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In this paper we construct a domain €2 for which the problem

N2
—Au=uN-2 —cu inQ
u >0 in Q
u=0 on 92

has a family of solutions which blow-up and concentrate in two different points of Q as
€ goes to 0.
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0. Introduction

Let Q be a smooth bounded domain in RY with N > 3 and let p = % be the
critical exponent for the Sobolev embedding H}(Q) — LPFL(Q).

In this paper we are concerned with the problem of existence and qualitative
properties of solutions for the non linear elliptic problem

Au=uN%E ey inQ
u >0 in (0.1)
u=20 on 0f)
where ¢ is a positive parameter.
In the last years, several researches have been developed on the existence of

solutions — not necessarily positive — of elliptic equations with a non linear term
which is a perturbation of a critical non-linearity.
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In the very celebrated paper [6], Brezis and Nirenberg study a critical elliptic
problem with a general lower-order perturbation whose model is

—Au = u% + A in Q)
u >0 in (0.2)
u=20 on 0f)

for an arbitrary parameter .

As the authors pointed out, solvability of (0.2) is strictly related to the sign of
A and the dimension V.

A first general observation (see [6]) is that if A; < A, A; being the first eigenvalue
of (—A) in Q with Dirichlet boundary condition, then (0.2) does not have any
solution.

On the other hand, if A < Ay but still A > 0, solvability of (0.2) depends on the
dimension N. If N > 4 problem (0.2) has a solution, independently on Q2. In N = 3,
the problem turns out to be more delicate and in [6] a precise result is given in the
case () is a ball: in this case, (0.2) has a solution if and only if A € (31, A1).

Once established the solvability of (0.2), a natural direction of investigations
was to study multiplicity and qualitative properties of solutions to (0.2); in par-
ticular to understand the concentration phenomena of the solutions for A > 0 but
close to 0.

In this context a crucial role is played by the Green’s and Robin’s functions of
the domain play a crucial role. Let us recall their definitions.

Let 'z (y) = u_';%? for every x, y € RV, be the fundamental solution for the
Laplacian on entire RY. Here vy is a positive constant which depends only on N.
For every point x € QU 912, let us define the regular part of the Green’s function,
Hg(x,-), as the solution of the following Dirichlet problem

{ AyHo(z,y) =0 in Q, 03)

Hq(z,y) =T,(y) ondN.

The Green’s function of the Dirichlet problem for the Laplacian is then defined by
Gz(y) =T (y) — Ho(z,y) and it satisfies

{ —AyGa(y) = 62(y) inQ,

Gz(y) =0 on 00 04

For every x € () the leading term of the regular part of the Green’s function,
ie. ¢ — Hq(z,x) is called Robin function of Q at the point x.

In [21] it is proved that any nondegenerate critical point xg of the Robin’s func-
tion generates a family of solutions of (0.2), for A = ¢ > 0 and N > 5, concentrating
around xo as € goes to 0 (see also [14]). Rey generalized this result in [22]. In [18]
the authors constructed solutions which concentrate around & > 1 different points
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of  which are suitable critical points of the function @y : R’j x F — R defined
by

k 4
(M)A, ) — 5 AT 05)

i=1

where A = (A1,...,A;)T and M(z) = (mi;(z))1<ij<k is the matrix defined by

q)k(A, ac) =

N~

mii(m) = H(l‘i, $i), mij(ac) = G(LUZ', acj) if 4 7é j . (06)

Problem (0.2) becomes notably more delicate when A = 0 or A < 0, since in these
cases its solvability depends also on the geometry and the topology of 2.

In fact, a Pohozaev’s identity (see [20, 6]) yields that (0.2) has no solution when
2 is star-shaped (strictly star-shaped) and A < 0 (respectively A = 0). On the other
hand, (0.2) has at least one solution if €2 is a symmetric anellus for any A <0 (see
[15]) or when © has a “small hole” for A = 0 (see [8]). The most general result
concerning existence of solution for (0.2) when A = 0 is contained in [3]: Bahri
and Coron showed that if some homology group of Q with coefficients in Zs is not
trivial, then (0.2) has at least one non trivial solution.

In this paper we study solvability for problem (0.1) for N > 5. In particular,
we are concerned with existence of solution which blow-up and concentrate in some
points of Q in the sense of the following definition.

Definition 0.1. Let u. be a family of solutions for (0.1). We say that u. blow-up
and concentrate at k points x1,...,z; in  if there exist speeds of concentration
M, -, k. > 0, and points x1_,..., x5 € Q with lim._,o ;. = 0 and lim. g z;. =
X, x; #aj ford, j=1,...,k, i # j, such that

uE—ZiE(U” )— 0 inHy(Q) ase—0

MigTig

where i is the adjoint operator of the embedding iq : H} () — LPT((Q).

Such a definition is motivated by a blow-up analysis for solutions to problem
(0.1), as it is performed in [23]. In [2], some links between the speeds of concentration
and the points of concentration are established. Moreover it follows from [17] that
the blow-up points remain far from each other and that the speeds of concentration
are of the same order.

Here (see [1, 7] and [24])

N-—2
A
Uny(z) =cn ’ = zeRY, yeRY, A>0,
A+ |z —yl?)=

with ¢y = [N(N — 2)]N=2)/4 are all the solutions of the equation

N+2 .
—Au=u~-2 inRY.
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If pi_,..., pr. are of order 5ﬁ, namely lim._.g Efﬁuig =X > 0fori=
1,...,k, then existence of solutions to (0.1) is related to existence of critical points
for the function vy, : Rﬁ_ x QF — R defined by

—_

k
Ur(A,z) = = (M (2)A,A) + = Z AY?, (0.7)

N~

where the matrix M (x) is defined in (0.6).
In the last part of Sec. 2 we will prove the following necessary condition.

Theorem 0.1. Let uc be a family of solution of (0.1) (as in Theorem 2.1) which
blow-up and concentrate at k different points x1,...,x, of Q with speed of concen-
tration w;. such that lim._.o 5_ﬁui5 =XN>0fori=1,...,k Then (A,z) is a
critical point of ¥y, where A; = e, A; fori=1,...,k (see (2.23)).

A straightforward application of this theorem is a non-existence result.

Theorem 0.2. There do not exist any family of solutions of (0.1) (as in Theo-
rem 2.1) which blow-up and concentrate at a given point xo of 2.

The crucial point is that the concentration point o should be a critical point
of the function © — H(z,x) with H(zo,z0) < 0, which is not possible.

On the contrary, if €2 is a domain with a small “hole”, we prove the existence
of a solution which blow-up and concentrate in two points, showing that ©s (see
(0.7)) has a critical point of “min-max” type. Here we follow some ideas of [10] (see
also [11]).

Our existence result is

Theorem 0.3. Let D be a bounded smooth domain in RN which contains the origin
0 and let N > 5. There exists 6o > 0 such that, if 0 < § < §p is fized and §2 is the
domain given by D\ w for any smooth domain w C B(0,4), then there exists eg > 0
such that problem (0.1) has a solution ue for any 0 < & < 9. Moreover the family
of solutions u. blows-up and concentrates at two different points of ) in the sense
of Definition 0.1, with speeds of concentration of order e ¥-1.

We would like to point out that it is known that functions similar to (0.5) and
(0.7) play a crucial role in the concentration phenomena associated to the following
supercritical and subcritical problems

N2 .
—Au=u~N=2%  inQ

u>0 in Q (0.8)
u=0 on 09}.
More precisely in [4] the authors considered the subcritical case, i.e. % —¢, and

they showed that existence of nondegenerate critical points of a suitable function,
which involves the first eigenvalue of the matrix (0.6), allows to find solutions which
concentrate in those points as € — 0.
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In [10] the authors study the supercritical case, i.e. N+2 + ¢, and they exhibit
a domain € such that problem (0.8) has a family of solutlons which blow-up at
exactly two different points of 2.

This paper is organized as follows. In Sec. 1 we reduce the problem to a finite
dimensional one, using the usual Ljapunov—Schmidt procedure (see [2] and [12]).
In Sec. 2 we work out the asymptotic expansion for a finite dimensional function
which comes from the reduction and we prove Theorem 0.2. In Sec. 3 we set up
a min-max scheme to find a critical point of the reduced function and we prove
Theorem 0.3. Finally in Appendix A we make some technical computations.

1. The Finite-Dimensional Reduction
Let a be a fixed positive number which will be choosen later. Let us set
Qe :=Qfe ={a/e" |z € Q}

and let us introduce the following problem

N+2

—Au =uv-2 —g2atly  in Q.
u>0 in Q. (1.1)
u=0 on 9f). .

By a rescaling argument one sees that u(x) is a solution of (0.1) if and only if
w(x) = E”‘¥u(€a$) is a solution of (1.1).
Let H}(€2.) be the Hilbert space equipped with the usual inner product

1/2
(u, ) :/ VuVv, which induces the norm ||u| = (/ |Vu|2> .
Qe

It will be useful to rewrite problem (1.1) in a different setting. Let us then
introduce the following operator.

Definition 1.1. Let i} 2( c
immersion i. : Hj(Q:) — L (Q ), i

iyw=v¢:mw»:1;mmwm¢vVweﬂam»

) — H}(9Q.) be the adjoint operator of the

Observe that ¢} : L~ (2e) — H}(£e) is continuous uniformly with respect to
€, i.e. there exists a constant ¢ > 0 such that

liz(u)ll < ellull gy, Vu e L¥=(R), Ve>0. (1.2)

By means of the definition of the operator i}, problem (1.1) turns out to be
equivalent to

{uzi[w> ety "

u € H§(Q)

where f(s) = (sT)~-2.
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As € — 0, the limit problem associated to (1.1) is
—Au=u? inRY (1.4)

where p = %

It is well known (see [1, 7, 24]) that all positive solutions to (1.4) are given by

—2

Uxy(z) =cn (*)Nz

EArET

(N—2)

where cy = [N(N —2)] « , A>0and y € RV,
It is then natural to look for solutions to (1.1) with k blow-up points of the form

k
U= ZPEUAj;yj(x) +¢e(m) (1.5)
j=1
where P, denotes the orthogonal projection of Hy?(RN) onto Hj?(€2.), that is,
PEU)‘jvyj (.73) = Z:(U§J7yj)('r) T E QE ) (16)

for certain parameters A; and points y;. The function ¢, in (1.5) is a lower order
term given by a Ljapunov—Schmidt reduction.
For notation’s convenience we call

Uj:=Uy,y, and P.Uj:= i:(Uijyj)'

In order to set the Liapunov—Schmidt reduction’s scheme, we need to introduce
the functions

0. 6U>\i7yi

. 8U>\iyyi
W= A

: N
oyl

¢£:: j:17"" )

and the corresponding projections onto H3 (), given by
Pyl = (U ), i=1,...,k, j=0,...,N.

We will first solve problem (1.1) over the set of functions orthogonal in HL(QL)
to P.¢!. For this purpose we need to introduce the following definitions.

Definition 1.2. For any € > 0, A € (RT)* and y € OF set
K5, ={ueHy(Q:) | (u,Pp}) =0, i=1,....k j=0,1,...,N}. (1.7)
Let TI° : (R*)* x QF x Hj(2.) — K§5_, be defined as
IFA, y, u) =115 (),

where 15, - H(Q:) — K3, denotes the orthogonal projection on K7 . Moreover
let L5, : Hy(Qe) — K3 , be the map defined by

k
L5 y(0) =115, {¢> — i [f’ (Z PEU¢> ¢ — 62”““4 } . (1.8)
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The aim of the remaining part of this section is to show that there exists a
unique solution ¢ € K Sy of the problem
} - 0

k k P k
Ay {ZPEUi +o—if KZ P.U; + ¢> — gt (Z P.U; + ¢>
(1.9)

i=1 i=1 =1

and to study how ¢ depends on €, A and y.
Observe that (1.9) can be written in the form

Ay (ZPan +¢>
— 15, 04 [(Z PU; + ¢)p _p (Z PEUZ)IFI (Z P.U; + qzﬂ .

Hence we first need to study the invertibility and the regularity of the operator

L5 . uniformly with respect to € and to the parameters (), y) in a certain range.

From now on we will consider numbers A and points y belonging to the set
05 ={(\y) € R x QF [y =w;/e®, i=1,... .k (\z)€Os},  (110)
where
05 = {(\z) € (RM)* x QF | dist(x;,00Q) > 5, § < \; < 1/6, (1.11)
i —a| >0, i=1,....k i#1}. (1.12)

Lemma 1.1. The map II¢, given by Definition 1.2, is a C*-map. Moreover for any
d > 0 there exist g > 0 and ¢ > 0 such that for any € € (0,e0), for any (A, y) € ©5
and for any u € H} () it holds

M=, g, w)|| < effull,
DAL (A, g, w) | £ mp )y < cllull
DI (A, y, w) || £k i3 (20)) < cllull,

[DuII= (A, y, W) £ mne 13 0. )) < C-

Proof. An application of the dominated convergence theorem and (1.2) yield that
the maps
(\y) — PUi and  (\y) — Pot]
are C'. Again by (1.2) and the linearity of differentiation, one gets
|IDA\P.U;|| <c¢ and |DyP.U;|| <c
and
IDAP-gl| < ¢ and |DyPy]| <e,

uniformly for € small enough and (), y) € ©5.
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Now a direct computation yields the estimates we are looking for. |

Lemma 1.2. For any § > 0 there exist €9 > 0 and ¢ > 0 such that for any
€ € (0,e0) and for any (A, y) € ©F it holds

L5y (@)l = Cligll Vo e K5, (1.13)
Moreover the map L : ©5 X K5, — K5, defined by
LNy, h) = L5, (h) = (L5,) "' () (1.14)

is of class C'. Moreover for any ¢ € (0,e0), for any (\,y) € ©5 and for any
h € K5 , it holds

1Dy L5, (A y, )| < Clh| (1.15)
and

DALY y (A g, R)[| < C|A] - (1.16)

Proof. Existence, uniqueness and estimate (1.13) can be proved arguing like in
[18]. Let us show (1.15); estimate (1.16) can be obtained in a similar way.

Let us call ¢ = £§7y (A, y, h). By differentiating with respect to y the following
expression

k p—1
Sy i |p (Z PgUi> d—e2 oty Y =h
=1

we easily get

k p—2 k
i=1 =1

k p—1
—(DyII5 ) § & —ic p(ZPEUZ) p—e* ol 5. (117)
i=1

Now set
Dy = (Dyd)" + ) biPeyl, with (Dyo)* € K5,
First of all we claim that
[bi;] = O(ll¢ll) - (1.18)
In fact, since ¢ € K5 ,, we have (¢, szpg) = 0 Vi, j, which becomes by means of

differentiation (¢, D, P-1!) = —(Dy¢, P-)}). Then the numbers b;; are solutions of
the following algebraic system

D big (P, Pyy) = —(, Dy Pty
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and (1.18) follows. Summing up all the above information, we see that (D,¢)* €
K3 , satisfies the following relation

5((Dy0)H) = =15, (D bisPvd)

p—2 k
+H§,y Z: p(p - 1) <Z PEU'L> Dy (Z P5U2> ¢

=1 i=1

p—1
PEUZ) p—c> Mo |.  (1.19)

0

—(DyII5 ) | ¢ —ic p(

i=1

From (1.19) and (1.13), we can argue that

I(Dye) "Il < CIILS , (Dyd) )]

k p—l
< C|Y biPy] it | p (Z PsUi> (Xbupevl)
=1
k p—1
. 62a+1 Z bijps¢z +C Z: <Z PEU¢> 1)
=1
k p—l
+C ¢ <Z PEUZ-> ¢ —e*Flo
i=1

<c | by

k p—1
+ (Z PEUi> o +lel
i=1

2N
Ntz

<c{> bl +lsl} < Clol (1.20)

where we have used (1.18) and the property that for any u € H,*(Q.) it holds

k p—1
=i p(ZPsUz') w— ey ||| < Oflul
=1

as follows from simple computations. Hence from (1.18), (1.19), (1.20) we get
IDyll < 11(Dyo) 1| + | D bis Pl | < Cllgl

and (1.15) follows. m|

We have now all elements to solve (1.3) over the set K .
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Proposition 1.1. Let a = . For any 6 > 0 there exists g > 0 such that for

N—1
any € € (0,e0) and for any (A, y) € OF, there exists a unique 5., € K5, such that

k k p k
f\)y{ZPgUi—Hb—i: KZPEUmb) —g?tt <ZPEU1»+¢> }:0

=1 i=1 =1
(1.21)

and

6] < Ce*, (1.22)
where

2a0 + % if N>6

p= | (1.23)
20( + Z ZfN =5

Moreover the map ¢° : ©5 — K35 defined by
PN y) = 9%, (1.24)

is of class C'. Moreover for any ¢ € (0,e0) and for any (\,y) € ©5

I1Dx¢" (A, y)| < Ce” (1.25)
and

Dy (A, y)|| < Ce*. (1.26)
Proof. Existence, uniqueness of ¢5,, and estimate (1.22) follow arguing like in
[18].

For notation’s convenience we will write ¢ = ¢5 .

By definition, the function ¢, is a zero of the fnap B : 0§ x K5, — K5,
defined by

B()‘v Y, ¢) = (ZS - ‘Ci,y o Hi,y o Z: [NE (>‘a Y, (b)] (127)
where N, : (RT)* x QF x H{(Q.) — K5 , is given by

k

k k
NoOpu) = [f (z Py, +u) SR - f (z am) .
=1 i=1 =1

k
_82a+1 <Z Pan>
=1

Observe that N, depends continuously on its parameters.
Differentiating (1.27) with respect to ¢ we see that for any 6 € H} (€2.)

DyB(\y,9)[0] =0 — LS, o115 , 0 iZ[DyNe(N,y, 9)0] . (1.28)
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By Lemma 1.1 we deduce
1£5,y © %y, 0 2[DeN=(A, y, )0
< CIIDN-(\,y. 8)6]| 2 < ClIDN-(\,y. )| x 6] 2,
< Cce*|g|, (1.29)

where we used that

k
IDeNo(A . D)l = [ (Zpeuiw) (ZP U> y<C

i=1

with a constant C' independent of ¢ and (\,y) € ©5 (see [18, Lemma 5.3]). From
(1.28) and (1.29) it follows that Dy B(\,y, ¢) is invertible with uniformly bounded
inverse; moreover by Lemmas 1.1, 1.2 and (1.28) it follows that Dy B(\,y, ¢) is a
C'-map.

Let us now differentiate with respect to y

oDyII5 , [iZ (N (A, y, ¢))] o1
(DyN:(N,y,9)), (1.30)
while
Dy Ne(Ay, ¢ <ZP U; + qs) o PeUo — f'(Ua) Dy U,y
=1
k
1" (Z P€U¢> Dy P-Uggp — €' Dy PU, . (1.31)
=1

Since DyB(A,y, ¢) depends continuously on (), y, ¢), the implicit function Theorem
let us conclude that ¢€ is a C''-map and also that

D)\,y(bs()‘v y) = _(D¢B<)‘7 Y, ¢))_1 © [D)\,yB<>‘7 Y, ¢)] . (132)

Now let us prove (1.26). (1.25) can be proved in a similar way.
We have

IDyéll < €D, By 6)]
< Ol (N, )| + (DN (0w )}
CLUIN 5, 8) v, + 1Dy N &) o, }

< e, (1.33)
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where the last inequality follows from the estimates (see [18, Appendix A] and [21])

||N€()‘a Y, (ZS)H 1\?12
k k
<cC |f’ (ZPsUi+¢> ~f (ZM) Il + | PUi|_aay,
i=1 i=1 N
< C(€2a+,u + €2a+1) (134)
and
1D, N, ) 2,
B k k k
<|I|r (Z P.U; + ¢> ~f (Z PEUZ) —f (Z PEUZ-> | D,y P.U,
L i=1 i=1 i=1 1\?1,2
k
+ lf’ <Z PEUZ-> — f'(Ua)| Dy P.U,
i=1 2N
N+2
+ ||f/(Ua)[Dy3PsUa - Ua]”]\?—fz + €2a+1”Dy3PEUﬂ” 2N
< C(H¢||min{2,p} 4o N;—2 + €2a+187%)
< Cet. (1.35)
O

2. The Reduced Functional

From Proposition 1.1 we can deduce that the function w. = Zle P.Ux .y + 95,
is a solution of (1.3) if and only if (X, y) € ©F are such that for any i =1,...,k and
j=0,...,N

k A »
0 = <Z PEU}‘i;yi + ¢§\7yﬂ Peng\fyyf) - (Z: [(Z P5U>\i7yi —|— ¢i)y>

i=1 =1

k
_ 2ol (Z P.Uy, y + ¢iy>

i=1

,Pszpjf)yf) : (2.1)

We prove the following

Lemma 2.1. The function w, = Ei;l P.Uy, y; + 95, s a solution for (1.1) if and
only if (\,z) € O5, v = %y (see (1.12), (1.10)), is a critical point for the function
F.(\ z) defined by

k
F.(\ ) =J. (Z P.Uy, 4 + ¢§,y> , (2.2)

i=1
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where J. : Hy(Q.) — R is defined by
2a+1

1 1 5
JE(U): 5/0 |_D'U/|2dy—]m/Q Up+1dy+TA U2dy

€

Proof. Observe that

or. oF,

o] (\z)=0, Y Nzx)=0
is equivalent to
B B
DI (3 PU+65,) la_yi (> ru)+ 507 ¢M] —0 (2.3)
and
B B
DJ. (3 PU+¢5,) [8_/\i (> rui)+ e qbf\)y} —0. (2.4)
Since
B : 0
57 (> PUi) = Pl + (1), i (> PU:) = P 4+ o(1)
and
8 E). [e3% 6¢87< (0%
o Rl e R

(see Proposition 1.1), Egs. (2.3) and (2.4) read
DJ. (Z P.U; + ¢§7y) [Pp? +0(1)] = 0.

Observe now that for a given function ¢ € Hg(€.), we can uniquely decompose 9
in the following way

Y =15 ¥ + Z bi; P
ij

for certain unique constants b;;; obviously Hi,yl/’ eK f\)y.
On the other hand, from the definition of ¢5 , we have that

DJ. (Y PU+¢5,) 0] =0 VOEKS,.
Hence
VE.(\z) =0

is equivalent to

DI (3 PU+65,) [P.] +o(1)u] =0

DI (S PU+6,) | Pl +o1) [ SRl | | =0,
%,J
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that turns out to be
DJ. (3 P+ 65, ) [Pv] = 0; (2.5)
finally, Eq. (2.5) is precisely (2.1). |

We want now to work out a precise expansion for

F.(\ ) <ZP UAL,%+¢M>.

i=1

Lemma 2.2. Let o = ﬁ. We have

1

k
_ _ 1 N-2
F.(\z) =kCy + EAQ(M(x) AT + 5B <§ Af)] eV
+o(eN4) (2.6)
uniformly in C'-norm with respect to (\,z) € ©s. Here
1 1
Cy==[ |DU?-— [ uvrt 2.7
veg [PV [ (27)
and
A= UP and B = U?. (2.8)
RN RN

Proof. The proof of this lemma is based on the following estimates

N-—2
P.Uy, y,(2) =e* WGz, 2)\, F ( /]R N U”) +o(e*N2) (2.9)
away from z = y, and
N—2
Ory ., (2) = VD H (%2, 2)N T ( / U”) +o(e* 7)) (2.10)
]RN
uniformly for z on each compact subset of €2, where D ;s (2) = Ux;y; — PeUx; ;s

i.e. ¢y, .y, (2) solves the equation
{ —Ady; y,(2) =0 in Q.
Oxjw; = Unjy; on 992 .

The functions G and H are respectively the Green function and the Robin function
of the Laplacian with Dirichlet boundary condition on 2. In fact, we want to work
out an expansion of Fy(A,x) in term of G and H.

Let

F*(\ z) <ZP U,\l,%).
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First of all we prove that

k
]_ N—2 N—2 ]_
- > 5 a(N-2) - 2 2041
2A(M(x))\ LATT e +QB<§ /\Z>]s

i=1

FX(\z) =kCy +

+ o(e?*t) (2.11)

uniformly in C'-norm with respect to (A, z) € ©s. Arguing like in [10], we have

1 k 2 p+1
— . P,
2 ‘/QE D (2 PE U)\“yt) ‘ p + 1 5 <Z UAHUL>

N-—2 N-—2

1
= KCn + 5 A(M(2)A™> A7 )e(N=2) (2.12)

uniformly in C'-norm with respect to (A, x) € ©5.
We need now to evaluate

2a+1
/ Z P. UA“%

2a+1

dx

Z/ (P.Uy, 4. dm+22/ P.Ux, i P-Uy, y, ¢+ (2.13)

1<J

Fori=1,... k we get

/ (P.Us, ) di
Qe

- / (PUs, 31 )? — (Un,y))d + / (U, )? de
Qe

Qe

= /Q [Qﬁl,yl - 2U>\i7yi¢>\i7yi] dr + / (UAiyyi)2 dx. (214)

=

Since N > 4, we have

A\, N-2
Gde= [ oiies|
I e

:/\3/ U2 dz + O(e*W=2). (2.15)
RN

From (2.10) we get

2
/ O dr = A 2N (/ ur dHJ) / H(z,x;)? do + o(*™=2)
Q. ' RN Q

= O(e*WV=2)y | (2.16)
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N-2 2 H(z,z;) N-2
/ Oy Uniyys do = —2X; 7 (/ ur dm) T 4 o(e2 V)
Q. RN o |z —
= O(e*N=2)) (2.17)
and if j #4
/ P.Uy, 4 P-Uy, y, dz = O(*N=2) (2.18)
Qs

uniformly with respect to (A, z) € ©5. By means of (2.14)—(2.18) we conclude that

glot! : ’ 1 2 : 2| 2a+1 2a-+1
5 /Q ;PEU&.% dm:§</RNU> ;/\ g2atl 4 p(e20+ly

(2.19)

Therefore the claim follows by (2.13) and (2.19).
After having found the expansion of F', we need to show that the functions F;
and F* are C'l-close, that is

E.(\x) — F*(\ z) = o(e*N=2) (2.20)
and
D(F.(\,z) — F*(\, z)) = o(e*N=2) (2.21)

uniformly for (A, z) € ©s.
By Taylor expansion, we have

k k
F.(\z)— F*(\z) = J. (Z P.Uy, 4 + é) —J. (Z PEUAW)
i=1

=1

1 k
— / tdt D*J. (ZPEUAM”H&) [6]2, (2.22)

0 i=1

where we used that DJ, (Zle P.Uy, y, + ¢)[¢] = 0 from definition of ¢. We have,
in particular,

1 k
/ tdtD?J. (Z P.Ux, . +t¢> (4]

0 i=1

[l |
= /Oltdt /Q <<§PEUM,%>Z)¢— <§ P.Uy, 4, +¢>p¢

k p—l k
—p (Z P.Uy, 4 + t¢> ¢+ PUN, 4.6 | do

i=1 i=1

=

k p-1
|D¢|2 —p (Z PsUki,yi + t¢> ¢2 + €2()4—‘1-1¢2 d.f
=1
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So we can conclude that

[Fe(A @) — FZ (A, )

k p—1 k
<C / (Z PEU)\z',yz') ¢2 + ghott / <Z PEU)‘i;.Uz‘) ¢
2 \i=1 2 \i=1
2N &

k
<C / (ZPEUMM) do | ||g]]* + &>t
Qe \i=1

k
Z PeU)myz

=1

1l

N+2

_ O(Ea(N72)) ,

so we get (2.20).
In order to obtain (2.21), we observe that

DI[FE(A? .Z‘) - Fa*(A’ .Z‘)]

p

1 k P &
:5—’1{/(; tdt[/{;s Dy[(%PeU&,%) ¢_ <;PEU)\“‘%+¢> ¢

-1
E2a+1 / Dyb
Q

k P k
P (Z P.Uy, y; + t¢> ¢2 (Z PeU)my@)] dm] }
=1 e i=1

Arguing like in Lemma 1.2 and taking into account (1.15), we get

+

| Doy (Fe (A, @) = FE (A, 2))] = o(e*V2)

uniformly on (A, z) € O5. The corresponding estimate for the derivative with respect
to A can be obtain in a similar way. O

Let us now introduce new parameters A defined by
A2AN"2 = BA? fori=1,...,k (2.23)

and the function 1y : R’j x QF — R defined by

DN | =

k 4
V(A 2) = %(M(x)A,A) T AT (2.24)

where M (z) = (my;(x))1<i,j<k is the matrix defined by
mii(m) = H(.’bi, xi) s mij(ac) = G($i71'j) if 4 75 j . (225)
Theorem 2.1. Let u, = Zi;l P.Ux,, ;. + 5., be a family of solution of (1.1)

such that lim,_,qg Ae = Ag > 0 and lim._,q ev=a Ye = xo with (Ao, zo) € Os for some
d > 0. Then (Ao, xo) (see (2.23)) is a critical point of Vy,.
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N-—2
Proof. Set z;. = 5N174yi5 and A;, = AB’1/2)\Z,€2 for i =1,...,k. From Lem-
mas 2.1 and 2.2 we deduce the estimates

0= VF.(A\:,z.) = [V (Ac, 22) + o(1)]e ¥1 | (2.26)
which hold uniformly with respect to (A, z) in Os. By passing to the limit as € goes
to zero in (2.26) we get the claim. O
Proof of Theorem 2.1. It follows from Theorem 2.1. O

In particular, as far as it concerns the existence of solutions which blow-up
and concentrate at one point, i.e. kK = 1, we can prove the result of non-existence
contained in Theorem 0.2.

Proof of Theorem 2.2. Let u. be a family of solutions which blow-up and con-
centrate at xg € ). Arguing as in [4], one can prove that the speeds of concentration
are of order e¥-4. Then we apply Theorem 0.2, taking into account that if k =1
the function 9 : RT x  — R reduces to

4

1 1
d)l(AVT) = 5 H(JE7.§U)A2 + 5 AT

and it does not have any critical point, since H(z,z) > 0 for any = € Q. O

3. Existence of a Two-Spike Solution

In this section we construct a domain 2 for which problem (0.1) has a family of
solutions which blow-up and concentrate at two different points of £ in the sense
of Definition 0.1. Here we follow the ideas of [10].

Let D be a bounded domain with smooth boundary in RY which contains the
origin 0. The following result holds (see [10, Corollary 2.1])

Corollary 3.1. For any (fized) sufficiently small o > 0 there exists 69 > 0 such
that for any 0 € (0,d¢) and for any smooth domain w C B(0,9) it holds

M(M(z) <0 VzesS,
where the manifold S is defined by
S ={(z1,22) € | |a1| = |22| = 0}
and the domain ) is given by
Q=D\w.

Here A1 (M(x)) denotes the first eigenvalue of the matrix M (x) associated with the
domain €.
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In order to find a solution with two blow-up points in © of (1.1), in virtue of
Lemmas 2.1 and 2.2, it is enough to find a “sufficiently stable” critical point of the
function v defined by

1 1
V(A z) = 5 [H(x1,21)A? + H (29, 22)A3 — 2G (1, x2) A1 Ag] + 5 [AY + AJ],

where 7 = ﬁ.

In the following we will construct a critical point of “min-max” type of the
function .
Let us now introduce for [ > 0 and p > 0 the following manifold

W ={zeQ® | NM()<-1}nV,,
where
V, = {(z1,22) € Q% | dist(x1,09) > p, dist(x2,09) > p, |21 — 2| > p}.

Lemma 3.1. There exist pg > 0 and ly > 0 such that for any p € (0,po) and
1 €(0,lp) it holds S C W,ﬁ.

Proof. It is enough to take \g = — max,cs2 A1 (M (x)) and po = dist(S,00). O

Lemma 3.2. There exists R > 0 such that it holds

max ¢(re(z),z) > max ¢Y(re(z),z) =0, (3.1)
z€S? z€S?
0<r<R r=0,R

where e(x) = (e1(z),ea(x)) € RZ is an eigenvector associated with \i(M(x)) with
()] = 1.

Proof. It follows from Corollary 3.1, since v < 2. O

Now let a and b be fixed so that

b= max ¢(re(z),r)>a> max ¥(re(z),z) =0. (3.2)
0552 A

Lemma 3.3. There exists R > 0 and for any p € (0, po) there exists 7 = 7(p) > 0
such that for any | € (0,1p) it holds

b= max ¢(z,re(z)) > min P(z,A)

z€S? z€S?
0<r<R A€,
> min ¥(x,A) >a> max (z,re(x)) =0, (3.3)
mEWPL zeS?
Ael. r=0,R

where I is the hyperbola in R% defined by I. = {A € R% | AjAy = 7}.
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Proof. For any A € I, we have

i, A) > —G<x1a$2)7+% [AY ’ (Lﬂ

Ay
1 1 YV
_WT+§|:A’1Y+(A—1>:|>G7 (34)
provided that 7 is choosen small enough, since v < 2.
Finally (3.3) follows from (3.1), (3.4) and Lemma 3.1. m|

Lemma 3.4. For any 0 < a < b andl € (0,ly) there exists po > 0 such that for
any p € (0, po) and for any (A, z) € RE x W,f with Y(x, A) € [a,b], Vap(A,z) =0
and x € 9V, there exists a vector T tangent to R: x OV, at the point (A, z) such
that

V(A z)- T #0.
Proof. Step 1. We argue by contradiction. Let (A,,z,) € Ri x 2 be such that
w(Apvmp) € [a,b], VAw(Apvmp) =0, )‘l(M(‘rP)) < -l < 07 diSt(xlpan) =P

dist(x2,,09Q) > p, |21, —22,| > p and for any vector T' tangent to Ri x 0V, at the
point (A,,x,) it holds

V(A x,)-T=0. (3.5)

Set Q, = %, y = 2 and pp, = pf%Ap. We will use the notation of the
Appendix A.
Then

dist(y1,,0Q,) =1, dist(y2,,0Q,) > 1, |y, —y2,| > 1.

After a rotation and a translation we may assume that y;, — (0,1) as p — 0, where
0 = Ogv-1 and that the domain {2, becomes the half-space P = {(y!,...,y") €
RN : yN > 0}.

First of all we claim that

0<ect <Ay, Ay, <cz asp—0. (3.6)

It is easy to check that 0 < ¢1 < |A,| < 2. In fact since Va(A,, z,) = 0 we have
that

2 —
bApp) = = (A, +A3) € o)

and so if |A,| — +o0 or |A,] — 0 and a contradiction arises.
Assume that lim, Ay, = 0. Since Va(A,, z,) = 0, we have that

0= Pi(Niz)aAl V(Ap, )

7y N _
=H,(y1,,y1,)M1, — Go(y1,,v2,) 2, + 5 (A1, p~ W 2)]1\1 2
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with H,(y1,,91,) < 1and G,(y1,,y2,) < 1.If y—1 < 0or liminf, .o Alpp_(N_Q) >
¢ > 0 by passing to the limit we deduce immediately that Az, — +oo and a
contradiction arises. Assume v —1 > 0 and liminf, .o Ay, p~(N=2) = 0. Then also
liminf, .o H(21,,71,)A1, = 0 and by

0= 8A11/J(Ap7l'p) = H(mlp,xlp)Alp — G(l‘lp7$2p)A2p + %A¥717

we deduce liminf, .o G(z1,,22,)A2, = 0. On the other hand since Ay (M (z,)) < —I
and H(xy,,21,) — 400 as p — 0, we obtain that also G(x1,,72,) — +00 as p — 0.
In conclusion it must be Ay, — 0 and a contradiction again arises.

Second we prove that

ly2,| <C asp—0. (3.7)
Assume by contradiction that [y;, — y2,| — +00 as p — 0. We have
Go(y1,,92,) < ly1, — y2p|7(N72) —0
and by (A.6)
H,(y1,,3,) — Hp(0,1;0,1) > 0.
Then, since V4, (1p, ) = 0 (see (A.1) and (A.3)), we have

-2
Vp(ps Yp) = % (Mp(Yp) ops ki)

Y—2 _gN-2
= = [H,y(y,,11,)A], + Hy(y2,, y2,)A3,

- 2Gp(ylp ’ y2p)A1pA2P]

and therefore using (3.6)

lin sup ¥, (1, ) < 0.
p—

On the other hand by (A.2) we get

P Gt yp) = (A, x,) € [, 1]

and so a contradiction arises.
Third we prove that

There exist § = (0, 1;y,3) with (0,1) # (v/,3), 0,y € RN"Tand 1, B € R,
and i = (fi1, i2) € R? such that Mp(§)a =0

T-Vyp(,g) =0 YT e RY "1 x {0} x RV,
(3.8)

By (3.7) we deduce that, up to a subsequence, 2 = lim, y2,, with dist(g2, 0P) >
1 and |g1 — §2| > 1, where 91 = (0,1). Moreover from (3.6) it follows that
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lim, ¢ |1,| = +00, then up to a subsequence we can assume that i = lim, g ‘ﬁ—p‘
P
It holds || = 1. Now, since V¢, (1tp,y,) = 0, we have

it !
Hp g 1p 2,
My(yp) i + = +2 ] =0
P Ml 2\ ol T Ll

and passing to the limit we get Mp(9)i = 0. (If v < 1 we used the fact that both
p1, and pg, tend to +o0c.) Therefore i is an eigenvector associated with the first
eigenvalue of the matrix Mp(g) and by [4] it follows that i1 > 0 and fiz > 0. Finally
from (A.5) we get Vy¥p(it,9) = lim,_,o ﬁvuwp(up,yp) and the last statement
follows from the assumption.

Finally we prove that by (3.8) we get a contradiction with (3.5). We write now
the function ¢ p explicitly:

1 1 , 1 ) 1
/(pP(/J“ﬂ y) 9 ((Qy{v)N_Q M1 + (QyéV)N_2 125 G(ylvy2)ﬂlﬂ2> + 9 (lu’l + ILL2)7

where

1 1
G(y1, = — —
(y1 y2) |y1 - y2|N*2 |y1 — Y2

We have §; = (0,1) and g2 = (95, 8). If g4 # 0 then

|N72 ’ g2 = (yéa _yé\/) .

27/2 . vyz/d)P(/j’? g) = _yé : va/G(gth)/j’po
1 1
112 ~ A
3| ng,ﬂ— DIF ~ wh B+ 1>N} Hf

and a contradiction arises.
If g5 =0 then 8 > 1 and

0=V, x¢p(f1,§) = (N —2)fiz l:FN—l(ﬂ)ﬂl - (2@% ﬂz} )

where

1 1
In-1(8) = GOV @GN >0.

We deduce that

fiz = (20N T TN 1 (B) i - (3.9)
On the other hand by the condition Mp ()i = 0, we get
T
. (3.10)
—I'n—2(B)fn + Wﬂz =0,
where
Pyos(B) = vy — s > 0.

(B2 (B+1N=2
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By (3.9) and (3.10) we get
(280 N-1(8) = T'n—2(B)]ft1 =0

and a contradiction arises since 2I'y_1(8) — T'y_2(8) > 0.
Step 2. We argue by contradiction. Let (A,,z,) € R% x Q2 be such that ¢¥(A,,z,) €
[a,b], Va(Ap, z,) = 0, Mi(M(z,)) < =1 <0, dist(x1,,00) > p, dist(zs,,00Q) > p,
|21, — @2, = p and for any vector T tangent to R x 9V, at the point (A,, z,) it
holds
Vi(Ap,x,)-T=0. (3.11)
We use the same notation of Step 1. First of all arguing as in Step 1 we prove
that 0 < ¢; < |Ap| < ¢s. Secondly we prove that
1< dist(xip,BQ)
p

Assume by contradiction that for i = 1,2 dist(x;,,95)/p — 4o00. Then as p — 0
we get

<c fori=1lori=2. (3.12)

N—-2
Hy(ys ys )= pN"2H(z; 03 )< [—FL 0 fori=1,2
p Wi, Yi,) = p (Ti,,i,) < (dist(aciwaQ)) — or ¢ ,

(3.13)

and
Go(yr, . y2,) = p"V 2G(21,,32,) — 1 (3.14)

(since 2H (21,,72,) < (21,,71,)+H(22,,72,)). Using (3.13) and (3.14) and arguing
as in the proof of (3.6) we can show that A; — A; > 0 for i = 1,2. Therefore
-2
V(A zp) = % (M(zp)Ap,Ap) — +o0 asp—0,
and a contradiction arises, since (A, z,) € [a,b].
Next arguing as in Step 1, without loss of generality, we can assume that (up

to a subsequence) €2, becomes the half-space P and ¢, = lim, y1,, 71 = (0, ) with
0eRY1and a>1, g =lim, Yo, with dist(go, 0P) > 1 and |1 — 2| = 1.

Moreover we can show that there exists i = (f1,/i2) € R2Z such that
T-Vybp(g, i) = 0forany T € RVN"1x {0} xRN and Mp(g) = 0 where § = (41, §2).
Finally, again arguing as in Step 1, we get a contradiction with (3.11). O

Lemma 3.5. There exist lg > 0 and po > 0 such that for any 1 € (0,1ly) and
p € (0, p0) the function i satisfies the following property:

Jor any sequence (A, x,) in R X W) such that lim, (A, ,) = (A, z) € O(RT x
W})) and (A, z,) € [a,b] there exists a vector T tangent to R% x 8(W})) at (A, ),
such that

V(A xz) - T #0.
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Proof. First of all we prove that A,, is component-wise bounded from below and
from above by a positive constant. We have that |A,,| — 400 and |A,| — 0 yield
respectively to [Y(Ay,, x,)| — 400 and |[Y(A,,, x,)| — 0, which is impossible.
Let A = lim,, A,, and = = lim,, z,,.
If Vat(A, z) # 0, then T can be chosen parallel to Vat(A, z). If Va(A, x) =0,
then A € R%. In fact if Ay =0 by

0=, (A, z) = H(z1,z1)A1 + %A;*l 7

we get a contradiction. Analogously A; # 0.
Thus (A, z) € RE x 8Wé.
Now we claim that there exists [ > 0 such that

A1 (M(Z‘)) < —=ly. (315)

In fact, since Vat(A,z) =0, we have

viho) = 2 (] +43) = 1= (@)L A).

and since ¥ (A, z) € [a,b] we deduce that

4 2y
AP <2 (—) b7 and  (M(z)A,A) < — a,
2—y 2—v
which implies (3.15) because (M (z)A, A) > \i (M (z))|A[*.
Therefore we have that € dV, and we can apply Lemma 3.4 to conclude the
proof. |

Lemma 3.6. The function ¢ constrained to Ri X W,f satisfies the Palais—Smale
condition in [a,b].

Proof. Let (A,,z,) in R% x W,ﬁ be such that lim, ¥ (A,,2,) = ¢ > 0 and
lim,, Vi(A,, x,) = 0. Arguing as in the proof of Lemma 3.4 it can be shown that
A, remains bounded component-wise from above and below by a positive constant.

O

Proposition 3.1. There exists a critical level for i between a and b.

Proof. Assume by contradiction that there are no critical levels in the interval
[a,b]. We can define an appropriate negative gradient flow that will remain in R? x
W/ at any level ¢ € [a,b]. Moreover the Palais-Smale condition holds in [a, b]. Hence
there exists a continuous deformation

n:[0,1] x ¢° — 3"
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such that for some o’ € (0,a)
n0,u) =u Yuecyp®
n(t,u) =u Yue
n(1,u) € .
Let us call
A={(Az)eRE xW! |z eS8, A=re(z), 0<r <R},
OA={(\,z)eRE x W/ |z eS8, A=0or A=Re(z)},
C=1,x W,ﬁ.
From (3.3) we deduce that A C ¢°, A C ¥ and 1 NC = . Therefore
n0,u) =u VueA,
n(t,u) =u Yu€dA, (3.16)
n(l,A)NnC=10.
For any (A,x) € A and for any t € [0, 1] we denote
n(t, (A, x)) = (AN, 2, 1), #(A, 2, 1)) € RT x W,
We define the set
B={(Az)e A|Az,A,1) e L}.

Since n(1,. A)NC = 0 it holds B = ). Now let U be a neighborhood of B in Wpl x R2
such that H*(U) = H*(B). If 7 : Y — S denotes the projection, arguing like in
Lemma 7.1 of [10] we can show that

7 H*(S) — H*(U) is a monomorphism .

This condition provides a contradiction, since H*(U) = {0} and H*(S) # {0}. O

Proof of Theorem 0.3. Arguing as in [10] and using Lemma 2.2 and Proposi-
tion 3.1, it is possible to construct a critical point of the function F; (see (2.2)) for
€ small enough. Therefore by Lemma 2.1 the claim follows. O

Appendix A

Consider, for small p, the modified domain Q, = Q/p. We can assume, without
loss of generality, that as p tends to 0 the domain €2, becomes the half-space P =
{(yty...,yN) € RY | yN¥ > 0}. We observe that if G, and H, are the Green’s
function and the regular part associated to the domain €2, then

Go(y1,y2) = pV 2Glpyr, py2),  Ho(yr,y2) = p~ 2H(py1, py2) -
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Moreover, if M, denotes the matrix associated to the domain €2,

M,y(y) = p"2M(py) and A1 (M,(y)) = p" 2\ (M (py)) .

Let
Volp,y) = % [Hp (y1, yops + Hp(y2, Yo )3 — 2G,(y1, y2) i pi2] + %[M? + 13]
(A1)
where v = 1. We remark that if 1 = pf%A and y = z/p then
Gl y) = p77 3 (A ) (A.2)
and
Vay(A,z) =0 if and only if V9, (1, y) = 0. (A.3)
Lemma A.1. It holds
Mq, — Mp
Cl-uniformly on compact sets of {(y1,y2) € P? | y1 # a2} - (A4)

Moreover
- Vythp(p,y) — — Vyp (1, y)
|pl? |pl?
C'-uniformly on compact sets of {(y1,y2) € P? | y1 #y2} xR2 . (A5)

Proof. First of all we point out the following results
lim H, (y,y) = Hp(y,y)

C'-uniformly on compact sets of P (A.6)

and
;li% Gp(yla y2) = GP(ylv y2)

Cl-uniformly on compact sets of {(y1,y2) € P? | y1 # ya2} . (A7)

Let us prove (A.6). The proof of (A.7) is similar.

For any y; € P and y2 € P we have, by a comparison argument, that H,(y1,y2)
is increasing with respect to p and Hp(y1,y2) < H,(y1,92) < Ha(y1,y2). Then
H,(y1,y2) converges decreasingly as p decreases to 0. By harmonicity the pointwise
limit of H,(-,-) in P? is therefore uniform on compact sets of P? as p goes to zero.
Moreover for any y € P the resulting limit is an harmonic function with respect to y
in P which coincides with m on P, namely the resulting limit is Hp(y, -).
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Moreover if K is a compact set of P2 we have the following interior derivative
estimate (see [13, Theorem (2.10)])

max |VHp(y1,y2) — VHp(y1,y2)]
(y1,y2)€EK

N
<—— H - H
= dist(K, 0(P?) (ylr,r;?)XeKl P(Y1,y2) P(y1,y2)|

which proves our claim.

Therefore (A.4) follows by (A.6) and (A.7).
Let us prove (A.5). Let K be a compact set of {(y1,y2) € P? | y1 # ya2}. It holds

1 1

sup —= [V, (1, y) — Vytor(p, y)| = sup = [([M,(y) — Mp(y)]p, 1)

yek |l yek 2|l

n#0 n#0

< Csup | M) (y) — Mp(y)||
yeK

and the claim follows by (A.4). O
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