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Abstract

In this paper, we consider the Brezis–Nirenberg problem in dimension NX4; in the

supercritical case. We prove that if the exponent gets close to Nþ2
N�2

and if, simultaneously, the

bifurcation parameter tends to zero at the appropriate rate, then there are radial solutions

which behave like a superposition of bubbles, namely solutions of the form

g
Xk

j¼1

1

1 þ M
4

N�2
j jyj2

0
@

1
A

ðN�2Þ=2

Mjð1 þ oð1ÞÞ; g ¼ ðNðN � 2ÞÞðN�2Þ=4;

where Mj-þN and Mj ¼ oðMjþ1Þ for all j: These solutions lie close to turning points ‘‘to

the right’’ of the associated bifurcation diagram.
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1. Introduction

This paper deals with the analysis of solutions to the problem

�Du ¼ u
Nþ2
N�2þe þ lu in B;

u40 in B;

u ¼ 0 on @B;

8><
>: ð1:1Þ

where B denotes the unit ball in RN ; NX4; and e40 is a small parameter. In a
celebrated paper, Brezis and Nirenberg [4] established that this problem for e ¼ 0; in
a general bounded smooth domain, is solvable for 0olol1; where l1 is the first
eigenvalue of �D under Dirichlet boundary conditions. This result is optimal, since
integrating the equation against a first eigenfunction of the Laplacian yields lol1:
On the other hand, Pohozaev’s identity [15], gives nonexistence for lp0; for any
eX0; in star-shaped domains.

Let us consider a family of solutions ue of (1.1) for l ¼ le-0: It is well known that
these solutions must be radially symmetric and radially decreasing [11], so that they
maximize at the origin. Since the limiting problem l ¼ 0; e ¼ 0 does not possess any
solution, it follows that

Me ¼ g�1 max ue ¼ g�1ueð0Þ-þN

for some fixed constant g40; to be chosen later. Setting p ¼ Nþ2
N�2

; the scaled function

veðzÞ ¼ MeueðMðpþe�1Þ=2
e zÞ; satisfies

Dve þ vpþe
e þ M�ðpþe�1Þ

e leve ¼ 0; jzjoMðpþe�1Þ=2
e :

Elliptic regularity implies that locally over compacts around the origin, veðzÞ
converges to the unique positive radial solution of

Dw þ wp ¼ 0

in entire space, with wð0Þ ¼ g: As it is well known, [2,17], for the convenient choice

g ¼ ðNðN � 2ÞÞ
N�2

4 ; this solution is explicitly given by

wðzÞ ¼ g
1

1 þ jzj2

 !N�2
2

:

Coming back to the original variable, we expect then that ‘‘near the origin’’ the
behavior of ueðyÞ can be approximated as

ueðyÞ ¼ g
1

1 þ M
4

N�2
e jyj2

0
@

1
A

N�2
2

Með1 þ oð1ÞÞ: ð1:2Þ
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A point to be made is that since the convergence in expanded variables is only local
over compacts, it is not at all clear how far from the origin the approximation (1.2)
holds true. Roughly speaking, we refer to a solution ueðyÞ for which (1.2) holds with
oð1Þ-0 uniformly in B; as a single-bubble solution.

One question we intend to respond in this work is in which range for l ¼ oð1Þ;
depending on e; one can actually see bubbling solutions. A new phenomenon,
somewhat surprising, is that much more than single-bubble solutions is going on in
this problem: we find the presence of towers constituted by superposition of bubbles
of different blow-up orders, so that estimate (1.2) does not hold globally. In fact,
given any number kX1; there is an e-dependent range for l for which there exist
solutions of the form

ueðyÞ ¼ g
Xk

j¼1

1

1 þ M
4

N�2
j jyj2

0
@

1
A

N�2
2

Mjð1 þ oð1ÞÞ as y-0;

where Mj-þN and Mj ¼ oðMjþ1Þ for all j and g ¼ ðNðN � 2ÞÞ
4

N�2 (see Fig. 8).

This is in strong contrast with the case in which e ¼ 0 and one lets lk0 or l ¼ 0 and
em0 where only a single bubble is present, as established by Brezis and Peletier [5],
also see [12,16].

For the precise statement of our results, we need to distinguish between the cases
NX5 and N ¼ 4: For simplicity in the exposition, we restrict ourselves in this
introduction to the case NX5 and postpone to a last section the changes in statement
and proof needed for N ¼ 4:

Theorem 1. Assume NX5: Then, given an integer kX1; there exists a number mk40
such that if m4mk and

l ¼ me
N�4
N�2;

then there are constants 0oa�j oaþj ; j ¼ 1;y; k which depend on k, N and m and two

solutions u7
e of problem (1.1) of the form

u7
e ðyÞ ¼ g

Xk

j¼1

1

1 þ ½a7j e
1
2�j	

4
N�2jyj2

0
@

1
A

N�2
2

a7j e
1
2
�jð1 þ oð1ÞÞ; ð1:3Þ

where g ¼ ðNðN � 2ÞÞ
N�2

4 and oð1Þ-0 uniformly on B as e-0:

The solutions predicted by the above result constitute a superposition of k

bubbles, each of which has height of order e
1
2�j for j ¼ 1;y; k: We mention that for

l ¼ 0; nonradial solutions exhibiting multiple isolated bubbles blowing up like
ffiffi
e

p

exist for some special domains, see [7,8].
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The proof actually provides the explicit values of the constants a7j as follows.

Given kX1; let us consider the function

fkðsÞ ¼ kb1s
4

N�2 þ b2s�2 N�4
N�2; ð1:4Þ

where

b1 ¼ N � 2

4


 �3
N � 4

N � 1
; b2 ¼ ðN � 2Þ GðN � 1Þ

G N�4
2

� �
G N

2

� �: ð1:5Þ

Let mk be the minimum value of the function fkðsÞ; namely

mk ¼ ðN � 2Þ b1k

N � 4

� �N�4
N�2 b2

2

� � 2
N�2

; ð1:6Þ

which is attained at s ¼ sk given by

sk ¼ ðN � 4Þb2

2b1k

� �1
2

:

Then, given m4mk; the equation

m ¼ fkðsÞ

has exactly two solutions

0os�k ðmÞoskosþk ðmÞ:

The numbers a7j can be expressed by the formulae

a7j ¼ b
1�j
3

ðk � jÞ!
ðk � 1Þ! s7k ðmÞ; j ¼ 1;y; k;

where

b3 ¼
ðN � 2Þ

ffiffiffi
p

p
G N

2

� �
2Nþ2G Nþ1

2

� � :

See Lemmas 1 and 2 in Section 2 for an explanation of why these numbers enter into
the game. Let us notice that we also obtain the following multiplicity assertion: given

kX1 and l ¼ meðN�4Þ=ðN�2Þ with m4mk; then there is an e040 depending on k and m;
such that there are at least 2k solutions to problem (1.1).

The facts described above have an interesting interpretation in terms of the
bifurcation diagram for positive solutions of (1.1), for small e: The positive solutions
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in the ðl; uÞ space can be identified with a C1 curve in the ðl;mÞ-plane, where

m ¼ uð0Þ ¼ jjujj
N
:

This curve stems from ðl;mÞ ¼ ðl1; 0Þ: For e ¼ 0 the positive solution of (1.1) is
unique for each 0olol1; see [14,18]. Hence, the curve goes left, without turning
points, blowing up as l-0; see Fig. 1.

Budd and Norbury [6] studied the supercritical case e40 and derived qualitative
properties of this bifurcation branch. In particular, formal asymptotics and
numerical computations suggest that the following takes place: before reaching l ¼
0; the curve turns right and then oscillates infinitely many times in the form of an
exponentially damped oscillating curve along a line l ¼ l�; see Figs. 2 and 3. Merle
and Peletier [13] established rigorously the existence of a unique value l ¼ l�40 for
which necessarily ln-l� whenever un is an unbounded sequence of solutions of (1.1)
with l ¼ ln: A radial, singular, positive solution exists for this value of l (and only
for this one).

Our result leads in particular to a rigorous description of the kth turning point Pe
k

‘‘to the right’’ of the bifurcation curve in the ðl;mÞ quadrant (see Fig. 4): what we
find then is that

Pe
kBðmke

N�4
N�2; cke

1
2�kÞ;

where ck is given by

ck ¼ gskb1�k
3

ðk � 1Þ!;

ARTICLE IN PRESS

Fig. 1. e ¼ 0; the bifurcation diagram in the critical case.

Fig. 2. e40; the bifurcation diagram in the supercritical case (here e ¼ e0 ¼ 0:2).
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since for m ¼ mk; s7k ðmkÞ ¼ sk; so that ck ¼ ga7k : The curve itself is approximated in

the ðl;mÞ-plane by the graph

l ¼ e
N�4
N�2fkðc�1

k ek�1
2mÞ for mBe

1
2
�k:

We may notice that consecutive turning points are spaced at distances that
increase exponentially, so that for small e the shape of the bifurcation curve
is not quite a damped sinusoidal if one zooms down around the first given k

right turns.
The method of proof of Theorem 1 consists of transforming the problem of

finding a k-bubble solution into the problem of finding a k-bump solution of a
second-order equation on the half-line obtained after the so-called Emden–Fowler
transformation (see Figs. 5–8). After a procedure of finite-dimensional reduction,
which has been used in the analysis of many singularly perturbed elliptic equations,
introduced originally in the one-dimensional case by Floer and Weinstein [9], the
problem becomes that of finding a critical point of a functional depending on k real

parameters. In the predicted range for l; this functional is a small C1-perturbation of
one having two nondegenerate critical points of Morse indices k � 1 and k;

ARTICLE IN PRESS

Fig. 3. Approximating the critical case: e ¼ 2�qe0; N{q-N; e0 ¼ 0:2:

Fig. 4. The bifurcation diagram corresponding to N ¼ 5; p ¼ 7=3 and e ¼ 0:2; with the first three turning

points to the right of the bifurcation diagram.
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respectively. Although we will not elaborate around that point, it is an interesting by-
product of the construction that the two corresponding k-tower solutions have
inherited Morse indices, respectively, 2k � 1 and 2k as critical points of the full
energy functional of the problem.

We do not treat in this paper the case N ¼ 3 nor do we attempt to describe the
turning points ‘‘to the left’’ in the bifurcation curve, which are interesting questions

ARTICLE IN PRESS

Fig. 5. The function V is defined by V ¼
Pk

i¼1 Vi; where Vi ¼ Ui þ pi ; UiðxÞ ¼ Uðx � xiÞ and piðxÞ ¼
�UðxiÞe�x: The function U is the unique solution of (2.5). The intervals are defined by x1 ¼ r

2
þ d1 and

xi ¼ xi�1 þ rþ di for i ¼ 2;y; k; where r ¼ �log e tends to þN and jdijpK for some fixed constant K:

Fig. 6. Functions corresponding to the first three turning points to the right in the previous bifurcation

diagram, with e ¼ 0:2; after the transformation:

vðxÞ ¼ ð 2

p � 1
Þ

2
p�1þee�xuðe�

p�1
2 xÞ:

Fig. 7. Functions corresponding to the first three turning points to the right in the bifurcation diagram,

corresponding now to e ¼ 0:01:
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in their own right. We recall that in [4], existence is found for e ¼ 0 and N ¼ 3 if and

only if l1
4
olol1:

On the other hand, several works have dealt with changing-sign solutions, namely
bifurcation from higher eigenvalues [1,3]. We believe that the method developed here
may also apply to the construction of tower solutions with sign changes.

The next three sections will be devoted to the proof of Theorem 1: we first perform
the asymptotic expansion which is the key of the method, then solve a nonlinear
problem corresponding to a finite-dimensional reduction and finally solve the finite-
dimensional problem. Section 5 is devoted to the statement and the proof of the
result in the case N ¼ 4:

Throughout this paper, we adopt the following notations. By y we denote the

variable in the unit ball B in RN ; NX4; zARN is given in terms of y after an
appropriate scaling, r ¼ jyjAð0; 1Þ (resp. rAR) is transformed after a variant of the
so-called Emden–Fowler transformation into a variable xAð0;þNÞ (resp. xAR). We

take p ¼ Nþ2
N�2

and in the rest of this paper, e is a nonnegative small parameter.

2. The asymptotic expansion

The problem of finding radial solutions u to problem (1.1) corresponds to that of
solving the boundary value problem

u00 þ N � 1

r
u0 þ upþe þ lu ¼ 0; u0ð0Þ ¼ 0; uð1Þ ¼ 0: ð2:1Þ

Here and in what follows, p ¼ Nþ2
N�2

and we write abusively u ¼ uðrÞ with r ¼ jyj: We

transform the problem by means of the following change of variable:

vðxÞ ¼ 2

p � 1


 � 2
p�1þe

r
2

p�1uðrÞ with r ¼ e�
p�1

2
x; xAð0;þNÞ;

ARTICLE IN PRESS

Fig. 8. A three-bubble solution u of (1.1) corresponding to the three bumps solution v of Fig. 7, with

e ¼ 0:01: Appropriate scales have been chosen.
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a variation of the so-called Emden–Fowler transformation, first introduced in [10].
Problem (2.1) then becomes

v00 � v þ eexvpþe þ p � 1

2


 �2

le�ðp�1Þxv ¼ 0 on ð0;NÞ;

vð0Þ ¼ 0; v40; vðxÞ-0 as x-þN:

8><
>: ð2:2Þ

The functional associated to problem (2.2) is given by

EeðwÞ ¼ IeðwÞ �
1

2

p � 1

2


 �2

l
Z

N

0

e�ðp�1Þxjwj2 dx ð2:3Þ

with

IeðwÞ ¼
1

2

Z
N

0

jw0j2 dx þ 1

2

Z
N

0

jwj2 dx � 1

p þ eþ 1

Z
N

0

eexjwjpþeþ1
dx: ð2:4Þ

Let us consider the unique solution UðxÞ to the problem

U 00 � U þ Up ¼ 0 on ð�N;NÞ;
U 0ð0Þ ¼ 0;

U40; UðxÞ-0 as x-7N:

8><
>: ð2:5Þ

This solution is nothing but the one given by the Emden–Fowler transformation
(with e ¼ 0) of the radial solution of Dw þ wp ¼ 0;

wðrÞ ¼ g
1

1 þ r2


 �N�2
2

with g ¼ ðNðN � 2ÞÞ
N�2

4 ;

namely

UðxÞ ¼ 4N

N � 2


 �N�2
4

e�xð1 þ e�
4

N�2 xÞ�
N�2

2 : ð2:6Þ

Let us consider points 0ox1ox2o?oxk: We look for a solution of (2.2) of the
form

vðxÞ ¼
Xk

i¼1

ðUðx � xiÞ þ piÞ þ f;

where f is small and piðxÞ ¼ �UðxiÞe�x (see Fig. 5). The correction pi is meant to
make the ansatz satisfy the Dirichlet boundary conditions. A main observation is
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that vðxÞB
Pk

i¼1 Uðx � xiÞ solves (2.2) if and only if (going back in the change of

variables)

uðrÞBg
Xk

i¼1

1

1 þ e
4xi

N�2r2

 !N�2
2

exi

solves (2.2), see Fig. 8. Therefore, the ansatz given for v provides (for large values of

the xi’s), a bubble-tower solution for (1.1) with Mi ¼ exi :
Let us write

UiðxÞ ¼ Uðx � xiÞ; Vi ¼ Ui þ pi; piðxÞ ¼ �UðxiÞe�x; V ¼
Xk

i¼1

Vi: ð2:7Þ

It is easily checked that Vi is nonnegative on Rþ: We shall work out asymptotics for
the energy functional associated at the function V ; assuming that the numbers xi are
large and also very far apart but at comparable distances from each other.

We make the following choices for the points xi:

x1 ¼ � 1

2
log eþ log L1;

xiþ1 � xi ¼ �log e� log Liþ1; i ¼ 1;y; k � 1; ð2:8Þ

where the Li’s are positive parameters. For notational convenience, we also set
L ¼ ðL1;L2;y;LkÞ: The advantage of the above choice is the validity of the
expansion of the energy Ee defined by (2.3) given as follows.

Lemma 1. Let NX5: Fix a small number d40 and assume that

doLiod�1 for all i ¼ 1;y; k: ð2:9Þ

Assume also that l ¼ me
N�4
N�2 for some m40: Let V be given by (2.7). Then, with the

choice (2.8) of the points xi; there are positive numbers ai; i ¼ 0;y; 5; depending only

on N (which have the explicit expressions (2.19)) such that the following expansion

holds:

EeðVÞ ¼ ka0 þ eCkðLÞ þ
k2

2
a3e log eþ a5eþ eyeðLÞ; ð2:10Þ

where

CkðLÞ ¼ a1L�2
1 � ka3 log L1 � a4mL

�ðp�1Þ
1

þ
Xk

i¼2

½ðk � i þ 1Þa3 log Li � a2Li	; ð2:11Þ

and as e-0; the term yeðLÞ converges to 0 uniformly and in the C1-sense on the set of

Li’s satisfying constraints (2.9).
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Proof. We will estimate the different terms in the expansion of EeðVÞ with V

defined by (2.7), for the xi’s given by (2.8). Let Ie be the functional in (2.4).
We may write

IeðVÞ ¼ I0ðVÞ � 1

p þ 1

Z
N

0

ðeex � 1ÞjV jpþeþ1
dx þ Ae;

Ae ¼
1

p þ 1
� 1

p þ eþ 1


 �Z
N

0

eexjV jpþeþ1
dx

þ 1

p þ 1

Z
N

0

eexðjV jpþ1 � jV jpþeþ1Þ dx:

Then, we find that

Ae ¼ ke
1

p þ 1

Z
N

�N

Upþ1 log U dx þ 1

ðp þ 1Þ2

Z
N

�N

Upþ1 dx

 !
þ oðeÞ: ð2:12Þ

On the other hand, for the same reason, we haveZ
N

0

ðeex � 1ÞV pþeþ1 dx ¼ e
Z

N

0

xV pþeþ1 dx þ oðeÞ

¼ e
Xk

i¼1

xi

 !Z
N

�N

Upþ1 dx þ oðeÞ: ð2:13Þ

Now, we have the validity of the identity

I0ðVÞ ¼
Xk

i¼1

I0ðViÞ þ
1

p þ 1
B; ð2:14Þ

where

B ¼
Z

N

0

Xk

i¼1

V
pþ1
i �

Xk

i¼1

Vi

 !pþ1

þðp þ 1Þ
X
ioj

Z
N

0

U
p
i Vj

2
4

3
5dx:

Indeed we have

1

p þ 1
B �

Z
N

0

Xk

i¼1

V
pþ1
i �

Xk

i¼1

Vi

 !pþ1
2
4

3
5dx

¼
X
ioj

Z
N

0

ðVi
0Vj

0 þ ViVjÞ dx

¼
X
ioj

Z
N

0

ð�V 00
i þ ViÞVj dx ¼

X
ioj

Z
N

0

U
p
i Vj dx
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since Vjð0Þ ¼ 0 and p00i ¼ pi: To estimate this latter quantity, we consider the

numbers

m1 ¼ 0; ml ¼
1

2
ðxl�1 þ xlÞ; l ¼ 2;y; k; mkþ1 ¼ þN;

and decompose B as B ¼ �C0 þ C1 þ C2; where

C0 ¼ ðp þ 1Þ
X

1plpk

j4l

Z mlþ1

ml

V
p
l Vj dx:

C1 ¼
Xk

l¼1

Z mlþ1

ml

V
pþ1
l � Vl þ

X
ial

Vi

 !pþ1

þðp þ 1Þ
X
jal

V
p
l Vj

2
4

3
5 dx:

and C2 � B þ C0 � C1: Note that all these quantities depend on e because of (2.8).
First, let us estimate C1: Using the mean value theorem, the fact that

ViðxÞpCe�jx�xi j and setting r ¼ log 1
e; we get, using (2.8),

jC1jpC
Xk

l¼1

Z mlþ1

ml

Vl þ
X
ial

Vi

 !p�1 X
ial

Vi

 !2

dx

pC

Z r
2
þK

0

e�ðp�1Þxe�2jx�rj dx

pCe�2r
Z r

2
þK

0

e�ðp�3Þx dx ¼ Oðe�
pþ1

2
rÞ ¼ oðeÞ:

The above constant K depends only on d: Similar considerations on the terms
constituting C2 yields C2 ¼ oðeÞ: Let us now estimate C0: First we observe that

C0 ¼ ðp þ 1Þ
Xk

l¼1

Z mlþ1

ml

U
p
l Ulþ1 dx þ oðeÞ:

Now, we have that

Z mlþ1

ml

U
p
l Ulþ1 dx ¼

Z mlþ1�xl

ml�xl

UpðxÞUðx � ðxlþ1 � xlÞÞ dx:

On the other hand, according to (2.6), UðxÞ ¼ CN ½chð 2x
N�2

Þ	�ðN�2Þ=2; with CN ¼
ð N

N�2
ÞðN�2Þ=4: It is directly checked that

jUðx � xÞ � CNe�jx�xjj ¼ Oðe�pjx�xjÞ
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as x-þN: We conclude then that

C0 ¼ ðp þ 1Þ
Xk�1

l¼1

e�jxlþ1�xl jCN

Z
N

�N

exUðxÞp
dx þ oðeÞ:

Collecting the above estimates, we find that

B ¼ �a2

Xk�1

l¼1

e�jxlþ1�xl j þ oðeÞ ð2:15Þ

with a2 ¼ ðp þ 1ÞCN

R
N

�N
exUðxÞp

dx:

Continuing our estimate of IeðVÞ; we have now to consider I0ðViÞ for i ¼ 1;y; k:
We begin with i ¼ 1: We have

I0ðV1Þ ¼ I0ðU1 þ p1Þ ¼ I0ðU1Þ þ DI0ðU1Þ½p1	 þ
1

2
D2I0ðU1 þ sp1Þ½p1; p1	

for some sAð0; 1Þ: We recall that p1ðxÞ ¼ �U1ð0Þe�x: First we get

DI0ðU1Þ½p1	 ¼
Z

N

0

ðU1
0p1

0 þ U1p1 � U
p
1p1Þ dx;

so that, integrating by parts and using the equation satisfied by U1 we get

DI0ðU1Þ½p1	 ¼ U1
0ð0ÞU1ð0Þ ¼ U2

1 ð0Þ þ oðeÞ:

Now,

1

2
D2I0ðU1 þ sp1Þ½p1; p1	 ¼

1

2

Z
N

0

ðjp1
0j2 þ p2

1 � pðU1 þ sp1Þp�1p2
1Þ dx:

We observe that

1

2

Z
N

0

ðjp1
0j2 þ p2

1Þ dx ¼ 1

2
U1ð0Þ2;

and that
R
N

0 ðU1 þ sp1Þp�1p2
1 dx ¼ oðeÞ: Now, let us set

a0 ¼ 1

2

Z
N

�N

ðjU 0j2 þ U2Þ dx � 1

p þ 1

Z
N

�N

Upþ1 dx:

Then

I0ðU1Þ ¼ a0 �
1

2

Z 0

�N

ðjU1
0j2 þ U2

1 Þ dx � 1

p þ 1

Z 0

�N

U
pþ1
1 dx

� �
:
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It turns out that
R 0

�N
U

pþ1
1 dx ¼ oðeÞ and 1

2

R 0

�N
ðU1

02 þ U2
1 Þ dx ¼ 1

2
U2

1 ð0Þ þ oðeÞ:
Combining the above estimates, we obtain

I0ðV1Þ ¼ a0 þ U2
1 ð0Þ þ oðeÞ: ð2:16Þ

Similar arguments give us that

I0ðViÞ ¼ a0 þ oðeÞ for all iX2: ð2:17Þ

Finally, as for the last term in the decomposition (2.3), we easily check that

l
Z

N

0

e�ðp�1ÞxjV j2 dx ¼ le�ðp�1Þx1

Z
N

�N

e�ðp�1ÞxjUðxÞj2 dx þ oðeÞ: ð2:18Þ

Summarizing, we obtain from estimates (2.12)–(2.18) the validity of the following
expansion:

EeðVÞ ¼ ka0 þ a1e�2x1 � a2

Xk

l¼1

e�jxlþ1�xl j � a3e
Xk

i¼1

xi

 !

� la4e�ðp�1Þx1 þ ka5eþ oðeÞ:

Here the constants ai; i ¼ 0;y; 5 depend only on N and can be expressed as follows:

a0 ¼ 1
2

R
N

�N
ðjU 0j2 þ U2Þ dx � 1

pþ1

R
N

�N
Upþ1 dx;

a1 ¼ ð 4N
N�2

ÞðN�2Þ=2;

a2 ¼ ð N
N�2

ÞðN�2Þ=4 RN
�N

exUp dx;

a3 ¼ 1
pþ1

R
N

�N
Upþ1 dx;

a4 ¼ 1
2
ðp�1

2
Þ2 RN

�N
e�ðp�1ÞxU2 dx;

a5 ¼ 1
pþ1

R
N

�N
Upþ1 log U dx þ 1

ðpþ1Þ2
R
N

�N
Upþ1 dx:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2:19Þ

These constants can be explicitly computed using the explicit expression for U given by
(2.6) and the identity Z

N

0

r

1 þ r2


 �q
dr

raþ1
¼

Gðq�a
2
ÞGðqþa

2
Þ

2GðqÞ :

The above decomposition of Ee finally reads

EeðVÞ ¼ ka0 þ eCkðLÞ þ
k2

2
a3e log eþ a5eþ oðeÞ;

with Ck given by (2.11). In fact, the term oðeÞ is uniform on the Li’s satisfying (2.9). A
further computation along the same lines shows that differentiation with respect to the
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Li’s leaves the term oðeÞ of the same order in the C1-sense. This concludes the proof of
Lemma 1. &

If there is indeed a solution of (2.2) of the form v ¼ V þ f; with V as in the
statement of the lemma, and f small, it is natural to expect that this only
occurs if the vector L ¼ ðL1;y;LkÞ corresponds to a critical point of the
function Ck: This is in fact true, as we show in the following sections
via a Lyapunov–Schmidt reduction procedure. Before, let us analyze the critical
points of Ck:

CkðLÞ ¼ jm
kðL1Þ þ

Xk

i¼2

jiðLiÞ;

jm
kðsÞ ¼ a1s�2 � ka3 log s � a4ms�ðp�1Þ and jiðsÞ ¼ ðk � i þ 1Þa3 log s � a2s:

Now the equation jm
kðsÞ0 ¼ 0 is exactly the equation fkðsÞ ¼ m with fk the function

introduced in (1.4). In fact, we have

b1 ¼ 1

p � 1

a3

a4
; b2 ¼ 2

p � 1

a1

a4
;

where b1 and b2 are the numbers in (1.5), as can be checked using formulae (2.19).

Then if m4mk with mk given by (1.6), jm
k has exactly two critical points: a

nondegenerate maximum, sþk ðmÞ; and a nondegenerate minimum, s�k ðmÞ: On the other

hand, each of the functions jj has exactly one nondegenerate critical point, a

maximum,

s ¼ ðk � j þ 1Þb3; for each j ¼ 2;y; k;

with b3 ¼ a3
a2
¼ ðN�2Þ

ffiffi
p

p
GðN

2 Þ
2Nþ2GðNþ1

2
Þ :

Lemma 2. Assume that m4mk with mk given by (1.6). Then, the function CkðLÞ has

exactly two critical points, given by

L7 ¼ ðs7k ðmÞ; ðk � 1Þb3; ðk � 2Þb3;y; b3Þ:

These critical points are nondegenerate: Lþ has Morse index k and L� has Morse

index k � 1:

3. The finite-dimensional reduction

In this section, we consider again points 0ox1ox2o?oxk; which are for now
arbitrary. We keep the notations Ui; Vi and V defined by (2.7) in the previous
section. Additionally, we define

ZiðxÞ ¼ Ui
0ðxÞ � Ui

0ð0Þe�x; i ¼ 1;y; k
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and consider the problem of finding a function f for which there are constants ci;
i ¼ 1;y; k; such that, in ð0;NÞ

�ðV þ fÞ00 þ ðV þ fÞ � eexðV þ fÞpþe
þ

� lðp�1
2
Þ2

e�ðp�1ÞxðV þ fÞ ¼
Pk
i¼1

ciZi;

fð0Þ ¼ 0; lim
x-þN

fðxÞ ¼ 0;R
N

0
Zif dx ¼ 0 for all i ¼ 1;y; k:

8>>>>>>><
>>>>>>>:

ð3:1Þ

The reason why we are interested in this intermediate problem will be made
clear in the next section. This problem turns out to be solvable for points xi

chosen in a convenient range. After this, the original problem becomes
reduced to adjust the points xi so that ci ¼ 0 for all i: This section is devoted to
solving problem (3.1). We will also establish differentiability properties which
will be useful later. The choice of the points xi will be carried out variationally in the
next section.

Let us consider the linearized operator around V defined as

Lef ¼ �f00 þ f� ðp þ eÞeexV pþe�1f� l
p � 1

2


 �2

e�ðp�1Þxf:

Then problem (3.1) can be rewritten as

Lef ¼ NeðfÞ þ Re þ
Pk
i¼1

ciZi in ð0;NÞ;

fð0Þ ¼ 0; lim
x-þN

fðxÞ ¼ 0;R
N

0 Zif dx ¼ 0 for all i ¼ 1;y; k;

8>>>><
>>>>:

ð3:2Þ

where

NeðfÞ ¼ eex½ðV þ fÞpþe
þ � V pþe � ðp þ eÞVpþe�1f	 ð3:3Þ

and Re ¼ eex½V pþe � V p	 þ V p½eex � 1	 þ ½V p �
Pk

i¼1 V
p
i 	 þ lðp�1

2
Þ2

e�ðp�1ÞxV :

We will next analyze invertibility properties of the operator Le

under the orthogonality conditions. To this end, it is convenient to introduce
the following norm which depend on the points xi: For a small positive
number s which will be fixed later and a function cðxÞ defined on ð0;NÞ;
let us set

jjcjj� ¼ sup
x40

Xk

i¼1

e�sjx�xi j

 !�1

jcðxÞj: ð3:4Þ
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Consider the linear problem of, given a function h; finding f such that

Lef ¼ hðxÞ þ
Pk
i¼1

ciZi in ð0;NÞ;

fð0Þ ¼ 0; lim
x-þN

fðxÞ ¼ 0;R
N

0 Zif dx ¼ 0 for all i ¼ 1;y; k;

8>>>><
>>>>:

ð3:5Þ

for certain constants ci: Then we have the validity of the following result.

Proposition 1. There exist positive numbers e0; d0; d1; R0; and a constant C40 such

that if the scalar l and the points 0ox1ox2o?oxk satisfy

R0ox1; R0o min
1piok

ðxiþ1 � xiÞ; xko
d0

e
; lod1; ð3:6Þ

then for all 0oeoe0 and all hAC½0;NÞ with jjhjj�oþN; problem (3.5) admits a

unique solution f ¼: TeðhÞ: Besides,

jjTeðhÞjj�pCjjhjj� and jcijpCjjhjj�:

For the proof we need the following result:

Lemma 3. Assume the existence of sequences en-0; ln-0; and points

0oxn
1oxn

2o?oxn
k with

xn
1-þN; min

1piok
ðxn

iþ1 � xn
i Þ-þN; xn

k ¼ oðe�1
n Þ;

such that for certain functions fn and hn with jjhnjj�-0; and scalars cn
i ; one has on

ð0;NÞ

�f00
n þ fn � ðp þ enÞeenxVpþe�1fn � lnðp�1

2
Þ2

e�ðp�1Þxfn ¼ hn þ
Pk
i¼1

cn
i Zn

i ;

fnð0Þ ¼ 0; lim
x-þN

fnðxÞ ¼ 0;R
N

0
Zn

i fn dx ¼ 0 8i ¼ 1;y; k:

8>>>><
>>>>:

ð3:7Þ

Here Zn
i is defined by Zn

i ðxÞ ¼ U 0ðx � xn
i Þ þ U 0ðxn

i Þe�x: Then limn-N jjfnjj� ¼ 0:

Proof. We shall establish first the weaker assertion that

lim
n-N

jjfnjjN ¼ 0:

To do this, we assume the opposite, so that with no loss of generality we may
take jjfnjjN ¼ 1: Testing the above equation against Zn

l ; integrating by parts
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twice we get that

Xk

i¼1

cn
i

Z
N

0

Zn
i Zn

l dx

¼
Z

N

0

�Zn
l þ 1 � ðp þ enÞeenxVp�1þen � ln

p � 1

2


 �2

e�ðp�1Þx

" #
Zn

l fn

 !
dx

�
Z

N

0

hnZn
l dx:

This defines a linear system in the ci’s which is ‘‘almost diagonal’’ as n-N

approaches zero. Moreover, the assumptions made plus the fact that the function
x/Zn

l ðxÞ � U 0ðxn
i Þe�x ¼ U 0ðx � xn

i Þ is a solution of

�Z00 þ ½1 � pU
p�1
l 	Z ¼ 0;

yield, after an application of dominated convergence, that limn-N cn
i ¼ 0: Assume

that xn40 is such that fnðxnÞ ¼ 1; so that fn maximizes at this point. From (3.7) we
may then assume that there is an l and a fixed M40 for which jxn

l � xnjpM: Set
*fnðxÞ ¼ fnðxn

l þ xÞ: From (3.7) we see that passing to a suitable subsequence, *fn

converges uniformly over compacts to a nontrivial bounded solution *f of

� *f00 þ *f� pUp *f ¼ 0 in ð�N;þNÞ:

Hence, for some ca0; *f ¼ cU 0: However, the orthogonality conditionR
N

0 Zn
l fn dx ¼ 0 passes to the limit exactly as

Z
N

�N

U 0 *f dx ¼ 0:

We have thus reached a contradiction that shows that jjfnjjN-0: Now, we observe

that Eq. (3.7) takes the form

�f00
n þ fn ¼ gn; fnð0Þ ¼ fnðþNÞ ¼ 0: ð3:8Þ

If s40 is chosen a priori sufficiently small in the definition of the �-norm, then

jgnðxÞjpyn

Xk

i¼1

e�sjx�xi j ¼: cnðxÞ;

with yn-0: We see then that the function Ccn; for C40 sufficiently large, is a
supersolution for (3.8), so that fnpCcn: Similarly, we may get fnX� Ccn: This
shows that jjfnjj�-0; and the proof of Lemma 3 is concluded. &
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Proof of Proposition 1. Let us consider the space

H ¼ fAH1
0 ð0;NÞ:

Z
N

0

Zif dx ¼ 0 8i ¼ 1;y; k

� �

endowed with the usual inner product ½f;c	 ¼
R
N

0 ðf0c0 þ fcÞ dx: Problem (3.5)

expressed in weak form is equivalent to that of finding a fAH such that

½f;c	 ¼
Z

N

0

ðp þ eÞeexVpþe�1fþ l
p � 1

2


 �2

e�ðp�1Þxfþ h

" #
c dx 8cAH:

With the aid of Riesz’s representation theorem, this equation gets rewritten in H in
the operational form

f ¼ KeðfÞ þ h̃ ð3:9Þ

with a certain h̃AH which depends linearly in h and where Ke is a compact
operator in H: Fredholm’s alternative guarantees unique solvability of this
problem for any h provided that the homogeneous equation f ¼ KeðfÞ
has only the zero solution in H: Let us observe that this last equation is precisely
equivalent to (3.5) with h � 0: An indirect argument using the previous lemma shows
that if the numbers R0; e0; d0; d1 are suitably chosen then necessarily f ¼ KeðfÞ has
the zero solution only in H: The fact that the unique solution f ¼: TeðhÞ to (3.9)
satisfies jjfjj�pCjjhjj� is again a consequence of Lemma 3. In fact, assuming the

opposite, we can find functions ðheÞ; with jjhejj�-0; and solutions ðfeÞ to problem

(3.9) such that jjfejj� ¼ 1; contradicting Lemma 3. This concludes the proof of

Proposition 1. &

It is important for later purposes to understand the differentiability of the
operator Te on the variables xi: We shall use the notation x ¼ ðx1;y; xkÞ and
consider the Banach space C� of all continuous functions c defined on ½0;NÞ for
which jjcjj�oþN; endowed with this norm. We also consider the space LðC�Þ of

linear operators of C�:
Let us assume that conditions (3.6) hold. Fix hAC� and let f ¼ TeðhÞ for eoe0:

Consider differentiation with respect to the variable xl : Let us recall that f satisfies
the equation

Lef ¼ h þ
Xk

i¼1

ciZi;

plus the vanishing and orthogonality conditions, for some (uniquely determined)
constants ci: For some given lAf1;y; kg; if we define the constant bl defined by

bl

Z
N

0

jZl j2 dx ¼
Z

N

0

f@xl
Zl dx
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and the function

f ¼ �blLeZl þ cl@xl
Zl þ ðp þ eÞeex@xl

ðV p�1þeÞf;

one can then easily check that w ¼ @xl
f satisfies

w ¼ Teð f Þ þ blZl :

Moreover, jj f jj�pCjjhjj�; jbl jpCjjfjj�; so that also jjwjj�pCjjhjj�: Besides, w
depends continuously on xi; i ¼ 1;y; k; and h; for this norm. Thus, we have
established the validity of the following result.

Proposition 2. Under the assumptions of Proposition 1, consider the map x/Te;

with values on LðC�Þ: This map is of class C1: Moreover, there is a constant C40
such that

jjDxTejjLðC�ÞpC

uniformly on x and l satisfying conditions (3.6).

Now we are ready to solve problem (3.1). We shall do this after restricting
conveniently the range of the parameters xi and l: Let us consider for a number M

large but fixed, the following conditions:

x141
2

logðMeÞ�1; logðMeÞ�1o min
1piok

ðxiþ1 � xiÞ;

xkok logðMeÞ�1; loMe
3�p

2 :

8<
: ð3:10Þ

Useful facts that we easily check is that under relations (3.10), Ne and Re defined by

(3.3) satisfy for all small e40 and jjfjj�p1
4

the estimates

jjNeðfÞjj�pCjjfjjminfp;2g
� and jjRejj�pCe

3�p
2 ; ð3:11Þ

provided that s is chosen small enough.

Proposition 3. Assume that relations (3.10) hold. Then there is a constant C40 such

that, for all e40 small enough, there exists a unique solution f ¼ fðxÞ to problem (3.1)
which, besides, satisfies

jjfjj�pCe:

Moreover, the map x/fðxÞ is of class C1 for the jj � jj�-norm and

jjDxfjj�pCe:
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Proof. Problem (3.1) is equivalent to solving a fixed point problem. Indeed f is a
solution of (3.1) if and only if

f ¼ TeðNeðfÞ þ ReÞ ¼: AeðfÞ:

Thus, we need to prove that the operator Ae defined above is a contraction in a
proper region. Let us consider the set

Fr ¼ ffAC½0;NÞ: jjfjj�preag

with r a positive number to be fixed later and a given aAð0; 3�p
2 Þ: From Proposition 1

and (3.11), we get

jjAeðfÞjj�pCjjNeðfÞ þ Rejj�pC½ðreÞminfp;2g þ e
3�p

2 	orea

for all small e; provided that r is chosen large enough, but independent of e: Thus, Ae

maps Fr into itself for this choice of r: Moreover, Ae turns out to be a contraction
mapping in this region. This follows from the fact that Ne defines a contraction in the
jj � jj�-norm, which can be proved in a straightforward way.

Concerning now the differentiability of the function fðxÞ; let us write

Bðx;fÞ :¼ f� TeðNeðfÞ þ ReÞ:

Of course we have Bðx;fÞ ¼ 0: Now we write

DfBðx;fÞ½y	 ¼ y� TeðyDfðNeðfÞÞ ¼: yþ MðyÞ:

It is not hard to check that the following estimate holds:

jjMðyÞjj�pCejjyjj�:

It follows that for small e; the linear operator DfBðx;fÞ is invertible in C�; with

uniformly bounded inverse. It also depends continuously on its parameters. Let us
differentiate with respect to x: We have

DxBðx;fÞ ¼ �ðDxTeÞðNeðfÞ þ ReÞ � TeððDxNeÞðx;fÞ þ DxReÞ;

where all the previous expressions depend continuously on their parameters. Hence,

the implicit function theorem yields that fðxÞ is a C1 function into C�: Moreover, we
have

Dxf ¼ �ðDfBðx;fÞÞ�1½DxBðx;fÞ	;

so that

jjDxfjj�pCðjjNeðfÞ þ Rejj� þ jjDxNeðx;fÞjj�ÞpCe:

This concludes the proof of Proposition 3. &
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4. The finite-dimensional variational problem

In this section, we fix a large number M and assume that conditions (3.10) hold
true for x ¼ ðx1;y; xkÞ and l: According to the results of the previous section, our
problem has been reduced to that of finding points xi so that the constants ci which
appear in (3.2), for the solution f given by Proposition 3, are all zero. Thus, we need
to solve the system of equations

ciðxÞ ¼ 0 for all i ¼ 1;y; k: ð4:1Þ

If (4.1) holds, then v ¼ V þ f will be a solution to (3.1) with the desired form. This
system turns out to be equivalent to a variational problem, which we introduce next.

Let us consider the functional

IeðnÞ ¼ EeðV þ fÞ;

where f ¼ fðxÞ is given by Proposition 2 and Ee is defined by (2.3). We claim that
solving system (4.1) is equivalent to finding a critical point of this functional. In fact,
integrating (3.1) against Zi and using the definition of Ee and f; we obtain

DEeðV þ fÞ½Zi	 ¼ 0 for all i ¼ 1;y; k: ð4:2Þ

Now, it is easily checked that

@

@xi

ðV þ fÞ ¼ Zi þ oð1Þ;

with oð1Þ-0 in the �-norm as e-0: We can decompose each of the oð1Þ terms above
as the sum of a small term which lies in the vector space spanned by the Zi’s, and a

function Z with
RþN

0 ZiZ dx ¼ 0 for all i: Again, from Eq. (3.1), we get DJeðV þ
fÞ½Z	 ¼ 0: What we have shown is that system (4.2) is equivalent to

rIeðnÞ ¼ 0:

The following fact is crucial to find critical points of Ie:

Lemma 4. The following expansion holds:

IeðnÞ ¼ EeðVÞ þ oðeÞ;

where the term oðeÞ is uniform in the C1-sense over all points satisfying constraint

(3.10), for given M40:
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Proof. Taking into account that 0 ¼ DEeðV þ fÞ½f	; a Taylor expansion gives

EeðV þ fÞ � EeðVÞ

¼
Z 1

0

D2EeðV þ tfÞ½f2	t dt

¼
Z 1

0

Z
N

0

½NeðfÞ þ Re	fþ
Z

N

0

ðp þ eÞ½V pþe�1 � ðV þ tfÞpþe�1	f2


 �
t dt: ð4:3Þ

Since jjfjj� ¼ OðeÞ; we get

IeðnÞ � EeðVÞ ¼ Oðe2Þ;

uniformly on points satisfying (3.10). Differentiating now with respect to the x
variables, we get from (4.3) that

Dx½IeðnÞ � EeðVÞ	 ¼
Z 1

0

Z
Oe

Dx½ðNeðfÞ þ ReÞf	t dt




þ ðp þ eÞ
Z

N

0

Dx½ððV þ tfÞpþe�1 � Vpþe�1Þf2	
�
:

Using the computations in the proof of Proposition 2, we get that the first integral

can be estimated by Oðe2Þ; so does the second. Hence, the proof of Lemma 4 is
complete. &

Proof of Theorem 1. Let us assume m4mk with mk given by (1.6). We need to find a
critical point of IeðxÞ: We consider the change of variable x ¼ xðLÞ:

x1 ¼ � 1

2
log e� log L1; xiþ1 � xi ¼ �log e� log Li; iX2:

where the Li’s are positive parameters, and we denote L ¼ ðL1;y;LkÞ: Thus, it
suffices to find a critical point of

FeðLÞ � e�1rIeðxðLÞÞ:

From the above lemma and the decomposition (2.10) given in Lemma 1, which

actually holds with the oðeÞ term in the C1 sense uniformly on points satisfying
constraints (3.10), we obtain

rFeðLÞ ¼ rCkðLÞ þ oð1Þ;

where oð1Þ-0 uniformly on points L satisfying M�1oLioM; for any fixed large

M: We assume that for our fixed m4mk; the critical points L7 of Ck in Lemma 4

satisfy this constraint. Since the critical points L7 are nondegenerate, it follows
that the local degrees degðrCk;V7; 0Þ are well defined and they are nonzero.
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Here V7 are arbitrarily small neighborhoods of the points L7 in Rk: We also
conclude that degðrIe;V7; 0Þa0 for all sufficiently small e: Hence, we may find

critical points L7
e of Fe with

L7
e ¼ L7 þ oð1Þ; lim

e-0
oð1Þ ¼ 0:

For x7e ¼ xðL7
e Þ; the functions v7 ¼ V þ fðx7e Þ are solutions of problem (2.2).

From the equation satisfied by f; (3.1), and its smallness in the �-norm, we derive
that v ¼ Vð1 þ oð1ÞÞ; where oð1Þ-0 uniformly on ð0;NÞ: Further, if we set simply

x7 � xðL7Þ; then it is also true that

v7ðxÞ ¼
Xk

1¼1

Uðx � x7i Þð1 þ oð1ÞÞ;

again with oð1Þ-0 uniformly on ð0;NÞ: Finally, if we go back via the change of
variables

u7ðrÞ ¼ p � 1

2r


 �2=ðp�1þeÞ
v7 � 2

p � 1
log r


 �
;

to a solution of (1.1), the explicit form of the parameters L7 found in
Lemma 2 provides expression (1.3) for the solutions. This concludes the proof of
Theorem 1. &

5. The case N ¼ 4

In this section, we show the modifications needed in Theorem 1 and its proof for
the case N ¼ 4: In that case, our main result reads as follows.

Theorem 2. Let N ¼ 4: Given a number kX1; if m4mk; where

mk ¼ k
p
25

e2 ð5:1Þ

and

le�2=l ¼ me; ð5:2Þ

then there are constants 0oa�j oaþj ; j ¼ 1;y; k; which depend on k and m; and two

solutions u7
e of problem (1.1) of the form

u7
e ðyÞ ¼ g

Xk

j¼1

1

1 þ M2
j jyj

2

 !
Mjð1 þ oð1ÞÞ;

where oð1Þ-0 holds uniformly on B as e-0 and M7
j ¼ a7j e

1
2�j jlog ej�

1
2:
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As in the case NX5; these solutions are superposition of k bubbles. However,
if N ¼ 4; the order of the height of each bubble is corrected with a logarithmic

term, namely e
1
2
�jjlog ej�

1
2: The constants a7j are also found explicitly as

explained next.
Given kX1; the number mk in (5.1) is the minimum value of the function

fkðsÞ ¼ k
p
25

s2

2 log s � 1

in the range sAð
ffiffiffi
e

p
;NÞ; and this minimum value is attained at s ¼ e: Then, given

m4mk; the equation

m ¼ fkðsÞ

has exactly two solutions

e
1
2os�k ðmÞoskosþk ðmÞ:

The numbers a7j can be expressed by the formulae

a7j ¼ 23

p


 �1�j ðk � jÞ!
ðk � 1Þ! s7k ðmÞ; j ¼ 1;y; k:

For the proof of Theorem 2, we proceed exactly as for NX5; except that now the
choice of the points xi has to be made differently to that in (2.8). More precisely,
Lemma 1 has to be replaced by the following:

Lemma 5. Let N ¼ 4 and d40: Take l as in (5.2) with m a fixed positive number, and

the points xi to be

x1 ¼ l�1 þ log L1; xiþ1 � xi ¼ 2l�1 � log l� logðm�1Liþ1Þ: ð5:3Þ

Then, with V be given by (2.7), the following expansion holds

EeðVÞ ¼ ka þ eCkðLÞ þ be log eþ celþ deþ oðeÞ

uniformly with respect to doLiod�1 and for certain absolute positive constants

a; b; c; d: Here the function CkðLÞ is given by

CkðLÞ ¼ �ma1L�2
1 log L1 þ ka3 log L1 þ

Xk

i¼2

½ðk � i þ 1Þa3 logLi � a2Li	

and the constants a1; a2 and a3 are given by formulae (2.19).
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The above expansion differs from the case NX5 only in the estimate of the term

l
R
N

0 e�ðp�1ÞxjV j2 dx: In fact, for N ¼ 4; estimate (2.18) becomes

l
Z

N

0

e�ðp�1ÞxjV j2 dx ¼ l
4N

N � 2


 �N�2
2

x1e�2x1 þ oðeÞ:

Direct examination of the results in Section 3, show that they still hold true for the
choice of points xi as in (5.3) and parameter l as in (5.2). The results of Section 4
follow exactly in the same way, now yielding Theorem 2.
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Appendix

Let B be the unit ball in RN ; NX4; and consider the positive solutions of

Du þ upþe þ lu ¼ 0 in B;

u40 in B; u ¼ 0 on @B

�
ðA:1Þ

with p ¼ Nþ2
N�2

and eX0: According to the theorem of Gidas et al. [11], all solutions are

radial and decreasing along any radius, so there exists a unique branch of solutions
as shown by the following parametrization method (see for instance [3] for more
details). Consider the solutions of

v00 þ N�1
r

v0 þ vpþe þ v ¼ 0 in ½0;þNÞ;
vð0Þ ¼ a40; v0ð0Þ ¼ 0

(
ðA:2Þ

and denote by r ¼ rðaÞ40 the first zero of v; which is well defined for any a40 (see
for instance [3]). Then to any solution u of (A.1) corresponds a function v defined on

½0;
ffiffiffi
l

p
Þ such that vðjxjÞ ¼ l�1=ðpþe�1Þuðx=

ffiffiffi
l

p
Þ for any xAB; which can be extended to

½0;þNÞ as a solution of (A.2). Reciprocally, if v is a solution of (A.2), then uðxÞ ¼
r2=ðpþe�1ÞvðrjxjÞ for any xAB is a solution of (A.1) with l ¼ r2: The bifurcation

diagram ðl; jjujjLNÞ is therefore fully parametrized by a/ðr2; ar2=ðpþe�1ÞÞ with r ¼
r2ðaÞ: For convenience, we use a logarithmic scale for the plots and take N ¼ 5
(qualitative aspect of the bifurcation diagrams does not depend much on the
dimension).
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