

DOUBLE BLOW-UP SOLUTIONS FOR A BREZIS–NIRENBERG TYPE PROBLEM

MONICA MUSSO

Politecnico di Torino, Italy musso@calvino.polito.it

ANGELA PISTOIA

Università di Roma "La Sapienza", Italy pistoia@dmmm.uniroma1.it

Received 1 January 2002 Revised 14 August 2002

In this paper we construct a domain Ω for which the problem

$$\begin{cases} -\Delta u = u^{\frac{N+2}{N-2}} - \varepsilon u & \text{ in } \Omega \\ u > 0 & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

has a family of solutions which blow-up and concentrate in two different points of Ω as ε goes to 0.

Keywords: Critical Sobolev exponent; blowing-up solution; Robin's function.

Mathematics Subject Classification 2000: 35J20, 35J60.

0. Introduction

Let Ω be a smooth bounded domain in \mathbb{R}^N with $N \geq 3$ and let $p = \frac{N+2}{N-2}$ be the critical exponent for the Sobolev embedding $H_0^1(\Omega) \hookrightarrow L^{p+1}(\Omega)$.

In this paper we are concerned with the problem of existence and qualitative properties of solutions for the non linear elliptic problem

....

$$\begin{cases} -\Delta u = u^{\frac{N+2}{N-2}} - \varepsilon u & \text{in } \Omega\\ u > 0 & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(0.1)

where ε is a positive parameter.

In the last years, several researches have been developed on the existence of solutions — not necessarily positive — of elliptic equations with a non linear term which is a perturbation of a critical non-linearity.

776 M. Musso & A. Pistoia

In the very celebrated paper [6], Brezis and Nirenberg study a critical elliptic problem with a general lower-order perturbation whose model is

$$\begin{cases} -\Delta u = u^{\frac{N+2}{N-2}} + \lambda u & \text{in } \Omega\\ u > 0 & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(0.2)

for an arbitrary parameter λ .

As the authors pointed out, solvability of (0.2) is strictly related to the sign of λ and the dimension N.

A first general observation (see [6]) is that if $\lambda_1 \leq \lambda$, λ_1 being the first eigenvalue of $(-\Delta)$ in Ω with Dirichlet boundary condition, then (0.2) does not have any solution.

On the other hand, if $\lambda < \lambda_1$ but still $\lambda > 0$, solvability of (0.2) depends on the dimension N. If $N \ge 4$ problem (0.2) has a solution, independently on Ω . In N = 3, the problem turns out to be more delicate and in [6] a precise result is given in the case Ω is a ball: in this case, (0.2) has a solution if and only if $\lambda \in (\frac{1}{4}\lambda_1, \lambda_1)$.

Once established the solvability of (0.2), a natural direction of investigations was to study multiplicity and qualitative properties of solutions to (0.2); in particular to understand the concentration phenomena of the solutions for $\lambda > 0$ but close to 0.

In this context a crucial role is played by the Green's and Robin's functions of the domain play a crucial role. Let us recall their definitions.

Let $\Gamma_x(y) = \frac{\gamma_N}{|x-y|^{N-2}}$, for every $x, y \in \mathbb{R}^N$, be the fundamental solution for the Laplacian on entire \mathbb{R}^N . Here γ_N is a positive constant which depends only on N. For every point $x \in \Omega \cup \partial \Omega$, let us define the regular part of the Green's function, $H_{\Omega}(x, \cdot)$, as the solution of the following Dirichlet problem

$$\begin{cases} \Delta_y H_\Omega(x, y) = 0 & \text{ in } \Omega, \\ H_\Omega(x, y) = \Gamma_x(y) & \text{ on } \partial\Omega. \end{cases}$$
(0.3)

The Green's function of the Dirichlet problem for the Laplacian is then defined by $G_x(y) = \Gamma_x(y) - H_\Omega(x, y)$ and it satisfies

$$\begin{cases} -\Delta_y G_x(y) = \delta_x(y) & \text{in } \Omega, \\ G_x(y) = 0 & \text{on } \partial\Omega. \end{cases}$$
(0.4)

For every $x \in \Omega$ the leading term of the regular part of the Green's function, i.e. $x \to H_{\Omega}(x, x)$ is called *Robin function of* Ω *at the point* x.

In [21] it is proved that any nondegenerate critical point x_0 of the Robin's function generates a family of solutions of (0.2), for $\lambda = \varepsilon > 0$ and $N \ge 5$, concentrating around x_0 as ε goes to 0 (see also [14]). Rey generalized this result in [22]. In [18] the authors constructed solutions which concentrate around $k \ge 1$ different points of Ω which are suitable critical points of the function $\Phi_k : \mathbb{R}^k_+ \times \Omega^k \longrightarrow \mathbb{R}$ defined by

$$\Phi_k(\Lambda, x) = \frac{1}{2} \left(M(x)\Lambda, \Lambda \right) - \frac{1}{2} \sum_{i=1}^k \Lambda_i^{\frac{4}{N-2}}, \qquad (0.5)$$

where $\Lambda = (\Lambda_1, \dots, \Lambda_k)^T$ and $M(x) = (m_{ij}(x))_{1 \le i,j \le k}$ is the matrix defined by

$$m_{ii}(x) = H(x_i, x_i), \quad m_{ij}(x) = G(x_i, x_j) \quad \text{if } i \neq j.$$
 (0.6)

Problem (0.2) becomes notably more delicate when $\lambda = 0$ or $\lambda < 0$, since in these cases its solvability depends also on the geometry and the topology of Ω .

In fact, a Pohozaev's identity (see [20, 6]) yields that (0.2) has no solution when Ω is star-shaped (strictly star-shaped) and $\lambda < 0$ (respectively $\lambda = 0$). On the other hand, (0.2) has at least one solution if Ω is a symmetric anellus for any $\lambda \leq 0$ (see [15]) or when Ω has a "small hole" for $\lambda = 0$ (see [8]). The most general result concerning existence of solution for (0.2) when $\lambda = 0$ is contained in [3]: Bahri and Coron showed that if some homology group of Ω with coefficients in \mathbb{Z}_2 is not trivial, then (0.2) has at least one non trivial solution.

In this paper we study solvability for problem (0.1) for $N \ge 5$. In particular, we are concerned with existence of solution which blow-up and concentrate in some points of Ω in the sense of the following definition.

Definition 0.1. Let u_{ε} be a family of solutions for (0.1). We say that u_{ε} blow-up and concentrate at k points x_1, \ldots, x_k in Ω if there exist speeds of concentration $\mu_{1_{\varepsilon}}, \ldots, \mu_{k_{\varepsilon}} > 0$, and points $x_{1_{\varepsilon}}, \ldots, x_{k_{\varepsilon}} \in \Omega$ with $\lim_{\varepsilon \to 0} \mu_{i_{\varepsilon}} = 0$ and $\lim_{\varepsilon \to 0} x_{i_{\varepsilon}} = x_i, x_i \neq x_j$ for $i, j = 1, \ldots, k, i \neq j$, such that

$$u_{\varepsilon} - \sum_{i=1}^{k} i^*_{\Omega}(U^p_{\mu_{i_{\varepsilon}}, x_{i_{\varepsilon}}}) \longrightarrow 0 \quad \text{in } \mathrm{H}^1_0(\Omega) \quad \text{as } \varepsilon \to 0$$

where i_{Ω}^* is the adjoint operator of the embedding $i_{\Omega}: H_0^1(\Omega) \to L^{p+1}(\Omega)$.

Such a definition is motivated by a blow-up analysis for solutions to problem (0.1), as it is performed in [23]. In [2], some links between the speeds of concentration and the points of concentration are established. Moreover it follows from [17] that the blow-up points remain far from each other and that the speeds of concentration are of the same order.

Here (see [1, 7] and [24])

$$U_{\lambda,y}(x) = c_N \frac{\lambda^{\frac{N-2}{2}}}{(\lambda^2 + |x-y|^2)^{\frac{N-2}{2}}}, \quad x \in \mathbb{R}^N, \ y \in \mathbb{R}^N, \ \lambda > 0,$$

with $c_N = [N(N-2)]^{(N-2)/4}$, are all the solutions of the equation

$$-\Delta u = u^{\frac{N+2}{N-2}} \quad \text{in } \mathbb{R}^N.$$

If $\mu_{1_{\varepsilon}}, \ldots, \mu_{k_{\varepsilon}}$ are of order $\varepsilon^{\frac{1}{N-4}}$, namely $\lim_{\varepsilon \to 0} \varepsilon^{-\frac{1}{N-4}} \mu_{i_{\varepsilon}} = \lambda_i > 0$ for $i = 1, \ldots, k$, then existence of solutions to (0.1) is related to existence of critical points for the function $\psi_k : \mathbb{R}^k_+ \times \Omega^k \longrightarrow \mathbb{R}$ defined by

$$\psi_k(\Lambda, x) = \frac{1}{2} \left(M(x)\Lambda, \Lambda \right) + \frac{1}{2} \sum_{i=1}^k \Lambda_i^{\frac{4}{N-2}}, \qquad (0.7)$$

where the matrix M(x) is defined in (0.6).

In the last part of Sec. 2 we will prove the following necessary condition.

Theorem 0.1. Let u_{ε} be a family of solution of (0.1) (as in Theorem 2.1) which blow-up and concentrate at k different points x_1, \ldots, x_k of Ω with speed of concentration $\mu_{i_{\varepsilon}}$ such that $\lim_{\varepsilon \to 0} \varepsilon^{-\frac{1}{N-4}} \mu_{i_{\varepsilon}} = \lambda_i > 0$ for $i = 1, \ldots, k$. Then (Λ, x) is a critical point of ψ_k , where $\Lambda_i = c_n \lambda_i$ for $i = 1, \ldots, k$ (see (2.23)).

A straightforward application of this theorem is a non-existence result.

Theorem 0.2. There do not exist any family of solutions of (0.1) (as in Theorem 2.1) which blow-up and concentrate at a given point x_0 of Ω .

The crucial point is that the concentration point x_0 should be a critical point of the function $x \longrightarrow H(x, x)$ with $H(x_0, x_0) < 0$, which is not possible.

On the contrary, if Ω is a domain with a small "hole", we prove the existence of a solution which blow-up and concentrate in two points, showing that ψ_2 (see (0.7)) has a critical point of "min-max" type. Here we follow some ideas of [10] (see also [11]).

Our existence result is

Theorem 0.3. Let D be a bounded smooth domain in \mathbb{R}^N which contains the origin 0 and let $N \geq 5$. There exists $\delta_0 > 0$ such that, if $0 < \delta < \delta_0$ is fixed and Ω is the domain given by $D \setminus \omega$ for any smooth domain $\omega \subset B(0, \delta)$, then there exists $\varepsilon_0 > 0$ such that problem (0.1) has a solution u_{ε} for any $0 < \varepsilon < \varepsilon_0$. Moreover the family of solutions u_{ε} blows-up and concentrates at two different points of Ω in the sense of Definition 0.1, with speeds of concentration of order $\varepsilon^{\frac{1}{N-4}}$.

We would like to point out that it is known that functions similar to (0.5) and (0.7) play a crucial role in the concentration phenomena associated to the following supercritical and subcritical problems

$$\begin{cases} -\Delta u = u^{\frac{N+2}{N-2}\pm\varepsilon} & \text{in } \Omega\\ u > 0 & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \,. \end{cases}$$
(0.8)

More precisely in [4] the authors considered the subcritical case, i.e. $\frac{N+2}{N-2} - \varepsilon$, and they showed that existence of nondegenerate critical points of a suitable function, which involves the first eigenvalue of the matrix (0.6), allows to find solutions which concentrate in those points as $\varepsilon \to 0$.

In [10] the authors study the supercritical case, i.e. $\frac{N+2}{N-2} + \varepsilon$, and they exhibit a domain Ω such that problem (0.8) has a family of solutions which blow-up at exactly two different points of Ω .

This paper is organized as follows. In Sec. 1 we reduce the problem to a finite dimensional one, using the usual Ljapunov–Schmidt procedure (see [2] and [12]). In Sec. 2 we work out the asymptotic expansion for a finite dimensional function which comes from the reduction and we prove Theorem 0.2. In Sec. 3 we set up a min-max scheme to find a critical point of the reduced function and we prove Theorem 0.3. Finally in Appendix A we make some technical computations.

1. The Finite-Dimensional Reduction

Let α be a fixed positive number which will be choosen later. Let us set

$$\Omega_{\varepsilon} := \Omega / \varepsilon^{\alpha} = \{ x / \varepsilon^{\alpha} \mid x \in \Omega \}$$

and let us introduce the following problem

$$\begin{cases} -\Delta u = u^{\frac{N+2}{N-2}} - \varepsilon^{2\alpha+1} u & \text{in } \Omega_{\varepsilon} \\ u > 0 & \text{in } \Omega_{\varepsilon} \\ u = 0 & \text{on } \partial \Omega_{\varepsilon} . \end{cases}$$
(1.1)

By a rescaling argument one sees that u(x) is a solution of (0.1) if and only if $w(x) = \varepsilon^{\alpha \frac{N-2}{2}} u(\varepsilon^{\alpha} x)$ is a solution of (1.1).

Let $\mathrm{H}_0^1(\Omega_{\varepsilon})$ be the Hilbert space equipped with the usual inner product

$$(u,v) = \int_{\Omega_{\varepsilon}} \nabla u \nabla v$$
, which induces the norm $||u|| = \left(\int_{\Omega_{\varepsilon}} |\nabla u|^2\right)^{1/2}$.

It will be useful to rewrite problem (1.1) in a different setting. Let us then introduce the following operator.

Definition 1.1. Let $i_{\varepsilon}^* : L^{\frac{2N}{N+2}}(\Omega_{\varepsilon}) \longrightarrow H^1_0(\Omega_{\varepsilon})$ be the adjoint operator of the immersion $i_{\varepsilon} : H^1_0(\Omega_{\varepsilon}) \hookrightarrow L^{\frac{2N}{N-2}}(\Omega_{\varepsilon})$, i.e.

$$i_{\varepsilon}^*(u) = v \Longleftrightarrow (v,\varphi) = \int_{\Omega_{\varepsilon}} u(x)\varphi(x)\,dx \quad \forall\,\varphi \in \mathrm{H}^1_0(\Omega_{\varepsilon})\,.$$

Observe that $i_{\varepsilon}^* : L^{\frac{2N}{N+2}}(\Omega_{\varepsilon}) \longrightarrow H^1_0(\Omega_{\varepsilon})$ is continuous uniformly with respect to ε , i.e. there exists a constant c > 0 such that

$$\|i_{\varepsilon}^{*}(u)\| \leq c \|u\|_{\frac{2N}{N+2}} \quad \forall u \in \mathcal{L}^{\frac{2N}{N+2}}(\Omega_{\varepsilon}), \quad \forall \varepsilon > 0.$$
(1.2)

By means of the definition of the operator i_{ε}^* , problem (1.1) turns out to be equivalent to

$$\begin{cases} u = i_{\varepsilon}^*[f(u) - \varepsilon^{2\alpha + 1}u] \\ u \in \mathrm{H}_0^1(\Omega_{\varepsilon}) , \end{cases}$$
(1.3)

where $f(s) = (s^+)^{\frac{N+2}{N-2}}$.

780 M. Musso & A. Pistoia

As $\varepsilon \to 0$, the limit problem associated to (1.1) is

$$-\Delta u = u^p \quad \text{in } \mathbb{R}^N \tag{1.4}$$

where $p = \frac{N+2}{N-2}$.

It is well known (see [1, 7, 24]) that all positive solutions to (1.4) are given by

$$U_{\lambda,y}(x) = c_N \left(\frac{\lambda}{\lambda^2 + |x - y|^2}\right)^{\frac{N-2}{2}}$$

where $c_N = [N(N-2)]^{\frac{(N-2)}{4}}, \lambda > 0$ and $y \in \mathbb{R}^N$.

It is then natural to look for solutions to (1.1) with k blow-up points of the form

$$u = \sum_{j=1}^{k} P_{\varepsilon} U_{\lambda_j, y_j}(x) + \phi_{\varepsilon}(x)$$
(1.5)

where P_{ε} denotes the orthogonal projection of $H_0^{1,2}(\mathbb{R}^N)$ onto $H_0^{1,2}(\Omega_{\varepsilon})$, that is,

$$P_{\varepsilon}U_{\lambda_{j},y_{j}}(x) = i_{\varepsilon}^{*}(U_{\lambda_{j},y_{j}}^{p})(x) \quad x \in \Omega_{\varepsilon} , \qquad (1.6)$$

for certain parameters λ_j and points y_j . The function ϕ_{ε} in (1.5) is a lower order term given by a Ljapunov–Schmidt reduction.

For notation's convenience we call

$$U_j := U_{\lambda_j, y_j}$$
 and $P_{\varepsilon} U_j := i_{\varepsilon}^* (U_{\lambda_j, y_j}^p)$.

In order to set the Liapunov–Schmidt reduction's scheme, we need to introduce the functions

$$\psi_i^0 := \frac{\partial U_{\lambda_i, y_i}}{\partial \lambda_i}, \quad \psi_i^j := \frac{\partial U_{\lambda_i, y_i}}{\partial y_i^j} \quad j = 1, \dots, N,$$

and the corresponding projections onto $H_0^1(\Omega_{\varepsilon})$, given by

$$P_{\varepsilon}\psi_i^j := i_{\varepsilon}^*(pU_i^{p-1}\psi_i^j), \quad i = 1, \dots, k, \ j = 0, \dots, N$$

We will first solve problem (1.1) over the set of functions orthogonal in $H_0^1(\Omega_{\varepsilon})$ to $P_{\varepsilon}\psi_i^j$. For this purpose we need to introduce the following definitions.

Definition 1.2. For any $\varepsilon > 0$, $\lambda \in (\mathbb{R}^+)^k$ and $y \in \Omega^k_{\varepsilon}$ set

$$K_{\lambda,y}^{\varepsilon} = \{ u \in \mathcal{H}_{0}^{1}(\Omega_{\varepsilon}) \mid (u, P_{\varepsilon}\psi_{i}^{j}) = 0, \ i = 1, \dots, k, \ j = 0, 1, \dots, N \}.$$
(1.7)

Let $\Pi^{\varepsilon}: (\mathbb{R}^+)^k \times \Omega^k_{\varepsilon} \times \mathrm{H}^1_0(\Omega_{\varepsilon}) \longrightarrow K^{\varepsilon}_{\lambda,y}$ be defined as

$$\Pi^{\varepsilon}(\lambda, y, u) := \Pi^{\varepsilon}_{\lambda, y}(u) \,,$$

where $\Pi_{\lambda,y}^{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega_{\varepsilon}) \longrightarrow K_{\lambda,y}^{\varepsilon}$ denotes the orthogonal projection on $K_{\lambda,y}^{\varepsilon}$. Moreover let $L_{\lambda,y}^{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega_{\varepsilon}) \longrightarrow K_{\lambda,y}^{\varepsilon}$ be the map defined by

$$L^{\varepsilon}_{\lambda,y}(\phi) = \Pi^{\varepsilon}_{\lambda,y} \left\{ \phi - i^{*}_{\varepsilon} \left[f'\left(\sum_{i=1}^{k} P_{\varepsilon} U_{i}\right) \phi - \varepsilon^{2\alpha+1} \phi \right] \right\}.$$
(1.8)

The aim of the remaining part of this section is to show that there exists a unique solution $\phi \in K_{\lambda,y}^{\varepsilon}$ of the problem

$$\Pi_{\lambda,y}^{\varepsilon} \left\{ \sum_{i=1}^{k} P_{\varepsilon} U_{i} + \phi - i_{\varepsilon}^{*} \left[\left(\sum_{i=1}^{k} P_{\varepsilon} U_{i} + \phi \right)^{p} - \varepsilon^{2\alpha+1} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{i} + \phi \right) \right] \right\} = 0$$
(1.9)

and to study how ϕ depends on ε , λ and y.

Observe that (1.9) can be written in the form

$$L_{\lambda,y}^{\varepsilon}\left(\sum P_{\varepsilon}U_{i}+\phi\right)$$
$$=\Pi_{\lambda,y}^{\varepsilon}\circ i_{\varepsilon}^{*}\left[\left(\sum P_{\varepsilon}U_{i}+\phi\right)^{p}-p\left(\sum P_{\varepsilon}U_{i}\right)^{p-1}\left(\sum P_{\varepsilon}U_{i}+\phi\right)\right].$$

Hence we first need to study the invertibility and the regularity of the operator $L_{\lambda,y}^{\varepsilon}$, uniformly with respect to ε and to the parameters (λ, y) in a certain range.

From now on we will consider numbers λ and points y belonging to the set

$$\Theta_{\delta}^{\varepsilon} = \{ (\lambda, y) \in (\mathbb{R}^+)^k \times \Omega_{\varepsilon}^k \mid y_i = x_i / \varepsilon^{\alpha}, \ i = 1, \dots, k, \ (\lambda, x) \in \Theta_{\delta} \},$$
(1.10)

where

$$\Theta_{\delta} = \{ (\lambda, x) \in (\mathbb{R}^+)^k \times \Omega^k \mid \operatorname{dist}(x_i, \partial \Omega) \ge \delta, \ \delta < \lambda_i < 1/\delta \,, \tag{1.11}$$

$$|x_i - x_l| \ge \delta, \quad i = 1, \dots, k, \ i \ne l\}.$$
 (1.12)

Lemma 1.1. The map Π^{ε} , given by Definition 1.2, is a C^1 -map. Moreover for any $\delta > 0$ there exist $\varepsilon_0 > 0$ and c > 0 such that for any $\varepsilon \in (0, \varepsilon_0)$, for any $(\lambda, y) \in \Theta^{\varepsilon}_{\delta}$ and for any $u \in H^1_0(\Omega_{\varepsilon})$ it holds

$$\begin{split} \|\Pi^{\varepsilon}(\lambda, y, u)\| &\leq c \|u\|, \\ \|D_{\lambda}\Pi^{\varepsilon}(\lambda, y, u)\|_{\mathcal{L}(\mathbb{R}^{k}, \mathrm{H}^{1}_{0}(\Omega_{\varepsilon}))} &\leq c \|u\|, \\ \|D_{y}\Pi^{\varepsilon}(\lambda, y, u)\|_{\mathcal{L}(\mathbb{R}^{nk}, \mathrm{H}^{1}_{0}(\Omega_{\varepsilon}))} &\leq c \|u\|, \\ \|D_{u}\Pi^{\varepsilon}(\lambda, y, u)\|_{\mathcal{L}(\mathbb{R}^{nk}, \mathrm{H}^{1}_{0}(\Omega_{\varepsilon}))} &\leq c. \end{split}$$

Proof. An application of the dominated convergence theorem and (1.2) yield that the maps

 $(\lambda, y) \longrightarrow P_{\varepsilon}U_i \quad \text{and} \quad (\lambda, y) \longrightarrow P_{\varepsilon}\psi_i^j$

are C^1 . Again by (1.2) and the linearity of differentiation, one gets

$$||D_{\lambda}P_{\varepsilon}U_i|| \le c \text{ and } ||D_yP_{\varepsilon}U_i|| \le c$$

and

$$||D_{\lambda}P_{\varepsilon}\psi_i^j|| \le c \text{ and } ||D_yP_{\varepsilon}\psi_i^j|| \le c,$$

uniformly for ε small enough and $(\lambda, y) \in \Theta_{\delta}^{\varepsilon}$.

Now a direct computation yields the estimates we are looking for.

Lemma 1.2. For any $\delta > 0$ there exist $\varepsilon_0 > 0$ and c > 0 such that for any $\varepsilon \in (0, \varepsilon_0)$ and for any $(\lambda, y) \in \Theta_{\delta}^{\varepsilon}$ it holds

$$\|L_{\lambda,y}^{\varepsilon}(\phi)\| \ge C \|\phi\| \quad \forall \phi \in K_{\lambda,y}^{\varepsilon}.$$
(1.13)

Moreover the map $\mathcal{L}^{\varepsilon}: \Theta^{\varepsilon}_{\delta} \times K^{\varepsilon}_{\lambda,y} \longrightarrow K^{\varepsilon}_{\lambda,y}$ defined by

$$\mathcal{L}^{\varepsilon}(\lambda, y, h) := \mathcal{L}^{\varepsilon}_{\lambda, y}(h) = (L^{\varepsilon}_{\lambda, y})^{-1}(h)$$
(1.14)

is of class C^1 . Moreover for any $\varepsilon \in (0, \varepsilon_0)$, for any $(\lambda, y) \in \Theta^{\varepsilon}_{\delta}$ and for any $h \in K^{\varepsilon}_{\lambda,y}$ it holds

$$|D_y \mathcal{L}^{\varepsilon}_{\lambda, y}(\lambda, y, h)|| \le C ||h||$$
(1.15)

and

$$\|D_{\lambda}\mathcal{L}^{\varepsilon}_{\lambda,y}(\lambda,y,h)\| \le C\|h\|.$$
(1.16)

Proof. Existence, uniqueness and estimate (1.13) can be proved arguing like in [18]. Let us show (1.15); estimate (1.16) can be obtained in a similar way.

Let us call $\phi = \mathcal{L}^{\varepsilon}_{\lambda,y}(\lambda, y, h)$. By differentiating with respect to y the following expression

$$\Pi_{\lambda,y}^{\varepsilon} \left\{ \phi - i_{\varepsilon}^{*} \left[p \left(\sum_{i=1}^{k} P_{\varepsilon} U_{i} \right)^{p-1} \phi - \varepsilon^{2\alpha+1} \phi \right] \right\} = h$$

we easily get

$$L_{\lambda,y}^{\varepsilon}(D_{y}\phi) = \Pi_{\lambda,y}^{\varepsilon} \left[i_{\varepsilon}^{*} \left(p(p-1) \left(\sum_{i=1}^{k} P_{\varepsilon} U_{i} \right)^{p-2} D_{y} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{i} \right) \phi \right) \right] - (D_{y} \Pi_{\lambda,y}^{\varepsilon}) \left\{ \phi - i_{\varepsilon}^{*} \left[p \left(\sum_{i=1}^{k} P_{\varepsilon} U_{i} \right)^{p-1} \phi - \varepsilon^{2\alpha+1} \phi \right] \right\}.$$
(1.17)

Now set

$$D_y \phi = (D_y \phi)^{\perp} + \sum b_{ij} P_{\varepsilon} \psi_i^j$$
, with $(D_y \phi)^{\perp} \in K_{\lambda,y}^{\varepsilon}$.

First of all we claim that

$$|b_{ij}| = O(\|\phi\|).$$
 (1.18)

In fact, since $\phi \in K_{\lambda,y}^{\varepsilon}$, we have $(\phi, P_{\varepsilon}\psi_i^j) = 0 \ \forall i, j$, which becomes by means of differentiation $(\phi, D_y P_{\varepsilon} \psi_i^j) = -(D_y \phi, P_{\varepsilon} \psi_i^j)$. Then the numbers b_{ij} are solutions of the following algebraic system

$$\sum b_{ij}(P_{\varepsilon}\psi_i^j, P_{\varepsilon}\psi_h^k) = -(\phi, D_y P_{\varepsilon}\psi_h^k)$$

and (1.18) follows. Summing up all the above information, we see that $(D_y \phi)^{\perp} \in K_{\lambda,y}^{\varepsilon}$ satisfies the following relation

$$L_{\lambda,y}^{\varepsilon}((D_{y}\phi)^{\perp}) = -L_{\lambda,y}^{\varepsilon}\left(\sum b_{ij}P_{\varepsilon}\psi_{i}^{j}\right) + \Pi_{\lambda,y}^{\varepsilon}\left(i_{\varepsilon}^{*}\left(p(p-1)\left(\sum_{i=1}^{k}P_{\varepsilon}U_{i}\right)^{p-2}D_{y}\left(\sum_{i=1}^{k}P_{\varepsilon}U_{i}\right)\phi\right)\right) - (D_{y}\Pi_{\lambda,y}^{\varepsilon})\left(\phi - i_{\varepsilon}^{*}\left(p\left(\sum_{i=1}^{k}P_{\varepsilon}U_{i}\right)^{p-1}\phi - \varepsilon^{2\alpha+1}\phi\right)\right).$$
 (1.19)

From (1.19) and (1.13), we can argue that

$$\|(D_{y}\phi)^{\perp}\| \leq C \|L_{\lambda,y}^{\varepsilon}((D_{y}\phi)^{\perp})\|$$

$$\leq C \left\|\sum b_{ij}P_{\varepsilon}\psi_{i}^{j} - i_{\varepsilon}^{*}\left(p\left(\sum_{i=1}^{k}P_{\varepsilon}U_{i}\right)^{p-1}\left(\sum b_{ij}P_{\varepsilon}\psi_{i}^{j}\right)\right)\right\|$$

$$-\varepsilon^{2\alpha+1}\sum b_{ij}P_{\varepsilon}\psi_{i}^{j}\right)\right\| + C \left\|i_{\varepsilon}^{*}\left(\left(\sum_{i=1}^{k}P_{\varepsilon}U_{i}\right)^{p-1}\phi\right)\right\|$$

$$+ C \left\|\phi - i_{\varepsilon}^{*}\left(\left(\sum_{i=1}^{k}P_{\varepsilon}U_{i}\right)^{p-1}\phi - \varepsilon^{2\alpha+1}\phi\right)\right\|$$

$$\leq C \left\|\sum b_{ij}P_{\varepsilon}\psi_{i}^{j}\right\| + \left\|\left(\sum_{i=1}^{k}P_{\varepsilon}U_{i}\right)^{p-1}\phi\right\|_{\frac{2N}{N+2}} + \|\phi\|$$

$$\leq C \left\{\sum |b_{ij}| + \|\phi\|\right\} \leq C \|\phi\| \qquad (1.20)$$

where we have used (1.18) and the property that for any $u \in H_0^{1,2}(\Omega_{\varepsilon})$ it holds

$$\left\| u - i_{\varepsilon}^{*} \left(p \left(\sum_{i=1}^{k} P_{\varepsilon} U_{i} \right)^{p-1} u - \varepsilon^{2\alpha+1} u \right) \right\| \leq C \|u\|$$

as follows from simple computations. Hence from (1.18), (1.19), (1.20) we get

$$\|D_y\phi\| \le \|(D_y\phi)^{\perp}\| + \left\|\sum b_{ij}P_{\varepsilon}\psi_i^j\right\| \le C\|\phi\|$$

and (1.15) follows.

We have now all elements to solve (1.3) over the set $K_{\lambda,y}^{\varepsilon}$.

Proposition 1.1. Let $\alpha = \frac{1}{N-4}$. For any $\delta > 0$ there exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$ and for any $(\lambda, y) \in \Theta_{\delta}^{\varepsilon}$, there exists a unique $\phi_{\lambda,y}^{\varepsilon} \in K_{\lambda,y}^{\varepsilon}$ such that

$$\Pi_{\lambda,y}^{\varepsilon} \left\{ \sum_{i=1}^{k} P_{\varepsilon} U_{i} + \phi - i_{\varepsilon}^{*} \left[\left(\sum_{i=1}^{k} P_{\varepsilon} U_{i} + \phi \right)^{p} - \varepsilon^{2\alpha+1} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{i} + \phi \right) \right] \right\} = 0$$
(1.21)

and

$$\|\phi\| \le C\varepsilon^{\mu} \,, \tag{1.22}$$

where

$$\mu = \begin{cases} 2\alpha + \frac{1}{2} & \text{if } N \ge 6\\ 2\alpha + \frac{1}{4} & \text{if } N = 5 \end{cases}$$
(1.23)

Moreover the map $\phi^{\varepsilon}: \Theta^{\varepsilon}_{\delta} \longrightarrow K^{\varepsilon}_{\lambda,y}$ defined by

$$\phi^{\varepsilon}(\lambda, y) := \phi^{\varepsilon}_{\lambda, y} \tag{1.24}$$

is of class C^1 . Moreover for any $\varepsilon \in (0, \varepsilon_0)$ and for any $(\lambda, y) \in \Theta^{\varepsilon}_{\delta}$

$$\|D_{\lambda}\phi^{\varepsilon}(\lambda,y)\| \le C\varepsilon^{\mu} \tag{1.25}$$

and

$$\|D_y \phi^{\varepsilon}(\lambda, y)\| \le C \varepsilon^{\mu} \,. \tag{1.26}$$

Proof. Existence, uniqueness of $\phi_{\lambda,y}^{\varepsilon}$ and estimate (1.22) follow arguing like in [18].

For notation's convenience we will write $\phi = \phi_{\lambda,y}^{\varepsilon}$.

By definition, the function ϕ , is a zero of the map $B : \Theta^{\varepsilon}_{\delta} \times K^{\varepsilon}_{\lambda,y} \longrightarrow K^{\varepsilon}_{\lambda,y}$ defined by

$$B(\lambda, y, \phi) = \phi - \mathcal{L}^{\varepsilon}_{\lambda, y} \circ \Pi^{\varepsilon}_{\lambda, y} \circ i^{*}_{\varepsilon}[N_{\varepsilon}(\lambda, y, \phi)]$$
(1.27)

where $N_{\varepsilon}: (\mathbb{R}^+)^k \times \Omega^k_{\varepsilon} \times \mathrm{H}^1_0(\Omega_{\varepsilon}) \longrightarrow K^{\varepsilon}_{\lambda,y}$ is given by

$$N_{\varepsilon}(\lambda, y, u) = \left[f\left(\sum_{i=1}^{k} P_{\varepsilon}U_i + u\right) - \sum_{i=1}^{k} f(U_i) - f'\left(\sum_{i=1}^{k} P_{\varepsilon}U_i\right)u - \varepsilon^{2\alpha+1}\left(\sum_{i=1}^{k} P_{\varepsilon}U_i\right) \right].$$

Observe that N_{ε} depends continuously on its parameters.

Differentiating (1.27) with respect to ϕ we see that for any $\theta \in H_0^1(\Omega_{\varepsilon})$

$$D_{\phi}B(\lambda, y, \phi)[\theta] = \theta - \mathcal{L}^{\varepsilon}_{\lambda, y} \circ \Pi^{\varepsilon}_{\lambda, y} \circ i^{*}_{\varepsilon}[D_{\phi}N_{\varepsilon}(\lambda, y, \phi)\theta].$$
(1.28)

By Lemma 1.1 we deduce

$$\begin{aligned} \|\mathcal{L}_{\lambda,y}^{\varepsilon} \circ \Pi_{\lambda,y}^{\varepsilon} \circ i_{\varepsilon}^{*} [D_{\phi} N_{\varepsilon}(\lambda, y, \phi) \theta] \| \\ &\leq C \|D_{\phi} N_{\varepsilon}(\lambda, y, \phi) \theta\|_{\frac{2N}{N+2}} \leq C \|D_{\phi} N_{\varepsilon}(\lambda, y, \phi)\|_{\frac{N}{2}} \|\theta\|_{\frac{2N}{N-2}} \\ &\leq C \varepsilon^{2\alpha} \|\theta\|, \end{aligned}$$
(1.29)

where we used that

$$\|D_{\phi}N_{\varepsilon}(\lambda, y, \phi)\|_{\frac{N}{2}} = \|f'\left(\sum_{i=1}^{k} P_{\varepsilon}U_{i} + \phi\right) - f'\left(\sum_{i=1}^{k} P_{\varepsilon}U_{i}\right)\|_{\frac{N}{2}} \le C\varepsilon^{2\alpha}$$

with a constant C independent of ε and $(\lambda, y) \in \Theta_{\delta}^{\varepsilon}$ (see [18, Lemma 5.3]). From (1.28) and (1.29) it follows that $D_{\phi}B(\lambda, y, \phi)$ is invertible with uniformly bounded inverse; moreover by Lemmas 1.1, 1.2 and (1.28) it follows that $D_{\phi}B(\lambda, y, \phi)$ is a C^{1} -map.

Let us now differentiate with respect to y

$$D_{y}B(\lambda, y, \phi) = -D_{y}\mathcal{L}^{\varepsilon}_{\lambda, y}[\Pi^{\varepsilon}_{\lambda, y} \circ i^{*}_{\varepsilon}(N_{\varepsilon}(\lambda, y, \phi))]$$

$$\circ D_{y}\Pi^{\varepsilon}_{\lambda, y}[i^{*}_{\varepsilon}(N_{\varepsilon}(\lambda, y, \phi))] \circ i^{*}_{\varepsilon}$$

$$(D_{y}N_{\varepsilon}(\lambda, y, \phi)), \qquad (1.30)$$

while

$$D_{y_a^b} N_{\varepsilon}(\lambda, y, \phi) = f' \left(\sum_{i=1}^k P_{\varepsilon} U_i + \phi \right) D_{y_a^b} P_{\varepsilon} U_a - f'(U_a) D_{y_a^b} U_a$$
$$- f'' \left(\sum_{i=1}^k P_{\varepsilon} U_i \right) D_{y_a^b} P_{\varepsilon} U_a \phi - \varepsilon^{2\alpha+1} D_{y_a^b} P_{\varepsilon} U_a \,. \tag{1.31}$$

Since $D_y B(\lambda, y, \phi)$ depends continuously on (λ, y, ϕ) , the implicit function Theorem let us conclude that ϕ^{ε} is a C^1 -map and also that

$$D_{\lambda,y}\phi^{\varepsilon}(\lambda,y) = -(D_{\phi}B(\lambda,y,\phi))^{-1} \circ [D_{\lambda,y}B(\lambda,y,\phi)].$$
(1.32)

Now let us prove (1.26). (1.25) can be proved in a similar way.

We have

$$\begin{split} \|D_{y}\phi\| &\leq C\|D_{y}B(\lambda, y, \phi)\| \\ &\leq C\{\|i_{\varepsilon}^{*}(N_{\varepsilon}(\lambda, y, \phi))\| + \|i_{\varepsilon}^{*}((D_{y}N_{\varepsilon})(\lambda, y, \phi))\|\} \\ &\quad C\{\|N_{\varepsilon}(\lambda, y, \phi)\|_{\frac{2N}{N+2}} + \|(D_{y}N_{\varepsilon})(\lambda, y, \phi)\|_{\frac{2N}{N+2}}\} \\ &\leq C\varepsilon^{\mu} \,, \end{split}$$
(1.33)

where the last inequality follows from the estimates (see [18, Appendix A] and [21])

$$\|N_{\varepsilon}(\lambda, y, \phi)\|_{\frac{2N}{N+2}} \leq C\left\{ \left\| f'\left(\sum_{i=1}^{k} P_{\varepsilon}U_{i} + \phi\right) - f'\left(\sum_{i=1}^{k} U_{i}\right) \right\|_{\frac{N}{2}} \|\phi\| + \varepsilon^{2\alpha+1} \|P_{\varepsilon}U_{i}\|_{\frac{2N}{N+2}} \right\}$$
$$\leq C(\varepsilon^{2\alpha+\mu} + \varepsilon^{2\alpha+1}) \tag{1.34}$$

and

$$\|(D_{y}N_{\varepsilon})(\lambda, y, \phi)\|_{\frac{2N}{N+2}} \leq \left\| \left[f'\left(\sum_{i=1}^{k} P_{\varepsilon}U_{i} + \phi\right) - f'\left(\sum_{i=1}^{k} P_{\varepsilon}U_{i}\right) - f''\left(\sum_{i=1}^{k} P_{\varepsilon}U_{i}\right) \phi \right] D_{y_{a}^{b}}P_{\varepsilon}U_{a} \right\|_{\frac{2N}{N+2}} \\ + \left\| \left[f'\left(\sum_{i=1}^{k} P_{\varepsilon}U_{i}\right) - f'(U_{a}) \right] D_{y_{a}^{b}}P_{\varepsilon}U_{a} \right\|_{\frac{2N}{N+2}} \\ + \left\| f'(U_{a})[D_{y_{a}^{b}}P_{\varepsilon}U_{a} - U_{a}] \right\|_{\frac{2N}{N+2}} + \varepsilon^{2\alpha+1} \|D_{y_{a}^{b}}P_{\varepsilon}U_{a}\|_{\frac{2N}{N+2}} \\ \leq C(\|\phi\|^{\min\{2,p\}} + \varepsilon^{\alpha\frac{N+2}{2}} + \varepsilon^{2\alpha+1}\varepsilon^{-\frac{\alpha}{2}}) \\ \leq C\varepsilon^{\mu}.$$

$$(1.35)$$

2. The Reduced Functional

From Proposition 1.1 we can deduce that the function $w_{\varepsilon} = \sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_i, y_i} + \phi_{\lambda, y}^{\varepsilon}$ is a solution of (1.3) if and only if $(\lambda, y) \in \Theta_{\delta}^{\varepsilon}$ are such that for any $i = 1, \ldots, k$ and $j = 0, \ldots, N$

$$0 = \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} + \phi_{\lambda, y}^{\varepsilon}, P_{\varepsilon} \psi_{\lambda_{i}^{\varepsilon}, y_{i}^{\varepsilon}}^{j}\right) - \left(i_{\varepsilon}^{*} \left[\left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} + \phi_{\lambda, y}^{\varepsilon}\right)^{p} - \varepsilon^{2\alpha+1} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} + \phi_{\lambda, y}^{\varepsilon}\right)\right], P_{\varepsilon} \psi_{\lambda_{i}^{\varepsilon}, y_{i}^{\varepsilon}}^{j}\right).$$

$$(2.1)$$

We prove the following

Lemma 2.1. The function $w_{\varepsilon} = \sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_i, y_i} + \phi_{\lambda, y}^{\varepsilon}$ is a solution for (1.1) if and only if $(\lambda, x) \in \Theta_{\delta}$, $x = \varepsilon^{\alpha} y$ (see (1.12), (1.10)), is a critical point for the function $F_{\varepsilon}(\lambda, x)$ defined by

$$F_{\varepsilon}(\lambda, x) = J_{\varepsilon} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_i, y_i} + \phi_{\lambda, y}^{\varepsilon} \right), \qquad (2.2)$$

where $J_{\varepsilon}: \mathrm{H}^{1}_{0}(\Omega_{\varepsilon}) \longrightarrow \mathbb{R}$ is defined by

$$J_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega_{\varepsilon}} |Du|^2 \, dy - \frac{1}{p+1} \int_{\Omega_{\varepsilon}} u^{p+1} \, dy + \frac{\varepsilon^{2\alpha+1}}{2} \int_{\Omega_{\varepsilon}} u^2 \, dy.$$

Proof. Observe that

$$\frac{\partial F_{\varepsilon}}{\partial x_{i}^{j}}\left(\lambda,x\right)=0\,,\quad \frac{\partial F_{\varepsilon}}{\partial\lambda}\left(\lambda,x\right)=0$$

is equivalent to

$$DJ_{\varepsilon}\left(\sum P_{\varepsilon}U_{i} + \phi_{\lambda,y}^{\varepsilon}\right)\left[\frac{\partial}{\partial y_{i}^{j}}\left(\sum P_{\varepsilon}U_{i}\right) + \frac{\partial}{\partial y_{i}^{j}}\phi_{\lambda,y}^{\varepsilon}\right] = 0$$
(2.3)

and

$$DJ_{\varepsilon}\left(\sum P_{\varepsilon}U_{i}+\phi_{\lambda,y}^{\varepsilon}\right)\left[\frac{\partial}{\partial\lambda_{i}}\left(\sum P_{\varepsilon}U_{i}\right)+\frac{\partial}{\partial\lambda_{i}}\phi_{\lambda,y}^{\varepsilon}\right]=0.$$
(2.4)

Since

$$\frac{\partial}{\partial y_i^j} \left(\sum P_{\varepsilon} U_i \right) = P_{\varepsilon} \psi_i^j + o(1) \,, \quad \frac{\partial}{\partial \lambda_i} \left(\sum P_{\varepsilon} U_i \right) = P_{\varepsilon} \psi_i^0 + o(1)$$

and

$$\left\|\frac{\partial \phi_{\lambda,y}^{\varepsilon}}{\partial y_{i}^{j}}\right\| \leq C\varepsilon^{\alpha+1}, \quad \left\|\frac{\partial \phi_{\lambda,y}^{\varepsilon}}{\partial \lambda_{i}}\right\| \leq C\varepsilon^{\alpha+1}$$

(see Proposition 1.1), Eqs. (2.3) and (2.4) read

$$DJ_{\varepsilon}\left(\sum P_{\varepsilon}U_{i}+\phi_{\lambda,y}^{\varepsilon}\right)\left[P_{\varepsilon}\psi_{i}^{j}+o(1)\right]=0.$$

Observe now that for a given function $\psi \in H_0^1(\Omega_{\varepsilon})$, we can uniquely decompose ψ in the following way

$$\psi = \Pi_{\lambda,y}^{\varepsilon} \psi + \sum_{ij} b_{ij} P_{\varepsilon} \psi$$

for certain unique constants b_{ij} ; obviously $\Pi_{\lambda,y}^{\varepsilon}\psi \in K_{\lambda,y}^{\varepsilon}$. On the other hand, from the definition of $\phi_{\lambda,y}^{\varepsilon}$ we have that

/

$$DJ_{\varepsilon}\left(\sum P_{\varepsilon}U_{i}+\phi_{\lambda,y}^{\varepsilon}\right)\left[\theta\right]=0\quad\forall\,\theta\in K_{\lambda,y}^{\varepsilon}.$$

Hence

$$\nabla F_{\varepsilon}(\lambda, x) = 0$$

is equivalent to

$$DJ_{\varepsilon} \left(\sum P_{\varepsilon} U_{i} + \phi_{\lambda,y}^{\varepsilon} \right) \left[P_{\varepsilon} \psi_{i}^{j} + o(1)\psi \right] = 0$$
$$DJ_{\varepsilon} \left(\sum P_{\varepsilon} U_{i} + \phi_{\lambda,y}^{\varepsilon} \right) \left[P_{\varepsilon} \psi_{i}^{j} + o(1) \left(\sum_{i,j} P_{\varepsilon} \psi_{i}^{j} \right) \right] = 0,$$

that turns out to be

$$DJ_{\varepsilon}\left(\sum P_{\varepsilon}U_{i}+\phi_{\lambda,y}^{\varepsilon}\right)\left[P_{\varepsilon}\psi_{i}^{j}\right]=0; \qquad (2.5)$$

finally, Eq. (2.5) is precisely (2.1).

We want now to work out a precise expansion for

$$F_{\varepsilon}(\lambda, x) = J_{\varepsilon}\left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_i, y_i} + \phi_{\lambda, y}^{\varepsilon}\right).$$

Lemma 2.2. Let $\alpha = \frac{1}{N-4}$. We have

$$F_{\varepsilon}(\lambda, x) = kC_N + \left[\frac{1}{2}A^2(M(x)\lambda^{\frac{N-2}{2}}, \lambda^{\frac{N-2}{2}}) + \frac{1}{2}B\left(\sum_{i=1}^k \lambda_i^2\right)\right]\varepsilon^{\frac{N-2}{N-4}} + o(\varepsilon^{\frac{N-2}{N-4}})$$
(2.6)

uniformly in C^1 -norm with respect to $(\lambda, x) \in \Theta_{\delta}$. Here

$$C_N = \frac{1}{2} \int_{\mathbb{R}^N} |DU|^2 - \frac{1}{p+1} \int_{\mathbb{R}^N} U^{p+1}$$
(2.7)

and

$$A = \int_{\mathbb{R}^N} U^p \quad and \quad B = \int_{\mathbb{R}^N} U^2 \,. \tag{2.8}$$

Proof. The proof of this lemma is based on the following estimates

$$P_{\varepsilon}U_{\lambda_{j},y_{j}}(z) = \varepsilon^{\alpha(N-2)}G(\varepsilon^{\alpha}z,x)\lambda_{j}^{\frac{N-2}{2}}\left(\int_{\mathbb{R}^{N}}U^{p}\right) + o(\varepsilon^{\alpha(N-2)})$$
(2.9)

away from z = y, and

$$\phi_{\lambda_j, y_j}(z) = \varepsilon^{\alpha(N-2)} H(\varepsilon^{\alpha} z, x) \lambda_j^{\frac{N-2}{2}} \left(\int_{\mathbb{R}^N} U^p \right) + o(\varepsilon^{\alpha(N-2)})$$
(2.10)

uniformly for z on each compact subset of Ω_{ε} , where $\phi_{\lambda_j,y_j}(z) = U_{\lambda_j,y_j} - P_{\varepsilon}U_{\lambda_j,y_j}$, i.e. $\phi_{\lambda_j,y_j}(z)$ solves the equation

$$\begin{cases} -\Delta \phi_{\lambda_j, y_j}(z) = 0 & \text{ in } \Omega_{\varepsilon} \\ \phi_{\lambda_j, y_j} = U_{\lambda_j, y_j} & \text{ on } \partial \Omega_{\varepsilon} \end{cases}$$

The functions G and H are respectively the Green function and the Robin function of the Laplacian with Dirichlet boundary condition on Ω . In fact, we want to work out an expansion of $F_{\varepsilon}(\lambda, x)$ in term of G and H.

Let

$$F_{\varepsilon}^{*}(\lambda, x) = J_{\varepsilon}\left(\sum_{i=1}^{k} P_{\varepsilon}U_{\lambda_{i}, y_{i}}\right).$$

First of all we prove that

$$F_{\varepsilon}^{*}(\lambda, x) = kC_{N} + \left[\frac{1}{2}A(M(x)\lambda^{\frac{N-2}{2}}, \lambda^{\frac{N-2}{2}})\varepsilon^{\alpha(N-2)} + \frac{1}{2}B\left(\sum_{i=1}^{k}\lambda_{i}^{2}\right)\right]\varepsilon^{2\alpha+1} + o(\varepsilon^{2\alpha+1})$$

$$(2.11)$$

uniformly in C^1 -norm with respect to $(\lambda, x) \in \Theta_{\delta}$. Arguing like in [10], we have

$$\frac{1}{2} \int_{\Omega_{\varepsilon}} \left| D\left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}}\right) \right|^{2} - \frac{1}{p+1} \int_{\Omega_{\varepsilon}} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}}\right)^{p+1} \\ = kC_{N} + \frac{1}{2} A(M(x)\lambda^{\frac{N-2}{2}}, \lambda^{\frac{N-2}{2}}) \varepsilon^{\alpha(N-2)}$$
(2.12)

uniformly in C^1 -norm with respect to $(\lambda, x) \in \Theta_{\delta}$.

We need now to evaluate

$$\frac{\varepsilon^{2\alpha+1}}{2} \int_{\Omega_{\varepsilon}} \left[\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i},y_{i}} \right]^{2} dx$$
$$= \frac{\varepsilon^{2\alpha+1}}{2} \left\{ \sum_{i=1}^{k} \int_{\Omega_{\varepsilon}} (P_{\varepsilon} U_{\lambda_{i},y_{i}})^{2} dx + 2 \sum_{i < j} \int_{\Omega_{\varepsilon}} P_{\varepsilon} U_{\lambda_{i},y_{i}} P_{\varepsilon} U_{\lambda_{j},y_{j}} \right\}. \quad (2.13)$$

For $i = 1, \ldots, k$ we get

$$\int_{\Omega_{\varepsilon}} (P_{\varepsilon} U_{\lambda_{i}, y_{i}})^{2} dx$$

$$= \int_{\Omega_{\varepsilon}} [(P_{\varepsilon} U_{\lambda_{i}, y_{i}})^{2} - (U_{\lambda_{i}, y_{i}})^{2}] dx + \int_{\Omega_{\varepsilon}} (U_{\lambda_{i}, y_{i}})^{2} dx$$

$$= \int_{\Omega_{\varepsilon}} [\phi_{\lambda_{i}, y_{i}}^{2} - 2U_{\lambda_{i}, y_{i}} \phi_{\lambda_{i}, y_{i}}] dx + \int_{\Omega_{\varepsilon}} (U_{\lambda_{i}, y_{i}})^{2} dx. \qquad (2.14)$$

Since N > 4, we have

$$\int_{\Omega_{\varepsilon}} U_{\lambda_{i},y_{i}}^{2} dx = \int_{\Omega_{\varepsilon}} \left[\frac{\lambda_{i}}{(\lambda_{i})^{2} + |y - y_{i}|^{2}} \right]^{N-2} dy$$
$$= \lambda_{i}^{2} \int_{\mathbb{R}^{N}} U^{2} dx + O(\varepsilon^{\alpha(N-2)}).$$
(2.15)

From (2.10) we get

$$\int_{\Omega_{\varepsilon}} \phi_{\lambda_i, y_i}^2 dx = \lambda_i^{N-2} \varepsilon^{\alpha(N-2)} \left(\int_{\mathbb{R}^N} U^p dx \right)^2 \int_{\Omega} H(x, x_i)^2 dx + o(\varepsilon^{\alpha(N-2)})$$
$$= O(\varepsilon^{\alpha(N-2)}), \qquad (2.16)$$

790

$$\int_{\Omega_{\varepsilon}} \phi_{\lambda_i, y_i} U_{\lambda_i, y_i} dx = -2\lambda_i^{N-2} \left(\int_{\mathbb{R}^N} U^p dx \right)^2 \int_{\Omega} \frac{H(x, x_i)}{|x - x_i|} dx + o(\varepsilon^{\alpha(N-2)})$$
$$= O(\varepsilon^{\alpha(N-2)})$$
(2.17)

and if $j \neq i$

M. Musso & A. Pistoia

$$\int_{\Omega_{\varepsilon}} P_{\varepsilon} U_{\lambda_i, y_i} P_{\varepsilon} U_{\lambda_j, y_j} \, dx = O(\varepsilon^{\alpha(N-2)}) \tag{2.18}$$

uniformly with respect to $(\lambda, x) \in \Theta_{\delta}$. By means of (2.14)–(2.18) we conclude that

$$\frac{\varepsilon^{2\alpha+1}}{2} \int_{\Omega_{\varepsilon}} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} \right)^{2} dx = \frac{1}{2} \left(\int_{\mathbb{R}^{N}} U^{2} \right) \left(\sum_{i=1}^{k} \lambda_{i}^{2} \right) \varepsilon^{2\alpha+1} + o(\varepsilon^{2\alpha+1}) \,.$$

$$(2.19)$$

Therefore the claim follows by (2.13) and (2.19).

After having found the expansion of F_{ε}^* , we need to show that the functions F_{ε} and F_{ε}^* are C^1 -close, that is

$$F_{\varepsilon}(\lambda, x) - F_{\varepsilon}^{*}(\lambda, x) = o(\varepsilon^{\alpha(N-2)})$$
(2.20)

and

$$D(F_{\varepsilon}(\lambda, x) - F_{\varepsilon}^{*}(\lambda, x)) = o(\varepsilon^{\alpha(N-2)})$$
(2.21)

uniformly for $(\lambda, x) \in \Theta_{\delta}$.

By Taylor expansion, we have

$$F_{\varepsilon}(\lambda, x) - F_{\varepsilon}^{*}(\lambda, x) = J_{\varepsilon} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} + \tilde{\phi} \right) - J_{\varepsilon} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} \right)$$
$$= \int_{0}^{1} t dt D^{2} J_{\varepsilon} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} + t \tilde{\phi} \right) [\tilde{\phi}]^{2}, \qquad (2.22)$$

where we used that $DJ_{\varepsilon}(\sum_{i=1}^{k} P_{\varepsilon}U_{\lambda_i,y_i} + \phi)[\phi] = 0$ from definition of ϕ . We have, in particular,

$$\begin{split} &\int_{0}^{1} t dt D^{2} J_{\varepsilon} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} + t \phi \right) [\phi]^{2} \\ &= \int_{0}^{1} t dt \left[\int_{\Omega_{\varepsilon}} \left(|D\phi|^{2} - p \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} + t \phi \right)^{p-1} \phi^{2} + \varepsilon^{2\alpha+1} \phi^{2} \right) dx \right] \\ &= \int_{0}^{1} t dt \left[\int_{\Omega_{\varepsilon}} \left(\left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} \right)^{p} \phi - \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} + \phi \right)^{p} \phi \right. \\ &\left. - p \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} + t \phi \right)^{p-1} \phi^{2} + \varepsilon^{2\alpha+1} \sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} \phi \right) dx \right]. \end{split}$$

So we can conclude that

$$\begin{split} F_{\varepsilon}(\lambda, x) &- F_{\varepsilon}^{*}(\lambda, x)|\\ &\leq C\left(\int_{\Omega_{\varepsilon}} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}}\right)^{p-1} \phi^{2} + \varepsilon^{2\alpha+1} \int_{\Omega_{\varepsilon}} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}}\right) \phi\right)\\ &\leq C\left[\left(\int_{\Omega_{\varepsilon}} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}}\right)^{\frac{2N}{N-2}} dx\right)^{\frac{2}{N}} \|\phi\|^{2} + \varepsilon^{2\alpha+1} \left\|\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}}\right\|_{\frac{2N}{N+2}} \|\phi\|\right]\\ &= o(\varepsilon^{\alpha(N-2)})\,, \end{split}$$

so we get (2.20).

In order to obtain (2.21), we observe that

$$D_{x}[F_{\varepsilon}(\lambda, x) - F_{\varepsilon}^{*}(\lambda, x)] = \varepsilon^{-\alpha} \left\{ \int_{0}^{1} t dt \left[\int_{\Omega_{\varepsilon}} D_{y} \left[\left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} \right)^{p} \phi - \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} + \phi \right)^{p} \phi \right. \right. \\ \left. \mathcal{P} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} + t \phi \right)^{p-1} \phi^{2} \right] + \left[\varepsilon^{2\alpha+1} \int_{\Omega_{\varepsilon}} D_{y_{a}^{b}} \left(\sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i}, y_{i}} \phi \right) \right] dx \right] \right\}.$$

Arguing like in Lemma 1.2 and taking into account (1.15), we get

$$|D_{x_a^b}(F_{\varepsilon}(\lambda, x) - F_{\varepsilon}^*(\lambda, x))| = o(\varepsilon^{\alpha(N-2)})$$

uniformly on $(\lambda, x) \in \Theta_{\delta}$. The corresponding estimate for the derivative with respect to λ can be obtain in a similar way.

Let us now introduce new parameters Λ defined by

$$A^2 \lambda_i^{N-2} = B \Lambda_i^2 \quad \text{for } i = 1, \dots, k$$
(2.23)

and the function $\psi_k : \mathbb{R}^k_+ \times \Omega^k \longrightarrow \mathbb{R}$ defined by

$$\psi_k(\Lambda, x) = \frac{1}{2} (M(x)\Lambda, \Lambda) + \frac{1}{2} \sum_{i=1}^k \Lambda_i^{\frac{4}{N-2}}, \qquad (2.24)$$

where $M(x) = (m_{ij}(x))_{1 \le i,j \le k}$ is the matrix defined by

$$m_{ii}(x) = H(x_i, x_i), \quad m_{ij}(x) = G(x_i, x_j) \quad \text{if } i \neq j.$$
 (2.25)

Theorem 2.1. Let $u_{\varepsilon} = \sum_{i=1}^{k} P_{\varepsilon} U_{\lambda_{i_{\varepsilon}}, y_{i_{\varepsilon}}} + \phi_{\lambda_{\varepsilon}, y_{\varepsilon}}^{\varepsilon}$ be a family of solution of (1.1) such that $\lim_{\varepsilon \to 0} \lambda_{\varepsilon} = \lambda_0 > 0$ and $\lim_{\varepsilon \to 0} \varepsilon^{\frac{1}{N-4}} y_{\varepsilon} = x_0$ with $(\lambda_0, x_0) \in \mathcal{O}_{\delta}$ for some $\delta > 0$. Then (Λ_0, x_0) (see (2.23)) is a critical point of ψ_k .

792 M. Musso & A. Pistoia

Proof. Set $x_{i_{\varepsilon}} = \varepsilon^{\frac{1}{N-4}} y_{i_{\varepsilon}}$ and $\Lambda_{i_{\varepsilon}} = AB^{-1/2} \lambda_{i_{\varepsilon}}^{\frac{N-2}{2}}$ for $i = 1, \ldots, k$. From Lemmas 2.1 and 2.2 we deduce the estimates

$$0 = \nabla F_{\varepsilon}(\lambda_{\varepsilon}, x_{\varepsilon}) = \left[\nabla \psi_k(\Lambda_{\varepsilon}, x_{\varepsilon}) + o(1)\right] \varepsilon^{\frac{N-2}{N-4}}, \qquad (2.26)$$

which hold uniformly with respect to (λ, x) in \mathcal{O}_{δ} . By passing to the limit as ε goes to zero in (2.26) we get the claim.

Proof of Theorem 2.1. It follows from Theorem 2.1.

In particular, as far as it concerns the existence of solutions which blow-up and concentrate at one point, i.e. k = 1, we can prove the result of non-existence contained in Theorem 0.2.

Proof of Theorem 2.2. Let u_{ε} be a family of solutions which blow-up and concentrate at $x_0 \in \Omega$. Arguing as in [4], one can prove that the speeds of concentration are of order $\varepsilon^{\frac{1}{N-4}}$. Then we apply Theorem 0.2, taking into account that if k = 1 the function $\psi_1 : \mathbb{R}^+ \times \Omega \longrightarrow \mathbb{R}$ reduces to

$$\psi_1(\Lambda, x) = \frac{1}{2} H(x, x) \Lambda^2 + \frac{1}{2} \Lambda^{\frac{4}{N-2}}$$

and it does not have any critical point, since H(x, x) > 0 for any $x \in \Omega$.

3. Existence of a Two-Spike Solution

In this section we construct a domain Ω for which problem (0.1) has a family of solutions which blow-up and concentrate at two different points of Ω in the sense of Definition 0.1. Here we follow the ideas of [10].

Let D be a bounded domain with smooth boundary in \mathbb{R}^N which contains the origin 0. The following result holds (see [10, Corollary 2.1])

Corollary 3.1. For any (fixed) sufficiently small $\sigma > 0$ there exists $\delta_0 > 0$ such that for any $\delta \in (0, \delta_0)$ and for any smooth domain $\omega \subset B(0, \delta)$ it holds

$$\lambda_1(M(x)) < 0 \quad \forall x \in \mathcal{S}$$

where the manifold S is defined by

$$\mathcal{S} = \{ (x_1, x_2) \in \Omega^2 \mid |x_1| = |x_2| = \sigma \}$$

and the domain Ω is given by

$$\Omega = D \setminus \omega \,.$$

Here $\lambda_1(M(x))$ denotes the first eigenvalue of the matrix M(x) associated with the domain Ω .

In order to find a solution with two blow-up points in Ω of (1.1), in virtue of Lemmas 2.1 and 2.2, it is enough to find a "sufficiently stable" critical point of the function ψ defined by

$$\psi(\Lambda, x) = \frac{1}{2} \left[H(x_1, x_1)\Lambda_1^2 + H(x_2, x_2)\Lambda_2^2 - 2G(x_1, x_2)\Lambda_1\Lambda_2 \right] + \frac{1}{2} \left[\Lambda_1^{\gamma} + \Lambda_2^{\gamma} \right],$$

where $\gamma = \frac{4}{N-2}$.

In the following we will construct a critical point of "min-max" type of the function ψ .

Let us now introduce for l > 0 and $\rho > 0$ the following manifold

$$W_{\rho}^{l} = \{x \in \Omega^{2} \mid \lambda_{1}(M(x)) < -l\} \cap V_{\rho},\$$

where

$$V_{\rho} = \{ (x_1, x_2) \in \Omega^2 \mid \text{dist}(x_1, \partial \Omega) > \rho, \ \text{dist}(x_2, \partial \Omega) > \rho, \ |x_1 - x_2| > \rho \}.$$

Lemma 3.1. There exist $\rho_0 > 0$ and $l_0 > 0$ such that for any $\rho \in (0, \rho_0)$ and $l \in (0, l_0)$ it holds $S \subset W_{\rho}^l$.

Proof. It is enough to take $\lambda_0 = -\max_{x \in S^2} \lambda_1(M(x))$ and $\rho_0 = \operatorname{dist}(S, \partial \Omega)$.

Lemma 3.2. There exists R > 0 such that it holds

$$\max_{\substack{x \in S^2 \\ 0 \le r \le R}} \psi(re(x), x) > \max_{\substack{x \in S^2 \\ r = 0, R}} \psi(re(x), x) = 0,$$
(3.1)

where $e(x) = (e_1(x), e_2(x)) \in \mathbb{R}^2_+$ is an eigenvector associated with $\lambda_1(M(x))$ with |e(x)| = 1.

Proof. It follows from Corollary 3.1, since $\gamma < 2$.

Now let a and b be fixed so that

$$b = \max_{\substack{x \in S^2 \\ 0 \le r \le R}} \psi(re(x), x) > a > \max_{\substack{x \in S^2 \\ r = 0, R}} \psi(re(x), x) = 0.$$
(3.2)

Lemma 3.3. There exists R > 0 and for any $\rho \in (0, \rho_0)$ there exists $\tau = \tau(\rho) > 0$ such that for any $l \in (0, l_0)$ it holds

$$b = \max_{\substack{x \in S^2 \\ 0 \le r \le R}} \psi(x, re(x)) \ge \min_{\substack{x \in S^2 \\ \Lambda \in I_\tau}} \psi(x, \Lambda)$$

$$\geq \min_{\substack{x \in W_{\rho}^{l} \\ \Lambda \in I_{\tau}}} \psi(x, \Lambda) > a > \max_{\substack{x \in S^2 \\ r = 0, R}} \psi(x, re(x)) = 0, \qquad (3.3)$$

where I_{τ} is the hyperbola in \mathbb{R}^2_+ defined by $I_{\tau} = \{\Lambda \in \mathbb{R}^2_+ \mid \Lambda_1 \Lambda_2 = \tau\}.$

Proof. For any $\Lambda \in I_{\tau}$, we have

$$\psi(x,\Lambda) \ge -G(x_1,x_2)\tau + \frac{1}{2} \left[\Lambda_1^{\gamma} + \left(\frac{\tau}{\Lambda_1}\right)^{\gamma}\right]$$
$$\ge -\frac{1}{\rho^{N-2}}\tau + \frac{1}{2} \left[\Lambda_1^{\gamma} + \left(\frac{\tau}{\Lambda_1}\right)^{\gamma}\right] > a, \qquad (3.4)$$

provided that τ is choosen small enough, since $\gamma < 2$.

Finally (3.3) follows from (3.1), (3.4) and Lemma 3.1.

Lemma 3.4. For any 0 < a < b and $l \in (0, l_0)$ there exists $\hat{\rho}_0 > 0$ such that for any $\rho \in (0, \hat{\rho}_0)$ and for any $(\Lambda, x) \in \mathbb{R}^2_+ \times W^l_\rho$ with $\psi(x, \Lambda) \in [a, b]$, $\nabla_{\Lambda} \psi(\Lambda, x) = 0$ and $x \in \partial V_\rho$ there exists a vector T tangent to $\mathbb{R}^2_+ \times \partial V_\rho$ at the point (Λ, x) such that

$$\nabla \psi(\Lambda, x) \cdot T \neq 0$$
.

Proof. Step 1. We argue by contradiction. Let $(\Lambda_{\rho}, x_{\rho}) \in \mathbb{R}^2_+ \times \Omega^2$ be such that $\psi(\Lambda_{\rho}, x_{\rho}) \in [a, b], \ \nabla_{\Lambda} \psi(\Lambda_{\rho}, x_{\rho}) = 0, \ \lambda_1(M(x_{\rho})) < -l < 0, \ \operatorname{dist}(x_{1_{\rho}}, \partial\Omega) = \rho, \ \operatorname{dist}(x_{2_{\rho}}, \partial\Omega) \geq \rho, \ |x_{1_{\rho}} - x_{2_{\rho}}| \geq \rho \text{ and for any vector } T \text{ tangent to } \mathbb{R}^2_+ \times \partial V_{\rho} \text{ at the point } (\Lambda_{\rho}, x_{\rho}) \text{ it holds}$

$$\nabla \psi(\Lambda_{\rho}, x_{\rho}) \cdot T = 0.$$
(3.5)

Set $\Omega_{\rho} = \frac{\Omega}{\rho}$, $y = \frac{x}{\rho}$ and $\mu_{\rho} = \rho^{-\frac{N-2}{2-\gamma}} \Lambda_{\rho}$. We will use the notation of the Appendix A.

Then

$$\operatorname{dist}(y_{1_{\rho}}, \partial \Omega_{\rho}) = 1, \quad \operatorname{dist}(y_{2_{\rho}}, \partial \Omega_{\rho}) \ge 1, \quad |y_{1_{\rho}} - y_{2_{\rho}}| \ge 1.$$

After a rotation and a translation we may assume that $y_{1_{\rho}} \to (0, 1)$ as $\rho \to 0$, where $0 = 0_{\mathbb{R}^{N-1}}$ and that the domain Ω_{ρ} becomes the half-space $P = \{(y^1, \ldots, y^N) \in \mathbb{R}^N : y^N > 0\}.$

First of all we claim that

$$0 < c_1 \le \Lambda_{1_\rho}, \Lambda_{2_\rho} \le c_2 \quad \text{as } \rho \to 0.$$
(3.6)

It is easy to check that $0 < c_1 \leq |\Lambda_{\rho}| \leq c_2$. In fact since $\nabla_{\Lambda} \psi(\Lambda_{\rho}, x_{\rho}) = 0$ we have that

$$\psi(\Lambda_{\rho}, x_{\rho}) = \frac{2 - \gamma}{4} \left(\Lambda_{1_{\rho}}^{\gamma} + \Lambda_{2_{\rho}}^{\gamma}\right) \in [a, b]$$

and so if $|\Lambda_{\rho}| \longrightarrow +\infty$ or $|\Lambda_{\rho}| \longrightarrow 0$ and a contradiction arises.

Assume that $\lim_{\rho} \Lambda_{1_{\rho}} = 0$. Since $\nabla_{\Lambda} \psi(\Lambda_{\rho}, x_{\rho}) = 0$, we have that

$$0 = \rho^{-(N-2)} \partial_{\Lambda_1} \psi(\Lambda_{\rho}, x_{\rho})$$

= $H_{\rho}(y_{1_{\rho}}, y_{1_{\rho}}) \Lambda_{1_{\rho}} - G_{\rho}(y_{1_{\rho}}, y_{2_{\rho}}) \Lambda_{2_{\rho}} + \frac{\gamma}{2} [\Lambda_{1_{\rho}} \rho^{-(N-2)}] \Lambda_{1_{\rho}}^{\gamma-2}$

with $H_{\rho}(y_{1_{\rho}}, y_{1_{\rho}}) \leq 1$ and $G_{\rho}(y_{1_{\rho}}, y_{2_{\rho}}) \leq 1$. If $\gamma - 1 \leq 0$ or $\liminf_{\rho \to 0} \Lambda_{1_{\rho}} \rho^{-(N-2)} \geq c > 0$ by passing to the limit we deduce immediately that $\Lambda_{2_{\rho}} \to +\infty$ and a contradiction arises. Assume $\gamma - 1 > 0$ and $\liminf_{\rho \to 0} \Lambda_{1_{\rho}} \rho^{-(N-2)} = 0$. Then also $\liminf_{\rho \to 0} H(x_{1_{\rho}}, x_{1_{\rho}}) \Lambda_{1_{\rho}} = 0$ and by

$$0 = \partial_{\Lambda_1} \psi(\Lambda_\rho, x_\rho) = H(x_{1_\rho}, x_{1_\rho}) \Lambda_{1_\rho} - G(x_{1_\rho}, x_{2_\rho}) \Lambda_{2_\rho} + \frac{\gamma}{2} \Lambda_1^{\gamma - 1}$$

we deduce $\liminf_{\rho\to 0} G(x_{1_{\rho}}, x_{2_{\rho}})\Lambda_{2_{\rho}} = 0$. On the other hand since $\lambda_1(M(x_{\rho})) \leq -l$ and $H(x_{1_{\rho}}, x_{1_{\rho}}) \to +\infty$ as $\rho \to 0$, we obtain that also $G(x_{1_{\rho}}, x_{2_{\rho}}) \to +\infty$ as $\rho \to 0$. In conclusion it must be $\Lambda_{2_{\rho}} \to 0$ and a contradiction again arises.

Second we prove that

$$|y_{2_{\rho}}| \le C \quad \text{as } \rho \to 0.$$

$$(3.7)$$

Assume by contradiction that $|y_{1_{\rho}} - y_{2_{\rho}}| \longrightarrow +\infty$ as $\rho \to 0$. We have

$$G_{\rho}(y_{1_{\rho}}, y_{2_{\rho}}) \le |y_{1_{\rho}} - y_{2_{\rho}}|^{-(N-2)} \longrightarrow 0$$

and by (A.6)

$$H_{\rho}(y_{1_{\rho}}, y_{1_{\rho}}) \longrightarrow H_{P}(0, 1; 0, 1) > 0$$

Then, since $\nabla_{\mu}\psi_{\rho}(\mu_{\rho}, y_{\rho}) = 0$ (see (A.1) and (A.3)), we have

$$\begin{split} \psi_{\rho}(\mu_{\rho}, y_{\rho}) &= \frac{\gamma - 2}{2\gamma} \left(M_{\rho}(y_{\rho}) \mu_{\rho}, \mu_{\rho} \right) \\ &= \frac{\gamma - 2}{2\gamma} \rho^{-2\frac{N-2}{2-\gamma}} \left[H_{\rho}(y_{1_{\rho}}, y_{1_{\rho}}) \Lambda_{1_{\rho}}^{2} + H_{\rho}(y_{2_{\rho}}, y_{2_{\rho}}) \Lambda_{2_{\rho}}^{2} \right] \\ &- 2G_{\rho}(y_{1_{\rho}}, y_{2_{\rho}}) \Lambda_{1_{\rho}} \Lambda_{2_{\rho}} \right] \end{split}$$

and therefore using (3.6)

$$\limsup_{\rho \to 0} \psi_{\rho}(\mu_{\rho}, y_{\rho}) \le 0 \,.$$

On the other hand by (A.2) we get

$$\rho^{\gamma \frac{N-2}{2-\gamma}}\psi_{\rho}(\mu_{\rho}, y_{\rho}) = \psi(\Lambda_{\rho}, x_{\rho}) \in [a, b]$$

and so a contradiction arises.

Third we prove that

$$\begin{cases} \text{There exist } \hat{y} = (0, 1; y', \beta) \text{ with } (0, 1) \neq (y', \beta), 0, y' \in \mathbb{R}^{N-1} \text{ and } 1, \beta \in \mathbb{R}, \\ \text{and } \hat{\mu} = (\hat{\mu}_1, \hat{\mu}_2) \in \mathbb{R}^2_+ \text{ such that } M_P(\hat{y})\hat{\mu} = 0 \\ T \cdot \nabla_y \psi_P(\hat{\mu}, \hat{y}) = 0 \quad \forall T \in \mathbb{R}^{N-1} \times \{0\} \times \mathbb{R}^N. \end{cases}$$

$$(3.8)$$

By (3.7) we deduce that, up to a subsequence, $\hat{y}_2 = \lim_{\rho} y_{2_{\rho}}$, with $\operatorname{dist}(\hat{y}_2, \partial P) \geq 1$ and $|\hat{y}_1 - \hat{y}_2| \geq 1$, where $\hat{y}_1 = (0, 1)$. Moreover from (3.6) it follows that

 $\lim_{\rho\to 0} |\mu_{\rho}| = +\infty$, then up to a subsequence we can assume that $\hat{\mu} = \lim_{\rho\to 0} \frac{\mu_{\rho}}{|\mu_{\rho}|}$. It holds $|\hat{\mu}| = 1$. Now, since $\nabla_{\mu}\psi_{\rho}(\mu_{\rho}, y_{\rho}) = 0$, we have

$$M_{\rho}(y_{\rho})\frac{\mu_{\rho}}{|\mu_{\rho}|} + \frac{\gamma}{2}\left(\frac{\mu_{1_{\rho}}^{\gamma-1}}{|\mu_{\rho}|} + \frac{\mu_{2_{\rho}}^{\gamma-1}}{|\mu_{\rho}|}\right) = 0$$

and passing to the limit we get $M_P(\hat{y})\hat{\mu} = 0$. (If $\gamma < 1$ we used the fact that both $\mu_{1_{\rho}}$ and $\mu_{2_{\rho}}$ tend to $+\infty$.) Therefore $\hat{\mu}$ is an eigenvector associated with the first eigenvalue of the matrix $M_P(\hat{y})$ and by [4] it follows that $\hat{\mu}_1 > 0$ and $\hat{\mu}_2 > 0$. Finally from (A.5) we get $\nabla_y \psi_P(\hat{\mu}, \hat{y}) = \lim_{\rho \to 0} \frac{1}{|\mu_{\rho}|^2} \nabla_{\mu} \psi_{\rho}(\mu_{\rho}, y_{\rho})$ and the last statement follows from the assumption.

Finally we prove that by (3.8) we get a contradiction with (3.5). We write now the function ψ_P explicitly:

$$\psi_P(\mu, y) = \frac{1}{2} \left(\frac{1}{(2y_1^N)^{N-2}} \,\mu_1^2 + \frac{1}{(2y_2^N)^{N-2}} \,\mu_2^2 - 2G(y_1, y_2)\mu_1\mu_2 \right) + \frac{1}{2} \left(\mu_1^\gamma + \mu_2^\gamma \right),$$

where

$$G(y_1, y_2) = \frac{1}{|y_1 - y_2|^{N-2}} - \frac{1}{|y_1 - \bar{y}_2|^{N-2}}, \quad \bar{y}_2 = (y'_2, -y_2^N).$$

We have $\hat{y}_1 = (0, 1)$ and $\hat{y}_2 = (\hat{y}'_2, \beta)$. If $\hat{y}'_2 \neq 0$ then

$$\begin{aligned} \hat{y}_2' \cdot \nabla_{y_{2'}} \psi_P(\hat{\mu}, \hat{y}) &= -\hat{y}_2' \cdot \nabla_{y_{2'}} G(\hat{y}_1, \hat{y}_2) \hat{\mu}_1 \hat{\mu}_2 \\ &= -|y_2'|^2 \left[\frac{1}{|(y_2', \beta - 1)|^N} - \frac{1}{|(y_2', \beta + 1)|^N} \right] \hat{\mu}_1 \hat{\mu}_2 \neq 0 \end{aligned}$$

and a contradiction arises.

If $\hat{y}_2'=0$ then $\beta>1$ and

$$0 = \nabla_{y_2^N} \psi_P(\hat{\mu}, \hat{y}) = (N-2)\hat{\mu}_2 \left[\Gamma_{N-1}(\beta)\hat{\mu}_1 - \frac{1}{(2\beta)^{N-1}}\hat{\mu}_2 \right],$$

where

$$\Gamma_{N-1}(\beta) = \frac{1}{(\beta-1)^{N-1}} - \frac{1}{(\beta+1)^{N-1}} > 0.$$

We deduce that

$$\hat{\mu}_2 = (2\beta)^{N-1} \Gamma_{N-1}(\beta) \hat{\mu}_1.$$
(3.9)

On the other hand by the condition $M_P(\hat{y})\hat{\mu} = 0$, we get

$$\begin{cases} \frac{1}{2^{N-2}}\hat{\mu}_1 - \Gamma_{N-2}(\beta)\hat{\mu}_2 = 0, \\ -\Gamma_{N-2}(\beta)\hat{\mu}_1 + \frac{1}{(2\beta)^{N-2}}\hat{\mu}_2 = 0, \end{cases}$$
(3.10)

where

$$\Gamma_{N-2}(\beta) = \frac{1}{(\beta-1)^{N-2}} - \frac{1}{(\beta+1)^{N-2}} > 0.$$

By (3.9) and (3.10) we get

$$[2\beta\Gamma_{N-1}(\beta) - \Gamma_{N-2}(\beta)]\hat{\mu}_1 = 0$$

and a contradiction arises since $2\Gamma_{N-1}(\beta) - \Gamma_{N-2}(\beta) > 0$.

Step 2. We argue by contradiction. Let $(\Lambda_{\rho}, x_{\rho}) \in \mathbb{R}^2_+ \times \Omega^2$ be such that $\psi(\Lambda_{\rho}, x_{\rho}) \in [a, b]$, $\nabla_{\Lambda} \psi(\Lambda_{\rho}, x_{\rho}) = 0$, $\lambda_1(M(x_{\rho})) < -l < 0$, $\operatorname{dist}(x_{1_{\rho}}, \partial\Omega) \ge \rho$, $\operatorname{dist}(x_{2_{\rho}}, \partial\Omega) \ge \rho$, $|x_{1_{\rho}} - x_{2_{\rho}}| = \rho$ and for any vector T tangent to $\mathbb{R}^2_+ \times \partial V_{\rho}$ at the point $(\Lambda_{\rho}, x_{\rho})$ it holds

$$\nabla \psi(\Lambda_{\rho}, x_{\rho}) \cdot T = 0.$$
(3.11)

We use the same notation of *Step 1*. First of all arguing as in *Step 1* we prove that $0 < c_1 \leq |\Lambda_{\rho}| \leq c_2$. Secondly we prove that

$$1 \le \frac{\operatorname{dist}(x_{i_{\rho}}, \partial\Omega)}{\rho} \le c \quad \text{for } i = 1 \text{ or } i = 2.$$
(3.12)

Assume by contradiction that for i = 1, 2 dist $(x_{i_{\rho}}, \partial \Omega)/\rho \longrightarrow +\infty$. Then as $\rho \to 0$ we get

$$H_{\rho}(y_{i_{\rho}}, y_{i_{\rho}}) = \rho^{N-2} H(x_{i_{\rho}}, x_{i_{\rho}}) \le \left(\frac{\rho}{\operatorname{dist}(x_{i_{\rho}}, \partial\Omega)}\right)^{N-2} \longrightarrow 0 \quad \text{for } i = 1, 2$$
(3.13)

and

$$G_{\rho}(y_{1_{\rho}}, y_{2_{\rho}}) = \rho^{N-2} G(x_{1_{\rho}}, x_{2_{\rho}}) \longrightarrow 1$$
 (3.14)

(since $2H(x_{1_{\rho}}, x_{2_{\rho}}) \leq (x_{1_{\rho}}, x_{1_{\rho}}) + H(x_{2_{\rho}}, x_{2_{\rho}})$). Using (3.13) and (3.14) and arguing as in the proof of (3.6) we can show that $\Lambda_{i_{\rho}} \longrightarrow \Lambda_i > 0$ for i = 1, 2. Therefore

$$\psi(\Lambda_{\rho}, x_{\rho}) = \frac{\gamma - 2}{2\gamma} \left(M(x_{\rho})\Lambda_{\rho}, \Lambda_{\rho} \right) \longrightarrow +\infty \text{ as } \rho \to 0,$$

and a contradiction arises, since $\psi(\Lambda_{\rho}, x_{\rho}) \in [a, b]$.

Next arguing as in *Step 1*, without loss of generality, we can assume that (up to a subsequence) Ω_{ρ} becomes the half-space P and $\hat{y}_1 = \lim_{\rho} y_{1_{\rho}}, \hat{y}_1 = (0, \alpha)$ with $0 \in \mathbb{R}^{N-1}$ and $\alpha \geq 1$, $\hat{y}_2 = \lim_{\rho} y_{2_{\rho}}$ with $\operatorname{dist}(\hat{y}_2, \partial P) \geq 1$ and $|\hat{y}_1 - \hat{y}_2| = 1$.

Moreover we can show that there exists $\hat{\mu} = (\hat{\mu}_1, \hat{\mu}_2) \in \mathbb{R}^2_+$ such that $T \cdot \nabla_y \psi_P(\hat{y}, \hat{\mu}) = 0$ for any $T \in \mathbb{R}^{N-1} \times \{0\} \times \mathbb{R}^N$ and $M_P(\hat{y})\hat{\mu} = 0$ where $\hat{y} = (\hat{y}_1, \hat{y}_2)$. Finally, again arguing as in *Step 1*, we get a contradiction with (3.11).

Lemma 3.5. There exist $l_0 > 0$ and $\rho_0 > 0$ such that for any $l \in (0, l_0)$ and $\rho \in (0, \rho_0)$ the function ψ satisfies the following property:

for any sequence (Λ_n, x_n) in $\mathbb{R}^2_+ \times W^l_\rho$ such that $\lim_n (\Lambda_n, x_n) = (\Lambda, x) \in \partial(\mathbb{R}^2_+ \times W^l_\rho)$ and $\psi(\Lambda_n, x_n) \in [a, b]$ there exists a vector T tangent to $\mathbb{R}^2_+ \times \partial(W^l_\rho)$ at (Λ, x) , such that

$$\nabla \psi(\Lambda, x) \cdot T \neq 0$$
.

Proof. First of all we prove that Λ_n is component-wise bounded from below and from above by a positive constant. We have that $|\Lambda_n| \longrightarrow +\infty$ and $|\Lambda_n| \longrightarrow 0$ yield respectively to $|\psi(\Lambda_n, x_n)| \longrightarrow +\infty$ and $|\psi(\Lambda_n, x_n)| \longrightarrow 0$, which is impossible.

Let $\Lambda = \lim_{n \to \infty} \Lambda_n$ and $x = \lim_{n \to \infty} x_n$.

If $\nabla_{\Lambda}\psi(\Lambda, x) \neq 0$, then T can be chosen parallel to $\nabla_{\Lambda}\psi(\Lambda, x)$. If $\nabla_{\Lambda}\psi(\Lambda, x) = 0$, then $\Lambda \in \mathbb{R}^2_+$. In fact if $\Lambda_2 = 0$ by

$$0 = \partial_{\Lambda_1} \psi(\Lambda, x) = H(x_1, x_1)\Lambda_1 + \frac{\gamma}{2} \Lambda_1^{\gamma - 1},$$

we get a contradiction. Analogously $\Lambda_1 \neq 0$.

Thus $(\Lambda, x) \in \mathbb{R}^2_+ \times \partial W^l_{\rho}$.

Now we claim that there exists $l_0 > 0$ such that

$$\lambda_1(M(x)) < -l_0. \tag{3.15}$$

In fact, since $\nabla_{\Lambda}\psi(\Lambda, x) = 0$, we have

$$\psi(\Lambda,x) = \frac{2-\gamma}{4} \left(\Lambda_1^\gamma + \Lambda_2^\gamma\right) = \frac{\gamma-2}{2\gamma} \left(M(x)\Lambda,\Lambda\right),$$

and since $\psi(\Lambda, x) \in [a, b]$ we deduce that

$$|\Lambda|^2 \leq 2\left(rac{4}{2-\gamma}
ight)^{\!\!2/\gamma} b^{2/\gamma} \quad \mathrm{and} \quad (M(x)\Lambda,\Lambda) \leq -rac{2\gamma}{2-\gamma} \, a \, ,$$

which implies (3.15) because $(M(x)\Lambda, \Lambda) \ge \lambda_1(M(x))|\Lambda|^2$.

Therefore we have that $x \in \partial V_{\rho}$ and we can apply Lemma 3.4 to conclude the proof.

Lemma 3.6. The function ψ constrained to $\mathbb{R}^2_+ \times W^l_\rho$ satisfies the Palais–Smale condition in [a, b].

Proof. Let (Λ_n, x_n) in $\mathbb{R}^2_+ \times W^l_\rho$ be such that $\lim_n \psi(\Lambda_n, x_n) = c > 0$ and $\lim_n \nabla \psi(\Lambda_n, x_n) = 0$. Arguing as in the proof of Lemma 3.4 it can be shown that Λ_n remains bounded component-wise from above and below by a positive constant.

Proposition 3.1. There exists a critical level for ψ between a and b.

Proof. Assume by contradiction that there are no critical levels in the interval [a, b]. We can define an appropriate negative gradient flow that will remain in $\mathbb{R}^2_+ \times W^l_\rho$ at any level $c \in [a, b]$. Moreover the Palais–Smale condition holds in [a, b]. Hence there exists a continuous deformation

$$\eta: [0,1] \times \psi^b \longrightarrow \psi^b$$

such that for some $a' \in (0, a)$

$$\begin{split} \eta(0,u) &= u \quad \forall \, u \in \psi^b \\ \eta(t,u) &= u \quad \forall \, u \in \psi^{a'} \\ \eta(1,u) &\in \psi^{a'} \, . \end{split}$$

Let us call

$$\mathcal{A} = \{ (\Lambda, x) \in \mathbb{R}^2_+ \times W^l_\rho \mid x \in \mathcal{S}, \ \Lambda = re(x), \ 0 \le r \le R \},$$
$$\partial \mathcal{A} = \{ (\Lambda, x) \in \mathbb{R}^2_+ \times W^l_\rho \mid x \in \mathcal{S}, \ \Lambda = 0 \text{ or } \Lambda = \operatorname{Re}(x) \},$$
$$\mathcal{C} = I_\tau \times W^l_\rho.$$

From (3.3) we deduce that $\mathcal{A} \subset \psi^b$, $\partial \mathcal{A} \subset \psi^{a'}$ and $\psi^{a'} \cap \mathcal{C} = \emptyset$. Therefore

$$\eta(0, u) = u \quad \forall u \in \mathcal{A},$$

$$\eta(t, u) = u \quad \forall u \in \partial \mathcal{A},$$

$$\eta(1, \mathcal{A}) \cap \mathcal{C} = \emptyset.$$
(3.16)

For any $(\Lambda, x) \in \mathcal{A}$ and for any $t \in [0, 1]$ we denote

 $\eta(t,(\Lambda,x)) = (\tilde{\Lambda}(\Lambda,x,t), \tilde{x}(\Lambda,x,t)) \in \mathbb{R}^2_+ \times W^l_\rho.$

We define the set

$$\mathcal{B} = \{ (\Lambda, x) \in \mathcal{A} \mid \widehat{\Lambda}(x, \Lambda, 1) \in I_{\tau} \}.$$

Since $\eta(1, \mathcal{A}) \cap \mathcal{C} = \emptyset$ it holds $\mathcal{B} = \emptyset$. Now let \mathcal{U} be a neighborhood of \mathcal{B} in $W^l_{\rho} \times \mathbb{R}^2_+$ such that $H^*(\mathcal{U}) = H^*(\mathcal{B})$. If $\pi : \mathcal{U} \longrightarrow \mathcal{S}$ denotes the projection, arguing like in Lemma 7.1 of [10] we can show that

 $\pi^*: H^*(\mathcal{S}) \longrightarrow H^*(\mathcal{U})$ is a monomorphism.

This condition provides a contradiction, since $H^*(\mathcal{U}) = \{0\}$ and $H^*(\mathcal{S}) \neq \{0\}$. \Box

Proof of Theorem 0.3. Arguing as in [10] and using Lemma 2.2 and Proposition 3.1, it is possible to construct a critical point of the function F_{ε} (see (2.2)) for ε small enough. Therefore by Lemma 2.1 the claim follows.

Appendix A

Consider, for small ρ , the modified domain $\Omega_{\rho} = \Omega/\rho$. We can assume, without loss of generality, that as ρ tends to 0 the domain Ω_{ρ} becomes the half-space $P = \{(y^1, \ldots, y^N) \in \mathbb{R}^N \mid y^N > 0\}$. We observe that if G_{ρ} and H_{ρ} are the Green's function and the regular part associated to the domain Ω_{ρ} then

$$G_{\rho}(y_1, y_2) = \rho^{N-2} G(\rho y_1, \rho y_2), \quad H_{\rho}(y_1, y_2) = \rho^{N-2} H(\rho y_1, \rho y_2).$$

Moreover, if M_{ρ} denotes the matrix associated to the domain Ω_{ρ} ,

$$M_{\rho}(y) = \rho^{N-2}M(\rho y)$$
 and $\lambda_1(M_{\rho}(y)) = \rho^{N-2}\lambda_1(M(\rho y))$.

Let

$$\psi_{\rho}(\mu, y) = \frac{1}{2} \left[H_{\rho}(y_1, y_1) \mu_1^2 + H_{\rho}(y_2, y_2) \mu_2^2 - 2G_{\rho}(y_1, y_2) \mu_1 \mu_2 \right] + \frac{1}{2} \left[\mu_1^{\gamma} + \mu_2^{\gamma} \right],$$
(A.1)

where $\gamma = \frac{4}{N-2}$. We remark that if $\mu = \rho^{-\frac{N-2}{2-\gamma}} \Lambda$ and $y = x/\rho$ then

$$\psi_{\rho}(\mu, y) = \rho^{-\gamma \frac{N-2}{2-\gamma}} \psi(\Lambda, x) \tag{A.2}$$

and

$$abla_{\Lambda}\psi(\Lambda, x) = 0 \quad \text{if and only if } \nabla_{\mu}\psi_{\rho}(\mu, y) = 0.$$
(A.3)

Lemma A.1. It holds

$$M_{\Omega_{\rho}} \longrightarrow M_P$$

 $C^{1}\text{-uniformly on compact sets of } \{(y_{1}, y_{2}) \in P^{2} \mid y_{1} \neq y_{2}\}.$ (A.4)

Moreover

$$\frac{1}{|\mu|^2} \nabla_y \psi_\rho(\mu, y) \longrightarrow \frac{1}{|\mu|^2} \nabla_y \psi_P(\mu, y)$$

C¹-uniformly on compact sets of $\{(y_1, y_2) \in P^2 \mid y_1 \neq y_2\} \times \mathbb{R}^2_+$. (A.5)

Proof. First of all we point out the following results

C

$$\lim_{\rho \to 0} H_{\rho}(y, y) = H_{P}(y, y)$$
¹-uniformly on compact sets of P
(A.6)

and

$$\lim_{\rho \to 0} G_{\rho}(y_1, y_2) = G_P(y_1, y_2)$$

 C^1 -uniformly on compact sets of $\{(y_1, y_2) \in P^2 \mid y_1 \neq y_2\}$. (A.7)

Let us prove (A.6). The proof of (A.7) is similar.

For any $y_1 \in P$ and $y_2 \in P$ we have, by a comparison argument, that $H_{\rho}(y_1, y_2)$ is increasing with respect to ρ and $H_P(y_1, y_2) \leq H_{\rho}(y_1, y_2) \leq H_{\Omega}(y_1, y_2)$. Then $H_{\rho}(y_1, y_2)$ converges decreasingly as ρ decreases to 0. By harmonicity the pointwise limit of $H_{\rho}(\cdot, \cdot)$ in P^2 is therefore uniform on compact sets of P^2 as ρ goes to zero. Moreover for any $y \in P$ the resulting limit is an harmonic function with respect to yin P which coincides with $\frac{1}{|y_1-y_2|^{N-2}}$ on ∂P , namely the resulting limit is $H_P(y, \cdot)$. Moreover if K is a compact set of P^2 we have the following interior derivative estimate (see [13, Theorem (2.10)])

$$\max_{(y_1, y_2) \in K} |\nabla H_P(y_1, y_2) - \nabla H_P(y_1, y_2)| \\ \leq \frac{N}{\operatorname{dist}(K, \partial(P^2))} \max_{(y_1, y_2) \in K} |H_P(y_1, y_2) - H_P(y_1, y_2)|,$$

which proves our claim.

Therefore (A.4) follows by (A.6) and (A.7).

Let us prove (A.5). Let K be a compact set of $\{(y_1, y_2) \in P^2 \mid y_1 \neq y_2\}$. It holds

$$\sup_{\substack{y \in K \\ \mu \neq 0}} \frac{1}{|\mu|^2} \left| \nabla_y \psi_\rho(\mu, y) - \nabla_y \psi_P(\mu, y) \right| = \sup_{\substack{y \in K \\ \mu \neq 0}} \frac{1}{2|\mu|^2} \left| \left([M'_\rho(y) - M'_P(y)] \mu, \mu \right) \right|$$
$$\leq C \sup_{y \in K} \|M'_\rho(y) - M'_P(y)\|$$

and the claim follows by (A.4).

References

- T. Aubin, Problemes isoperimetriques et espaces de Sobolev, J. Differential Geom. 11 (1976), 573–598.
- [2] A. Bahri, Critical Point at Infinity in Some Variational Problems, Pitman Research Notes Math. 182 Longman House, Harlow, 1989.
- [3] A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, *Comm. Pure Appl. Math.* 41 (1988), 255–294.
- [4] A. Bahri, Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, *Calc. Var.* 3 (1995), 67–93.
- [5] H. Brezis, Elliptic equations with limiting Sobolev exponent: The impact of Topology, Proceedings 50th Anniv. Courant Inst. Comm. Pure Appl. Math. 39 (1986).
- [6] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math. 36 (1983), 437–477.
- [7] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, *Comm. Pure Appl. Math.* 42 (1989), 271–297.
- [8] J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris, Ser. I 299 (1984), 209–212.
- [9] E. N. Dancer, The effect of the domain shape on the number of positive solution of certain nonlinear equations, J. Differential Equations 74 (1988), 120–156.
- [10] M. Del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri–Coron's problem, Cal. Var. Partial Differential Equations 16(2) (2003), 113– 145.
- [11] M. Del Pino, P. Felmer and M. Musso, Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equations 182 (2002), 511–540.
- [12] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69, (1986), 397–408.
- [13] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1998.

802 M. Musso & A. Pistoia

- [14] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Anal. Nonl. 8 (1991), 159–174.
- [15] J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1983), 349–374.
- [16] Y. Y. Li, On a singularly perturbed elliptic equation, Adv. Differential Equations 2 (1997), 955–980.
- [17] Y. Y. Li, Prescribing scalar curvature on Sⁿ and related problems. I., J. Differential Equations 120(2) (1995), 319–410.
- [18] M. Musso and A. Pistoia, Multispike solutions for a nonlinear elliptic problem involving critical Sobolev exponent, *Indiana Univ. Math. J.* 51(3) (2002), 541–579.
- [19] D. Passaseo, Multiplicity of positive solutions for the equation $\Delta u + \lambda u + u^{2^*-1} = 0$ in noncontractible domains, *Topolol. Methods Nonl. Anal.*, **2** (1993), 343–366.
- [20] S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl. 6 (1965), 1408–1411.
- [21] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1–52.
- [22] O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonl. Anal. 13 (1989), 1241–1249.
- [23] M. Struwe, A global compactness result for elliptic boundary value problems involving limit nonlnearities, *Math. Z* 187(4) (1984), 511–517.
- [24] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353–372.