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Abstract

We consider the problem of finding positive solutions of�u + λu + uq = 0 in a bounded, smoot
domainΩ in R

3, under zero Dirichletboundary conditions. Hereq is a number close to the critica
exponent 5 and 0< λ < λ1. We analyze the role of Green’s function of� + λ in the presence o
solutions exhibiting single andmultiple bubbling behavior at onepoint of the domain when eitherq
or λ are regarded as parameters. As a special case of our results, we find that ifλ∗ < λ < λ1, where
λ∗ is theBrezis–Nirenberg number, i.e., the smallest value ofλ for which least energy solutions fo
q = 5 exist, then this problem is solvable ifq > 5 andq − 5 is sufficiently small.
 2004 Elsevier SAS. All rights reserved.

Résumé

Nous considérons le problème de l’existence de solutions positives de�u + λu + uq = 0 dans un
domaine borné, régulierΩ deR

3, avec conditions de Dirichlet nulles au bord. Iciq est un nombre
proche de l’exposant critique 5 et 0< λ < λ1. Nous analysons le rôle de la fonction de Green� + λ

en présence de solutions qui mettent en évidence un comportement de type simple bulle
multiple quand soitq, soit λ sont considérés comme paramètres. Comme cas particulier d
résultats, nous trouvons que pourλ∗ < λ < λ1, où λ∗ est lenombre de Brezis–Nirenberg, i.e., la
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plus petite valeur deλ pour laquelle des solutions d’énergie minimale pourq = 5 existent, alors le
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problème possède des solutions siq > 5 et siq − 5 est suffisamment petit.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Let Ω ⊂ R
3 be a bounded domain with smooth boundary. This paper deals

construction of solutions to the boundary value problem:{
�u + λu + uq = 0 in Ω.

u > 0 in Ω,

u = 0 on∂Ω.

(1.1)

Integrating the equation against a first eigenfunction of the Laplacian yields t
necessary condition for solvability of (1.1) isλ < λ1. On the other hand, if 1< q < 5
and 0< λ < λ1, a solution may be found as follows. Let us consider the Rayleigh quo

Qλ(u) ≡
∫
Ω

|∇u|2 − λ
∫
Ω

|u|2
(
∫
Ω |u|q+1)2/(q+1)

, u ∈ H 1
0 (Ω) \ {0}, (1.2)

and set:

Sλ ≡ inf
u∈H1

0 (Ω)\{0}
Qλ(u).

The constantSλ is achieved thanks to compactness of Sobolev embedding ifq < 5, and
a suitable scalar multiple of it turns out to be a solution of (1.1). The caseq � 5 is
considerably more delicate: forq = 5 compactness of the embedding is lost while
q > 5 there is no such embedding. This obstruction is not just technical for the solva
question, but essential. Pohozaev [19] showed that ifΩ is strictly star-shaped then n
solution of (1.1) exists ifλ � 0 andq � 5. Let S0 be the best constant in the critic
Sobolev embedding,

S0 = inf
u∈C1

0(R3)\{0}

∫ 3
R

|∇u|2
(
∫ 3

R
|u|6)1/3

.

Let us considerq = 5 in (1.2) and the number:

λ∗ ≡ inf{λ > 0: Sλ < S0}. (1.3)
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In the well-known paper [5], Brezis and Nirenberg established that 0< λ∗ < λ1 and, as
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a consequence, thatSλ is achieved forλ < λ < λ1, hence (1.1) is solvable in this rang
WhenΩ is a ball they find thatλ∗ = λ1/4 and that no solution exists forλ � λ∗.

Let us assume now thatq > 5. In this case Sobolev embedding fails and the quan
Sλ may only be interpreted as zero. Thus, no direct variational approach applies t
existence of solutions. Consequences of the analysis of this paper are the fol
existence and multiplicity results for Problem (1.1) in the super-critical regime whq

is sufficiently close to 5.

Theorem 1. (a) Assume thatλ∗ < λ < λ1, whereλ∗ is the number given by(1.3). Then
there exists a numberq1 > 5 such that Problem(1.1) is solvable for anyq ∈ (5, q1).

(b) Assume thatΩ is a ball and thatλ∗ = λ1/4 < λ < λ1. Then, givenk � 1 there exists
a numberqk > 5 such that Problem(1.1)has at leastk radial solutions for anyq ∈ (5, qk).

While the result of Part (a) resembles that by Brezis and Nirenberg whenq = 5, in
reality the solution we find has a very different nature: it blows up asq ↓ 5 developing
a single bubblearound a certain point inside the domain. The other solutions pred
by Part (b) blow-up only at the origin but exhibitmultiple bubbling. Let us make this
terminology somewhat more precise. By ablowing-up solutionfor (1.1) near the critica
exponent we mean an unbounded sequence of solutionsun of (1.1) for λ = λn bounded,
andq = qn → 5. Setting:

Mn ≡ α−1 max
Ω

un = α−1un(xn) → +∞

with α > 0 to be chosen, we see then that the scaled function

vn(y) ≡ M−1
n un

(
xn + M

−(qn−1)/2
n y

)
,

satisfies

�vn + v
qn
n + M

−(qn−1)
n λnvn = 0

in the expanding domainΩn = M
(qn−1)/2
n (Ω − xn). Assuming for instance thatxn stays

away from the boundary ofΩ , elliptic regularity implies that locally over compacts aroun
the origin,vn converges up to subsequences to a positive solution of

�w + w5 = 0

in entire space, withw(0) = maxw = α. It is known, see [8], that for the convenient cho
α = 31/4, this solution is explicitly given by:

w(z) = 31/4√
1+ |z|2 .



1408 M. del Pino et al. / J. Math. Pures Appl. 83 (2004) 1405–1456

which corresponds precisely to an extremal of the Sobolev constantS0, see [2,24]. Coming
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back to the original variable, we expect then that “nearxn” the behavior ofun(y) can be
approximated as

un(y) = 31/4Mn√
1+ M4

n |x − xn|2
(
1+ o(1)

)
. (1.4)

Since the convergence in expanded variables is only local over compacts, it is not cle
far fromxn the approximation (1.4) holds true, even if only one maximum pointxn exists.
We say that the solutionun(x) is asingle bubbleif (1.4) holds with o(1) → 0 uniformly
in Ω .

The solution predicted by Part (a) of Theorem 1 has this property around a point
domain that will be precised below, while those of Part (b) have the form of a “towe
single bubbles centered at the origin. As we shall see, radial symmetry is not need
the presence of these solutions: just symmetry with respect to the three coordinate
around one point of the domain suffices.

The results of [6] concerning asymptotic analysis of radial solutions in a ball w
the exponent approaches critical from below, suggest that the object ruling the location
blowing-up in single-bubble solutions of (1.1) isRobin’s functiongλ defined as follows
Let λ < λ1 and consider Green’s functionGλ(x, y), solution for any givenx ∈ Ω of{−�yGλ − λGλ = δx, y ∈ Ω,

Gλ(x, y) = 0, y ∈ ∂Ω.

Let Hλ(x, y) = Γ (y − x) − Gλ(x, y) with Γ (z) = 1/(4π |z|), be its regular part. In othe
words,Hλ(x, y) can be defined as the unique solution of the problem:{

�yHλ + λHλ = λΓ (x − y), y ∈ Ω,

Hλ = Γ (x − y), y ∈ ∂Ω.

Let us consider Robin’s function ofGλ, defined as

gλ(x) ≡ Hλ(x, x).

It turns out thatgλ(x) is a smooth function (we provide a proof of this fact in Appendix
which goes to+∞ asx approaches∂Ω . Its minimum value is not necessarily positive.
fact this number is strictly decreasing inλ. It is strictly positive whenλ is close to 0 and
approaches−∞ asλ ↑ λ1. It is suggested in [6] and recently proved by Druet in [14] t
the numberλ∗ given by (1.3) can be characterized as

λ∗ = sup
{
λ > 0: min

Ω
gλ > 0

}
. (1.5)

Besides, it is shown in [14] that least energy solutionsuλ for λ ↓ λ∗ constitute a single
bubble with blowing-up near the set wheregλ∗ attains its minimum value zero.
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We consider here the role ofnontrivial critical valuesof gλ in existence of solutions of
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(1.1). In fact their role is intimate, not only in the critical caseq = 5 and in the sub-critica
q = 5 − ε. More interesting, their connection with solvability of (1.1) for powers ab
critical is found. In fact a phenomenon apparently unknown even in the case of the
established, which puts in evidence an amusing duality between the sub- and super
cases.

The meaning we give of a nontrivial critical value ofgλ is as follows: letD be an open
subset ofΩ with smooth boundary. We recall thatgλ links nontrivially in D at critical
levelGλ relative toB andB0 if B andB0 are closed subsets of
D with B connected and
B0 ⊂ B such that the following conditions hold: if we setΓ ≡ {Φ ∈ C(B,D): Φ|B0 = Id},
then

sup
y∈B0

gλ(y) < Gλ ≡ inf
Φ∈Γ

sup
y∈B

gλ

(
Φ(y)

)
, (1.6)

and for ally ∈ ∂D such thatgλ(y) = Gλ, there exists a vectorτy tangent to∂D at y such
that

∇gλ(y) · τy �= 0. (1.7)

Under these conditions a critical pointȳ ∈D of gλ with gλ(ȳ) = Gλ exists, as a standar
deformation argument involving the negative gradient flow ofgλ shows. Condition (1.6
is a general way of describing a change of topology in the level sets{gλ � c} in D taking
place atc = Gλ, while (1.7) prevents criticality at this level collapsing into the boundary.
is easy to check that the above conditions hold if:

inf
x∈D

gλ(x) < inf
x∈∂D

gλ(x), or sup
x∈D

gλ(x) > sup
x∈∂D

gλ(x),

namely the case of (possibly degenerate) local minimum or maximum points ofgλ. The
levelGλ may be taken in these cases respectively as that of the minimum and the ma
of gλ in D. These hold also ifgλ is C1-close to a function with a nondegenerate criti
point inD. We callGλ a nontrivial critical level ofgλ in D.

Theorem 2.Let us assume that there is a setD wheregλ has a nontrivial critical levelGλ.

(a) Assume thatGλ < 0, q = 5+ε. Then Problem(1.1)is solvable for all sufficiently sma
ε > 0. More precisely, there exists a solutionuε of (1.1)of the form,

uε(y) = 31/4Mε√
1+ M4

ε |y − ζε|2
(
1+ o(1)

)
, (1.8)

whereo(1) → 0 uniformly inΩ asε → 0,

Mε = 8
√

2(−Gλ)ε−1, (1.9)

andζε ∈D is such thatgλ(ζε) → Gλ, ∇gλ(ζε) → 0, asε → 0.
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(b) Assume thatGλ > 0, q = 5− ε. Then Problem(1.1)has a solutionuε of (1.1)exactly√
g
e

te

l

-

as in Part(a)but withMε = 8 2Gλε−1.

We observe that Theorem 1, Part (a) followsfrom Part (a) of the above result makin
use of the characterization (1.5) of the numberλ∗. The result of Part (b) recovers th
asymptotics found for the radial solution of(1.1) whenΩ is a ball and 0< λ < λ1/4 in
Theorem 1 of [6].

Our next result shows in particular thatsolutions with multiplebubbling from above
the critical exponent in a domain exhibiting symmetries exist. We say thatΩ ⊂ R

3 is
symmetric with respect to the coordinate planesif for all (y1, y2, y3) ∈ Ω we have that

(−y1, y2, y3), (y1,−y2, y3), (y1, y2,−y3) ∈ Ω.

If 0 ∈ Ω , one defines:

λ̃∗ ≡ inf
{
λ > 0: gλ(0) < 0

}
.

Theorem 3.Assume that0 ∈ Ω , and thatΩ is symmetric with respect to the coordina
planes.

(a) Assume that̃λ∗ < λ < λ1 and letq = 5 + ε. Then, givenk � 1, there exists for al
sufficiently smallε > 0 a solutionuε of Problem(1.1)of the form,

uε(x) =
k∑

j=1

31/4Mjε√
1+ M4

jε|x|2
(
1+ o(1)

)
,

whereo(1) → 0 uniformly inΩ and forj = 1, . . . , k,

Mjε ≡ 8
√

2
(−gλ(0)

)
k−1

(
32

√
2

π

)j−1
(k − j)!
(k − 1)!ε

1/2−j .

(b) Assume thatq = 5. Then for allλ > λ̃∗ sufficiently close tõλ∗ there exists a solution
uλ of Problem(1.1)of the form,

uλ(x) = 31/4Mλ√
1+ M4

λ |x|2
(
1+ o(1)

)
,

whereMλ ≡ 1
2

√
λ̃∗(−gλ(0))−1.

The solution predicted by Part (a) is a superposition ofk bubbles with respective blow
up ordersε1/2−j , j = 1, . . . , k. We observe that in the case of a ballλ̃∗ = λ∗ = λ1/4 and
Theorem 2, Part (b) thus follows.
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Part (b) shows that a domain may possessBrezis–Nirenberg numbersother thanλ∗,
emark
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where a bubbling branch of solutions at the critical exponent stems to the right. We r
that ∂gλ

∂λ
(0) < 0 (see Appendix A), so that actuallyMλ ∼ (λ − λ̃∗)−1/2. Without any

symmetry assumption, our next result states that a similar phenomenon holds true
numberλ = λ0 for whichgλ0 has either a local minimizer, or a nondegenerate critical poi
with value zero.

Theorem 4.Assume thatq = 5 and that for a numberλ = λ0, one of the two situation
holds:

(a) Either there is an open, bounded setD of Ω such that

0 = inf
D

gλ0 < inf
∂D

gλ0.

(b) Or there is aζ0 ∈ Ω such that

gλ0(ζ0) = 0, ∇gλ0(ζ0) = 0,

andD2gλ0(ζ0) is nonsingular.
Then for allλ > λ0 sufficiently close toλ0 there exists a solutionuλ of Problem(1.1)
of the form,

uλ(x) = 31/4Mλ√
1+ M4

λ |x − ζλ|2
(
1+ o(1)

)
, (1.10)

whereo(1) → 0 uniformly in Ω as λ ↓ λ0. Here ζλ ∈ D in case(a) and ζλ → ζ0 in
case(b). Besides,

Mλ = β

√
λ0

−gλ(ζλ)
,

with

A−(λ − λ0) � −gλ(ζλ) � A+(λ − λ0)

for certain positive constantsA±.

The rest of this paper will be devoted to the proofs of Theorems 2–4. The p
actually provide more accurateinformation on the solutions found, in particular about
asymptotics for the solutions in Theorem 2 when we allow for instanceq > 5 andλ moves
left towardλ∗, case in which two single-bubble solutions are observed with blow-up o
∼ ε−1/4.

Bubbling at or near the critical exponent in its relation with Green’s function of
domain has been broadly considered in the literature. In particular, we refer the
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to [3,4,15,17,20–22], and also to [1,18,23] and their references for related results under
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of
Neumann boundary conditions. Conditions (1.6),(1.7) were used in [13] in the constructio
of spike-patterns in nonlinear Shrödinger equations.

The analogues of the results of this paper for dimensionN � 4 in the super-critical cas
are somewhat different and we will treat them in a separate work. It should be remark
whenN � 4 we have thatλ∗ = 0, and single-bubbling asλ ↓ 0 analogous to Theorem
around a nondegenerate critical point of the functiong0 was established by Rey in [20
The phenomenon of multi-bubbling in the radial case in higher dimensions was des
in [11], and, with purely ODE methods, in [12]. Also through an ODE approach, m
bubbling in the radial case was described in [9] in an equation at the critical exponen
a weight which was taken as the parameter. Bubbling from above the critical exp
whenλ = 0 in domains exhibiting small holes was found in [10].

2. Energy expansion of single bubbling

Given a pointζ ∈ R
3 and a positive numberµ, we denote in what follows:

wµ,ζ (y) ≡ 31/4√
1+ µ−2|y − ζ |2µ−1/2,

which correspond to all positive solutions of the problem:

�w + w5 = 0 in R
3.

The solutions we look for in Theorems 2, 3, Part (b), and 4 have the formu(y) ∼ wµ,ζ (y)

whereζ ∈ Ω andµ is a very small number. It is natural to correct this initial approxima
by a term that provides Dirichlet boundary conditions. We assume in all what follows th
0 < λ < λ1. We defineπµ,ζ (y) to be the unique solution of the problem:

�πµ,ζ + λπµ,ζ = −λwµ,ζ in Ω with πµ,ζ = −wµ,ζ on∂Ω. (2.1)

Fix a small positive numberµ and a pointζ ∈ Ω . We consider as a first approximation
the solution one of the form:

Uµ,ζ (y) = wµ,ζ + πµ,ζ . (2.2)

Observe thatU = Uµ,ζ satisfies then the equation:

�U + λU + w5
µ,ζ = 0 in Ω, U = 0 on∂Ω.

Classical solutions to (1.1) correspond tocritical points of the energy functional,

Eq,λ(u) ≡ 1

2

∫
Ω

|Du|2 − λ

2

∫
Ω

|u|2 − 1

q + 1

∫
Ω

|u|q+1. (2.3)
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If there was a solution very close toUµ∗,ζ ∗ for a certain pair(µ∗, ζ ∗), then we would

nts
s

,

ishes
n,
e,
formally expectEq,λ to be nearly stationary with respect to variations of(µ, ζ ) on Uµ,ζ

around this point. Under this intuitive basis, itseems important to understand critical poi
of the functional(µ, ζ ) �→ Eq,λ(Uµ,ζ ). Next we will find explicit asymptotic expression
for this functional. Forq = 5 we have the following result.

Lemma 2.1.For anyσ > 0, asµ → 0, the following expansion holds:

E5,λ(Uµ,ζ ) = a0 + a1µgλ(ζ ) + a2µ
2λ − a3µ

2g2
λ(ζ ) + µ3−σ θ(µ, ζ ), (2.4)

where for j = 0,1,2, i = 0,1, i + j � 2, the functionµj ∂i+j

∂ζ i ∂µj θ(µ, ζ ) is bounded
uniformly on all smallµ andζ in compact subsets ofΩ . Theaj ’s are explicit constants
given by relations(2.11)below.

The proof of this expansion makes use of the following lemma which establ
the relationship between the functionsπµ,ζ (y) and the regular part of Green’s functio
Hλ(ζ, y). Let us consider the (unique) radial solutionD0(z) of the problem in entire spac{

�D0 = −λ31/4[1/
√

1+ |z|2 − 1/|z|] in R
3,

D0 → 0 as|z| → ∞.

ThenD0(z) is aC0,1 function withD0(z) ∼ |z|−1 log|z| as|z| → +∞.

Lemma 2.2.For anyσ > 0 we have the validity of the following expansion asµ → 0:

µ−1/2πµ,ζ (y) = −4π31/4Hλ(ζ, y) + µD0

(
y − ζ

µ

)
+ µ2−σ θ(µ,y, ζ ),

where forj = 0,1,2, i = 0,1, i + j � 2, the functionµj ∂i+j

∂ζ i∂µj θ(µ,y, ζ ) is bounded
uniformly ony ∈ Ω , all smallµ andζ in compact subsets ofΩ .

Proof. We recall thatHλ(y, ζ ) satisfies the equation:{
�yHλ + λHλ = λΓ (y − ζ ), y ∈ Ω,

Hλ(y, ζ ) = Γ (y − ζ ), y ∈ ∂Ω,

whereΓ (z) ≡ 1
4π |z| , while πµ,ζ satisfies:

{
�π + λπ = −λwµ,ζ in Ω,

π = −wµ,ζ on∂Ω.

Let us setD1(y) ≡ µD0(µ
−1(y − ζ )) so thatD1 satisfies:
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−�D1 = λ
[
µ−1/2wµ,ζ (y) − 4π31/4Γ (y − ζ )

]
in Ω,

5)

f

D1 ∼ µ2 logµ on∂Ω asµ → 0.

Let us write:

S1(y) ≡ µ−1/2πµ,ζ (y) + 4π31/4Hλ(ζ, y) −D1(y).

With the notations of Lemma 2.2, this means

S1(y) = µ2−σ θ(µ,y, ζ ).

Observe that fory ∈ ∂Ω , asµ → 0,

µ−1/2πµ,ζ (y) + 4π31/4Hλ(ζ, y) = 31/4
[

1√
µ2 + |y − ζ |2 − 1

|y − ζ |
]

∼ µ2|y − ζ |−3.

Using the above equations we find thatS1 satisfies:{
�S1 + λS1 = −λD1 in Ω,

S1 = O(µ2 logµ) asµ → 0 on∂Ω.
(2.5)

Let us observe that, for anyp > 3,∫
Ω

∣∣D1(y)
∣∣p dy � µp+3

∫
R3

∣∣D0(z)
∣∣p dz,

so that‖D1‖Lp � Cpµ1+3/p. Since 0< λ < λ1, elliptic estimates applied to Eq. (2.
yield that, for anyσ > 0, ‖S1‖∞ = O(µ2−σ ) uniformly on ζ in compact subsets ofΩ .
This yields the assertion of the lemma fori, j = 0.

Let us consider now the quantityS2 = ∂ζ S1. Then we have:{
�S2 + λS2 = −λ∂ζD1 in Ω,

S2 = O(µ2 logµ) asµ → 0 on∂Ω.
(2.6)

Now, ∂ζD1(y) = −∇D0((y − ζ )/µ), so that for anyp > 3/2,∫
Ω

∣∣∂ζD1(y)
∣∣p dy � µ3+p

∫
R3

∣∣∇D0(z)
∣∣p dz.

We conclude from these facts that‖S2‖∞ = O(µ2−σ ) for anyσ > 0. This gives the proo
of the lemma fori = 1, j = 0. Let us set nowS3 ≡ µ∂µS1. Then{

�S3 + λS3 = −λµ∂µD in Ω,

S3 = O(µ2 logµ) asµ → 0 on∂Ω.
(2.7)
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Now,

fter
ult
µ∂µD1(y) = µ∂µ

[
µD0

(
y − ζ

µ

)]
= µ

(
D0 + D̃0

)(y − ζ

µ

)
,

whereD̃0(z) = z · ∇D0(z). Thus, similarly as the estimate forS1 itself we obtain again
‖S3‖∞ = O(µ2−σ ) for any σ > 0. The proof of the remaining estimates comes a
applying againµ∂µ to the equations obtained forS2 andS3 above, and the desired res
comes after exactly the same arguments. This completes the proof.�
Proof of Lemma 2.1. Let us decompose:

E5,λ(Uµ,ζ ) = I + II + III + IV + V + VI,

I =
∫
Ω

[
1

2
|Dwµ,ζ |2 − 1

6
w6

µ,ζ

]
,

II =
∫
Ω

[
Dwµ,ζ Dπµ,ζ − w5

µ,ζπµ,ζ

]
,

III = 1

2

∫
Ω

[|Dπµ,ζ |2 − λ(wµ,ζ + πµ,ζ )πµ,ζ

]
,

IV = −λ

2

∫
Ω

(wµ,ζ + πµ,ζ )wµ,ζ ,

V = −5

2

∫
Ω

w4
µ,ζ π2

µ,ζ ,

VI = −1

6

∫
Ω

[
(wµ,ζ + πµ,ζ )

6 − w6
µ,ζ − 6w5

µ,ζπµ,ζ − 15w4
µ,ζπ

2
µ,ζ

]
.

Multiplying equation�wµ,ζ + w5
µ,ζ = 0 bywµ,ζ and integrating by parts inΩ we get:

I = 1

2

∫
∂Ω

∂wµ,ζ

∂ν
wµ,ζ + 1

3

∫
Ω

w6
µ,ζ

= 1

2

∫
∂Ω

∂wµ,ζ

∂ν
wµ,ζ + 1

3

∫
R3

w6
µ,ζ − 1

3

∫
R3\Ω

w6
µ,ζ .

Here∂/∂ν denotes the derivative along the unit outgoing normal at a point of∂Ω . Testing
equation�wµ,ζ + w5

µ,ζ = 0 now againstπµ,ζ , we find:
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II =
∫

∂wµ,ζ

∂ν
πµ,ζ = −

∫
∂wµ,ζ

∂ν
wµ,ζ ,
∂Ω ∂Ω

where we have used the fact thatπµ,ζ solves Eq. (2.1). Testing (2.1) againstπµ,ζ and
integrating by parts, we get:

III = 1

2

∫
∂Ω

∂πµ,ζ

∂ν
πµ,ζ = −1

2

∫
∂Ω

∂πµ,ζ

∂ν
wµ,ζ .

Recalling thatU = wµ,ζ + πµ,ζ solves:

−(�U + λU) = w5
µ,ζ in Ω, U = 0 on∂Ω,

by multiplying this equation byπµ,ζ , we get:

IV = 1

2

∫
∂Ω

∂U

∂ν
wµ,ζ − 1

2

∫
Ω

w5
µ,ζπµ,ζ .

Now, as forVI, we see from the mean value formula that

VI = −10

1∫
0

ds(1− s)2
∫
Ω

(wµ,ζ + sπµ,ζ )3π3
µ,ζ .

Adding up the expressions obtained aboveI–VI we get so far

E5,λ(U) = 1

3

∫
R3

w6
µ,ζ − 1

2

∫
Ω

w5
µ,ζ πµ,ζ − 5

2

∫
Ω

w4
µ,ζ π2

µ,ζ +R1, (2.8)

where

R1 = −1

3

∫
R3\Ω

w6
µ,ζ − 10

1∫
0

ds(1− s)2
∫
Ω

(wµ,ζ + sπµ,ζ )
3π3

µ,ζ . (2.9)

We will expand further the second and third integrals in the right-hand side of (2.8).
(1) Using the change of variabley = ζ +µz and callingΩµ ≡ µ−1(Ω − ζ ) we find that

A ≡
∫
Ω

w5
µ,ζ πµ,ζ dy = µ

∫
Ωµ

w5
1,0(z)µ

−1/2πµ,ζ (ζ + µz)dz.

From Lemma 2.2, we have the expansion:

µ−1/2πµ,ζ (ζ + µz) = −4π31/4Hλ(ζ + µz, ζ ) + µD0(z) + µ2−σ θ(µ, ζ + µz, ζ ).
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We also have, according to Appendix A,

at
Hλ(ζ + µz, ζ ) = gλ(ζ ) + λ

8π
µ|z| + θ1(ζ, ζ + µz),

whereθ1 is a function of classC2 with θ1(ζ, ζ ) = 0. Using these facts we obtain then th

A ≡ −4π31/4µgλ(ζ )

∫
R3

w5
1,0(z)dz + µ2

∫
R3

w5
1,0(z)

[
D0(z) − 31/4

2
λ|z|

]
dz +R2

with

R2 = µ

∫
Ωµ

w5
1,0(z)

[
θ1(ζ, ζ + µz) + µ2−σ θ(µ, ζ, ζ + µz)

]
dz

−
∫

R3\Ωµ

w5
1,0(z)

[
D0(z) − 31/4

2
λ|z|

]
dz

+ 4π31/4µgλ(ζ )

∫
R3\Ωµ

w5
1,0(z)dz. (2.10)

To clean up the above expression forA a bit further, let us recall that

−�D0 = 31/4λ

[
1√

1+ |z|2 − 1

|z|
]
,

so that, ∫
R3

w5
1,0D0(z) = −

∫
R3

�w1,0D0(z)

= −
∫
R3

w1,0�D0(z) = −31/4λ

∫
R3

w1,0

[
1

|z| − 1√
1+ |z|2

]
.

Combining these relations we get:

A = −4π31/4µgλ(ζ )

∫
R3

w5
1,0(z)dz

− µ2λ31/4
∫
R3

[
w1,0(z)

(
1

|z| − 1√
1+ |z|2

)
+ 1

2
w5

1,0(z)|z|
]

dz +R2.
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(2) Let us consider now:

s

C ≡
∫
Ω

w4
µ,ζ π2

µ,ζ

= µ

∫
Ωµ

w4
1,0π

2
µ,ζ (ζ + µz)dz

= µ2
∫

Ωµ

w4
1,0

[−4π31/4Hλ(ζ, ζ + µz) + µD0 + µ2−σ θ(µ, ζ, ζ + µz)
]2

,

which we expand as

C = µ2g2
λ(ζ )16π231/2

∫
R3

w4
1,0 +R3.

Combining relation (2.8) and the above expressions we then get:

E5,λ(U5,λ) = a0 + a1µgλ(ζ ) + a2λµ2 − a3µ
2g2

λ(ζ ) +R1 − 1

2
R2 − 5

2
R3,

where

a0 = 1

3

∫
R3

w6
1,0,

a1 = 2π31/4
∫
R3

w5
1,0,

a2 = 31/4

2

∫
R3

[
w1,0

(
1

|z| − 1√
1+ |z|2

)
+ 1

2
w5

1,0|z|
]

dz,

a3 = 40π231/2
∫
R3

w4
1,0.

(3) We need to analyze the size of the remaindersRi . More precisely we want to
establish the estimate,

µj ∂i+j

∂ζ i∂µj
Rl = O

(
µ3−σ

)
,

for eachj = 0,1,2, i = 0,1, i + j � 2, l = 1,2,3, uniformly on all smallµ and ζ in
compact subsets ofΩ . This needs a corresponding analysis for each of the individual term
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arising in the expressions forRl . Since several of these computations are similar, we shall

only carry in detail those that appear as most representative.

In (2.9) let us consider for instance the integral:∫
R3\Ω

w6
µ,ζ = 33/2µ3

∫
R3\Ω

1

(µ2 + |y − ζ |2)3 .

From this expression it easily follows that

µj ∂i+j

∂ζ i∂µj

∫
R3\Ω

w6
µ,ζ = O

(
µ3),

uniformly in ζ in compact subsets ofΩ .
In (2.10), let us consider the term:

B ≡ µ

∫
Ωµ

w5
1,0(z)

[
θ1(ζ, ζ + µz) + µ2−σ θ(µ, ζ, ζ + µz)

]
dz = B1 + B2.

Let us observe that

B2 ≡ µ

∫
Ωµ

w5
1,0(z)µ

2−σ θ(µ, ζ, ζ + µz)dz = µ−σ

∫
Ω

w5
1,0

(
y − ζ

µ

)
θ(µ, ζ, y)dy.

The size of this quantity in absolute value is clearly O(µ3−σ ). We have then that

∂ζB2 = I21 + I22,

I21 = −µ−σ

∫
Ω

µ−1D
(
w5

1,0

)(y − ζ

µ

)
θ(µ, ζ, y)dy,

I22 = µ−σ

∫
Ω

w5
1,0

(
y − ζ

µ

)
∂ζ θ(µ, ζ, y)dy.

Since∂ζ θ(µ, ζ, y) is uniformly bounded forζ ranging on compact subsets ofΩ , B22 is of
size O(µ3−σ ). Now, using symmetry,

I22 = µ2−σ

∫
Ωµ

D
(
w5

1,0

)[
θ(µ, ζ, ζ + µz) − θ(µ, ζ, ζ )

]− µ2−σ θ(µ, ζ, ζ )

∫
R3\Ωµ

D
(
w5

1,0

)

= µ2−σ

∫
Ωµ

D
(
w5

1,0

)[
θ(µ, ζ, ζ + µz) − θ(µ, ζ, ζ )

]+ o
(
µ3).
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Now, θ is symmetric inζ andy, hence has bounded derivative over compacts with respect

t

,

to each of its arguments. Thus∣∣∣∣∣µ2−σ

∫
Ωµ

D
(
w5

1,0

)
(z)
[
θ(µ, ζ, ζ + µz) − θ(µ, ζ, ζ )

]
dz

∣∣∣∣∣
� Cµ2−σ

∫
µ|z|�δ

µ
∣∣D(w5

1,0

)
(z)
∣∣|z|dz + Cµ2−σ

∫
µ|z|>δ

|z|−6 dz = O
(
µ3−σ

)
.

Let us consider nowB1. We can expand,

θ1(ζ, ζ + µz) = µc · z + θ2(ζ, ζ + µz),

for a constant vectorc, whereθ2 is aC2 function with|θ2(ζ, y)| � C|ζ −y|2. Observe tha
by symmetry,

µ2
∫

Ωµ

w5
1,0(z)c · zdz = −µ2

∫
R3\Ωµ

w5
1,0(z)c · zdz = O

(
µ3).

From here it easily follows thatB1 = O(µ3 logµ). Let us decompose it as

B1 = B11 + B12,

B11 ≡ 35/2µ−2
∫
Ω

(
1+ µ−2|y − ζ |2)−5/2

θ2(ζ, y)dy,

B12 ≡ −35/2µ3
∫

R3\Ω

(
µ2 + |y − ζ |2)−5/2

(y − ζ ) · cdy;

B12 has derivatives with respect toζ uniformly bounded by O(µ3). As for the first integral

B11 = µ−2
∫
Ω

w5
1,0

(
y − ζ

µ

)
θ2(ζ, y)dy,

we obtain that∂ζB11 can be written asI111+ I112 with

I111= µ−3
∫
Ω

D
(
w5

1,0

)(y − ζ

µ

)
θ2(ζ, y)dy,

I112= µ−2
∫
Ω

w5
1,0

(
y − ζ

µ

)
∂ζ θ2(ζ, y)dy.
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Let us estimate the second integral:

for
the

the

e
aining
I112= µ−2
∫
Ω

w5
1,0

(
y − ζ

µ

)
∂ζ θ2(ζ, y)dy = µ

∫
Ω

w5
1,0(z)∂ζ θ2(ζ, ζ + µz)dz.

We have that

∂ζ θ2(ζ, ζ + µz) = µAz + O
(|µz|2),

whereA = D2
2θ2(ζ, ζ ), where we have used the expansion forHλ made in Appendix A.

Replacing the above expression and making use of symmetry we get thatI112 =
O(µ3 logµ). As for the integralB11, we observe that after an integration by parts,

I111= O
(
µ3)− µ−2

∫
Ω

w5
1,0

(
y − ζ

µ

)
∂yθ2(ζ, y)dy.

The integral in the above expression can be treated in exactly the same way asB12, and
we thus find∂ζB = O(µ3−σ ) uniformly over compacts ofΩ in the variableζ variable. In
analogous way, we find similar bounds forµ∂µB. The same type of estimate does hold
second derivativesµ2∂2

µB andµ2∂2
µζ B. As an example, let us estimate, as a part of

latter, the quantityµ∂µI21. We have:

µ∂µI21 = −µ∂µ

[
µ−1−σ

∫
Ω

D
(
w5

1,0

)(y − ζ

µ

)
θ(µ, ζ, y)dy

]

= (1+ σ)I21 + µ−σ

∫
Ω

µ−1D2(w5
1,0

)(y − ζ

µ

)
·
(

y − ζ

µ

)
θ(µ, ζ, y)dy

− µ−1−σ

∫
Ω

D
(
w5

1,0

)(y − ζ

µ

)
µ∂µθ(µ, ζ, y)dy.

Let us consider the term,

µ−σ

∫
Ω

µ−1D2(w5
1,0

)(y − ζ

µ

)
·
(

y − ζ

µ

)
θ(µ, ζ, y)dy,

the others being estimated in exactly the same way as before. The observation is that
estimate of this integral by O(µ3−σ ) goes over exactly as that one before forI21, where we
simply need to replace the functionD(w5

1,0)(z) by D2(w5
1,0)z · z which enjoys the sam

properties used in the former computation. Corresponding estimates for the rem
terms inR2 andR3 are obtained with similar computations, so that we omit them.
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Summarizing, we have the validity of the desired expansion (2.4), which with the aid of

ion

mate:
the formula

∞∫
0

(
r

1+ r2

)q dr

rα+1
= Γ (

q−α
2 )Γ (

q+α
2 )

2Γ (q)
,

has constantsai given by:

a0 = 1

4

√
3π2, a1 = 8

√
3π2, a2 = √

3π2, a3 = 120
√

3π4. � (2.11)

Our second result complements the estimate above, now allowingq to be very close to
5 from above or from below.

Lemma 2.3.ConsiderUζ,µ and Eq,λ defined respectively by(2.2) and (2.3). Then, as
µ → 0,

Eq,λ(Uµ,ζ ) = a0 + a1µgλ(ζ ) + a2µ
2λ − a3µ

2g2
λ(ζ ) + (q − 5)[a4 logµ + a5]

+ (q − 5)2θ1(ζ,µ,q) + µ3−σ θ2(ζ,µ,q), (2.12)

where forj = 0,1,2, i = 0,1, i + j � 2, l = 1, 2,

µj ∂i+j

∂ζ i∂µj
θl(ζ,µ,q)

is bounded uniformly on all smallµ, |q −5| small andζ in compact subsets ofΩ . Herea0,
a1, a2, a3 are given by(2.11), a4 = √

3π2/16anda5 is another constant, whose express
is given below in the proof.

Proof. Observe that

Eq,λ(Uµ,ζ ) − E5,λ(Uµ,ζ ) = 1

6

∫
Ω

U6
µ,ζ − 1

q + 1

∫
Ω

U
q+1
µ,ζ .

The desired estimate follows form (2.4), after Taylor expanding inq and estimating the
remaining terms similarly to the proof of the previous lemma. More precisely, we esti

Eq,λ(Uµ,ζ ) − E5,λ(Uµ,ζ ) = (q − 5)

[
1

36

∫
Ω

U6
µ,ζ − 1

6

∫
Ω

U6
µ,ζ logUµ,ζ

]
+ o(q − 5),

which after lengthy computations gives (2.12) with
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a4 = 1
∫

w6
1,0(z)dz =

√
3π2

,

or the
tical
these

and 4
rly

alysis
to

en
ve
lly
12
R3

16

a5 = 1

36

∫
R3

w6
1,0(z)[6 logw1,0 − 1]dz. � (2.13)

The above established expansions provide the presence of critical points f
functional (µ, ζ ) �→ Eq,λ(Uµ,ζ ) under the assumptions of the theorems. These cri
points are still present for suitable small perturbations of the functional. We discuss
issues in the next section.

3. Critical single-bubbling

The purpose of this section is to establish that in the situations of Theorems 2
there are critical points ofEq,λ(Uµ,ζ ) as computed in (2.12) which persist under prope
small perturbations of the functional. As we shall rigorously establish later, this an
does provide critical points of the full functionalEq,λ, namely solutions of (1.1), close
a single bubble of the formUµ,ζ .

First case. Let us consider first the situation present in Theorem 2, Part (a). We let th
q = 5 + ε. Let D be the set wheregλ is assumed to have nontrivial linking with negati
critical valueGλ. It is not hard to check, by redefiningthe sets involved that we may actua
assumegλ(ζ ) < −δ < 0 onD. It is convenient to considerΛ defined by:

µ ≡ −ε
a4

a1

1

gλ(ζ )
Λ, (3.1)

wherea4 anda1 are the constants in the expansion (2.12).

Lemma 3.1. In the situation of Theorem2, Part (a), for µ given by(3.1), consider a
functional of the form:

ψε(Λ, ζ ) ≡ E5+ε,µ(Uµ,ζ ) + εθε(Λ, ζ ),

for Λ > 0 andζ ∈D. Denote∇ = (∂Λ, ∂ζ ) and assume that

|θε| + |∇θε| + |∇∂Λθε| → 0 (3.2)

uniformly on(ζ,Λ) asε → 0, with

δ < Λ < δ−1, gλ(ζ ) < −δ

for any givenδ. Thenψε has a critical point(Λε, ζε) with ζε ∈ D,

Λε → 1, gλ(ζε) → Gλ, ∇gλ(ζε) → 0.
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Proof. The expansion given in Lemma 2.3 implies:

y we
t

e

e

ψε(Λ, ζ ) ≡ a0 + a4ε

[
−Λ + logΛ + log

(
− 1

gλ(ζ )

)]
+ a4ε

[
log

(
a4

a1

)
+ logε + a5

a4

]
+ εθε(Λ, ζ ),

whereθε still satisfies (3.2). The main term in the above expansion is the functional,

ψ0(Λ, ζ ) = −Λ + logΛ + log

(
− 1

gλ(ζ )

)
,

which obviously has a critical point since it has a nondegenerate maximum inΛ at Λ = 1
andgλ nontrivially links inD. Consider the equation:

∂Λψε(Λ, ζ ) = 0,

which has the form

Λ = 1+ o(1)θε(Λ, ζ ),

where the functionθε has a continuous, uniformly bounded derivative in(Λ, ζ ) in the
considered region. It then follows that for eachζ ∈ D there exists a uniqueΛ = Λε(ζ ),
function of classC1 satisfying the above equation which has the form:

Λε(ζ ) = 1+ o(1)βε(ζ ),

whereβε and its derivative are uniformly bounded in the considered region. Clearl
get a critical point ofψε if we have one of the functionalζ �→ ψε(Λε(ζ ), ζ ). Observe tha
onD,

ψε

(
Λε(ζ ), ζ

)= cε + a4ε

[
log

(
− 1

gλ(ζ )

)
+ o(1)

]
,

where o(ε) is small uniformly onD in the C1-sense andcε is a constant. The linking
structure is thus preserved, and a critical pointζε ∈ D of the above functional with th
desired properties thus exists.�

We observe that the associated bubbleUµ,ζ , whereµ is given by (3.1) and withζ = ζε,
has then precisely the form of that in (1.8)–(1.9) in Theorem 1, Part (a).

Second case. Let us consider the situation in Part (b). Letq = 5 − ε and assume now
thatgλ has nontrivial linking in a setD with critical valueGλ > 0. Again, we may assum
gλ > δ > 0 onD and set the change of variables,

µ ≡ ε
a4

a1

1

gλ(ζ )
Λ. (3.3)
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In this case we get the following result:

nimum

e

Lemma 3.2.In the situation above of Theorem2, Part (b), for µ given by(3.3), consider a
functional of the form:

ψε(Λ, ζ ) = E5−ε,λ(Uµ,ζ ) + εθε(Λ, ζ )

for Λ > 0 andζ ∈D. Assume that

|θε| + |∇θε| + |∇∂Λθε| → 0

uniformly on(Λ, ζ ) asε → 0, with

δ < Λ < δ−1, gλ(ζ ) > δ.

Thenψε has a critical point(Λε, ζε) with ζε ∈ D,

Λε → 1, gλ(ζε) → Gλ, ∇gλ(ζε) → 0.

Proof. ForΛ > 0 andζ ∈ D now we find the expansion:

ψε(Λ, ζ ) ≡ a0 + a4ε
[
Λ − logΛ + log

(
gλ(ζ )

)]
− a4ε

[
log

(
a4

a1

)
+ logε + a5

a4

]
+ εθε(Λ, ζ ),

whereθε satisfies (3.2). The main term in the expansion has now a nondegenerate mi
atΛ = 1. The rest of the proof is identical to that of Lemma 3.1.�

Third case. Let us consider the situation in Theorem 4 where nowq = 5. Let us assum
the situation (a) of local minimizer:

0 = inf
x∈D

gλ0(x) < inf
x∈∂D

gλ0(x).

Then forλ close toλ0, λ > λ0, we will have:

inf
x∈D

gλ(x) < −A(λ − λ0).

Let us consider the shrinking set:

Dλ =
{
y ∈ D: gλ(x) < −A

2
(λ − λ0)

}
.

Assumeλ > λ0 is sufficiently close toλ0 so thatgλ = −A
2 (λ − λ0) on∂Dλ.
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Now, let us consider the situation of Part (b). Sincegλ(ζ ) has a nondegenerate critical

to 1
al
point atλ = λ0 andζ = ζ0, this is also the case at a certain critical pointζλ for all λ close
to λ0 where|ζλ − ζ0| = O(λ − λ0).

Besides, for some intermediate pointζ̃λ,

gλ(ζλ) = gλ(ζ0) + Dgλ

(
ζ̃λ

)
(ζλ − ζ0) � A(λ − λ0) + o(λ − λ0)

for a certainA > 0. Let us consider the ballBλ
ρ with centerζλ and radiusρ(λ−λ0) for fixed

and smallρ > 0. Then we have thatgλ(ζ ) > A
2 (λ − λ0) for all ζ ∈ Bλ

ρ . In this situation we
setDλ = Bλ

ρ .
It is convenient to make the following relabeling of the parameterµ. Let us set:

µ ≡ − a1

2a2

gλ(ζ )

λ
Λ, (3.4)

whereζ ∈ Dλ. The result we have now is the following:

Lemma 3.3.Assume the validity of one of the conditions(a) or (b) of Theorem4, and
consider a functional of the form,

ψλ(Λ, ζ ) = E5,λ(Uµ,ζ ) + gλ(ζ )2θλ(Λ, ζ ),

whereµ is given by(3.4)and

|θλ| + |∇θλ| + |∇∂Λθλ| → 0 (3.5)

uniformly onζ ∈ Dλ andΛ ∈ (δ, δ−1). Thenψλ has a critical point(Λλ, ζλ) with ζλ ∈Dλ,
Λλ → 1.

Proof. Using the expansion for the energy withµ given by (3.4) we find now that

ψλ(Λ, ζ ) ≡ E5,λ(Uζ,µ) = a0 + a2
1

4a2

gλ(ζ )2

λ

[−2Λ + Λ2]+ gλ(ζ )2θλ(Λ, ζ ),

whereθλ satisfies property (3.5). Observe then that∂Λψλ = 0 if and only if

Λ = 1+ o(1)θλ(Λ, ζ ),

whereθλ is bounded inC1-sense. This implies the existence of a unique solution close
of this equation,Λ = Λλ(ζ ) = 1+ o(1) with o(1) small inC1 sense. Thus we get a critic
point ofψλ if we have one of

pλ(ζ ) ≡ ψλ

(
Λλ(ζ ), ζ

)= a0 + cgλ(ζ )2[1+ o(1)
]
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with o(1) uniformly small in C1-sense andc > 0. In the case of Part (a), i.e., of the
l

that

a

s,

g
t

ng
the
n is a
minimizer, it is clear that we get a local maximum in the regionDλ and therefore a critica
point.

Let us consider the case (b). With the same definition forpλ as above, we have:

∇pλ(ζ ) = gλ(ζ )
[∇gλ + o(1)gλ

]
.

Consider a pointζ ∈ ∂Dλ = ∂Bλ
ρ . Then|∇gλ(ζ )| = |D2gλ(x̃)(ζ − ζλ)| � αρ(λ − λ0), for

someα > 0. We also havegλ(ζ ) = O(λ − λ0). We conclude that for allt ∈ (0,1), the
function∇gλ + to(1)gλ does not have zeros on the boundary of this ball, provided
λ − λ0 is small. In conclusion, its degree on the ball is constant alongt . Since fort = 0 is
not zero, thanks to nondegeneracy of the critical pointζλ, we conclude the existence of
zero of∇pλ(ζ ) insideDλ. �

4. The method

Our purpose in what follows is to find in eachof the situations stated in the theorem
solutions with single or multiple bubbling for some well chosenζ ∈ Ω , which at main
order look like:

U =
k∑

i=1

(wµi ,ζ + πµi,ζ ), (4.1)

with µ1 small and, in casek � 1, also withµi+1 � µi . This requires the understandin
of the linearization of the equation aroundthis initial approximation. It is convenien
and natural, especially in what concernsmultiple bubbling to recast the problem usi
spherical coordinates around the pointζ and a transformation which takes into account
natural dilation invariance of the equation at the critical exponent. This transformatio
variation of the so-called Emden–Fowler transformation, see [16].

Let ζ be a point inΩ . We consider spherical coordinatesy = y(ρ,Θ) centered atζ
given by:

ρ = |y − ζ | and Θ = y − ζ

|y − ζ | ,

and the transformationT defined by:

v(x,Θ) = T (u)(x,Θ) ≡ 21/2 e−xu
(
ζ + e−2xΘ

)
. (4.2)

Denote byD theζ -dependent subset ofS = R × S2 where the variables(x,Θ) vary. After
these changes of variables, Problem (1.1) becomes:

4�S2v + v′′ − v + 4λe−4xv + cq e(q−5)xvq = 0 in D,

v > 0 in D, v = 0 on∂D (4.3)
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with

tional
cq ≡ 2−(q−5)/2.

Here and in what follows,′ = ∂
∂x

. We observe then that

T (wµ,ζ )(x,Θ) = W(x − ξ),

where

W(x) ≡ (12)1/4e−x
(
1+ e−4x

)−1/2 = 31/4[cosh(2x)
]−1/2

andµ = e−2ξ . The functionW is the unique solution of the problem:W ′′ − W + W5 = 0 on(−∞,∞),

W ′(0) = 0,

W > 0, W(x) → 0 asx → ±∞.

We see also that setting:

Πξ,ζ ≡ T (πµ,ζ ) with µ = e−2ξ ,

thenΠ = Πξ,ζ solves the boundary value problem:{−(4�S2Π + Π ′′ − Π + 4λe−4xΠ) = 4λe−4xW(x − ξ) in D,

Π = −W(x − ξ) on∂D.

An observation useful to fix ideas is that this transformation leaves the energy func
associated invariant. In fact associated to (4.3) is the energy:

Jq,λ(v) ≡ 2
∫
D

|∇Θv|2 + 1

2

∫
D

[|v′|2 + |v|2]
− 2λ

∫
D

e−4xv2 − cq

q + 1

∫
D

e(q−5)x|v|q+1. (4.4)

If v = T (u) we have the identity:

4Eq,λ(u) = Jq,λ(v).

Let ζ ∈ Ω and consider the numbers 0< ξ1 < ξ2 < · · · < ξk . Set:

Wi(x) = W(x − ξi), Πi = Πξi,ζ , Vi = Wi + Πi, V =
k∑

i=1

Vi.
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We observe then thatV = T (U) whereU is given by (4.1) andµi = e−2ξi . Thus finding
n
ing

lem:

e

a solution of (1.1) which is a small perturbation ofU is equivalent to finding a solutio
of (4.3) of the formv = V + φ whereφ is small in some appropriate sense. Then solv
(4.3) is equivalent to findingφ such that,{

L(φ) = −N(φ) − R,

φ = 0 on∂D,

where

L(φ) ≡ 4�S2φ + φ′′ − φ + 4λe−4xφ + qcq e(q−5)xV q−1φ,

N(φ) ≡ cq e(q−5)x
[
(V + φ)

q
+ − V q − qV q−1φ

]
,

and

R ≡ cqe(q−5)xV q −
k∑

i=1

W5
i . (4.5)

Rather than solving (4.3) directly, we consider first the following intermediate prob
Given pointsξ = (ξ1, . . . , ξk) ∈ R

k and a pointζ ∈ Ω , find a functionφ such that for
certain constantscij ,

L(φ) = −N(φ) − R +∑
i,j cijZij in D,

φ = 0 on∂D,∫
D Zijφ dx dΘ = 0 for all i, j,

(4.6)

where theZij span an “approximate kernel” forL. They are defined as follows:
Let zij be given byzij (x,Θ) = T (zij ), i = 1, . . . , k, j = 1, . . . ,4, wherezij are

respectively given by:

zij (y) = ∂

∂ζj

wµi ,ζ (y), j = 1, . . . ,3,

zi4(y) = µi

∂

∂µi
wµi,ζ (y), i = 1, . . . , k,

with µi = e−2ξi . We recall that for eachi, the functionszij for j = 1, . . . ,4, span the spac
of all bounded solutions of the linearized problem:

�z + 5w4
µi,ζ

z = 0 in R
3.

A proof of this fact can be found for instance in [20]. This implies that thezij ’s satisfy:

4�S2zij + z′′
ij − zij + 5W4

i zij = 0.
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Explicitly, we find that setting:

f

(4.6)

rent

iven a
Z(x) = (12)1/4e−3x
(
1+ e−4x

)−3/2 = 31/42−1[cosh(2x)
]−3/2

,

we get:

zij = Z(x − ξi)Θj , j = 1,2,3, zi4 = W ′(x − ξi).

Observe that ∫
R×S2

zij zil = 0 for l �= j.

TheZij are corrections ofzij which vanish for very largex. LetηM(s) be a smooth cut-of
function with

ηM(s) = 0 for s < M, ηM(s) = 1 for s > M + 1.

We define:

Zij = (
1− ηM(x − ξi)

)
zij ,

whereM > 0 is a large fixed number. We will see that with these definitions, Problem
is uniquely solvable if the pointsξi , ζ satisfy appropriate constrains andq is close enough
to 5. After this is done, the remaining task is to adjust the parametersζ andξi in such a
way that all constantscij = 0. We will see that this is indeed possible under the diffe
assumptions of the theorems.

5. The linear problem

In order to solve Problem (4.6) it is necessary to understand first its linear part. G
functionh, we consider the problem of findingφ such that for certain real numberscij the
following is satisfied: 

L(φ) = h +∑
i,j cijZij in D,

φ = 0 on∂D,∫
D

Zijφ = 0 for all i, j.
(5.1)

Recall thatL defined by (4.5) takes the expression:

L(φ) = 4�S2φ + φ′′ − φ + 4λe−4xφ + qcq e(q−5)xV q−1φ.
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We need uniformly bounded solvability in proper functional spaces for Problem (5.1), for
ng

r

a proper range of theξi ’s andζ . To this end, it is convenient to introduce the followi
norm. Given an arbitrarily small but fixed numberσ > 0, we define:

‖f ‖∗ = sup
(x,Θ)∈D

ω(x)−1
∣∣f (x,Θ)

∣∣ with ω(x) =
k∑

i=1

e−(1−σ)|x−ξi |.

We shall denote byC∗ the set of continuous functionsf on 
D such that‖f ‖∗ is finite.

Proposition 5.1. Fix a small numberδ > 0 and take the cut-off parameterM > 0 of
Section4 large enough. Then there exist positive numbersε0, δ0, R0, and a constantC > 0
such that if|q − 5| < ε0,

0� λ � λ1 − δ, dist(ζ, ∂Ω) > δ0, (5.2)

and the numbers0 < ξ1 < ξ2 < · · · < ξk satisfy:

R0 < ξ1, R0 < min
1�i<k

(ξi+1 − ξi) (5.3)

with ξk < δ0/|q − 5| if q �= 5, then for anyh ∈ Cα(D) with ‖h‖∗ < +∞, Problem(5.1)
admits a unique solutionφ ≡ T (h). Besides,∥∥T (h)

∥∥∗ � C‖h‖∗ and |cij | � C‖h‖∗.

For the proof we need the following result:

Lemma 5.1. Assume the existence of sequences(εn)n∈N, (λn)n∈N, (ζn)n∈N, (ξn
i )n∈N,

1 � i � k, such thatεn → 0, λn ∈ (0, λ1 − δ), dist(ζn, ∂Ω) > δ1 and 0 < ξn
1 < ξn

2 < · · ·
< ξn

k with

ξn
1 → +∞, min

1�i<k

(
ξn
i+1 − ξn

i

)→ +∞, ξn
k = o

(
ε−1
n

)
,

such that for certainqn with |qn − 5| < εn, certain functionsφn andhn with ‖hn‖∗ → 0,
and scalarscn

ij , one has:
L(φn) = hn +∑

i,j cn
ijZ

n
ij ,

φn = 0 on∂D,∫
D

Zijφn dx = 0 for all i, j.

(5.4)

Here the functionsZn
ij are given in terms ofzij as in Section4 and the cut-off paramete

M > 0 is chosen large enough. Then

lim
n→∞‖φn‖∗ = 0.



1432 M. del Pino et al. / J. Math. Pures Appl. 83 (2004) 1405–1456

Proof. We will establish first the weaker assertion that

f

he
n:

three
e
n

at

ial
lim
n→∞‖φn‖∞ = 0.

By contradiction, we may assume that‖φn‖∞ = 1. Recall thatD � (x, θ) is a subset o
R

+ × S2. We will establish first that limn→∞ cn
ij = 0. Fix a numberM > 0 such that

the region{x > M} is contained inD and considerη(x), a smooth cut-off function with
η(x) = 0 if x < M andη(x) = 1 for x > M + 1 as in the previous section. Testing t
above equation againstηzn

lm, and integrating by parts twice we get the following relatio∫
D

(
4�S2zn

lm + zn
lm

′′ − zn
lm + 5W5

l zn
lm

)
ηφn +

∫
D

[
2
(
zn
lm

)′
η′ + zn

lmη′′]φn

+
∫
D

[
4λn e−4xzn

lm + (
cqnqne(qn−5)xV

qn−1
n − 5W5

l

)
zn
lm

]
ηφn

=
∫
D

hnZ
n
lm +

∑
i,j

cn
ij

∫
D

ηZn
ijzn

lm.

The first integral on the left-hand side of the above equality is zero, while the other
can be bounded by o(1)‖φn‖∞ and therefore go to 0 asn → ∞. The same is true for th
first integral in the right-hand side. The definition of theZn

ij ’s makes this linear system i
thecij ’s “almost diagonal” asn → ∞. We conclude then that limn→∞ cn

ij = 0 as desired.
Now let (xn,Θn) ∈ D be such thatφn(xn,Θn) = 1, so thatφn maximizes at this

point. We claim that, forn large enough, there existR > 0 andi ∈ {1, . . . , k} such that
|xn − ξn

i | < R. We argue by contradiction and suppose that|xn − ξn
i | → +∞ asn → +∞

for any i = 1, . . . , k. Then either|xn| → +∞ or |xn| remains bounded. Assume first th
|xn| → +∞. Let us define:

φ̃n(x,Θ) = φn(x + xn,Θ).

Then, from elliptic estimates,̃φn converges uniformly over compacts to a nontriv
solutionφ̃ of {

4�S2φ̃ + φ̃′′ − φ̃ = 0 in R × S2,

φ̃ → 0 as|(x,Θ)| → ∞.

For a functiong(y) defined inR
3 \ {0}, let us denote:

T0(g)(x,Θ) ≡ √
2e−xg

(
e−2xΘ

)
.

Then the functionψ̃ defined by the relatioñφ = T0(ψ̃) satisfies:

�ψ̃ = 0 in R
3 \ {0}.
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Moreover,‖φ̃‖∞ = 1, translates into|ψ̃(y)| � |y|−1/2. It follows thatψ̃ extends smoothly
3

eger
to 0, to a harmonic function inR with this decay condition, hencẽψ ≡ 0, yielding a
contradiction.

Assume now that|xn| is bounded. Hence, up to subsequence, the functionφn converges
uniformly over compacts to a nontrivial solution of{

4�S2φ + φ′′ − φ + 4λe−2xφ = 0 in D,

φ = 0 on∂D,

for someλ ∈ [0, λ1). But this implies thatφ ≡ 0, since the functionψ = T −1(φ) is
identically 0 inΩ because it solves:{

�ψ + λψ = 0 in Ω \ {ζ },
ψ = 0 on∂Ω,

with the additional condition|ψ(y)| � C|y|−1/2 for someλ such that 0� λ < λ1. We
again reach a contradiction, and the claim is thus proved. Hence, there exists an int
l ∈ {1, . . . , k} and a positive numberR > 0 such that, forn sufficiently large,|xn−ξn

l | � R.
Let againφ̃n(x,Θ) ≡ φn(x + ξn

l ,Θ). This relation implies that̃φn converges uniformly
over compacts tõφ which is a nontrivial, bounded solution of the problem:

�S2φ̃ + φ̃′′ − φ̃ + 5W4φ̃ = 0 in R × S2,

and also satisfies: ∫
R×S2

φ̃zm

(
1− ηM(x)

)
dx dΘ = 0, (5.5)

wherezm(x,Θ) = T0(zm) with

zm(y) = ∂ymw1,0(y), m = 1,2,3, z4(y) = 1

2
w1,0(y) + y · ∇w1,0(y).

This means that the functioñψ = T −1
0 (φ̃) is a nontrivial solution of

�ψ̃ + 5w4
1,0ψ̃ = 0 in R

3 \ {0}

with |ψ̃(y)| � C|y|−1/2 for all y. Thus we get a classical solution inR
3 \ {0} which decays

at infinity and hence equalsa linear combination of thezm’s. It follows thatφ is a linear
combination of theZm’s. But then the orthogonality relations (5.5) implyφ̃ = 0, at least for
M > 0 large enough, again a contradiction. We have thus proved‖φn‖∞ → 0 asn → ∞.

Next we shall establish that‖φn‖∗ → 0. Let us write:

L̄(φ) = 4�S2φ + φ′′ − φ + 4λe−4xφ. (5.6)
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Let us observe that Eq. (5.4) takes the form:

e

L̄(φn) = gn

with gn(x,Θ) ≡ −cqnqn e(qn−5)xV
qn−1
n φn + hn +∑

i,j cn
ijZij . Hence

∣∣gn(x,Θ)
∣∣� Gn ≡ ηn

k∑
i=1

e−(1−σ)|x−ξi |

with ηn → 0. We claim that the operator̄L satisfies the Maximum Principle in th
following sense:

If φ is bounded, continuous in̄D, φ ∈ H 1(D ∩ {x < R}) for any R > 0 and satisfies
L̄(φ) � 0 in the weak sense inD andφ � 0 on∂D, thenφ � 0.

To see this, let us observe that ifφ = T (ψ) thenψ satisfies:

�ψ + λψ � 0 in Ω \ {ζ }

in the weak sense, and|ψ(y)| � C|y − ζ |−1/2. Fix a small numberν > 0. Then
ψ(y) � −νGλ(ζ, y) if |y − ζ | < Cν2, for some eventually larger constantC. Let
Ω̃ = Ω \ B(ζ,Cν2). If ν is small enough, then we haveλ < λ1(Ω̃). Thus L̄ satisfies
maximum principle inΩ̃ and thereforeψ(y) � −νGλ(ζ, y) for all y ∈ Ω \ {ζ }. Lettingν

go to zero, the desired assertion follows.
Sinceλ < λ1, there is a unique bounded solutionφ̄ of{

4�S2φ̄ + φ̄′′ − φ̄ + 4λe−4xφ̄ = −e−x in D,

φ̄ = 0 on∂D,

and it satisfies̄φ � C(1+ |x|)e−x . Indeed,φ̄ = T (ψ̄), whereψ̄ solves:{
�ψ̄ + λψ̄ = − 1

25/2|y−ζ |2 in Ω,

ψ̄ = 0 on∂Ω.

Observe thatZ = ψ̄ + 23/2 log|x − ζ | satisfies:{
�Z + λZ = 23/2λ log|y − ζ | in Ω,

Z = − log|y − ζ | on∂Ω,

so thatZ is at least of classC1,α( 
Ω). This gives the required assertion forφ̄.
Let us consider now the quantity:

sn = Kηn

(
k∑

i=1

e−(1−σ)|x−ξi | + K e−(1−σ)ξ1φ̄

)
.
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Direct substitution shows thatL̄(sn) � −Gn in weak sense, provided thatK is chosen large

e

es

f

enough but independent ofn. From Maximum Principle, we obtain then thatφn � sn.
Similarly we obtainφn � −sn. Since, as wellsn � CGn, this shows that‖φn‖∗ → 0, and
the proof of Lemma 5.1 is completed.�
Proof of Proposition 5.1. Let us consider the space:

H =
{

φ ∈ H 1
0 (D):

∫
D

Zijφ dx = 0 for all i, j

}

endowed with the usual inner product:

[φ,ψ] = 2
∫
D

∇Θφ · ∇Θψ + 1

2

∫
D

(φ′ψ ′ + φψ).

Problem (5.1) expressed in weak form is equivalent to that of finding aφ ∈ H such that

[φ,ψ] =
∫ [

cqq e(q−5)xV q−1φ + 4λe−4xφ + h
]
ψ dx for all ψ ∈ H.

With the aid of Riesz’s representation theorem, this equation gets, rewritten inH in the
operational formφ = K(φ) + h̃, for certainh̃ ∈ H , whereK is a compact operator inH .
Fredholm’s alternative guarantees unique solvability of this problem for anyh provided
that the homogeneous equationφ = K(φ) has only the zero solution inH . Let us observe
that this last equation is precisely equivalent to (5.1) withh ≡ 0. Thus existence of a uniqu
solution follows. The bounded solvability in the sense of the‖ ‖∗-norm follows after an
indirect argument from the previous lemma.�

Before proceeding, let us see how this result translates in terms of the original variabl
in Ω . Consider the functionψ(y) defined inΩ for whichT (φ) = ψ , whereT is given by
(4.2). Thenφ satisfies Problem (5.1) if and only ifψ satisfies:

�ψ + qU
q−1
µ,ζ ψ + λψ = g +∑

i,j

cij

|y−ζ |2 (1− ηµ)zij in Ω \ {ζ },
ψ = 0 on∂Ω,∫
Ω ψzij

1
|y−ζ |2 dy = 0,

(5.7)

where T (|y − ζ |2g) = h and ηµ(y) = η1(|y − ζ |/µ) is a family of smooth cut-of
functions with

η1(s) = 1 for s < δ, η1(s) = 0 for s > 2δ. (5.8)

The size ofδ is determined byM in the definition ofZij . Observe that

∣∣g(y)
∣∣� ‖h‖∗|y − ζ |−2−σ/2

k∑
i=1

w1−σ
µi ,ζ

(y).
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Thus what we have proved in Proposition 5.1 can be restated like this:

r
.3)

nts
If ‖h‖∗ < +∞ then (5.7) has a unique solutionψ which satisfies,

∣∣ψ(y)
∣∣� C‖h‖∗|y − ζ |−σ/2

k∑
i=1

w1−σ
µi ,ζ

(y),

and given anyδ0 > 0, there exists a constantC such that

|y − ζ | > δ0 �⇒ ∣∣ψ(y)
∣∣� C‖h‖∗µ(1−σ)/2

1 .

Hence as well, from the equation satisfied in this region and elliptic estimates,∣∣∇ψ(y)
∣∣� C‖h‖∗µ(1−σ)/2

1 . (5.9)

It is important, for later purposes, to understand the differentiability of the operato
T :h �→ φ, with respect to the variablesξi andζ . Let us assume that conditions (5.2), (5
hold. Fixh ∈ C∗ and letφ = T (h). Let us recall thatφ satisfies the equation:

L(φ) = h +
∑
i,j

cijZij ,

and the vanishing and orthogonality conditions, for some (uniquely determined) consta
cij . We want to compute derivatives ofφ with respect to the parametersζ andξ . Let us
begin with differentiation with respect toζ . A main observation is that the functionsZij

do not exhibit explicit dependence onζ . Formal differentiation then yields thatX = ∂ζl φ

should satisfy:L(X) =∑
i,j c̃ijZij − q(q − 1)cq e(q−5)xV q−2[∂ζlV ]φ in D,

X = B on∂D,∫
D ZijX = 0 for all i, j,

where

B ≡ T (∂ylψ) = √
2e−x∂ylψ

(
ζ + e−2xΘ

)
,

with φ ≡ T (ψ) and (formally)c̃ij ≡ ∂ζl cij . Let us consider the equation:

L̄(Y ) = 0 in D, Y = B on∂D,

whereL̄ is given by (5.6). This problem forY = T (
Y ) is equivalent to:

�
Y + λ
Y = 0 in D, 
Y = ∂ylψ on∂D

and, according to estimate (5.9), has a unique solution with

‖
Y ‖∞ � C‖h‖∗µ(1−σ)/2
1 ,
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so that|Y (x,Θ)| � C‖h‖∗ e−x e−(1−σ)ξ1, and in particular,‖Y‖∗ � C‖h‖∗.

have:
Let us look closer into∂ζlV . SinceWi does not exhibit dependence onζ , we get that

∂ζV =
k∑

i=1

∂ζ Πi.

By definition ofΠi ,

∂ζ Πi(x,Θ) = ∂ζT [πµi,ζ ] = e−x∂ζ

[
πµi,ζ

(
ζ + e−2xΘ

)]
,

whereµi = e−2ξi . Let us recall the expansion we found forπµi,ζ in Lemma 2.2:

πµi,ζ

(
ζ + e−2xΘ

)= µ
1/2
i

[−4π31/4Hλ

(
ζ, ζ + e−2xΘ

)
+ µiD0

(
e−2(x−ξi)Θ

)+ µ2−σ
i R

(
ζ + e−2xΘ,µi, ζ

)]
.

In particular we see that|∂ζΠi(x,Θ)| � C e−ξi e−x and conclude that∥∥e(q−5)xV q−2[∂ζlV ]φ∥∥∗ � C‖φ‖∗ � C‖h‖∗.

We observe, incidentally, that in the same way we get:∣∣∂ξi ∂ζΠi(x,Θ)
∣∣� C e−ξi e−x .

We shall use this below for the computation of derivatives with respect toξi .
Let us fix a numberM > 0 such that the region{x > M} is contained inD and consider

ηM(x), a smooth cut-off function withηM(x) = 0 if x < M andηM(x) = 1 for x > M +1.
Let us consider the constantsdij defined as

∑
i,j

dij

∫
D

ηMZijZlk = −
∫
D

ZlkY.

This linear system has a unique solution since it is almost diagonal. We also
|dij | � C‖h‖∗. ConsiderH = X − Y −∑

i,j dij ηMZij . Then
L(H) =∑

i,j c̃ijZij + f in D,

H = 0 on∂D,∫
D ZijH = 0 for all i, j

(5.10)

with

f = −
∑
ij

dijL(ηMZij ) + qcq e(q−5)x
[−V q−1Y + (q − 1)V q−2∂ζl V

]
φ.
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The above equation has indeed a unique solutionH for certain constants̃cij provided that
d

o
ell

t

posi-
the assumptions of Proposition 5.1 are fulfilled.This computation is not just formal. Indee
one gets, as arguing directly by definition shows,

∂ζl φ = Y +
∑
i,j

dij ηMZij + T (f ),

so that‖∂ζl φ‖∗ � C‖h‖∗.
Let us now differentiate with respect toξm. Let us considerηM(x), a smooth cut-off

function as above. For a givenl ∈ {1, . . . , k}, we consider the constantblm defined as

blm

∫
D

|Zlm|2ηM ≡
∫
D

φ∂ξl Zlm

and the function:

f ≡ −
4∑

m=1

[
blmL(ηMZlm) + clm∂ξl Zlm

]+ qcq e(q−5)x∂ξl

(
V q−1)φ,

one can then directly check that∂ξl φ is given by:

∂ξlφ = T (f ) +
4∑

m=1

blmηMZlm,

and that‖∂ξl φ‖∗ � C‖h‖∗. Let us denote∇ = [∂ξ , ∂ζ ]. Then we have proved that‖∇φ‖∗ �
C‖h‖∗. Examining the above differentiation with respect toξ , we see that we may als
apply it to∇φ, so that‖∂ξ∇φ‖∗ � C‖h‖∗. Actually, elaborating a bit more we get as w
continuity of these derivatives in the∗-norm.

On the Banach spaceC∗ of all functionsψ in C(
D) for which ‖ψ‖∗ < ∞, T defines
a continuous linear map ofC∗. It is easily checked that the map(ξ, ζ ) �→ T is continuous
into L(C∗). Moreover, we have the validity of the following result:

Proposition 5.2.Under the assumptions of Proposition5.1, the derivatives∇T and∂ξ∇T

exist and define continuous functions of the pair(ξ, ζ ). In particular, there is a constan
C0 > 0, uniform in points(ξ, ζ ), satisfying the constraints in Proposition5.1, such that

‖∇T ‖∗ + ‖∂ξ∇T ‖∗ � C0.

6. Solving the nonlinear problem

In this section we will solve Problem (4.6). We assume that the conditions in Pro
tion 5.1 hold. We have the following result:
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Lemma 6.1.Under the assumptions of Proposition5.1there exist numbersc0 > 0, C1 > 0,

:

e

such that ifξ andζ are additionally such that‖R‖∗ < c0, then Problem(4.6)has a unique
solutionφ which satisfies:

‖φ‖∗ � C1‖R‖∗.

Proof. In terms of the operatorT defined in Proposition 5.1, Problem (4.6) becomes:

φ = T
(
N(φ) + R

)≡ A(φ), (6.1)

whereN(φ) andR were defined in (4.5) and (4.5). For a givenR, let us consider the region

Fγ ≡ {
φ ∈ C

(
D )
: ‖φ‖∗ � γ ‖R‖∗

}
for someγ > 0, to be fixed later. From Proposition 5.1, we get:∥∥A(φ)

∥∥∗ � C0
[∥∥N(φ)

∥∥∗ + ‖R‖∗
]
.

On the other hand we can represent

N(φ) = cq e(q−5)xq(q − 1)

1∫
0

(1− t)dt[V + tφ]q−2φ2,

so that (makingq − 5 smaller if necessary)|N(φ)| � C1|φ|2, and hence‖N(φ)‖∗ �
C1‖φ‖2∗. It is also easily checked thatN satisfies, forφ1, φ2 ∈ Fγ ,∥∥N(φ1) − N(φ2)

∥∥∗ � C2γ ‖R‖∗‖φ1 − φ2‖∗.

Hence for a constantC3 depending onC0, C1, C2, we get:∥∥A(φ)
∥∥∗ � C3

[
γ 2‖R‖∗ + 1

]‖R‖∗,∥∥A(φ1) − A(φ2)
∥∥∗ � C3γ ‖R‖∗‖φ1 − φ2‖∗.

With the choices:

γ = 2C3, ‖R‖∗ � c0 = 1

4C2
3

,

we get thatA is a contraction mapping ofFγ , and therefore a unique fixed point ofA exists
in this region. �

Since R depends continuously for the∗-norm in the pair(ξ, ζ ), the fixed point
characterization obviously involves the map(ξ, ζ ) �→ φ. We shall next analyze th
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differentiability of this map. Assume for instance that the partial derivative∂ζl φ exists.
(q−5)x

:

em in

is can

4.3)
Then, formally, withc = cq e q(q − 1),

∂ζl N(φ) = c e(q−5)x

1∫
0

(1− t)dt
[
(q − 2)[V + tφ]q−3(Vζl + t∂ζl φ)φ2

+ 2[V + tφ]q−2∂ζl φφ
]
.

As we have seen in the previous section,Vζl = ∑k
j=1 ∂ζlΠξj ,ζ is uniformly bounded

Hence we conclude:∥∥∂ζl N(φ)
∥∥∗ � C

[‖φ‖∗ + ‖∂ζl φ‖∗
]‖φ‖∗ � C

[‖R‖∗ + ‖∂ζl φ‖∗
]‖R‖∗.

Also observe that we have:

∂ζl φ = (∂ζl T )
(
N(φ) + R

)+ T
(
∂ζl

[
N(φ) + R

])
so that, using Proposition 5.2,

‖∂ζl φ‖∗ � C
[∥∥N(φ) + R

∥∥∗ + ∥∥∂ζl N(φ)
∥∥∗ + ‖∂ζl R‖∗

]
for some constantC > 0. Reducing the constantc0 for which ‖R‖∗ � c0 if necessary, we
conclude from the above computation that

‖∂ζl φ‖∗ � C
[‖R‖∗ + ‖∂ζl R‖∗

]
.

A similar computation shows that, as well:

‖∂ξl φ‖∗ � C
[‖R‖∗ + ‖∂ξl R‖∗

]
.

The above computation can be made rigorous by using the implicit function theor
the spaceC∗ and the fixed point representation (6.1) which guaranteesC1 regularity in
(ξ, ζ ). This differentiation procedure can be iterated to obtain second derivatives. Th
be summarized as follows:

Lemma 6.2.Under the assumptions of Proposition5.1and Lemma6.1 consider the map
(ξ, ζ ) �→ φ into the spaceC∗. The partial derivatives∇φ and ∇∂ξφ exist and define
continuous functions of the pair(ξ, ζ ). Besides, there is a constantC > 0, such that

‖∇φ‖∗ + ‖∇∂ζ φ‖∗ � C
(‖R‖∗ + ‖∇R‖∗ + ‖∇∂ζR‖∗

)
.

The size ofφ and of its derivatives is proportional to the corresponding sizes forR.

After Problem (4.6) has been solved, we will find solutions to the full problem (
if we manage to adjust the pair(ξ, ζ ) in such a way thatcij (ξ, ζ ) = 0 for all i, j . This
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is the reduced problem. A nice feature of this system of equations is that it turns out to

e

tions:

be

Let

ts
in the

espect
be equivalent to finding critical points of a functional of the pair(ξ, ζ ) which is close, in
appropriate sense, to the energy of the single or multiple-bubbleV . We make this precis
in the next section for the case of single-bubbling,k = 1.

7. Variational formulation of the reduced problem for k = 1

In this section we assumek = 1 in Problem (4.6). We omit the subscripti = 1 in cij , Zij

andξi . Then in order to obtain a solution of (4.3) we need to solve the system of equa

cj (ξ, ζ ) = 0 for all j = 1, . . . ,4. (7.1)

If (7.1) holds, thenv = V + φ will be a solution to (4.3). This system turns out to
equivalent to a variational problem, as we discuss next.

Let us consider the functionalJq,λ in (4.4), the energy associated to Problem (4.3).
us define:

F(µ, ζ ) ≡ Jq,λ(V + φ), µ = e−2ξ , (7.2)

whereφ = φ(ξ, ζ ) is the solution of Problem (4.6) given by Proposition 5.1. Critical poin
of F correspond to solutions of (7.1) under a mild assumption that will be satisfied
proofs of the theorems, as we shall see below.

Lemma 7.1.Under the assumptions of Proposition5.1, the functionalF(ζ, ξ) is of class
C1. Assume additionally thatR in (4.5)satisfies‖R‖∗ � µ8σ , whereσ > 0 is the number
in the definition of the∗-norm. Then, for allµ > 0 sufficiently small, if∇F(ξ, ζ ) = 0, then
(ξ, ζ ) satisfies System(7.1).

Proof. Let us first differentiate with respect toξ . We can differentiate directlyJq,λ(V +φ)

under the integral sign, since the domainD depends onζ but not onξ . Thus

∂ξF (ξ, ζ ) = DJq,λ(V + φ)[∂ξV + ∂ξφ] =
4∑

j=1

∫
D

cjZj [∂ξV + ∂ξφ].

From this expression and the results of the previous section, it is continuous with r
to the pair(ξ, ζ ). Let us assume that∂ξF (ξ, ζ ) = 0. Then

4∑
j=1

cj

∫
D

Zj [∂ξV + ∂ξφ] = 0.

We recall that we proved‖∂ξφ‖∗ � C‖R‖∗, thus we directly check that asµ → 0, we have
∂ξV + ∂ξφ = Z4 + o(1) with o(1) small in terms of the∗-norm asµ → 0.
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Let us consider now differentiation with respect toζ . This is a bit more involved since
te the
t

it is no longer sufficient to differentiate under the integral sign. It is convenient to rela
functional with its expression in terms of the original variable inΩ . Let us observe firs
that the following identity holds:

DJq,λ(v)[f ] = 4DEq,λ(u)[g] wherev = T (u), f = T (g).

Let us defineU andψ by V ≡ T (U), ψ ≡ T (φ). Let us recall then thatJq,λ(V + φ) =
4Eq,λ(U + ψ). Givenl, we compute:

∂ζl F = 4DEq,λ(U + ψ)[∂ζl U + ∂ζl ψ]

= DJq,λ(V + φ)
[
T (∂ζl U) + T (∂ζlψ)

]=
4∑

j=1

cj

∫
D

Zj

[
T (∂ζl U) + T (∂ζl ψ)

]
.

This expression depends continuously on(ξ, ζ ). Let us considerT (∂ζ U). We have that

∂ζ U = ∂ζ wµ,ζ + ∂ζ πµ,ζ = cµ−5/2
[
1+ r2

µ2

]−3/2

rΘ + O
(
µ1/2),

wherer = |y − ζ |. Hence,

T (∂ζ U) = µ−1Z(x − ξ1) + e−ξ1 e−xO(1).

Let us consider now the termT (∂ζψ). If ψ = ψ(y, ζ ), we have:

(∂ζlφ)(x,Θ, ζ ) = √
2e−x∂ζ

[
ψ
(
ζ + e2xΘ, ζ

)]= T (∂yl ψ) + T (∂ζl ψ),

so thatT (∂ζl ψ) = ∂ζl φ − T (∂ylψ). We have already established that

‖∂ζl φ‖∗ � C
(‖R‖∗ + ‖∇R‖∗

)
.

Let us recall the equation satisfied by∂ylψ . It is convenient to definẽψ(z) = µ1/2ψ(ζ +
µz). Thenψ̃ satisfies:

�ψ̃ + qµ(5−q)/2[w1,0 + O(µ)
]q−1

ψ̃ + λµ2ψ̃ = −E +
4∑

l=1

cl
1

|z|2
(
1− η1(|z|))zl(z),

whereE = Ñ(ψ) + R̃ with

R̃ = (
w1,0 + O(µ)

)q − w5
1,0,

Ñ(ψ̃) = q(q − 1)

2

1∫
0

(1− t)dt
[
w1,0 + O(µ) + tψ̃

]q−2
ψ̃2.
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Hereη1 is the smooth cut-off function in (5.8). We also know that, globally,

f

al

ss
we
∣∣ψ̃(z)
∣∣� Cµ−σ/2‖R‖∗|x|−σ/2w1−σ

1,0 (z).

Sinceσ is small, it follows from elliptic estimates that near the origin actually|ψ̃(z)| �
Cµ−qσ ‖R‖∗ and ∣∣Dψ̃(z)

∣∣� µ−qσ ‖R‖∗w1−σ
1,0 (z).

As a conclusion we get that ∥∥T (Dψ)
∥∥∗ � Cµ−qσ ‖R‖∗.

Thus∂ζF = 0 if and only if:

0=
4∑

j=1

cj

∫
D

Zj

[
Zl + O

(
µ− q

2σ ‖R‖∗
)]

for eachl = 1,2,3. We get then that∇F(ξ, ζ ) = 0 implies the validity of a system o
equations of the form:

4∑
j=1

cj

∫
D

Zj

[
Zl + o(1)

]= 0, l = 1, . . . ,4,

with o(1) small in the sense of the∗-norm asµ → 0. The above system is diagon
dominant and we thus getcj = 0 for all j . �

In order to solve for critical points of the functionF , a key step is its expected closene
to the function 4Eq,λ(Uµ,ζ ) = Jq,λ(V ), which we analyzed in Section 2. From now on
shall use the notation:

∇ ≡ [∂ξ , ∂ζ ].

Lemma 7.2.The following expansion holds:

F(ξ, ζ ) = Jq,λ(V ) + [‖R‖2∗ + ‖∇R‖2∗ + ‖∇∂ξR‖2∗
]
θ(ξ, ζ ),

where for a certain positive constantC the functionθ satisfies:

|θ | + |∇θ | + |∇∂ξ θ | � C,

uniformly on points satisfying the constraints in Proposition5.1.
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Proof. Taking into account that 0= DJq,λ(V + φ)[φ], a Taylor expansion gives:

al
ral

of

ingle

e to

se in
Jq,λ(V + φ) − Jq,λ(V ) (7.3)

=
1∫

0

D2Jq,λ(V + tφ)[φ]2(1− t)dt (7.4)

=
1∫

0

(∫
D

[
N(φ) + R

]
φ +

∫
D

q
[
V q−1 − (V + tφ)q−1]φ2

)
(1− t)dt .

Since‖φ‖∗ � C‖R‖∗, we get:

Jq,λ(V + φ) − Jq,λ(V ) = O
(‖R‖2∗

)
.

Let us differentiate now with respect to the pair(ξ, ζ ). Since the quantity inside the integr
in the representation (7.4) vanishes on∂D, we may differentiate directly under the integ
sign, thus obtaining:

∇[Jq,λ(V + φ) − Jq,λ(V )
]

=
1∫

0

(∫
D

∇[(N(φ) + R
)
φ
]+ q

∫
D

∇[((V + tφ)q−1 − V q−1)φ2])(1− t)dt .

Using the fact that‖∇φ‖∗ � C[‖R‖∗ + ‖∇R‖∗] and the computations in the proof
Lemma 6.2 we get that the above integral can be estimated by O(‖R‖2∗ +‖∇R‖2∗). Finally,
we can also differentiate under the integral sign if we do it first with respect toξ , and then
apply∇, using the fact that∂ξφ = 0 on∂D. We obtain then

∇∂ξ

[
Jq,λ(V + φ) − Jq,λ(V )

]= O
(‖R‖2∗ + ‖∇R‖2∗ + |∇∂ξR‖2∗

)
.

The continuity in (ξ, ζ ) of all these expressions is inherited from that ofφ and its
derivatives in(ξ, ζ ) in the∗-norm. �

We have now all the elements for the proof of our main results regarding s
bubbling.

8. Existence of single bubbling solutions

In this section we will prove our main results concerning solutions of (4.3) clos
V = W(x − ξ) + Πξ whereΠξ ≡ e−xπµ,ζ (ζ + e−2xΘ) with µ = e−2ξ . Before going into
the proofs, we point out properties of this function which essentially translate tho
Lemma 2.2. We have:
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Πξ(x,Θ) = −4π
√

231/4 e−(x+ξ)Hλ

(
ζ, ζ + e−2xΘ

)

t

+ √
2e−(x+3ξ)D0

(
e−2(x−ξ)Θ

)
+ √

2e−x−(5−2σ)ξθ
(
ζ, ζ + e−2xΘ, ξ

)
,

where for j = 0,1,2, i = 0,1, i + j � 2, the function ∂i+j

∂ζ i ∂ξ j θ(y, ζ, ξ), is bounded
uniformly ony ∈ Ω , all largeξ andζ in compact subsets ofΩ . We recall that asx � ξ ,

D0
(
e2(x−ξ)Θ

)= e−2(x−ξ) +D1
(
e−2(x−ξ)

)
,

and withD1 smooth,D′
1(0) = 0, whileD0(r) ∼ logr

r
asr → +∞. It follows that

|Πξ | + |∂ξΠξ | +
∣∣∂2

ξ Πξ

∣∣� C e−x e−ξ
[∣∣Hλ

(
ζ, ζ + e−2xΘ

)∣∣+ e−2ξ
]

� C e−x e−ξ
[
e−2x + ∣∣gλ(ζ )

∣∣+ e−2ξ
]
. (8.1)

On the other handHλ(ζ, ζ + y) = h0(y) + h1(ζ, y) whereh1 is smooth, from where i
follows that

|∂ζΠξ | + |∂ζ ∂ξΠξ | � C e−x e−ξ
(∣∣∂ζ gλ(ζ )

∣∣+ e−2x + e−2ξ
)
. (8.2)

Proof of Theorem 2. We chooseµ as in (3.1),

µ = −ε
a4

a1

1

gλ(ζ )
Λ,

whereε = q − 5. We have to find a critical point of the functionalF(µ, ζ ) in (7.2) for
q = 5+ ε. Consider:

R = cq e(q−5)x
(
W(x − ξ) + Πξ(x,Θ)

)5+ε − W(x − ξ)5,

where e−2ξ = µ. We write as usualW1 = W(x − ξ), V = W1 + Πξ . Then we can
decomposeR = R1 + R2 + R3 + R4, where

R1 ≡ eεx
(
V 5+ε − V 5), R2 ≡ V 5(eεx − 1

)
,

R3 ≡ V 5 − W5
1 , R4 ≡ (cq − 1)eεxV 5+ε.

We have:

R1 = ε eεx

1∫
0

(1− t)dt
(
V 5+tε logV

)
,
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from where it follows that
|R1| � Cε eεξ eε|x−ξ |V 4+1/2 � CεV 4.

Since|Πξ | � C e−(x+ξ) � C e−|x−ξ |, we get|R1| � Cε e−4|x−ξ | and hence‖R1‖∗ � Cε.
Direct differentiation of the above expression, using the bounds for derivatives ofΠξ yields
as well ∥∥∂2

ξ2R1
∥∥∗ + ∥∥∂2

ζξR1
∥∥∗ + ‖∂ζR1‖∗ � ε.

Let us denote∇ = [∂ξ , ∂ζ ]. Thus we have:

‖R1‖∗ + ‖∇R1‖∗ + ‖∇∂ξR1‖∗ � Cε.

Observe that the same estimate is also valid forR4. On the other hand, we have:

R2 = V 5(eεx − 1
)= εxV 5

1∫
0

etεx dt .

Sinceξ ∼ c log(1/ε) we obtain forR2 and derivatives the bounds:

‖R2‖∗ + ‖∇R2‖∗ + ‖∇∂ξR2‖∗ � Cε| logε|.

Finally, for

R3 = 5

1∫
0

(1− t)dt (W1 + tΠξ )
4Πξ,

we find the bound:

|R3| � C e−ξ−x−4|x−ξ | � C e−2ξ−|x−ξ |,

and similarly for derivatives. We get, recalling that e−2ξ ≡ µ � Cε,

‖R3‖∗ + ‖∇R3‖∗ + ‖∇∂ξR3‖∗ � C e−2ξ .

ConcerningR4, a direct computation gives|R4| � Cε e−5|x−ξ |. Thus for fullR we have:

‖R‖∗ + ‖∇R‖∗ + ‖∇∂ξR‖∗ � Cε| logε|.

It follows from Lemma 7.2 that for this choice ofµ,

F(ξ, ζ ) = Jq,λ(V ) + µ2| logµ|2θ(ξ, ζ )
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with |θ |+|∇∂ξθ |+|∇θ | � C. Defineψε(Λ, ζ ) = F(1
2 log 1

µ
, ζ ) with µ as above. A critical

,

e

er-
in,
of
at
point forψε is in correspondence with one ofF . We conclude that

ψε(Λ, ζ ) = 4E5+ε,µ(Uµ,ζ ) + εθε(Λ, ζ )

with θε as in Lemma 3.1. The lemma thus applies to predict a critical point ofψε and the
proof of Part (a) is complete. Part (b) is analogous, invoking instead Lemma 3.2.�
Proof of Theorem 4. Let us choose nowµ as in (3.4),

µ = −a1gλ(ζ )

2a2λ
Λ,

whereζ ∈ Dλ. Now R is just given by:

R = 5

1∫
0

(1− t)dt (W1 + tΠξ )
4Πξ .

It follows from estimates (8.1) and (8.2) that

|R| + |∇R| + |∇∂ξR| � C e−x−ξ−4|x−ξ |[∣∣gλ(ζ )
∣∣+ ∣∣∇gλ(ζ )

∣∣+ e−2x + e−2ξ
]
.

Let δλ ≡ supDλ
(|gλ| + |∇gλ|). Then we see thatδλ → 0 asλ ↓ 0. We conclude that

‖R‖∗ + ‖∇R‖∗ + ‖∇∂ξR‖∗ � C e−2ξ δλ.

We have now

F(ξ, ζ ) = 4E5,λ(Uζ,µ) + µ2δ2
λθ(ξ, ζ )

with |θ | + |∇∂ξ θ | + |∇θ | � C. Defineψλ(Λ, ζ ) = F(1
2 log 1

µ
, ζ ) with µ as above. Again

a critical point forψε is in correspondence with one ofF . We conclude that

ψλ(ζ,Λ) = 4E5,λ(Uζ,µ) + gλ(ζ )2θλ(Λ, ζ ),

whereµ is given by (3.4) andθλ is as in Lemma 3.3. Henceψλ has a critical point as in th
statement of Lemma 3.3, and the result of the theorem follows, with the constantβ given
by β = (2a2/a1)

1/2. �
Proof of Theorem 3, Part (b). In this case the consideration we make is slightly diff
ent. Observe that if we chooseζ = 0, then the assumption of symmetry of the doma
and uniqueness of the solutionφ(ξ,0)(x,Θ) of Problem (4.6) makes it even in each
the coordinatesΘi , i = 1,2,3, since so isV . Moreover, as a by-product, we find th
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cj = 0 for j = 1,2,3. Thus onlyc4 survives. As a consequence, we find thatc4 = 0 if we

he

f

o
f
onal
ow

se
have∂ξF (ξ,0) = 0. With the choice,

µ = −a1gλ(0)

2a2λ
Λ,

we find thatFλ(Λ) = F(1
2 log 1

µ
,0) satisfies:

Fλ(Λ) = a2
1

4a2λ
gλ(0)2[−2Λ + Λ2]+ gλ(0)2θλ(Λ),

whereθλ and its derivative are small uniformly onΛ in bounded sets. We conclude t
existence of a critical pointΛλ of Fλ close to 1, and the desired result follows.�

9. Multiple bubbling

In this section we will prove Theorem 4, Part (a). Let us consider the solutionφ(ξ, ζ )

of (4.6) given by Proposition 5.1 whereξ = (ξ1, ξ2, . . . , ξk). Similarly as in the proo
of Theorem 3, Part (b), choosingζ = 0 makesφ symmetric in theΘi variables, which
automatically yieldscij = 0 for all i = 1, . . . , k and j = 1,2,3. Thus we just need t
adjust ξ in such a way thatci4 = 0 for i = 1, . . . , k. Arguing exactly as in the proo
of Lemma 7.1 we get that this is equivalent to finding a critical point of the functi
F(ξ) = Jq,λ(V + φ), whereζ has been fixed to be zero. Similarly as before, we find n
that

F(ξ) = Jq,λ(V ) + (‖R‖2∗ + ‖∂ξR‖2∗
)
θ(ξ),

whereθ and its first derivative are continuous and uniformly bounded in largeξ .
In what remains of this section we fix a numberδ > 0, setε = q − 5 > 0 and choose

µi = e−2ξi in order that

µ1 = εΛ1, µj+1 = µj(Λj+1ε)
2, j = 1, . . . , k − 1, (9.1)

with

δ < Λj < δ−1, j = 1, . . . , k. (9.2)

Let us measure the size of‖R‖∗ and‖∂ξR‖∗ for this Ansatz. We can now decompo
R = R1 + R2 + R3 + R4 + R5, where

R1 ≡ eεx
(
V 5+ε − V 5), R2 ≡ V 5(eεx − 1

)
,

R3 ≡ V 5 −
(∑

i

Wi

)5
, R4 ≡

(∑
i

Wi

)5 −
∑

i

W5
i ,

R5 ≡ (cq − 1)eεxV 5+ε.
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We can estimate,

2.

the

ns
|R4| � C

k−1∑
i=1

e−(ξi+1−ξi) e−3|x−ξi |,

hence‖R4‖∗ � Cε, a similar bound being valid for its derivatives inξi ’s. The quantitiesRj

for j = 1,2,3,5 can be estimated in exactly the same way as in the proof of Theorem
Thus‖R‖∗ +‖∂ξR‖∗ � Cε| logε|. Let us setΛ = (Λ1, . . . ,Λk) and defineψε(Λ) = F(ξ)

with ξ given by (9.1). We need to find a critical point ofψε . We have proved that

ψε(Λ) = Jq,λ(V ) + O
(
ε2| logε|2)θε(Λ), (9.3)

where θε and its first derivative are uniformly bounded. We have the validity of
following fact, whose proof we postpone for the moment,

1

4
Jq,λ(V ) = ka0 + [

ψ∗(Λ) + o(1)
]
ε + 1

2
k(k + 1)a4ε| logε|, (9.4)

where

ψ∗(Λ) = a1gλ(0)Λ1 + ka4 logΛ1 +
k∑

j=2

[
(k − j + 1)a4 logΛj − a6Λj

]
and the term o(1) asε → 0 is uniformly small inC1-sense on parametersΛj satisfying
(9.2). Here the constantsa0, a1, a4 are the same as those in Lemma 2.3, whilea6 = 16π

√
3.

The assumptiongλ(0) < 0 implies the existence of a unique critical pointΛ∗ which can
easily be solved explicitly. It follows that o(1) C1 perturbation ofψ∗ will have a critical
point located at o(1) distance ofΛ∗. After this observation, the combination of relatio
(9.4) and (9.3) give the existence of a critical point ofψε close toΛ∗ which translates
exactly as the result of Theorem 4, Part (a).

It only remains to establish the validity of expansion (9.4). We recall that

V =
k∑

i=1

Vi =
k∑

i=1

Wi + Πi = T (U),

whereU =∑k
i=1 wi + πi, and we denotewi = wµi,0, πi = πµi,0, Ui = wi + πi . We have

thatJq,λ(V ) = 4Eq,λ(U), whereq = 5+ ε. Observe that we can write:

Eq,λ(U) = E5,λ(U) +R,

where

R ≡ −1

6

∫
D

(
e(q−5)x − 1

)|V |6 + 4πAq.
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A direct computation yields:
Aq = k(q − 5)

(
1

6

∞∫
−∞

W6 logW dx + 1

36

∞∫
−∞

W6 dx

)
+ o(ε).

On the other hand,

R− 4πAq = −1

6

∫
D

[
e(q−5)x − 1

]
V 6 dx

= −1

6
(q − 5)4π

∫
D

xV 6 dx + o(ε)

= −1

6
(q − 5)

(
k∑

i=1

ξi

) ∞∫
−∞

W6 dx + o(ε)

= a4(q − 5)

k∑
j=1

logµj + o(ε).

Now we have:

E5,λ(U) =
k∑

j=1

E5,λ(Uj ) + 1

6

∫
D

[
k∑

i=1

V 6
i −

(
k∑

i=1

Vi

)6

+ 6
∑
i<j

W5
i Vj

]
(9.5)

since

E5,λ(U) −
k∑

j=1

E5,λ(Uj ) −
∫
D

[
k∑

i=1

V 6
i −

(
k∑

i=1

Vi

)6]

=
∑
i<j

∫
D

(
2∇ΘVi∇ΘVj + V ′

i V
′
j + ViVj − 2λe−4xViVj

)
=
∑
i<j

∫
D

(−4�S2Vi − V ′′
i + Vi − 4λe−4xVi

)
Vj =

∑
i<j

∫
D

W5
i Vj .

To estimate the quantities in (9.5), we consider the numbers:

χ1 = 0, χl = 1

2
(ξl−1 + ξl), l = 2, . . . , k, χk+1 = +∞,
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and decompose

we get

e
,
local
E5,λ(U) −
k∑

j=1

E5,λ(Uj ) =
∑

1�l�k
j>l

∫
D∩{χl<x<χl+1}

V 5
l Vj + B.

A straightforward computation yieldsB = o(ε). On the other hand,

∑
1�l�k

j>l

∫
D∩{χl<x<χl+1}

V 5
l Vj = 4π

k∑
l=1

χl+1∫
χl

W5
l Wl+1 + o(ε)

= 4π

χl+1∫
χl

W5
l Wl+1 + o(ε)

= 4π

χl+1−ξl∫
χl−ξl

W5(x)W
(
x − (ξl+1 − ξl)

)+ o(ε)

= 4π

k−1∑
l=1

e−|ξl+1−ξl |(12)1/4

∞∫
−∞

exW(x)5 + o(ε)

= a6

k−1∑
j=1

(
µj+1

µj

)1/2

+ o(ε).

Taking into account the estimate given in Lemma (2.1) and the above estimates,
(9.4) in the uniform sense. Similar arguments yield that the remainder is as well o(ε) small
after a differentiation with respect to theξi ’s.

10. Further asymptotics, final comments

Let λ0 be a number for which a critical value 0as in Theorem 4 is present. What w
want to discuss next is the situation present whenλ is close toλ0 and, at the same time
q is close to 5, both from above and below. We shall do this only in the case of a
minimizer,

0 = inf
D

gλ0 < inf
∂D

gλ0.

As we have discussed this local minimum situation remains wheneverλ is sufficiently close
to λ0. Let us setmλ ≡ infD gλ. Thenmλ is strictly decreasing. In factmλ ∼ −(λ − λ0).
Dual asymptoticsare found for the sub- and super-critical cases as follows:
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Theorem 5.(a)Assume thatq = 5+ ε. Letγ > (8
√

2)−1 be fixed and assume thatλ > λ0

l

d

is the unique number for which

mλ = −γ
√

ελ0.

Then for allε sufficiently small there exist two solutionsu±
ε to Problem(1.1)of the form,

u±
ε (x) = 31/4M±

ε√
1+ (M±

ε )4|x − ζε|2
(
1+ o(1)

)
, (10.1)

whereo(1) → 0 uniformly inΩ asε → 0,

M±
ε = Λ

−1/2
± (γ )ε−1/4.

Here
√

λ0Λ±(γ ) = x±(γ ) are the two positive roots of

32x2 − 128γ x + 1 = 0

andζε is a point inD such thatgλ(ζε) → 0 asε → 0.
(b) Assume thatq = 5− ε. Letγ ∈ R be fixed and assume additionally thatλ (close to

λ0) is the unique number for which

mλ = γ
√

λ0ε
1/2.

Then for all ε sufficiently small there exist a solutionuε to Problem(1.1) of the form
(10.1), with M±

ε replaced byMε , whereMε = Λ−1/2(γ )ε−1/4. Here
√

λ0Λ(γ ) = x(γ ) is
the positive root of

32x2 + 128γ x − 1 = 0

andζε is a point inD such thatgλ(ζε) → 0 asε → 0.

Proof. Let q = 5+ ε andΛ be such that

µ = Λ
√

ε, Λ > δ.

This choice allows us to regard the functionalF(ξ, ζ ), whereµ = e−2ξ , as a smal
perturbation of 4Eq,λ(U) after restricting conveniently the range of variation ofζ . We
will not carry out all details but just concentrate on the asymptotic expression of 4Eq,λ(U).
Using the expansion in Lemma 2.3, we find thatψε(Λ, ζ ) = 4Eq,λ(Uµ,ζ ) can be expande
as

ψε(Λ, ζ ) = a0 + ψ̃ε(Λ, ζ ) + o(ε),
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uniformly with respect toΛ > δ, with

, we
d
ms 2
of of

h for

al
g
tools
hen
in

ike, in
ψ̃ε(Λ, ζ ) = a1gλ(ζ )Λ
√

ε − a3
(
gλ(ζ )

)2
Λ2ε + a2λΛ2ε + a4ε logΛ + a4

2
ε logε.

For fixedζ , it turns out that the equation,

∂Λψ̃ε(Λ, ζ ) = 0,

reduces inΛ at main order to the quadratic equation:

a1gλ(ζ )√
ε

Λ + 2a2λ0Λ
2 + a4 = 0

which has exactly two positive solutionsΛ±(ζ ) provided that

−gλ(ζ )√
ε

>
1

a1

√
8a2a4λ0 =

√
λ0

8
√

2
.

What we are assuming is thatmλ = −γ
√

ελ0 with γ > (8
√

2)−1. Letγ ′ = (γ0 +γ )/2 and
call Dε the set ofζ ∈ D, where−gλ(ζ )/

√
ε > γ ′/

√
ε. Using infD gλ = mλ = −γ

√
ελ0

and the expressions ofa1, a2 anda4 given in (2.11) and (2.13), the equation forΛ reduces
to

32
(√

λ0 Λ
)2 − 128γ

(√
λ0 Λ

)+ 1 = 0.

The conclusion then holds if we takeM±
ε = (µ±

ε )−1/2, µ±
ε = Λ±(γ )

√
ε, wherex±(γ ) =√

λ0Λ±(γ ) are the two roots of the above equation. As in the proof of Lemma 3.3
finally find thatψ̃ε(Λ±(γ )(ζ ), ζ ) has a critical point inDε thus giving the two searche
bubble-solutions. In fact, after a perturbation argument similar to those in Theore
and 4, we find actual solutions to (1.1) with the form stated in the theorem. The pro
Part (b) is exactly the same, except that in this case the quadratic equation forΛ becomes:

a1gλ(ζ )√
ε

Λ + 2a2λ0Λ
2 − a4 = 0

which has exactly one positive solution, regardless the sign ofgλ(ζ ). �
It is illustrative to describe the results of this paper in terms of the bifurcation branc

the positive solutions of (1.1) in a ball which stems fromλ = λ1, u = 0, for any value of
q > 1. This branch does not have turning points forq = 5 (uniqueness of the positive radi
solution is known from [25]) and blows-up atλ = λ1/4. On the other hand, an oscillatin
behavior has been observed from a variational point of vein in [11] and with ODE
in [12]. As soon asε > 0, q = 5 + ε, the branch turns right near the asymptote and t
lives until getting close toλ1. This “upper part” of the branch is the one described
Theorem 3, Part (a). It is of course reasonable to ask how the turning point looks l
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particular showing the presence of two solutions forλ slightly to the right of it. This is the
h are
r of

an
ted as
ll
at lie
her a

about

s

t
et

:

interpretation Theorem 5, Part (a). Formal asymptotics of this first turning point, whic
fully recovered by this result, were found by Budd and Norbury in [7]. The behavio
this branch “later” corresponds to the result of Theorems 4 (a): forε > 0 small, the branch
oscillates wildly betweenλ1/4 andλ1, giving rise for fixedλ between these numbers to
arbitrarily large number of solutions. The towers of Theorem 4 (a) may be interpre
the solution found on the branch between thekth andk + 1 turning points. Except in a ba
or in a domain with symmetry, we have not found asymptotics of the turning points th
close toλ1, nor we know whether multiple bubbling is a generic phenomenon or rat
big coincidence due to symmetry.

Appendix A. Robin’s function

In this appendix we prove two facts we have used in the course of the proofs
Robin’s functiongλ. Recall thatgλ(x) ≡ Hλ(x, x), where the functiony �→ Hλ(x, y)

satisfies the boundary value problem:{
�yHλ + λHλ = λ 1

4π |x−y| , y ∈ Ω,

Hλ(x, y) = 1
4π |x−y| , x ∈ ∂Ω.

Lemma A.1.The functiongλ is of classC∞(Ω).

Proof. We will show thatgλ ∈ Ck , for anyk. Fix x ∈ Ω . Let h1,λ be the function defined
in Ω × Ω by the relation:

Hλ(x, y) = β1|x − y| + h1,λ(x, y),

whereβ1 = λ/(8π). Thenh1,λ satisfies the boundary value problem:{
�yh1,λ + λh1,λ = −λβ1|x − y| in Ω,

h1,λ(x, y) = 1
4π |x−y| − β1|x − y| on∂Ω.

Elliptic regularity then yields thath1,λ(x, ·) ∈ C2(Ω). Its derivatives are clearly continuou
as functions of the joint variable. Let us observe that the functionHλ(x, y) is symmetric,
thus so ish1, and thenh1,λ(·, y) is also of classC2 with derivatives jointly continuous. I
follows thath1(x, y) is a function of classC2(Ω × Ω). Iterating this procedure, we g
that, for anyk,

Hλ(x, y) =
k∑

j=1

βj |x − y|2j−1 + hk,λ(x, y)

with βj+1 = −λβj/((2j + 1)(2j + 2)) andhk,λ solution of the boundary value problem
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�xhk,λ + λhk,λ = −λβk|x − y|2k−1 in Ω,

1 ∑k 2j−1

a

ing

ions

8.
of

the

v

hk,λ(x, y) = 4π |x−y| − j=1 βj |x − y| on∂Ω.

We may remark that

�yhk+1,λ + λhk,λ = 0 in Ω.

Elliptic regularity then yields thathk,λ, is a function of classCk+1(Ω ×Ω). Let us observe
now that by definition ofgλ we havegλ(x) = hk,λ(x, x), and the conclusion of the lemm
follows. �
Lemma A.2. The function∂gλ

∂λ
is well defined, smooth and strictly negative inΩ . Its

derivatives depend continuously onλ.

Proof. For a fixed givenx ∈ Ω , consider the unique solutionF(y) of{
�yF + λF = G(x,y), y ∈ Ω,

F = 0, y ∈ ∂Ω.

Using elliptic regularity,F is at least of classC0,α . Besides a convergence argument us
elliptic estimates shows that actually:

F(y) = ∂Hλ

∂λ
(x, y).

Sinceλ < λ1, the Maximum Principle implies thatF < 0 in Ω . Hence, in particular,

∂gλ

∂λ
(x) = F(x) < 0.

Arguing as in the previous lemma, this function turns out to be smooth inx. The
resulting expansions easily provide the continuous dependence inλ of its derivatives in
x-variable. �
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