) g#n by Proposition 5.1. Critical points
of F correspond to solutions of (7.1) under a mild assumption that will be satisfied in the
proofs of the theorems, as we shall see below.

Lemma 7.1.Under the assumptions of Propositiéri, the functionalF (¢, &) is of class
C1. Assume additionally thak in (4.5)satisfies| R ||, < 18, whereo > 0is the number
in the definition of the--norm. Then, for allx > 0 sufficiently small, iV F (&, ¢) =0, then
(&, ¢) satisfies Syste(7.1).

Proof. Let us first differentiate with respect o We can differentiate directly, »(V + ¢)
under the integral sign, since the domairdepends o but not on. Thus

4
0 F(&,0)=DJy(V+¢) [0V + 0:p] = chjzj[asV + 0:0].
./=1D

From this expression and the results of the previous section, it is continuous with respect
to the pair(¢, ¢). Let us assume that F (¢, ) =0. Then

ch/Zj[agV—i-agQﬂ =0.

j=1 D

We recall that we provefs ¢ || < C||R||«, thus we directly check that as— 0, we have
0e V + 0:¢p = Z4 + o(1) with o(1) small in terms of the--norm asu — 0.
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Let us consider now differentiation with respectztoThis is a bit more involved since
it is no longer sufficient to differentiate under the integral sign. It is convenientto relate the
functional with its expression in terms of the original variable2n Let us observe first
that the following identity holds:

DIy f1=4DEy;w)lg] wherev="T(u), f=T(g).

Let us defineU andy by V =7 (U), ¥ =7 (¢). Let us recall then thal,, ; (V + ¢) =
4E, ; (U + v). Givenl, we compute:

dg F =4DEy (U +y)[3,U + 35 ¥]

IN

= DIy (V +$)[TOU) + T (0] Zc]/ (T @, U) + T3 ¥)]-
j=1

This expression depends continuously(®r¢). Let us conside (9, U). We have that

3/2
8 U =0cwy¢+ ey =cu™ 5/2[1+M } re +0o(u*?),

wherer = |y — ¢|. Hence,
T@:U)=p"1Z(x —&1) +e51e70(1).
Let us consider now the terti(o; ). If ¥ =¥ (y, ¢), we have:
B $)(x,0,0) = V20 [y (¢ +€70,¢) | =T @) + T (@O ¥),
so that7 (9;,v) = 9;¢ — 7T (3y,¥). We have already established that
185,115 < C(IIRIlx + VR I«).
Let us recall the equation satisfied by . It is convenient to defing (z) = u¥2y (¢ +

uz). Theny satisfies:

A +qu® 0wy 0+ O] + apdy ——E+ZCI| 5(L—n*(12D)z (),

|
whereE = N () + R with

R=(w10+0w)? —w3,,

N@) =

1
1 e gD ~
‘I(qz )f(l—t)dt[wl,o+0(u)+tw]" 252,
0
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Heren?! is the smooth cut-off function in (5.8). We also know that, globally,
@) < PRI lx | Pwiy ().

Sinceo is small, it follows from elliptic estimates that near the origin actuaflyz)| <
Cn™9°||R]x and

DY ()| < ™4 |IRIlwiy (2.
As a conclusion we get that
||T(D1/f)||* <Cu 7R

Thusd, F = 0 if and only if:

4
0=%¢; / Z,[2i+0(u ¥ IRIL.)]
=1 p

for eachl = 1, 2, 3. We get then thaV F (¢, ¢) = 0 implies the validity of a system of
equations of the form:

ZC./ij[Zero(l)]:o, 1=1,...,4,
./:1 D

with o(1) small in the sense of the-norm asu — 0. The above system is diagonal
dominant and we thus gej =0 forall j. O

In order to solve for critical points of the functian, a key step is its expected closeness
to the function £, (U, ) = J4,1(V), which we analyzed in Section 2. From now on we
shall use the notation:

V = [3, d1.
Lemma 7.2.The following expansion holds
F(€,8)=Jy2(V) + [IRIZ+ IVRIZ + IV RIZ]OE, ),
where for a certain positive consta@tthe functiorg satisfies

0] + VO + V0| < C,

uniformly on points satisfying the constraints in Propositiof
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Proof. Taking into accountthat® DJ, ,(V + ¢)[¢], a Taylor expansion gives:

Jgo(V +¢) — Jg1(V) (7.3)
1
= / D275 (V +1$)[¢12(L— 1) dr (7.4)
0
1

= / (/[N(¢) +Rlo+ /q[vq*1 -V + t¢>)‘11]¢2> (1—1)dr.

0 D D

Since||¢|l« < C|[R||, we get:
Jga(V + ) — Jg 2 (V) = O(IIRI1?).

Let us differentiate now with respect to the pdir ¢ ). Since the quantity inside the integral
in the representation (7.4) vanishesadd, we may differentiate directly under the integral
sign, thus obtaining:

VgV +¢) = Jg i (V)]
1

- / (/ V[(N@) + R)$] +4 / V[((V +1¢)172 - Vq‘l)asz])(l —1)dr.

0 D D

Using the fact that|Ve|. < C[IIR|l+ + |IVR]«] and the computations in the proof of
Lemma 6.2 we get that the above integral can be estimatec{|b&|@+ ||VR||§). Finally,
we can also differentiate under the integral sign if we do it first with respegtand then
apply V, using the fact thai: ¢ = 0 ond D. We obtain then

Ve[ Jga(V +¢) — Jg (V)] = O(IRIZ + [VRIZ + [V R|?).

The continuity in (&, ¢) of all these expressions is inherited from that ¢gofand its
derivatives in(&, ¢) in thex-norm. O

We have now all the elements for the proof of our main results regarding single
bubbling.

8. Existence of single bubbling solutions

In this section we will prove our main results concerning solutions of (4.3) close to
V =W(x — &)+ I wherells = e *m, . (¢ + € 2*O0) with u = =% . Before going into
the proofs, we point out properties of this function which essentially translate those in
Lemma 2.2. We have:
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g (x,0) = —4n/2374e" " H, (¢, ¢ + e2°0)
+\/§e*(x+35)90(672(k$)@)
+ ﬁe_x_(5—20)§9(§, c+ e‘z"@, 5)’

8i+j

where forj =0,1,2,i =0,1, i + j < 2, the function aC,agje(y,g“,.g%), is bounded
uniformly ony € £2, all large& and¢ in compact subsets a. We recall that as > &,

Do(* @) = e 208 | Dy (e7269),
and withD; smooth,D] (0) = 0, while Do(r) ~ '0% asr — +oo. It follows that
\Tg| + |9 ITe | + |02 | < Ce ™ e ¥ [|H(¢. ¢ + &2 0)| +e %]
<Ceef[e® +g@)|+e*] (8.1)

On the other hand?, (¢, ¢ + y) = ho(y) + h1(¢, y) wherehs is smooth, from where it
follows that

|9 Mg | + 19,06 [T | < C e €75 (|9, 85, (0)| + €% + &%), (8.2)
Proof of Theorem 2. We choose: as in (3.1),

. as 1

a1 g (&)

wheree = g — 5. We have to find a critical point of the function&ku, ¢) in (7.2) for
g =5+ ¢. Consider:

R=c €979 (W(x — &) + s (x, )7 = W(x — )5,

where €% = ;. We write as usuaWy = W(x — &), V = Wy + IT¢. Then we can
decompos® = R1 + R2 + R3 + R4, where

Ri=€* (Vo —V®),  Ry=V>(e" 1),
R3=V°— W7, Ry=(cq — DT Ve

We have:

1
Ri=c€™ /(1 —1)de(V>¢log V),
0
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from where it follows that

|R1| < Ceeb e 8lyH1l2 < covd,
Since|ITg| < Ce~ 9 < ce ¢l we get|R1| < Cee**~¢l and hencd| Ry |« < Ce.
Direct differentiation of the above expression, using the bounds for derivativésyields
as well

[0 Rall, + JoZ Rall, + 110 Rull. <e.
Let us denot&V = [9¢, d;]. Thus we have:

[R1ll« + IVR1llx + VO Rall« < Ce.

Observe that the same estimate is also validarOn the other hand, we have:

1
Ry= V(e — 1) =8xV5/ & dr.
0

Since¢ ~ clog(1/¢) we obtain forR, and derivatives the bounds:
[ R2]l« + IV Rzl + [IVIg R2|l« < Celloge].

Finally, for
1
Ra= 5](1— 1) dr (Wy + tIT¢ ) 1,
0

we find the bound:
|R3| < Ceéx—4—El ¢ c g2t
and similarly for derivatives. We get, recalling thate = ;. < Ce,
R3]l + IV R3]l + [V 9 Ra]l. < C &2,
ConcerningRg, a direct computation give®s| < Ce e °¥—¢!_ Thus for full R we have:
R« + IVRIl« + IV R« < Celloge.
It follows from Lemma 7.2 that for this choice ¢f,

F(£,0) = Jg (V) + 12| logul?6(8, ¢)
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with [6]+|Va:0|+|V6| < C. Definey, (A, ¢) = F(3 log % ¢) with i as above. A critical
point for v, is in correspondence with one 6f We conclude that

Ve(A,0) =4Esye u(Up o) +60:(A, )

with 6, as in Lemma 3.1. The lemma thus applies to predict a critical poitit. aind the
proof of Part (a) is complete. Part (b) is analogous, invoking instead Lemma3.2.

Proof of Theorem 4. Let us choose now as in (3.4),

a18x(¢)
= A,
H 2a2)

where¢ € D,. Now R is just given by:
1
R= 5](1— 1) dt (Wy + t1T)* 1.
0

It follows from estimates (8.1) and (8.2) that
[RI+|VR| +|Vog R < Ce 5 W [[g1(0)] + |[Ver(6)| + €72 + 7],
Let s, =supp, (Igxl +[Vgal). Then we see thaf, — 0 asi | 0. We conclude that
IRl + IVRIlx + V3R]l < Ce %5,
We have now
F(§,8) =4Es,(Ur,.) + 126308, ¢)

with 0] + [V3:60| + V6| < C. Definey;, (A, ¢) = F (5 Iog%, ¢) with u as above. Again,
a critical point fory, is in correspondence with one #f We conclude that

U (C, A) = 4Es 5 (Ur 1) + 8:(0)%01(A, ©),

whereu is given by (3.4) and;, is as in Lemma 3.3. Henag, has a critical point as in the
statement of Lemma 3.3, and the result of the theorem follows, with the coristangn
by B = (2az/ap)*?. O

Proof of Theorem 3, Part (b). In this case the consideration we make is slightly differ-
ent. Observe that if we chooge= 0, then the assumption of symmetry of the domain,
and uniqueness of the soluti@hs o)(x, ®) of Problem (4.6) makes it even in each of
the coordinate®);, i = 1,2, 3, since so isV. Moreover, as a by-product, we find that
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cj=0for j =1,2, 3. Thus onlycs survives. As a consequence, we find that 0 if we
havedg F (¢, 0) = 0. With the choice,

a18,(0)
2a2)

A,

we find thatF; (A) = F (3 log % 0) satisfies:

2
Fi(A) = 4;"—;& (02[—24 + AZ] + g, (0)26,(A),

where0, and its derivative are small uniformly an in bounded sets. We conclude the
existence of a critical pointi,, of F; close to 1, and the desired result followsa

9. Multiple bubbling

In this section we will prove Theorem 4, Part (a). Let us consider the solgtion;)

of (4.6) given by Proposition 5.1 whee= (&1, &2, ...,&). Similarly as in the proof

of Theorem 3, Part (b), choosing= 0 makesyp symmetric in the®; variables, which
automatically yieldsc;; =0 for alli =1,...,k and j = 1,2,3. Thus we just need to
adjusté in such a way that;s =0 for i = 1,...,k. Arguing exactly as in the proof
of Lemma 7.1 we get that this is equivalent to finding a critical point of the functional
F(&) = Jy;0(V 4+ ¢), where¢ has been fixed to be zero. Similarly as before, we find now
that

F&) = Jga(V) + (IRIZ+ 19: RI2)0 &),
wheref and its first derivative are continuous and uniformly bounded in large
In what remains of this section we fix a numides 0, sete =g — 5> 0 and choose
wi = e%i in order that
H1=¢eA1, WUji+1=U;j (Aj+1£)2, j=1 ... k=1, (9.2)
with
§<Aj<87t j=1...k (9.2)

Let us measure the size pR||. and||ds R« for this Ansatz. We can now decompose
R =R1+ R2+ R3+ R4+ Rs, where

Ri=€* (Vo - V3,  Ry=V>°(e* -1),
Re=ve— (3 W,»)S, Ra=() W,»)S—ZW?,

Rs=(cqg — 1) &*VoTe,
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We can estimate,

k—1
|R4| < C Z e Giv1—6) e—3\x—§i\’
i=1

hencel| R4l < Ce, a similar bound being valid for its derivatives§yis. The quantitieR;
for j =1, 2,3,5 can be estimated in exactly the samay as in the proof of Theorem 2.
Thus||R ||« + [|10¢ R|l« < Ce|loge|. Letus setd = (Axq, ..., Ax) and defingf: (A) = F(§)
with & given by (9.1). We need to find a critical point¢f. We have proved that

Ve (A) = Jg 1 (V) 4 O(£2[loge|?)6: (A), (9.3)

where 6, and its first derivative are uniformly bounded. We have the validity of the
following fact, whose proof we postpone for the moment,

1 1
ZJ“(V) =kao + [¥«(A) +0(1)]e + ék(k + Dage|loge|, (9.4)

where

k

Ye(A) = a18:.(0) A1+ kaslog A1+ ) [(k— j+DaslogA; —agAj]
j=2

and the term @l) ase — 0 is uniformly small inC1-sense on parameters; satisfying
(9.2). Here the constands, a1, a4 are the same as those in Lemma 2.3, winle- 167/3.
The assumptio; (0) < 0 implies the existence of a unique critical poif which can
easily be solved explicitly. It follows that(t) C! perturbation ofy,. will have a critical
point located at o(1) distance of,. After this observation, the combination of relations
(9.4) and (9.3) give the existence of a critical pointyaf close to A, which translates
exactly as the result of Theorem 4, Part (a).

It only remains to establish the validity of expansion (9.4). We recall that

whereU = Zf-‘zl w; + m;, and we denote; = wy,; o0, 7; = my,;.0. Ui = w; + 7;. We have
thatJ, , (V) =4E, ,.(U), whereqg =5+ ¢. Observe that we can write:

Eqs(U) =Es5,(U) + R,

where

1
R= —6/(e(q—5>x —~1)|VI°+4nA,.
D
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A direct computation yields:

8]

o0
1 1
Ay =k(g — 5)(6 / WOlogW dx + % f W6dx> + 0(e).
—00 —00
On the other hand,

1
R—4rAy=—c f[e(q—&x —1]vOdx

_——(q 5)47t/xV6dx+0(8)
D

1 N T
= —6(11 ) (;&) / wedx + o(e)

k
=as(q—5) ) _logu; +o(e).
j=1
Now we have:
k 1 k k 6
Es5,(U)= Z Es;(Uj) + 5 / |:Z AR (Z \/;) + 62 Wi5Vj:| (9.5)
Jj=1 p Li=1 i=1 i<j
since
k k k 6
Es(U) = ) Es(Uj) — /[Z Ve - (Z V,-> ]
j=1 D i=1 i=1

=Y [ (2VeViVoV; + V/V|+ ViV; — 2ne ¥V, V)
i<jp

=Y | (-4AeVi—V/+Vi—@e V)V, =>" | WPV,
i<ip i<jp

To estimate the quantities in (9.5), we consider the numbers:

1
X]_:O, Xlzi(élfl—i_él)v l:2,...,k, Xk+1:+oov
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and decompose

k
)~y W= [ wves
j=1 1§I>§k DN{xi<x<xi+1}

A straightforward computation yield8 = o(e). On the other hand,

k Xi+1
1§l>§k DN{x<x<xi41} =1
Xi+1

=4r f WZS W1+ 0(e)
Xl
Xi+1—61
—ar [ WEW( - @ - 8) + 0

X1—&

k-1 o0
=4r Y e it/ / e W (x)° + o(e)
=1 %

— Mj+1 12
=aez<—‘/ ) 4+ 0(¢).
j=is M

Taking into account the estimate given in Lemma (2.1) and the above estimates, we get
(9.4) in the uniform sense. Similar arguments yield that the remainder is as(aediroall
after a differentiation with respect to tl§gs.

10. Further asymptotics, final comments

Let Ap be a number for which a critical valued® in Theorem 4 is present. What we
want to discuss next is the situation present whes close torg and, at the same time,
g is close to 5, both from above and below. We shall do this only in the case of a local
minimizer,

0= i%fgxo < Lrggko.

As we have discussed this local minimum situation remains whendseufficiently close
to Ao. Let us setn, = infp g,. Thenm, is strictly decreasing. In fagt; ~ —(1 — Ag).
Dual asymptoticsire found for the sub- and super-critical cases as follows:
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Theorem 5.(a) Assume thag =5+ ¢. Lety > (8v/2)~1 be fixed and assume that- Ao
is the unique number for which

m) = —y+/€ro.
Then for alle sufficiently small there exist two solutiom$ to Problem(1.1) of the form,

_ 3VAME
V1t (ME)Hx —

uE (x)

(1+0(D), (10.1)

whereo(1) — 0 uniformly in2 ass — 0,
ME = A7 () VA
Here /AgA+(y) = x+(y) are the two positive roots of
32¢2 —128/x+1=0
and¢, is a point inD such thatg, (¢;) — O ase — 0.

(b) Assume thag =5 — ¢. Lety € R be fixed and assume additionally thafclose to
Ap) is the unique number for which

m) = y\/kosl/z.

Then for all ¢ sufficiently small there exist a solutian to Problem(1.1) of the form
(10.1) with M replaced byM,, whereM, = A~Y/2(y)e /4. Here /Ao A(y) = x(y) is
the positive root of

3242 +128/x —1=0
and¢, is a point inD such thatg; (¢.) — O ase — 0.
Proof. Letg =5+ ¢ and A be such that

w=As, A>34.

This choice allows us to regard the function&lg, ¢), where u = e%, as a small
perturbation of &, , (U) after restricting conveniently the range of variationfofWe
will not carry out all details but just concentrate on the asymptotic expressiaf,of @).

Using the expansionin Lemma 2.3, we find tiiat A, ¢) = 4E, ;. (U,,,;) can be expanded
as

Ve(A,C) =ao+ Ye (A, )+ 0(e),
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uniformly with respect tod > §, with
Te(A. &) = a18:.(8) AvE — as(85(2))2 A% + azh A2 + agelog A + a—z“e loge.
For fixed¢, it turns out that the equation,
04V (A,0) =0,
reduces inA at main order to the quadratic equation:

a18,(¢)

NG

which has exactly two positive solutions® (¢) provided that

A+ 2a2k0A2+a4= 0

-a@) 1 —— ko
ﬁ > a—l 8a2a4k0 = 8—\/2

What we are assuming is that, = —y /sxo with y > (8v/2)~L. Lety’ = (yo+y)/2 and
call D, the set of¢ € D, where—g,(¢)//e > v'//e. Using infp g, = m; = —y/eko
and the expressions of, a2 anda4 givenin (2.11) and (2.13), the equation farreduces
to

32(y/ho A)% — 128y (yro A) +1=0.

The conclusion then holds if we take = (uF) Y2, uF = A+ (y) /e, wherex4(y) =
JAoA+(y) are the two roots of the above equation. As in the proof of Lemma 3.3, we
finally find thaty,. (A+(y)(¢), ¢) has a critical point irD, thus giving the two searched
bubble-solutions. In fact, after a perturbation argument similar to those in Theorems 2
and 4, we find actual solutions to (1.1) with the form stated in the theorem. The proof of
Part (b) is exactly the same, except that in this case the quadratic equatibtémomes:

a18,.(¢)

NG

which has exactly one positive solution, regardless the sign@f. O

A+ 2ap00A% —as=0

Itis illustrative to describe the results of this paper in terms of the bifurcation branch for
the positive solutions of (1.1) in a ball which stems fram= 11, u = 0, for any value of
g > 1. This branch does not have turning pointsfet 5 (uniqueness of the positive radial
solution is known from [25]) and blows-up at= A1/4. On the other hand, an oscillating
behavior has been observed from a variational point of vein in [11] and with ODE tools
in [12]. As soon ag > 0, g =5+ ¢, the branch turns right near the asymptote and then
lives until getting close to.1. This “upper part” of the branch is the one described in
Theorem 3, Part (a). It is of course reasonable to ask how the turning point looks like, in



1454 M. del Pino et al. / J. Math. Pures Appl. 83 (2004) 1405-1456

particular showing the presence of two solutionsXalightly to the right of it. This is the
interpretation Theorem 5, Part (a). Formal asymptotics of this first turning point, which are
fully recovered by this result, were found by Budd and Norbury in [7]. The behavior of
this branch “later” corresponds to the result of Theorems 4 (a} fo© small, the branch
oscillates wildly between /4 andA1, giving rise for fixed\ between these numbers to an
arbitrarily large number of solutions. The towers of Theorem 4 (a) may be interpreted as
the solution found on the branch betweeniieandk + 1 turning points. Exceptin a ball

or in a domain with symmetry, we have not found asymptotics of the turning points that lie
close toi1, nor we know whether multiple bubbling is a generic phenomenon or rather a
big coincidence due to symmetry.

Appendix A. Robin’s function

In this appendix we prove two facts we have used in the course of the proofs about
Robin’s functiong;. Recall thatg, (x) = H,(x, x), where the functiony — H, (x, y)
satisfies the boundary value problem:

AyHy + 1Hy = Az V€2,
Hy(x,Y) = 757> x€08.

Lemma A.1.The functiorg, is of classC>(£2).

Proof. We will show thatg, € C*, for anyk. Fix x € £2. Let /1, be the function defined
in £2 x §2 by the relation:

Hy(x,y) = Bilx =yl +h1i(x,y),
whereg1 = A/(8r). Thenhy, satisfies the boundary value problem:

Ayhyj+Ahip=—Apilx —y|  In2,
h1.(x, y) = gy — Bilx —y| onag.

Elliptic regularity then yields that ; (x, -) € C?(£2). Its derivatives are clearly continuous
as functions of the joint variable. Let us observe that the functigéx, y) is symmetric,
thus so ish1, and them:1 ;. (-, y) is also of clasg°? with derivatives jointly continuous. It
follows thath1(x, y) is a function of clas€C?(£2 x £2). Iterating this procedure, we get
that, for anyk,

k

Hy(x,9) =Y Bjlx = y|% 4 hisx, y)
j=1

with 811 =—A8;/((2j +1)(2j + 2)) andh, ; solution of the boundary value problem:
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Axhy + Mg = —2Pelx — y| %L in 2,
k i—
hk,)\(x’y)zm —Z~/~:1ﬂ/|X—y|2~/ 1 onag.

We may remark that
Ayhigin+2rhe;, =0 ing2.

Elliptic regularity then yields thali; ;, is a function of clas€*t1(£2 x £2). Let us observe
now that by definition ok, we haveg, (x) = A . (x, x), and the conclusion of the lemma
follows. O

Lemma A.2. The function%‘ is well defined, smooth and strictly negative sih Its
derivatives depend continuously ®n

Proof. For a fixed giverx € £2, consider the unique solutiaf(y) of

AyF+AF=G(x,y), ye€Ss2,
F =0, y€as2.

Using elliptic regularityF is at least of clas€®®. Besides a convergence argument using
elliptic estimates shows that actually:

oH
F(y) = a—;(x,y).

SinceA < A1, the Maximum Principle implies that < 0 in £2. Hence, in particular,
d
%(x) = F(x) <O.

Arguing as in the previous lemma, this function turns out to be smooth.iThe
resulting expansions easily proeidhe continuous dependenceiirof its derivatives in
x-variable. O
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