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Abstract

We consider the problem �u+|u| 4
N−2 u = 0 in Ωε , u = 0 on ∂Ωε , where Ωε := Ω \B(0, ε) and Ω is a bounded smooth domain

in R
N , which contains the origin and is symmetric with respect to the origin, N � 3 and ε is a positive parameter. As ε goes to

zero, we construct sign changing solutions with multiple blow up at the origin.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons le problème −�u = |u| 4
N−2 u dans Ωε , u = 0 sur ∂Ωε , où Ωε := Ω \B(0, ε), Ω est un domaine borné de R

N

contenant l’origine et symétrique par rapport à l’origine, N � 3 ; ε est un paramètre positif. Quand ε → 0, nous construisons des
solutions changeant de signe qui ressemblent à une superposition de solutions transitoires centrées dans l’origine.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let D be a smooth bounded domain in R
N , N � 3. Consider the following nonlinear elliptic problem:{
�u + |u| 4

N−2 u = 0 in D,

u = 0 on ∂Dt.
(1.1)
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It is well known that the Sobolev embedding H 1
0 (D) ↪→ L

2N
N−2 (D) is not compact and that this lack of compactness

makes the question of solvability of (1.1) quite delicate.
Pohozaev’s identity [31] shows that problem (1.1) has only the trivial solution if the domain D is assumed to be

strictly starshaped. On the other hand, Kazdan and Warner showed in [25] that if D is an annulus then (1.1) has a
(unique) positive solution in the class of functions with radial symmetry. In [7], the authors study the asymptotic
behavior of this solution as the radius of the inner ball of the annulus tends to zero. In the nonsymmetric case,
Coron [16] found via variational methods that (1.1) is solvable and that it admits a positive solution under the assump-
tion that D is a domain with a small hole. Substantial improvement of this result was obtained by Bahri and Coron [5],
showing that if some homology group of D with coefficients in Z2 is not trivial, then (1.1) has at least one positive
solution. See also [4,6,11,20,22,32] for related results.

An interesting question is the study of the asymptotic behavior of Coron’s solution as the size of the hole tends
to zero. Under the assumption that the hole is symmetric (a ball of radius ρ), then the solution concentrates around
the hole and it converges, as ρ → 0, in the sense of measure to a Dirac delta centered at the center of the hole. In the
literature this is what is known as a (simple) bubbling solution. We refer the reader to [26,28,33] where the study of
existence of positive solutions to (1.1) in domains with several small symmetric holes and their asymptotic behavior
as the size of the holes goes to zero is carried out.

When the hole in D is not symmetric as in Coron’s setting, a recent result by Clapp and Weth [15] shows that,
besides the positive solution discovered by Coron in [16], problem (1.1) has another solution. The argument in [15]
is by contradiction and the authors can not describe the second solution, in particular they can not say whether it
is positive or it changes sign. In fact, we believe that this second solution changes sign. Existence and qualitative
behavior of sign changing solutions for elliptic problems with critical nonlinearity have been investigated by several
authors in the last years. We refer the reader for instance to [1,2,8,9,13,14,23,24,29].

In this paper we treat the case of a bounded and smooth domain Ω in R
N , N � 3, which contains the origin and is

symmetric with respect to the origin, i.e. x ∈ Ω if and only if −x ∈ Ω . We define Ωε = Ω \ B(0, ε), for some ε > 0.
We prove that problem {

�u + |u| 4
N−2 u = 0 in Ωε,

u = 0 on ∂Ωε,
(1.2)

admits any arbitrary number of sign changing solutions, provided ε is sufficiently small. Not only this, we construct
sign changing solutions as a superposition of bubbles with alternating sign centered at the center of the hole, the
origin.

The result is the following:

Theorem 1.1. For any integer k � 1, there exists εk > 0 such that for any ε ∈ (0, εk) there exists a pair of solutions
uε and −uε to problem (1.2) such that

uε(x) = αN

k∑
i=1

(−1)i+1
(

Miε
2i−1

2k

M2
i ε2 2i−1

2k + |x|2
)N−2

2 (
1 + o(1)

)
,

where αN := [N(N − 2)]N−2
4 ,M1, . . . ,Mk are positive constants depending only on N and k and o(1) → 0 uniformly

on compact subsets of Ω , as ε → 0. Moreover, uε is even with respect to the origin, i.e. uε(x) = uε(−x).

Observe that no positive solutions to (1.1) exhibiting this feature of superposition of bubbles can be found, as proved
in [27]. The novelty of the result obtained in Theorem 1.1 is the existence of solutions for the problem at the critical
Sobolev exponent which are superpositions of bubble of different heights and necessarily alternating sign: a first

positive bubble, whose maximum is of size ε− 1
k , a second negative bubble, whose minimum is of order ε− 3

k , up to the

last bubble, which in absolute value has maximum of order ε−2+ 1
k .

We point out that in [30] the authors proved the existence of sign changing solutions with multiple blow up at the
origin for a slightly sub critical problem in a symmetric domain. It seems that sign changing solutions that naturally
appear in critical problems look like superpositions of bubbles. The phenomenon of superposition of bubbles for
problems related with the critical Sobolev exponent is already known in the literature. Concerning superposition of
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positive bubbles, we refer the reader to [17–19], where the case of domains with symmetry is treated, and to [21],
where the results obtained in [17] is generalized to a generic domain with no assumption on its symmetry.

In fact, in view of the results contained in [21,33], we conjecture that the following result holds true: Given a
domain Ω not necessarily symmetric, if we drop a small ball with center in any arbitrary point inside Ω , then there
exists a sign changing solution to problem (1.2) which looks like a superposition of an arbitrary number of bubbles
with alternating sign and which concentrates around the center of the hole, provided the hole is sufficiently small.

We will prove Theorem 1.1 with the aim of a Liapunov–Schmidt reduction, which we describe, together with the
scheme of the proof, in Section 2.

We would like to thank the referee for the helpful comments on the results contained in Theorem 1.1 and for the
remarks on the organization of the paper, which helped us to improve its presentation.

2. Ansatz and sketch of the proof

Let us denote with p the critical Sobolev exponent N+2
N−2 . The basic elements to construct sign changing solutions

to (1.2) are the functions wμ, defined by:

wμ(y) = αN

μ
N−2

2

(μ2 + |y|2)N−2
2

, μ > 0,

with αN := [N(N − 2)]N−2
4 . It is well known (see [3,12,34]) that these functions are the only radial solutions of the

equation −�u = up in R
N . In order to fit the homogeneous Dirichlet boundary conditions in (1.2), we project wμ

onto H 1
0 (Ωε). We define πμ,ε to be the unique solution to the problem:{

�πμ,ε = 0 in Ωε,

πμ,ε = −wμ on ∂Ωε.

Then the function Pεwμ := wμ + πμ,ε is the projection onto H1
0(Ωε) of the function wμ, namely it satisfies:{−�Pεwμ = w

p
μ in Ωε,

Pεwμ = 0 on ∂Ωε.

As already observed in [17–19,30], a useful way to construct superpositions of bubbles, or tower of bubbles, is to
rewrite problem (1.2) in different variables. We introduce spherical coordinates y = y(ρ,Θ) centered at the origin
given by ρ = |y| and Θ = y

|y| . We define the transformation:

v(x,Θ) = T (u)(x,Θ) :=
(

p − 1

2

) 2
p−1

e−xu
(
e− p−1

2 xΘ
)
. (2.1)

We denote by Dε the subset of S := R × SN−1 obtained from Ωε under the transformation (2.1), namely

Dε := {
(x, θ): r0(θ) � x � rε, θ ∈ SN−1},

where r0 :SN−1 → R is a continuous function. We remark that, after the change of variables, the ball B(0, ε) becomes
the set [−N−2

2 log ε,+∞) × SN−1 and the domain Ω becomes a subset D of R × SN−1, so that we can write:

Dε = D \ [rε,+∞) × SN−1, where rε := −N − 2

2
log ε.

After these changes of variables, problem (1.2) becomes:{
L0(v) = |v|p−1v in Dε,

v = 0 on ∂Dε,
(2.2)

where

L0(v) = −
(

p − 1
)2

�SN−1v − v′′ + v. (2.3)

2



M. Musso, A. Pistoia / J. Math. Pures Appl. 86 (2006) 510–528 513
L0 is the transformed operator associated to −�. Here and in what follows, ′ = ∂
∂x

and �SN−1 denotes the Laplace–
Beltrami operator on SN−1.

We observe then that

T (wμ)(x,Θ) = Wξ(x) := W(x − ξ),

where

W(x) := CNe−x
(
1 + e− 4

N−2 x
)− N−2

2 , with μ = e− 2
N−2 ξ , (2.4)

and CN := ( 4N
N−2 )

N−2
4 . The function W is the unique solution of the problem:⎧⎨⎩W ′′ − W + Wp = 0 in R,

W ′(0) = 0, W > 0,

W(x) → 0 as x → ±∞.

(2.5)

We see also that setting

Πξ,ε = T (πμ,ε), with μ = e− 2
N−2 ξ , (2.6)

then Πξ,ε solves the boundary problem: {
L0(Πξ,ε) = 0 in Dε,

Πξ,ε = −Wξ on ∂Dε.
(2.7)

Let ξi be positive points in R with 0 < ξ1 < ξ2 < · · · < ξk and μi = e− 2
N−2 ξi . We look for a solution to (2.2) of the

form:

v(x,Θ) =
k∑

i=1

(−1)i
(
W(x − ξi) + Πξi,ε(x,Θ)

) + φ(x,Θ), (2.8)

where the rest term φ is a small function which is symmetric with respect to the variables Θ1, . . . ,ΘN . In original
variables, the solution to (1.2) takes the form

u(y) =
k∑

i=1

(−1)i
(
wμi

(y) + πμi,ε(y)
) + ψ(y), (2.9)

where ψ is a small function which is symmetric with respect to the origin.
A crucial remark is that v(x) ∼ ∑k

i=1(−1)iW(x − ξi) solves (2.2) if and only if (going back in the change of
variables)

u(y) ∼ αN

k∑
i=1

(−1)i
(

e− 2ξi
N−2

e− 4ξi
N−2 + |y|2

)N−2
2

solves (1.2). Therefore, the ansatz given for v provides (for large values of the ξi ’s) a sign changing bubble-tower
solution for (1.2).

Let us write:

Wi(x) := W(x − ξi), Πi := Πξi,ε, Vi = Wi + Πi, V :=
k∑

i=1

(−1)iVi . (2.10)

We consider the ansatz v = V + φ. In terms of φ, problem (2.2) becomes:{
L(φ) = N(φ) + R in Dε,

φ = 0 on ∂Dε,
(2.11)

where
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L(φ) := L0(φ) − f ′(V )φ, (2.12)

N(φ) := f (V + φ) − f (V ) − f ′(V )φ, (2.13)

R := f (V ) −
k∑

i=1

(−1)iW
p
i . (2.14)

Here, we set f (s) := |s|p−1s.

For i = 1, . . . , k we will choose points ξi such that

e−ξi = εαi λi, for some λi > 0, (2.15)

where

αi := 2i − 1

k

N − 2

4
, i = 1, . . . , k. (2.16)

We choose the αi ’s to be solutions to the linear system:⎧⎪⎪⎨⎪⎪⎩
2α1 + 2αk = N − 2,

2α1 = α2 − α1,
...

2α1 = αk − αk−1.

(2.17)

Rather than solving (2.11) directly, we consider first the following intermediate problem: given points ξ :=
(ξ1, . . . , ξk) ∈ R

k , or equivalently parameters λ := (λ1, . . . , λk) ∈ R
k+, find a function φ symmetric with respect to

the variables Θ1, . . . ,ΘN such that, for certain constants ci , it satisfies:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
L(φ) = N(φ) + R +

k∑
i=1

ciZi in Dε,

φ = 0 on ∂Dε,∫
Dε

Ziφ dx dΘ = 0 if i = 1, . . . , k,

(2.18)

where the Zi ’s are defined as follows. Let:

zi(y) = μi

∂

∂μi

wμi
(y) for i = 1, . . . , k, with μi = e− 2

N−2 ξi .

Each zi solves the linearized problem (see [10]):

−�z = pwp−1
μi

z in R
N.

Let Pεzi be the projection onto H1
0(Ωε) of the function zi, i.e. �Pεzi = �zi in Ωε, Pεzi = 0 on ∂Ωε . Let Zi(x,Θ) :=

T (Pεzi)(x,Θ). Then Zi solves: {
L0(Zi) = pW

p−1
i Zi in Dε,

Zi = 0 on ∂Dε.
(2.19)

Unique solvability in certain class of functions for problem (2.18) is proved in Section 3.
According to (2.18), the problem has been reduced to that of finding points λi so that the constants ci are all equal

to zero. Thus, we need to solve the system of equations

ci(λ) = 0 for any i = 1, . . . , k. (2.20)

If (2.20) holds, then v = V + φ will be a solution to (2.11) or equivalently to (2.2). In Section 4 we see that solving
this system turns out to be equivalent to finding critical points of the function (λ1, . . . , λk) → Iε(V ). Here Iε is the
energy functional given by:

Iε(v) := 1

2

(
p − 1

2

)2 ∫
|∇Θv|2 dx dΘ + 1

2

∫ (|v′|2 + |v|2)dx dΘ − 1

p + 1

∫
|v|p+1 dx dΘ (2.21)
Dε Dε Dε
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naturally associated to problem (2.2).
Using (2.15), (2.16), we compute the asymptotic expansion for Iε(V ) and we conclude the proof of Theorem 1.1.

This is done in Section 4. In the last section we collect some technical lemmas, whose results we use throughout the
paper.

3. The reduction method

In order to solve problem (2.18), it is necessary to understand first its linear part. Given a function h, we consider
the problem of finding φ such that for certain real numbers ci the following is satisfied:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L(φ) = h +
k∑

i=1

ciZi in Dε,

φ = 0 on ∂Dε,∫
Dε

Ziφ dx dΘ = 0 if i = 1, . . . , k,

(3.1)

where the linear operator L is defined in (2.12). We need uniformly bounded solvability in proper functional spaces
for problem (3.1). To this end, it is convenient to introduce the following norm. Given an arbitrarily small but fixed
number σ > 0, we define:

‖g‖∗ := sup
(x,Θ)∈D

(
k∑

i=1

e−(1−σ)|x−ξi |
)−1∣∣g(x,Θ)

∣∣. (3.2)

Although this norm depends on σ and the numbers 0 < ξ1 < · · · < ξk , we do not indicate this dependence in our
notation. In fact, different choices of σ and λ = (λ1, . . . , λk) lead to equivalent norms. Let C∗ be the Banach space
of all continuous functions g :Dε → R which are symmetric with respect to the variables Θ1, . . . ,ΘN and for which
‖g‖∗ < +∞.

First of all, we obtain the following result.

Proposition 3.1. For any δ > 0, there exist ε0 > 0 and C > 0 such that if ε ∈ (0, ε0) and if δ < λi < δ−1, i = 1, . . . , k,
then for any h ∈ C∗ problem (3.1) admits a unique solution Tε(λ,h) ∈ C∗, with∥∥Tε(λ,h)

∥∥∗ � C‖h‖∗ and |ci | � C‖h‖∗.

Proof. The proof of this proposition consists of 2 steps.
Step 1. An a-priori estimate. Assume the existence of sequences of numbers εn → 0, cn

i , functions φn and hn, with
‖hn‖∗ → 0 so that ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L(φn) = hn +
k∑

i=1

cn
i Zi in Dεn,

φn = 0 on ∂Dεn,∫
Dεn

Ziφn dx dΘ = 0 if i = 1, . . . , k.

(3.3)

Then necessarily ‖φn‖∗ → 0. We will first show that ‖φn‖∞ → 0. Assume by contradiction that ‖φn‖∞ = 1. A first
fact to observe is that cn

i → 0 as n → ∞ for all i. This follows by testing equation in (3.3) against Zi and integrating
by parts. These two operations give that the constants cn

i solve an almost diagonal system. This fact, together with
(2.19), implies that limn→∞ cn

i = 0. Now let (xn, θn) ∈ Dεn be such that φn(xn, θn) = 1. We claim that, for n large
enough, there exist R > 0 and i ∈ {1, . . . , k} such that |xn − ξn

i | < R. We argue by contradiction and suppose that
|xn − ξn

i | → +∞ as n → +∞ for any i = 1, . . . , k. Then either |xn| → +∞ or |xn| remains bounded. Assume first
that |xn| → +∞.

Let us define:

φ̃n(x,Θ) = φn(x + xn,Θ).
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We may assume that, up to subsequences, φ̃n converges uniformly over compact sets to a function φ̃. Define
ψ̃ = T −1(φ̃). Then, from elliptic estimates, ψ̃ satisfies:

�ψ̃ = 0 in R
N \ {0}.

Moreover, ‖φ̃‖∞ = 1, translates into |ψ̃(y)| � |y|−(N−2)/2. It follows that ψ̃ extends smoothly to 0, to a harmonic
function in R

N with this decay condition, hence ψ̃ ≡ 0, yielding a contradiction.
Arguing in a similar way one shows that |xn| cannot be bounded. Hence, there exists an integer l ∈ {1, . . . , k} and

a positive number R > 0 such that, for n sufficiently large, |xn − ξn
l | � R. Let again φ̃n(x,Θ) ≡ φn(x + ξn

l ,Θ). This
relation implies that φ̃n converges uniformly over compacts to a function φ̃. Define again ψ̃ = T −1(φ̃). Then ψ̃ is a
nontrivial solution of

�ψ̃ + p w
p−1
1 ψ̃ = 0 in R

N \ {0}
with |ψ̃(y)| � C |y|− N−2

2 for all y. Thus we get a classical solution in R
N \ {0} which decays at infinity and hence

equals a linear combination of the zm’s. It follows that φ is a linear combination of the Zm’s. But then the orthogonality
relations imply φ̃ = 0, again a contradiction. We have thus proven ‖φn‖∞ → 0 as n → ∞. Next we shall establish
that ‖φn‖∗ → 0. We write the equation in (3.3) as L0(φn) = gn with gn = f ′(V )φn + hn + ∑

cn
i Zi and we observe

that the operator L0 satisfies the maximum principle. Furthermore we have that

|gn| � Gn ≡ mn

∑
e−(1−σ)|x−ξj |

for some constant mn → 0. Let us now define ψn = KGn. Direct substitution shows that L0(ψn) � −Gn in weak
sense, provided that K is chosen large enough but independent of n. From Maximum Principle, we obtain then that
φn � ψn. Similarly we obtain φn � −ψn. Since, as well ψn � C Gn, this shows that ‖φn‖∗ → 0, and the proof of
Step 1 is thus concluded.

Step 2. Let us consider the space:

H =
{
φ ∈ H 1

0 (Dε):
∫
Dε

Ziφ dx = 0 ∀i

}
,

endowed with the usual inner product:

[φ,ψ] = 1

2

(
p − 1

2

)2 ∫
Dε

∇Θφ · ∇Θψ + 1

2

∫
Dε

(φ′ψ ′ + φψ) .

Problem (3.1) expressed in weak form is equivalent to that of finding a φ ∈ H such that

[φ,ψ] =
∫ [

f ′(V )φ + h
]
ψ dx ∀ψ ∈ H.

With the aid of Riesz’s representation theorem, this equation gets rewritten in H in the operational form φ = K(φ)+ h̃,
for certain h̃ ∈ H , where K is a compact operator in H . Fredholm’s alternative guarantees unique solvability of this
problem for any h provided that the homogeneous equation φ = K(φ) has only the zero solution in H . Let us observe
that this last equation is precisely equivalent to (3.1) with h ≡ 0. Thus existence of a unique solution follows. The
bounded solvability in the sense of the ‖ ‖∗-norm follows after an indirect argument from Step 1. The bound on the
constants ci is obtained arguing as in the first part of Step 1. �
Remark 3.2. Under the same assumptions of Proposition 3.1 we have that the map λ → Tε(λ,h), with values in
L(C∗), is of class C1 and ∥∥DλTε(λ,h)

∥∥
L(C∗) � C

uniformly in λ.

Now, we are ready to solve problem (2.18). Just observe that, directly from the definitions (2.13) and (2.14), we
get: ∥∥N(φ)

∥∥∗ � C‖φ‖2∗, ‖R‖∗ � Cε
N−2

2k
(1−σ). (3.4)
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Proposition 3.2. For any δ > 0, there exist ε0 > 0 and C > 0 such that if ε ∈ (0, ε0) and if δ < λi < δ−1, i = 1, . . . , k,

there exists a unique solution φ = φ(λ), c = (c1(λ), . . . , ck(λ)) to problem (2.18) which satisfies ‖φ‖∗ � Cε
N−2

2k
(1−σ).

Moreover, the map λ → φ(λ) is of class C1 for the ‖ · ‖∗norm and ‖Dλφ‖∗ � Cε
N−2

2k
(1−σ).

Proof. In terms of the operator T defined in Proposition 3.1, problem (2.18) becomes:

φ = T
(
N(φ) + R

) ≡ A(φ), (3.5)

where N(φ) and R where defined in (2.13) and (2.14). For a given M , let us consider the region:

F ≡ {
φ ∈ C

(
D̄

)
: ‖φ‖∗ � Mε

N−2
2k

(1−σ)
}
.

From Proposition 3.1, we get: ∥∥A(φ)
∥∥∗ � C

[∥∥N(φ)
∥∥∗ + ‖R‖∗

]
.

By (3.4), we thus obtain: ∥∥A(φ)
∥∥∗ � Mε

N−2
2k

(1−σ),

provided M is chosen large, but fixed.
On the other hand we can easily check that N satisfies, for φ1, φ2 ∈F ,∥∥N(φ1) − N(φ2)

∥∥∗ � C1Mε
N−2

2k
(1−σ)‖φ1 − φ2‖∗.

We conclude that A is a contraction mapping of F , and therefore a unique fixed point of A exists in this region.
Concerning now the differentiability of the function φ(λ), let us write:

B(λ,φ) := φ − T
(
N(φ) + R

)
.

Of course we have B(λ,φ) = 0. Now we write:

DφB(λ,φ)[θ ] = θ − T
(
θDφ

(
N(φ)

)) =: θ + M(θ).

It is not hard to check that the following estimate holds:∥∥M(θ)
∥∥∗ � Cε

N−2
2k

(1−σ)‖θ‖∗.

It follows that for small ε, the linear operator DφB(λ,φ) is invertible in C∗, with uniformly bounded inverse. It also
depends continuously on its parameters. Let us differentiate with respect to λ. We have:

DλB(λ,φ) = −(DλT )
(
N(φ) + R

) − T
(
(DλN)(λ,φ) + DλR

)
,

where all the previous expressions depend continuously on their parameters. Hence the implicit function theorem
yields that φ(λ) is a C1 function into C∗. Moreover, we have:

Dλφ = −(
DφB(λ,φ)

)−1[
DλB(λ,φ)

]
,

so that

‖Dλφ‖∗ � C
(∥∥N(φ) + R

∥∥∗ + ∥∥DλN(λ,φ)
∥∥∗

)
� C ε

N−2
2k

(1−σ).

This concludes the proof of the proposition. �
4. Estimates for the reduced functional

Let φ = φ(λ) and ci = ci(λ) be solutions to (2.18) given by Proposition 3.2. Our problem reduces to

ci(λ) = 0 for any i = 1, . . . , k. (4.1)

This system turns out to be equivalent to a variational problem, related to the functional (2.21) associated to
problem (2.2). Indeed, by the same (standard) arguments as given on p. 301 in [17], the following result is proved.
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Lemma 4.1. The function V + φ is a solution to (2.2) if λ is a critical point of the function,

Ĩε(λ) := Iε(V + φ),

where φ = φ(λ) is given by Proposition 3.2 and Iε is defined in (2.21).

The following estimate is crucial to find critical points of Ĩε.

Lemma 4.2. The following expansion holds:

Ĩε(λ) = Iε(V ) + O
(
ε

N−2
k

(1−σ)
)
,

where the term O(ε
N−2

k
(1−σ)) is uniform over all λi ’s satisfying δ < λi < δ−1, i = 1, . . . , k, for some given δ > 0.

Proof. Taking into account that 0 = DIε(V + φ)[φ], a Taylor expansion gives:

Iε(V + φ) − Iε(V ) =
1∫

0

D2Iε(V + tφ)
[
φ2]t dt

=
1∫

0

(∫
Dε

[
N(φ) + R

]
φ +

∫
Dε

p
[
V p−1 − (V + tφ)p−1]φ2

)
t dt.

Since ‖φ‖∗ = O(ε
N−2

2k
(1−σ)), we get:

Ĩε(λ) − Iε(V ) = O
(
ε

N−2
k

(1−σ)
)
,

uniformly on points satisfying 0 < λi < δ−1. Differentiating now with respect to the λ variables, we get that

Dλ

[
Ĩε(λ) − Iε(V )

] =
1∫

0

(∫
Dε

Dλ

[(
N(φ) + R

)
φ
]
t dt + p

∞∫
0

Dλ

[(
(V + tφ)p−1 − V p−1)φ2]).

Using the computations in the proof of Proposition 3.2, we get that the first integral can be estimated by O(ε
N−2

k
(1−σ)),

so does the second. Hence the proof of Lemma 4.2 is complete. �
The advantage of the choice of ξi ’s made in (2.15) is the validity of the expansion of the functional (2.21) given in

the following proposition.

Proposition 4.3. For any δ > 0, there exists ε0 > 0 such that for any ε ∈ (0, ε0) the following expansion holds:

Iε(V ) = ka1 + ε
N−2

2k Ψk(λ1, . . . , λk) + o
(
ε

N−2
2k

)
, (4.2)

where

Ψk(λ1, . . . , λk) := a2λ
2
1 + a3

1

λ2
k

+ a4

k−1∑
i=1

λi+1

λi

, (4.3)

and as ε → 0 the term o(ε
N−2

2k ) converges to 0 uniformly on the set of λi ’s with δ < λi < δ−1, i = 1, . . . , k. Here, we
have:
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a1 := 1

N
ωN−1

∫
R

Wp+1(y)dy, (4.4)

a2 := H(0,0)
CN

2
ωN−1

∫
R

e−yWp(y)dy, (4.5)

a3 := CN

2
ωN−1

∫
R

eyWp(y)dy, (4.6)

a4 := CNωN−1

∫
R

e−yWp(y)dy, (4.7)

and ωN−1 is the surface area of SN−1.

The proof of this expansion relies on arguments inspired by [17–19]. For the convenience of the reader, we partly
reproduce the proofs here. As a first step, we collect some asymptotic estimates in the following two lemmata.

Lemma 4.4. It holds:

k∑
i=1

Iε(Vi) = ka1 + a2e−2ξ1 + a3e−2(rε−ξk) + o
(
e−2ξ1

)
, (4.8)

where a1, a2 and a3 are given in (4.4), (4.5) and (4.6).

Proof. By definition of the function Vi and using the mean value theorem, we deduce that

Iε(Vi) =
(

1

2
− 1

p + 1

)∫
Dε

|Wi |p+1 dx dθ − 1

2

∫
Dε

ΠiW
p
i dx dθ − p

2

∫
Dε

|Wi + tiΠ |p−1Π2
i dx dθ, (4.9)

for some ti = ti (x) ∈ [0,1].
We see first that ∫

Dε

|Wi |p+1 dx dθ =
∫

Dε−ξi

Wp+1(y)dy dθ

= ωN−1

∫
R

Wp+1 + O
(
e−(p+1)ξi + e−(p+1)(rε−ξi )

)
= ωN−1

∫
R

Wp+1 + o
(
ε2α1

)
. (4.10)

Here and in the following Dε − ξi = {(y, θ): r0(θ) − ξi � y � rε − ξi, θ ∈ SN−1}. By (A.5) we deduce:

−
∫
Dε

ΠiW
p
i dx dθ = CN

∫
Dε

e−x−ξi H
(
e− p−1

2 xθ,0
)
W

p
i (x)dx dθ

+ CN

∫
Dε

e−2rε+ξi+xW
p
i (x)dx dθ +

∫
Dε

ρi(x, θ)W
p
i dx dθ. (4.11)

We have (setting x = y + ξi ):
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∫
Dε

e−x−ξi H
(
e− p−1

2 xθ,0
)
W

p
i (x)dx dθ

=
∫

Dε−ξi

e−y−2ξi H
(
e− p−1

2 (y+ξi )θ,0
)
Wp(y)dy dθ

= e−2ξi

(
H(0,0)ωN−1

∫
R

e−yWp(y)dy + o(1)

)
, (4.12)

and ∫
Dε

e−2rε+ξi+xW
p
i (x)dx dθ =

∫
Dε−ξi

ey−2rε+2ξi Wp(y)dy dθ

= e−2(rε−ξi )

(
ωN−1

∫
R

eyWp(y)dy + o(1)

)
. (4.13)

By (A.6) we get (setting x = y + ξi ):∣∣∣∣∫
Dε

ρi(x, θ)W
p
i dx dθ

∣∣∣∣ � c

∫
Dε−ξi

(
e−y−(p+1)ξi + e−2rε+y

)
Wp(y)dy dθ

= O
(
e−(p+1)ξi + e−2rε

) = O
(
ε(p+1)αi + εN−2) = o

(
ε2α1

)
. (4.14)

Finally, by (4.1) and (4.2) we deduce: ∫
Dε

|Wi + tiΠi |p−1Π2
i dx dθ = o

(
ε2α1

)
. (4.15)

The claim follows by all the estimates (4.9)–(4.15). �
Lemma 4.5. Considering the numbers χ1 = 0, χl = ξl−1+ξl

2 , l = 2, . . . , k, χk+1 = rε and setting Dl
ε = {(x,Θ) ∈ Dε:

χl � x < χl+1}, we have for l = 1, . . . , k,∫
Dl

ε

W
p
i Wj = o

(
ε2α1(1−σ)

)
if i �= l, (4.16)

∫
Dl

ε

W
p
l Wj = a4e−|ξj −ξl | + o

(
ε2α1(1−σ)

)
if j �= l, (4.17)

∫
Dl

ε

[
V

p+1
l − |V |p+1 + (p + 1)V

p
l

∑
j �=l

(−1)l+jVj

]
= o

(
ε2α1(1−σ)

)
, (4.18)

∫
Dl

ε

(
W

p
i − V

p
i

)
Vj = o

(
ε2α1(1−σ)

)
if i �= j, (4.19)

where a4 is given in (4.7).

Proof. Throughout this proof, C stands for a generic constant depending only on N and k whose value may change
in every step of the calculation. From (2.4) we directly deduce the estimate:

|W(x)| � Ce−|x| in Dε (4.20)
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which will be frequently used in the following:
We start by verifying (4.16), first for i �= l and j �= l. In this case (4.20) implies:

∫
Dl

ε

W
p
i Wj � C

χl+1∫
χl

e−p|x−ξi |e−|x−ξj |

� C(χl+1 − χl)max
{
e−p|χl−ξi |, e−p|χl+1−ξi |}max

{
e−|χl−ξj |, e−|χl+1−ξj |}

� C
ξl+1 − ξl−1

2
e− p|ξl−ξi |

2 e− |ξl−ξj |
2 � C(− log ε)ε|αl−αj |+ p

2 |αl−αi |

= o
(
ε2α1(1−σ)

)
.

Next we consider j = l. By (4.20) for i < l (so that ξi � ξl−1) setting x − ξl = y, we get:

∫
Dl

ε

W
p
i Wl � C

χl+1∫
χl

e−p(x−ξi )ex−ξl dx = Ce−p(ξl−ξi )

ξl+1−ξl
2∫

ξl−1−ξl
2

e−(p−1)y dy

� Ce−p(ξl−ξi )e(p−1)
ξl−ξl−1

2 � Ce− p+1
2 (ξl−ξl−1)

� Cε
p+1

2 (αl−αl−1) = o
(
ε2α1(1−σ)

)
.

For i > l (so that ξi � ξl−1) setting x − ξl = y, we find similarly,

∫
Dl

ε

W
p
i Wl � C

χl+1∫
χl

ep(x−ξi )e−(x−ξl ) dx = Cep(ξl−ξi )

ξl+1−ξl
2∫

ξl−1−ξl
2

e(p−1)y dy

� Cep(ξl−ξi )e(p−1)
ξl+1−ξl

2 � Ce− p+1
2 (ξl+1−ξl )

� Cε
p+1

2 (αl+1−α) = o
(
ε2α1(1−σ)

)
,

and thus (4.16) is proved in all cases.
Next we derive (4.17) for j < l, using the definition of W given in (2.4) and setting x − ξl = y and Dl

ε − ξi =
{(y, θ): (y + ξl, θ) ∈ Dl

ε};∫
Dl

ε

W
p
l (x)Wj (x)dx dθ =

∫
Dl

ε

Wp(y)W(y + ξl − ξj )dy dθ

= CNe−(ξl−ξj )

∫
Dl

ε

Wp(y)e−y
(
1 + e− 4

N−2 (y+ξl−ξj )
)− N−2

2 dy dθ

= CNe−(ξl−ξj )

(
ωN−1

∫
R

Wp(y)e−y dy + o(1)

)

= a3e−|ξj −ξl | + o
(
εαl−αj

) = a3e−|ξj −ξl | + o
(
ε2α1(1−σ)

)
.

The proof for j > l is similar, since W(−x) = W(x) for all x ∈ R. In particular, (4.16) and (4.17) yield:∫
Dl

ε

W
p
i Wj = O

(
ε2α1(1−σ)

)
if i �= l or j �= l. (4.21)
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Let us show (4.18). Via a Taylor expansion, we get:∫
Dl

ε

(
V

p+1
l − |V |p+1 + (p + 1)V

p
l

∑
j �=l

(−1)l+jVj

)

=
∫
Dl

ε

(
V

p+1
l −

∣∣∣∣Vl +
∑
j �=l

(−1)l+jVj

∣∣∣∣p+1

+ (p + 1)V
p
l

∑
j �=l

(−1)l+jVj

)

� p(p + 1)

2

∫
Dl

ε

(
k∑

j=1

Vj

)p−1( k∑
j �=l

Vj

)2

� C max
i,j
j �=l

∫
Dl

ε

V
p−1
i V 2

j

� C max
i,j
j �=l

(∫
Dl

ε

V
p
i Vj

) p−1
p

(∫
Dl

ε

V
p+1
j

) 1
p

� C max
i,j
j �=l

(∫
Dl

ε

W
p
i Wj

) p−1
p

(∫
Dl

ε

W
p+1
j

) 1
p

= o
(
ε2α1(1−σ)

)
,

where (4.16) and (4.21) was used in the last line. Hence (4.18) is proved.
Let us prove (4.18). By the mean value theorem and (A.7), we get for i �= j ,

0 �
∫
Dl

ε

(
W

p
i − V

p
i

)
Vj � −p

∫
Dl

ε

W
p−1
i ΠiVj � c

∫
Dl

ε

(
e−ξi−x + eξi−2rε+x

)
W

p−1
i Wj dx. (4.22)

By Hölder’s inequality and by estimates (4.16) and (4.17), we get:

∫
Dl

ε

e−ξi−xW
p−1
i Wj dx �

(∫
Dl

ε

W
p
i Wj dx

) p−1
p

(∫
Dl

ε

e−p(ξi+x)Wj dx

) 1
p

= O
(
ε

2α1
p−1
p

)(∫
Dl

ε

e−p(ξi+x)Wj dx

) 1
p

. (4.23)

If j < l (so that ξj � ξl−1) and setting x − ξl = y, we get:

∫
Dl

ε

e−p(ξi+x)Wj dx � c

χl+1∫
χl

e−pξi e−(x−ξj ) dx =
ξl+1−ξl

2∫
ξl−1−ξl

2

e−pξi e−(y+ξl−ξj ) dy

� ce−pξi−ξl+ξj − ξl−1−ξl
2 � ce−pξ1+ ξl−1−ξl

2

= O
(
εpα1+ αl−αl−1

2
) = o

(
ε2α1(1−σ)

)
. (4.24)

If j > l (so that ξj � ξl+1) and setting x − ξl = y, we get:

∫
Dl

ε

e−p(ξi+x)Wj dx � c

χl+1∫
χl

e−pξi ex−ξj dx =
ξl+1−ξl

2∫
ξl−1−ξl

2

e−pξi ey+ξl−ξj dy

� ce−pξi+ξl−ξj + ξl+1−ξl
2 � ce−pξ1− ξl+1−ξl

2 = O
(
εpα1+ αl+1−αl

2
) = o

(
ε2α1(1−σ)

)
. (4.25)
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If j = l, we get:∫
Dl

ε

e−p(ξi+x)Wj dx � c

χl+1∫
χl

e−p(ξi+x)ex−ξl dx = ce−pξi−ξl−
χl+1∫
χl

e−(p−1)x dx

� ce−(p+1)ξ1 e−(p−1)
ξl−ξl−1

2 = O
(
ε(p+1)α1+(p−1)

αl−αl−1
2

) = o
(
ε2α1(1−σ)

)
. (4.26)

By (4.23)–(4.26) we deduce that ∫
Dl

ε

e−ξi−xW
p−1
i Wj dx = o

(
ε2α1(1−σ)

)
. (4.27)

Now, let us estimate:∫
Dl

ε

eξi−2rε+xW
p−1
i Wj dx � c

χl+1∫
χl

eξi−2rε+xe−(x−ξj ) dx

� ceξi−2rε+x(χl+1 − χl) � cεαi−αj +N−2| log ε| = o
(
ε2α1(1−σ)

)
. (4.28)

Finally, by (4.22), (4.27) and (4.28) we deduce (4.18). �
That concludes the proof.

Proof of Proposition 4.3 (completed). Direct computations yield:

Iε(V ) −
k∑

i=1

Iε(Vi) − 1

p + 1

∫
Dε

[
k∑

i=1

V
p+1
i − |V |p+1

]
=

k∑
i,j=1
i>j

(−1)i+j

∫
Dε

W
p
i Vj .

Let χl and Dl
ε be defined as in Lemma 4.5. Since 0 � Vi � Wi for all i, we can replace the letter W by V once or

twice in the estimate (4.16), and thus we obtain:

Iε(V ) −
k∑

i=1

Iε(Vi) = 1

p + 1

k∑
l=1

∫
Dl

ε

[
V

p+1
l − |V |p+1 + (p + 1)

∑
l>j

(−1)l+jW
p
l Vj

]
+ o

(
ε2α1

)

= 1

p + 1

k∑
l=1

∫
Dl

ε

[
V

p+1
l − |V |p+1 + (p + 1)

∑
j �=l

(−1)l+jV
p
l Vj

]

+
k∑

l=1

∑
j �=l

(−1)l+j

∫
Dl

ε

(W
p
l − V

p
l )Vj −

k∑
l=1

∑
j>l

(−1)l+j

∫
Dl

ε

W
p
l (Vj − Wj)

−
k∑

l=1

∑
j>l

(−1)l+j

∫
Dl

ε

W
p
l Wj + o

(
ε2α1

)
(using (4.18), (4.19) and (A.14))

= −
k∑

l=1

∑
j>l

(−1)l+j

∫
Dl

ε

W
p
l Wj + o

(
ε2α1

)
(using (4.16) and (4.17))

=
k−1∑
l=1

∫
l

W
p
l Wl+1 + o

(
ε2α1

) = a3

k−1∑
l=1

e−|ξl+1−ξl | + o
(
ε2α1

)
. (4.29)
Dε
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Combining estimates (4.29) and (4.8) with the choice in (2.15), we deduce that

Iε(V ) = ka1 + a2e−2ξ1 + a3ε
N−2e2ξk + a4

k−1∑
i=1

e−|ξi+1−ξi | + o
(
ε2α1

)
= ka1 + a2ε

2α1λ2
1 + a3ε

N−2−2αk
1

λ2
k

+ a4

k−1∑
i=1

εαi+1−αi
λi+1

λi

+ o
(
ε2α1

)
,

and the claim follows, because of the choice (2.16) for the αi ’s. �
Let us complete the proof of the existence of sign changing-bubble tower solutions to problem (1.2).

Proof of Theorem 1.1. In virtue of Lemma 4.1, we need to find a critical point of the function Ĩε. From Lemma 4.2
and Proposition 4.3, we get:

Ĩε(λ) = ka1 + ε
N−2

2k
(
Ψk(�) + o(1)

)
,

where the term o(1) is uniform.
We claim that the function Ψk has a minimum point λ∗ = (λ∗

1, . . . , λ
∗
k), where λ∗

i > 0, i = 1, . . . , k. In fact, it holds

lim|λ|→+∞Ψk(λ) = +∞, (4.30)

and

lim
λi→0

Ψk(λ) = +∞ for any i = 1, . . . , k. (4.31)

Let us prove (4.30). Assume |λ| → +∞. If λ1 → +∞, then the claim follows, since Ψk(λ) � a2λ
2
1. If λ1 is bounded

then λi+1
λi

→ +∞ for some i (otherwise |λ| will be bounded!) and the claim again follows, since Ψk(λ) � a3
λi+1
λi

. Let

us prove (4.31). If λk → 0, then the claim follows, since Ψk(λ) � 1
2a2

1
λ2

k

. If λj → 0 for some j = 1, . . . , k − 1, then

either λi+1
λi

→ +∞ for some i � j or λi+1
λi

is bounded for any i = j, . . . , k − 1. In the first case, it is clear that the
claim immediately follows. In the second case, we deduce that λk → 0 and the claim again follows.

Since λ∗ is stable with respect to uniform perturbation, for ε small enough there exists λε = (λε
1, . . . , λ

ε
k) critical

point of Ĩε(λ), such that λε
i → λ∗

i as ε → 0, for i = 1, . . . , k.
Therefore, the function V + φ(ξε) is a solution to (2.2).

The claim follows, since μi = e− 2
N−2 ξi = λ

2
N−2
i ε

2i−1
2k and Mi := λ

1
N−2
i . �

Appendix A

Lemma A.1. It holds:

Pεwμ(x) = wμ(x) − αNμ
N−2

2 H(x,0) − αN

(
ε2μ

ε2 + μ2

)N−2
2 1

|x|N−2
+ Rε,μ(x),

where

0 � Rε,μ(x) � cμN−2
[

εN−2

|x|N−2
+ μ2 + εN−2

]
, x ∈ Ωε,

for some positive and fixed constant c.

Proof. The function Rε,μ solves:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�Rε,μ = 0, x ∈ Ωε,

Rε,μ(x) = αN

[
− μ

N−2
2

(μ2 + |x|2)N−2
2

+ μ
N−2

2

|x|N−2
+

(
ε2μ

ε2 + μ2

)N−2
2 1

|x|N−2

]
, x ∈ ∂Ω,

N−2
2
Rε,μ(x) = αNμ H(x,0), x ∈ ∂Bε.
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Let R̂ε,μ(y) := μ− N−2
2 Rε,μ(εy), y ∈ Ω/ε \ B1. Then R̂ε,μ solves:⎧⎪⎪⎨⎪⎪⎩

−�R̂ε,μ = 0, y ∈ Ω/ε \ B1,

R̂ε,μ(y) = αN

[
− 1

(μ2 + ε2|y|2)N−2
2

+ 1

εN−2|y|N−2
+ 1

(ε2 + μ2)
N−2

2

1

|y|N−2

]
, y ∈ ∂Ω/ε,

Rε,μ(x) = αNH(εy,0), y ∈ ∂B1.

(A.1)

In particular, there exists a positive constant c such that

0 � R̂ε,μ(y) � cμ2, ∀y ∈ ∂Ω/ε, 0 � R̂ε,μ(y) � c, ∀y ∈ ∂B1. (A.2)

Let Ψ be the solution to {−�Ψ = 0, y ∈ Bd/ε \ B1,

Ψ (y) = cμ2, y ∈ ∂Bd/ε,

Ψ (y) = c, y ∈ ∂B1,

(A.3)

where d := diamΩ, so that Ω/ε ⊂ Bd/ε . An easy computation gives that

Ψ = c

dN−2 − εN−2

[
dN−2(1 − μ2)

|y|N−2
+ dN−2μ2 − εN−2

]
. (A.4)

By (A.1)–(A.3), using maximum principle, we deduce that 0 � R̂ε,μ(y) � Ψ (y) for any y ∈ Ω/ε \ B1 and by (A.4)
the claim follows. �

It is useful to write Lemma A.1 in the following equivalent way.

Lemma A.2. It holds:

Πi(x, θ) = −CNe−x−ξi H
(
e− p−1

2 xθ,0
) − CN e−2rε+ξi+x + ρi(x, θ), (A.5)

where ∣∣ρi(x, θ)
∣∣ � c

(
e−x−pξi + e−2rε−ξi+x

)
, (x, θ) ∈ Dε. (A.6)

In particular ∣∣Πi(x, θ)
∣∣ � c

(
e−x−ξi + e−2rε+ξi+x

)
, (x, θ) ∈ Dε. (A.7)

Lemma A.3. It holds: ∫
Dε

|Wi |p−1e−2(x+ξi ) dx dθ =
⎧⎨⎩O(e−(p+1)ξi ) if N � 5,

O(rεe−4ξi ) if N = 4,

O(e−4ξi ) if N = 3,

(A.8)

and ∫
Dε

|Wi |p−1e2(−2rε+x+ξi ) dx dθ =
⎧⎨⎩O(e−(p+1)(rε−ξi )) if N � 5,

O(rεe−4(rε−ξi )) if N = 4,

O(e−4(rε−ξi )) if N = 3.

(A.9)

Proof. Let us prove (A.8). We have:∫
Dε

|Wi |p−1e−2(x+ξi ) dx dθ � c

∫
Dε

e−(p−1)(x−ξi )
(
1 + e−(p−1)(x−ξi )

)−2e−2(x+ξi ) dx dθ. (A.10)

If N = 3 we set x − ξi = y and, we get:∫
Dε

e−(p−1)(x−ξi )
(
1 + e−(p−1)(x−ξi )

)−2e−2(x+ξi ) dx dθ

= e−4ξi

∫
e−(p+1)y

(
1 + e−(p−1)y

)−2e−2(x+ξi ) dy dθ = O
(
e−4ξi

)
.

Dε−ξi
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Here Dε − ξi = {(y, θ): r0(θ) − ξi � y � ξi, θ ∈ SN−1}. If N � 5∫
Dε

e−(p−1)(x−ξi )
(
1 + e−(p−1)(x−ξi )

)−2e−2(x+ξi ) dx dθ

�
∫
Dε

e−(p−1)(x−ξi )e2(p−1)(x−ξi )e−2(x+ξi ) dx dθ

= e−(p+1)ξi

∫
Dε

e(p−3)x dx dθ = O
(
e−(p+1)ξi

)
.

The case N = 4 can be deduced by previous estimate.
Let us prove (A.9). We have:

c

∫
Dε

|Wi |p−1e2(−2rε+x+ξi ) dx dθ � c

∫
Dε

e−(p−1)(x−ξi )
(
1 + e−(p−1)(x−ξi )

)−2e2(−2rε+x+ξi ) dx dθ. (A.11)

If N = 3 we set x − ξi = y and, we get:∫
Dε

e−(p−1)(x−ξi )
(
1 + e−(p−1)(x−ξi )

)−2e2(−2rε+x+ξi ) dx dθ

= e−4(rε−ξi )

∫
Dε−ξi

e−(p−3)y
(
1 + e−(p−1)y

)−2 dy dθ = O
(
e−4(rε−ξi )

)
.

Here Dε − ξi = {(y, θ): r0(θ) − ξi � y � ξi, θ ∈ SN−1}.
If N � 5 we set x − rε = y and, we get:∫

Dε

e−(p−1)(x−ξi )
(
1 + e−(p−1)(x−ξi )

)−2e2(−2rε+x+ξi ) dx dθ

= e−(p+1)(rε−ξi )

∫
Dε−rε

e−(p−3)y
(
1 + e−(p−1)(y+rε−ξ−i)

)−2 dy dθ

� e−(p+1)(rε−ξi )

∫
Dε−rε

e−(p−3)y dy dθ = O
(
e−(p+1)(rε−ξi )

)
.

Here Dε − rε = {(y, θ): r0(θ) − rε � y � rε, θ ∈ SN−1}.
The case N = 4 can be deduced by previous estimate. �

Lemma A.4. It holds: ∫
Dε

W
p−1
i Π2

i dx dθ = o
(
ε2α1

)
, (A.12)

∫
Dε

|Πi |p+1 dx dθ = o
(
ε2α1

)
, (A.13)

∫
Dε

W
p
i Πj dx dθ = o

(
ε2α1

)
, i �= j. (A.14)

Proof. Let us prove (A.12). By (A.7), using estimates (A.8) and (A.9), we get:
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∫
Dε

|Wi |p−1Π2
i dx dθ � c

∫
Dε

|Wi |p−1e−2(x+ξi ) dx dθ + c

∫
Dε

|Wi |p−1e2(−2rε+x+ξi ) dx dθ

= o
(
e−2ξi

) + o
(
e−2(rε−ξi )

)
.

Let us prove (A.13). By (A.7) we get (setting in the second integral x − rε = y):∫
Dε

|Πi |p+1 dx dθ � c

∫
Dε

e−(p+1)(ξi+x) dx dθ + c

∫
Dε

e(p+1)(−2rε+ξi+x) dx dθ

� ce−(p+1)ξi

∫
Dε

e−(p+1)x dx dθ + ce−(p+1)(rε−ξi )

∫
Dε−rε

e(p+1)y dy dθ

= O
(
e−(p+1)ξi + e−(p+1)(rε−ξi )

) = O
(
ε(p+1)αi + ε(p+1)( N−2

2 −αi)
) = o

(
ε2α1

)
. (A.15)

Here Dε − rε = {(y, θ): r0(θ) − rε � y � 0, θ ∈ SN−1}. Let us prove (A.14). By (A.7), setting x − ξi = y we deduce
that ∫

Dε

W
p
i (Wj − Vj )dx �

∫
Dε

(
eξj −2rε+x + e−ξj −x

)
W

p
i (x)dx

� c

∫
Dε−ξi

(
eξj −2rε+ξi+y + e−ξj −ξi−y

)
Wp(y)dy

� ceξj −2rε+ξi

∫
R

eyWp(y)dy + ce−ξj −ξi

∫
R

e−yWp(y)dy

= O
(
eξj −2rε+ξi

) + O
(
e−ξj −ξi

) = o
(
ε2α1

)
. (A.16)
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