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1. Introduction

Let us consider the following problem:

(P)




−�u+ u+ a(x)u= |u|p−2u in RN ;

u¿0 in RN ;

lim
|x|→∞

u(x)= 0;

where a(x) is a nonnegative function in LN=2(RN ), p¿2 and p¡2N=(N −2) if N ≥ 3.
Problems of this kind arise in several contexts: for example, in the study of the

standing waves solutions of nonlinear Schr�odinger equations, or equations of Klein–
Gordon type, or also in reaction–di�usion equations.
For example, if we look for standing waves solutions of the Schr�odinger equation

i˜@ 
@t
=− ˜

2

2m
� + V (x) − | |p−2 ; (1.1)

i.e. solutions of the form

 (x; t)= exp
(
− iEt˜

)
v(x);
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then one can easily verify that  satis�es Eq. (1.1) if and only if the function v(x)
solves the elliptic equation in RN

˜2
2m
�v− (V (x)− E)v+ |v|p−2v=0: (1.2)

In [16] Floer and Weinstein considered the case N =1 and p=3 with a potential
V which is required to be a smooth function globally bounded in RN ; for a given
nondegenerate critical point of V they proved that, if 0¡E¡ infRN V , then for ˜ small
enough there exists a solution of Eq. (1.2), which concentrates around the critical point
as ˜→ 0.
Their method (based on a Lyapunov–Schmidt reduction) was extended in several

directions in order to obtain similar results for N¿1 and p∈ ]2; 2N=(N − 2)[ or also
to �nd solutions with multiple peaks, which concentrate around any prescribed �nite
set of nondegenerate critical points of V (see, for instance, [23–25]).
In [26] Rabinowitz used a global variational method to �nd solutions with minimal

energy under the assumption lim inf |x|→∞ V (x)¿ infRN V .
Other related results have been recently stated in [1, 2, 5, 14].
Notice that a simple change of variables shows that Eq. (1.2) is obviously equivalent

to

−�u+ u+ a(�x)u= |u|p−2u

with

�=
˜√

2m
√
inf V − E

and a(x)=
V (x)− inf V
inf V − E

≥ 0:

In this paper we are concerned with problem (P) in the case that a(x) has the form

a(x)=
k∑

j=1

�2j �j(�j(x − xj)) (1.3)

where �j ∈R+, xj ∈RN and �j ∈LN=2(RN ), with �j ≥ 0 and �j 6≡ 0.
Our aim is to give su�cient conditions on the numbers �1; : : : ; �k and the points

x1; : : : ; xk in order to guarantee existence and multiplicity of solutions for (P).
We shall prove that, if |xi − xj| is large enough for all i 6= j (i; j=1; : : : ; k), then

there exist at least k − 1 solutions of (P); if, in addition, �1; : : : ; �k are small or large
enough, then we have at least 2k − 1 solutions (see Theorems 2.1 and 4.1 and also
Remark 4.2).
Let us denote by H 1;2(RN ) the closure of C∞

0 (RN ) with respect to the norm

‖u‖=
(∫

RN
[|Du|2 + u2] dx

)1=2

and by ‖ · ‖N=2 the usual norm in LN=2(RN ).



M. Musso, D. Passaseo / Nonlinear Analysis 39 (2000) 837–860 839

The solutions of problem (P) correspond to the positive functions which are critical
points for the functional fa :H 1;2(RN )→R de�ned by

fa(u)=
∫
RN
[|Du|2 + (1 + a(x))u2] dx; (1.4)

constrained on the manifold

M =
{
u∈H 1;2(RN ):

∫
RN

|u|p dx=1
}
: (1.5)

Since the embedding H 1;2(RN ) ,→ Lp(RN ) is not compact, the Palais–Smale compact-
ness condition for fa constrained on M is not satis�ed. Therefore, the classical varia-
tional methods cannot be applied in the usual way to �nd critical points. In particular,
the in�mum infM fa is not achieved if ‖a‖N=2 6=0 (see Proposition 2.2).
Similar di�culties also occur in the study of elliptic problems in other unbounded

domains (exterior domains, for example) which have been investigated in several recent
papers (see [3, 4, 6, 8–12, 15, 18, 19]).
Some methods elaborated in these papers apply in our problem too. In particular,

using the concentration-compactness principle (see [21]), it is possible to analyse the
obstructions to the compactness: in fact, it can be shown that every Palais–Smale
sequence for fa constrained on M either converges strongly to its weak limit or di�ers
from it by one or more sequences, which, after suitable translations, converge to a
solution of the limit problem{

−�u+ u= |u|p−2u in RN ;

u∈H 1;2(RN ):
(1.6)

Taking also into account the uniqueness result of [20], this property allows us to �nd
an energy range where the Palais–Smale condition is satis�ed (see Proposition 2.3).
Notice that in this paper we only require a(x)∈LN=2(RN ) and exploit the parameters

�1; : : : ; �k in order to �nd critical values for fa on M in the range where the Palais–
Smale condition holds. However let us mention that, arguing as in [4], it is possible
to �nd critical values, in the same energy range, under a suitable fast decay condition
on a(x) as |x|→∞ (see [22]); under this condition, in [22] it is proved the existence
of 2k − 1 solutions for problem (P) with a(x) of the form

a(x)=
k∑

j=1

�j(x − xj);

without introducing the parameters �j. Indeed there exist k − 1 “lower energy” solu-
tions ui (i=1; : : : ; k − 1), which (up to translations) converge to a positive solution
of Eq. (1.6) as |xi+1 − xi|→∞; moreover, there exist k “highest energy” solutions
uj (j=1; : : : ; k) which, as �j →+∞ a.e. in RN , tend to split as sum of two positive
solutions of Eq. (1.6), sliding to in�nity in opposite directions, while they converge
(up to translations) to a positive solution of Eq. (1.6) as �j → 0 in LN=2(RN ).
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Finally, let us remark that unlike [1, 2, 14, 16, 23–25], etc., our methods are not
local in nature: we use global variational methods, inspired by [13, 4], which relate the
number of critical points of fa on M to the topological properties of its sublevels.
The paper is organized as follows: the main multiplicity results are stated in

Theorems 2.1 and 4.1; in Section 2 we describe some preliminary properties of the func-
tional fa constrained on M ; in Section 3 we obtain some asymptotic estimates which
give informations on the topological properties of the sublevels of the functional fa; in
Section 4, we prove the main theorems and compare them with analogous multiplicity
results one could obtain by Morse theory (see Remark 4.2).

2. Statement of the main theorem and preliminary results

We shall prove the following theorem.

Theorem 2.1. Let p¿2 and p¡2N=(N − 2) if N ≥ 3. Let �1; : : : ; �k be given nonneg-
ative functions belonging to LN=2(RN ) such that ‖�j‖N=2 6=0 for all j=1; : : : ; k.
Then, there exist �1¿0, �2 = �2(�1)¿0, �3 = �3(�1; �2)¿0; : : : ; �k = �k(�1; : : : ; �k−1)

¿0 and %1 = %1(�1; : : : ; �k ; |x1|)¿0, %2 = %2(�1; : : : ; �k ; |x1|; |x2|)¿0; : : : ; %k−1 = %k−1(�1;
: : : ; �k ; |x1|; : : : ; |xk−1|)¿0 such that

if �i¡�i or �i¿
1
�i

for any i=1; : : : ; k

and

|xj|¿%j−1 for any j=2; : : : ; k;

then problem (P), with a(x) of form (1:3), has at least 2k − 1 distinct solutions.

The proof is reported in Section 4.
Let us recall some known facts which will be useful in the sequel.
Let us consider the functional f : M →R (see Eq. (1.5)) de�ned by

f(u)=
∫
RN
[|Du|2 + u2] dx (2.1)

and the following minimization problem

�= inf {f(u): u∈M}: (2.2)

It has been shown (see, for instance, [28, 8, 20, 17]) that � is achieved by a positive
function U which is unique modulo translation and radially symmetric with respect
to 0, decreasing when the radial coordinate increases and such that

lim
|x|→+∞

U (x)|x|(N−1)=2e|x|= �1¿0; (2.3)

lim
|x|→+∞

|DU (x)||x|(N−1)=2e|x|= �2¿0: (2.4)
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Moreover, it is well known (see [21]) that any minimizing sequence for � in H 1;2(RN )
has the form

wn(x) + U (x − yn); (2.5)

where (wn)n≥1 is a sequence of functions converging to 0 in H 1;2(RN ), (yn)n≥1 is a
sequence of points in RN and U is the positive function, spherically symmetric with
respect to 0, that realizes �.

Proposition 2.2. Let a∈LN=2(RN ) be a nonnegative function such that ‖a‖N=2 6=0.
Then

inf
M

fa= � (2.6)

and the in�mum is not achieved (see (1:4); (1:5); (2:2)).

Proof. Put ma= infM fa. Clearly �≤ma.
Let us consider the sequence (un)n≥1 in H 1;2(RN ) de�ned by un(x)=U (x − yn),

where U ∈M is the positive function, spherically symmetric with respect to 0, that
realizes � (see Eq. (2.2)) and (yn)n≥1 is a sequence of points in RN such that
limn→∞ |yn|=+∞.
In order to obtain �=ma, it su�ces to show that

lim
n→∞

∫
RN

a(x)u2n(x) dx=0: (2.7)

Indeed, for any %¿0, we have∫
RN

a(x)u2n(x) dx=
∫
RN\B(0; %)

a(x)u2n(x) dx +
∫
B(0; %)

a(x)u2n(x) dx

≤
(∫

RN\B(0; %)
aN=2(x) dx

)2=N (∫
RN

|U (x)|2N=(N−2) dx
)(N−2)=N

+
∫
B(0; %)

a(x)U 2(x − yn) dx:

Now, since |yn|→∞, by the Lebesgue convergence theorem we obtain

lim
n→∞

∫
B(0; %)

a(x)U 2(x − yn) dx=0 ∀%¿0:

Moreover, we have

lim
%→+∞

∫
RN\B(0; %)

aN=2(x) dx=0

because a∈LN=2(RN ). Hence Eq. (2.7) is proved.
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Now, let us argue by contradiction and assume that the in�mum ma is achieved by
a function u. Without any loss of generality, we can also assume u≥ 0. Thus, we have

�≤
∫
RN
[|Du|2 + u2] dx≤

∫
RN
[|Du|2 + (1 + a(x))u2] dx= �;

which implies that u(x)=U (x − y), for a suitable y∈RN , with U (x − y)¿0 for all
x∈RN . Hence, we deduce

0=
∫
RN

a(x)u2(x) dx=
∫
RN

a(x)U 2(x − y) dx¿0;

which is impossible.

Proposition 2.3. Let a∈LN=2(RN ) be a nonnegative function. Let (un)n≥1 be a se-
quence in M that satis�es

lim
n→∞fa(un)= c∈ ]�; 21−2=p�[ ;
f′
a|M (un)→ 0 in H−1;2(RN )

(i.e. (un)n≥1 is a Palais–Smale sequence for the functional fa constrained on M at
level c). Then (un)n≥1 is relatively compact.

For the proof it su�ces to argue as in [6].

Proposition 2.4. Let a∈LN=2(RN ) be a nonnegative function. If a function u is a
critical point for fa constrained on M, such that fa(u)¡21−2=p�, then u has a constant
sign.

Proof. Let us suppose, by contradiction, that u= u+ − u− (u+(x)=max (u(x); 0),
u−(x)=−min (u(x); 0)), with u+ 6≡ 0 and u− 6≡ 0.
Taking into account Eq. (2.6), we have

‖u±‖2p�≤
∫
RN
[|Du±|2 + (1 + a(x))|u±|2] dx: (2.8)

Moreover,

∫
RN
[|Du±|2 + (1 + a(x))|u±|2] dx=fa(u)‖u±‖pp (2.9)

because u is a critical point for fa on M .
Comparing Eqs. (2.8) and (2.9), we get ‖u±‖p−2p ≥ �=fa(u) and so fa(u)≥ 21−(2=p)�,

contradicting our assumption.
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3. Some asymptotic estimates

In this section we will provide some estimates in order to get information on the
topological properties of the sublevels of fa constrained on M .

Lemma 3.1. Let � be a nonnegative function in LN=2(RN ) with ‖�‖N=2 6=0. Then we
have

(a) lim
�→0

sup
{
�2
∫
RN

�(�x)U 2(x − y) dx: y∈RN
}
=0;

(b) lim
�→+∞

sup
{
�2
∫
RN

�(�x)U 2(x − y) dx: y∈RN
}
=0;

(c) lim
R→+∞

sup
{
�2
∫
RN

�(�x)U 2(x − y) dx: �¿0; |y|=R
}
=0;

(3.1)

where U is the positive function, spherically symmetric with respect to 0, that realizes
� (see Eq. (2.2)).

Proof. In order to prove Eq. (3.1)(a) we argue by contradiction: suppose there exist
a sequence (yn)n≥1 of points in RN and a sequence (�n)n≥1 of positive numbers such
that limn→∞ �n=0 and

lim
n→∞ �2n

∫
RN

�(�nx)U 2(x − yn) dx¿0: (3.2)

For all n≥ 1, H�older inequality implies that

�2n

∫
RN

�(�nx)U 2(x − yn) dx

= �2n

∫
B(yn;1=

√
�n)

�(�nx)U 2(x − yn) dx

+ �2n

∫
RN\B(yn;1=

√
�n)

�(�nx)U 2(x − yn) dx

≤ �2n

(∫
B(yn;1=

√
�n)

�N=2(�nx) dx
)2=N

×
(∫

B(yn;1=
√

�n)
|U (x − yn)|2N=(N−2) dx

)(N−2)=N

+ �2n

(∫
RN\B(yn;1=

√
�n)

�N=2(�nx) dx

)2=N

×
(∫

RN\B(yn;1=
√

�n)
|U (x − yn)|2N=(N−2) dx

)(N−2)=N
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≤
(∫

B(�nyn;
√

�n)
�N=2(x) dx

)2=N (∫
RN

|U (x)|2N=(N−2) dx
)(N−2)=N

+
(∫

RN
�N=2(x) dx

)2=N (∫
RN\B(0;1=√�n)

|U (x)|2N=(N−2) dx

)(N−2)=N
:

Since �∈LN=2(RN ) and �n → 0 as n→∞, we have

lim
n→∞

∫
B(�nyn;

√
�n)

�N=2(x) dx=0;

moreover, since U ∈H 1;2(RN ), we have that

lim
n→∞

∫
RN\B(0;1=√�n)

|U (x)|2N=(N−2) dx=0:

The previous computations imply that

lim
n→∞ �2n

∫
RN

�(�nx)U 2(x − yn) dx=0;

which is a contradiction with Eq. (3.2).
Let us now prove 3.1(b). By contradiction, let us suppose that there exist a se-

quence (yn)n≥1 of points in RN and a sequence (�n)n≥1 of positive numbers such that
limn→∞ �n=+∞ and Eq. (3.2) holds.
For all n≥ 1, by using H�older inequality, we get

�2n

∫
RN

�(�nx)U 2(x − yn) dx

= �2n

∫
B(0;1=

√
�n)

�(�nx)U 2(x − yn) dx

+ �2n

∫
RN\B(0;1=√�n)

�(�nx)U 2(x − yn) dx

≤ �2n

(∫
B(0;1=

√
�n)

�N=2(�nx) dx
)2=N

×
(∫

B(0;1=
√

�n)
|U (x − yn)|2N=(N−2) dx

)(N−2)=N

+�2n

(∫
RN\B(0;1=√�n)

�N=2(�nx) dx

)2=N

×
(∫

RN\B(0;1=√�n)
|U (x − yn)|2N=(N−2) dx

)(N−2)=N



M. Musso, D. Passaseo / Nonlinear Analysis 39 (2000) 837–860 845

≤
(∫

B(0;
√

�n)
�N=2(x) dx

)2=N (∫
B(0;1=

√
�n)

|U (x − yn)|2N=(N−2) dx
)(N−2)=N

+

(∫
RN\B(0;√�n)

�N=2(x) dx

)2=N (∫
RN

|U (x)|2N=(N−2) dx
)(N−2)=N

:

Since �∈LN=2(RN ), we have

lim
n→∞

∫
B(0;

√
�n)

�N=2(x) dx=
∫
RN

�N=2(x) dx¡+∞

and

lim
n→∞

∫
RN\B(0;√�n)

�N=2(x) dx=0:

Moreover, since U ∈H 1;2(RN ),

lim
n→∞

∫
B(0;1=

√
�n)

|U (x − yn)|2N=(N−2) dx= lim
n→∞

∫
B(yn;1=

√
�n)

|U (x)|2N=(N−2) dx=0:

Hence, we get

lim
n→∞ �2n

∫
RN

�(�nx)U 2(x − yn) dx=0;

that is a contradiction with Eq. (3.2).
Finally, let us argue again by contradiction to prove 3.1(c): suppose that there exist

a sequence (�n)n≥1 of positive numbers and a sequence (yn)n≥1 of points in RN such
that limn→∞ |yn|=+∞ and Eq. (3.2) holds.
From 3.1 (a) and (b) we get

0¡ lim inf
n→∞ �n ≤ lim sup

n→∞
�n¡+∞;

hence, it is not restrictive to assume that limn→∞ �n= �∈ ]0;+∞[.
By H�older inequality we can write, for any n and %¿0,

�2n

∫
RN

�(�nx)U 2(x − yn) dx

= �2n

∫
B(0; %)

�(�nx)U 2(x − yn) dx

+�2n

∫
RN\B(0; %)

�(�nx)U 2(x − yn) dx

≤ �2n

∫
B(0; %)

�(�nx)U 2(x − yn) dx

+

(∫
RN\B(0; %�n)

�N=2(x) dx

)2=N (∫
RN

|U (x)|2N=(N−2) dx
)(N−2)=N

:
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Since limn→∞ �n= �∈ ]0;+∞[ and limn→∞ |yn|=+∞, we have

lim
n→∞

∫
B(0; %)

a(�nx)U 2(x − yn) dx=0 ∀%¿0:

It follows that

lim sup
n→∞

�2n

∫
RN

�(�nx)U 2(x − yn) dx≤C

(∫
RN\B(0; %�)

�N=2(x) dx

)2=N
∀%¿0;

with C¿0.
Now let us remark that

lim
%→+∞

∫
RN\B(0; %�)

�N=2(x) dx=0

because �¿0 and �∈LN=2(RN ). Hence we infer that [limn→∞ �2n
∫
RN �(�nx)U 2(x −

yn) dx=0], contradicting Eq. (3.2).

Let us de�ne 
 :RN →RN , � :M →RN and, for any j=1; : : : ; k, �j :M →RN in the
following way:


(x)=
x

1 + |x| ; (3.3)

�(u)=
∫
RN

x
1 + |x| |u(x)|

p dx (3.4)

and

�j(u)=
∫
RN

x − xj
1 + |x − xj| |u(x)|

p dx (3.5)

where xj is the point of RN which appears in Eq. (1.3).
Moreover, for any j=1; : : : ; k, we de�ne fj :H 1;2(RN )→R and f̃j :H

1;2(RN )→
R to be, respectively,

fj(u)=
∫
RN
[|Du|2 + u2 + �2j �j(�j(x − xj))u2] dx (3.6)

and

f̃j(u)=
∫
RN
[|Du|2 + u2 + �2j �j(�jx)u2] dx (3.7)

where �j, �j and xj are de�ned as in Eq. (1.3).
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Proposition 3.2. Assume that ‖�j‖N=2 6=0 for any j=1; : : : ; k.
Then

inf{f̃j(u): u∈M; �(u)= 0}¿� (3.8)

(see Eqs. (3.7), (1.3), (3.4)).

Proof. Let us notice that Proposition 2.2 implies that

inf{f̃j(u): u∈M; �(u)= 0}≥ �: (3.9)

By contradiction, let us suppose that equality holds in Eq. (3.9).
Hence there exists a sequence (un)n≥1 of functions belonging to M such that �(un)

= 0 ∀n≥ 1 and
lim
n→∞ f̃j(un)= �:

Then (see [19] and Eq. (2.5)) there exist a sequence (yn)n≥1 of points in RN and a
sequence (wn)n≥1 in H 1;2(RN ), with wn → 0 in H 1;2(RN ), such that

un(x)=U (x − yn) + wn(x):

First, let us remark that (yn)n≥1 must be a bounded sequence in RN : otherwise, we
should have (up to a subsequence) |yn|→+∞, which implies

lim
n→∞

∣∣∣∣�(un)− yn

1 + |yn|
∣∣∣∣ =0

and, as a consequence, limn→∞ |�(un)|=1. But this is impossible since �(un)= 0
∀n≥ 1.
Now let us prove that yn → 0: in fact assume, by contradiction, that (up to a sub-

sequence) yn →y 6=0; then, �(un)→ �(U (· − y)), with �(U (· − y)) 6=0 if y 6=0 (as
follows easily taking into account Eq. (3.4) and the radial symmetry of U with respect
to zero); but �(un)= 0 ∀n≥ 1, so we must have yn → 0. It follows that

lim
n→∞ �2j

∫
RN

�j(�jx)[U (x − yn) + wn(x)]2 dx= �2j

∫
RN

�j(�jx)U 2(x) dx¿0;

where the inequality holds because U (x)¿0 for all x∈RN , �j ≥ 0 in RN and �j 6≡ 0.
Therefore, we have

�= lim
n→∞ f̃j(un)= lim

n→∞

∫
RN
[|D[U (x − yn) + wn(x)]|2 + |U (x − yn) + wn(x)|2] dx

+�2j

∫
RN

�j(�jx)|U (x − yn) + wn(x)|2 dx

= � + �2j

∫
RN

�j(�jx)U 2(x) dx¿�;

which is impossible.
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Remark 3.3. Taking into account the radial symmetry of U with respect to zero and
the de�nition of � (see Eq. (3.4)), it is easy to verify that �(U )= 0 and

�(U (· − y))= �(|y|)y ∀y∈RN (3.10)

where � :R+→R is a continuous function satisfying �(%)¿0 for all %¿0.
Hence, for any R¿0, the map y→ �(U (· − y)) is homotopically equivalent in

RN\{0} to the identity map of @B(0; R).

For any h=2; : : : ; k, let f1; :::; h :H 1;2(RN )→R be the functional de�ned by

f1; :::; h(u)=
∫
RN


|Du|2 + |u|2 +

h∑
j=1

�2j �j(�j(x − xj))u2


 dx: (3.11)

Now, for all z ∈RN , let us de�ne �z :RN →RN by

�z(x)= x − ’z(x · z)z; (3.12)

where ’z :R→R is the following function:

’z(t)=



1 if t≥ |z|2;
t

|z|2 if |t| ≤ |z|2;
−1 if t≤−|z|2;

(3.13)

moreover, for any j=2; : : : ; k, let �j−1; j :M →RN be the map de�ned by

�j−1; j(u)=
∫
RN
(
 ◦�(xj−xj−1)=2)

(
x − xj−1 + xj

2

)
|u(x)|p dx (3.14)

(see Eq. (3.3)).
Finally, for j=2; : : : ; k, if xj 6= xj−1, let us put

Sj−1; j =
{

xj − xj−1
2|xj − xj−1| (2t − 1): t ∈ [0; 1]

}
(3.15)

and

Tj−1; j =
{
x∈RN :

(
x − xj−1 + xj

2

)
· (xj − xj−1)= 0

}
: (3.16)

The following proposition can be proved arguing as in [19].

Proposition 3.4. Assume ‖�j‖N=2 6=0 and �j¿0 for j=1; : : : ; k. Then we have (see
Eqs. (3.11)–(3.16)):
(a) for any h=2; : : : ; k and j=2; : : : ; h,

inf
{
f1; :::; h(u): u∈M; �j−1; j(u)= ± xj − xj−1

2|xj − xj−1| ; xj; xj−1 ∈R
N ; xj 6= xj−1

}
¿�;

(3.17)
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(b) for any h=2; : : : ; k and j=2; : : : ; h, if xj 6= xj−1,

inf{f1; :::; h(u): u∈M; �j−1; j(u)∈ Sj−1; j}¿�; (3.18)

(c) for any j=2; : : : ; k,

lim
R→+∞

sup
z∈@B(0;1)

∣∣∣∣�j−1; j

(
U
(
· − xj−1 + xj

2
− Rz

))
− z
∣∣∣∣ =0: (3.19)

Remark 3.5. Taking into account the radial symmetry of U with respect to zero and
Eqs. (3.12)–(3.16), it is easy to verify that, for j=2; : : : ; k,

�j−1; j

(
U
(
· − xj−1 + xj

2

))
=0

and

�j−1; j(U (· − z))= �
(∣∣∣∣z − xj−1 + xj

2

∣∣∣∣
)(

z − xj−1 + xj
2

)
∀z ∈Tj−1; j ;

where �(%)¿0 ∀%¿0.

4. Proof of the main result

Proof of Theorem 2.1. The idea is to choose the parameters �1; : : : ; �k , x1; : : : ; xk in
order to obtain suitable inequalities which describe the topological properties of the
sublevels of fa constrained on M and give rise to 2k − 1 distinct critical values.
More precisely, we choose consecutively �1; : : : ; �k , |x2− x1|; |x3− x2|; : : : ; |xk − xk−1|

in such a way that every choice does not modify the inequalities previously stated and
produces new inequalities.
The proof consists of four steps.
Step 1: Choice of the parameters �1; : : : ; �k .
Lemma 3:1 implies that there exists �1¿0 such that, if �1¡�1 or �1¿1=�1, then

sup{f̃1(U (· − y)): y∈B(0; R)}¡21−2=p� ∀R¿0: (4.1)

Taking into account Proposition 3:2, it follows that we can choose a positive number
R1 su�ciently large such that

sup{f̃1(U (· − y)): y∈ @B(0; R1)}¡inf{f̃1(u): u∈M; �(u)= 0}
≤ sup{f̃1(U (· − y)): y∈B(0; R1)}¡21−2=p�: (4.2)
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Now, using again Lemma 3:1, we can �x �2 = �2(�1)¿0 such that, if �2¡�2 or
�2¿1=�2, then

sup{f̃2(U (· − y)): y∈B(0; R)}¡inf{f̃1(u): u∈M; �(u)= 0} ∀R¿0: (4.3)

From Proposition 3:2, we infer that there exists R2¿0 su�ciently large such that

sup{f̃2(U (· − y)): y∈ @B(0; R2)} ¡ inf{f̃2(u): u∈M; �(u)= 0}
≤ sup{f̃2(U (· − y)): y∈B(0; R2)}
¡ inf{f̃1(u): u∈M; �(u)= 0}: (4.4)

Iterating this procedure, we can choose �3; : : : ; �k ; in particular, we have that there ex-
ist positive numbers �1, �2 = �2(�1)¿0; : : : ; �k = �k(�1; : : : ; �k−1)¿0 and R1; : : : ; Rk such
that, if �j¡�j or �j¿1=�j, then

�¡ sup{f̃j(U (· − y)): y∈ @B(0; Rj)}¡inf{f̃j(u): u∈M; �(u)= 0}
≤ sup{f̃j(U (· − y)): y∈B(0; Rj)}¡21−2=p� for any j=1; : : : ; k (4.5)

and

sup{f̃j(U (· − y)): y∈B(0; Rj)}
¡inf{f̃j−1(u): u∈M; �(u)= 0} for any j=2; : : : ; k: (4.6)

We shall consider �1; : : : ; �k �xed as before.
Step 2. Behaviour of the functional with respect to the parameters x1; : : : ; xk .
Let us �rst observe that

lim
|x2−x1|→∞

sup
{
�2i

∫
RN

�i(�i(x − xi))U 2(x − y) dx: y∈T1;2

}
=0 for i=1; 2;

(4.7)

since

lim
|x2−x1|→∞

dist(x1; T1;2)= lim
|x2−x1|→∞

dist(x2; T1;2)=+∞:

Therefore, Eqs. (4.7) and (3.8) imply that, if |x2 − x1| is su�ciently large, then
�¡sup{f1;2(U (· − y)): y∈T1;2}¡inf{f̃k(u): u∈M; �(u)= 0}: (4.8)

Moreover, from Eqs. (4.7), (3.17), (3.18) and Remark 3:5 it follows that, if |x2 − x1|
is large enough, then

�¡ inf{f1;2(u): u∈M; �1;2(u)∈ S1;2}≤ sup{f1;2(U (· − y)): y∈T1;2}

¡ inf
{
f1;2(u): u∈M; �1;2(u)= ± x2 − x1

2|x2 − x1|
}
: (4.9)
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Arguing as in the proof of Lemma 3.1(c) one can show that, if r1 is su�ciently large,
then

�¡ sup
{
f1;2(U (· − y)): y∈ @B

(
x1 + x2
2

; r1

)}

¡ inf{f1;2(u): u∈M; �1;2(u)∈ S1;2}: (4.10)

Finally, Eq. (3.19) and Remark 3:5 imply that, if r1 is large enough,

the map y→ �1;2

(
U
(
· − x1 + x2

2
− r1y

))
is homotopically equivalent in

RN
∖{

± x2 − x1
2|x2 − x1|

}
to the identity map on @B(0; 1)∪

(
T1;2 − x1 + x2

2

)
:

(4.11)

Analogous properties hold when |xj − xj−1| is large enough for j=2; : : : ; k.
Step 3. Choice of the points x1; : : : ; xk in RN .
Let x1 be a �xed point in RN . Arguing as in the proof of Lemma 3.1(c), one can

show that for i=1; 2,

lim
|x2|→∞

sup{f1;2(U (· − y)): y∈ @B(xi; Ri)}

= sup{f̃i(U (· − y)): y∈ @B(0; Ri)} (4.12)

and

lim
|x2|→∞

sup{f1;2(U (· − y)): y∈B(xi; Ri)}

= sup{f̃i(U (· − y)): y∈B(0; Ri)}; (4.13)

where R1 and R2 are the positive numbers �xed in Step 1.
Moreover, it is clear that for i=1; 2,

inf{f̃i(u): u∈M; �(u)= 0} = inf{fi(u): u∈M; �i(u)= 0}
≤ inf{f1;2(u): u∈M; �i(u)= 0}: (4.14)

Consequently, from Eqs. (4.5), (4.6), (4.12)–(4.14) we infer that, if |x2| is su�ciently
large,

� ¡ sup{f1;2(U (· − y)): y∈ @B(x2; R2)}¡inf{f1;2(u): u∈M; �2(u)= 0}
≤ sup{f1;2(U (· − y)): y∈B(x2; R2)}¡inf{f1;2(u): u∈M; �1(u)= 0} (4.15)

and

sup{f1;2(U (· − y)): y∈ @B(x1; R1)}¡inf{f1;2(u): u∈M; �1(u)= 0}
≤ sup{f1;2(U (· − y)): y∈B(x1; R1)}: (4.16)
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We can now conclude that there exists %1 = %1(�1; : : : ; �k ; |x1|) such that, if |x2|¿%1,
Eqs. (4.15), (4.16) and all the properties stated in Step 2 hold.
Now �x x2 ∈RN as before and let |x3|→∞.
One can easily verify that

lim
|x3|→∞

sup{f1;2;3(U (· − y)): y∈ @B(x3; R3)}

=sup{f̃3(U (· − y)): y∈ @B(0; R3)}; (4.17)

lim
|x3|→∞

sup{f1;2;3(U (· − y)): y∈B(x3; R3)}

= sup{f̃3(U (· − y)): y∈B(0; R3)} (4.18)

and, for i=1; 2,

lim
|x3|→∞

sup{f1;2;3(U (· − y)): y∈ @B(xi; Ri)}

=sup{f1;2(U (· − y)): y∈ @B(xi; Ri)} (4.19)

and

lim
|x3|→∞

sup{f1;2;3(U (· − y)): y∈B(xi; Ri)}

= sup{f1;2(U (· − y)): y∈B(xi; Ri)}; (4.20)

where R1, R2 and R3 are the positive numbers �xed in Step 1.
It is obvious that

inf{f̃3(u): u∈M; �(u)= 0} = inf{f3(u): u∈M; �3(u)= 0}
≤ inf{f1;2;3(u): u∈M; �3(u)= 0} (4.21)

and, for i=1; 2,

inf{f1;2(u): u∈M; �i(u)= 0}≤ inf{f1;2;3(u): u∈M; �i(u)= 0}: (4.22)

Taking into account Eqs. (4.5), (4.6), (4.17)–(4.22), we obtain

� ¡ sup{f1;2;3(U (· − y)): y∈ @B(xi; Ri)}¡inf{f1;2;3(u): u∈M; �i(u)= 0}
≤ sup{f1;2;3(U (· − y)): y∈B(xi; Ri)} for i=1; 2; 3 (4.23)

and

sup{f1;2;3(U (· − y)): y∈B(xi; Ri)}
¡inf{f1;2;3(u): u∈M; �i−1(u)= 0} for i=2; 3: (4.24)
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Let r1¿0 be �xed in such a way that Eqs. (4.10) and (4.11) hold; one can easily
verify that

lim
|x3|→∞

sup
{
f1;2;3(U (· − y)): y∈ @B

(
x1 + x2
2

; r1

)}

=sup
{
f1;2(U (· − y)): y∈ @B

(
x1 + x2
2

; r1

)}
(4.25)

and

lim
|x3|→∞

sup
{
f1;2;3(U (· − y)): y∈T1;2 ∩B

(
x1 + x2
2

; r1

)}

=sup
{
f1;2(U (· − y)): y∈T1;2 ∩B

(
x1 + x2
2

; r1

)}
: (4.26)

Taking into account Eqs. (4.8)–(4.10), it follows that, for |x3| su�ciently large,

sup
{
f1;2;3(U (· − y)): y∈T1;2 ∩B

(
x1 + x2
2

; r1

)}

¡ inf{f̃k(u): u∈M; �(u)= 0} (4.27)

and

� ¡ sup
{
f1;2;3(U (· − y)): y∈ @B

(
x1 + x2
2

; r1

)}

¡ inf{f1;2;3(u): u∈M; �1;2(u)∈ S1;2}

≤ sup
{
f1;2;3(U (· − y)): y∈T1;2 ∩B

(
x1 + x2
2

; r1

)}

¡ inf
{
f1;2;3(u): u∈M; �1;2(u)= ± x2 − x1

2|x2 − x1|
}
: (4.28)

Now, arguing as in Step 2, one can verify that there exists %2 = %2(�1; : : : ; �k ; |x1|; |x2|)
¿0 such that, if |x3|¿%2, then Eqs. (4.23), (4.24), (4.27) and (4.28) hold,

sup{f1;2;3(U (· − y)): y∈T2;3}¡inf{f1;2;3(u): u∈M; �1;2(u)∈ S1;2} (4.29)

and, for r2 su�ciently large,

� ¡ sup
{
f1;2;3(U (· − y)): y∈ @B

(
x2 + x3
2

; r2

)}

¡ inf{f1;2;3(u): u∈M; �2;3(u)∈ S2;3}
≤ sup{f1;2;3(U (· − y)): y∈T2;3}

¡ inf
{
f1;2;3(u): u∈M; �2;3(u)= ± x3 − x2

2|x3 − x2|
}
: (4.30)
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Furthermore, r2 can be chosen large enough such that the map

y→ �2;3

(
U
(
· − x2 + x3

2
− yr2

))

is homotopically equivalent in RN\{±(x3 − x2)=(2|x3 − x2|)} to the identity map on
@B(0; 1)∪ (T2;3 − (x2 + x3)=2).
Iterating this procedure we obtain that there exist ri¿0 and %i= %i(�1; : : : ; �k ; |x1|; : : : ;

|xi|)¿0, for i=1; : : : ; k − 1, such that, if |xi+1|¿%i, then the functional fa=f1; :::; k
satis�es

� ¡ inf{fa(u): u∈M; �i; i+1(u)∈ Si; i+1}

≤ sup
{
fa(U (· − y)): y∈Ti; i+1 ∩B

(
xi + xi+1

2
; ri

)}

¡ inf{fa(u): u∈M; �i−1; i(u)∈ Si−1; i}

≤ sup
{
fa(U (· − y)): y∈Ti−1; i ∩B

(
xi−1 + xi

2
; ri−1

)}

¡ inf{fa(u): u∈M; �k(u)= 0} for i=2; : : : ; k − 1 (4.31)

and, for i=1; : : : ; k − 1,

� ¡ sup
{
fa(U (· − y)): y∈ @B

(
xi + xi+1

2
; ri

)}

¡ inf{fa(u): u∈M; �i; i+1(u)∈ Si; i+1}

≤ sup
{
fa(U (· − y)): y∈Ti; i+1 ∩B

(
xi + xi+1

2
; ri

)}

¡ inf
{
fa(u): u∈M; �i; i+1(u)= ± xi+1 − xi

2|xi+1 − xi|
}

¡21−(2=p)�; (4.32)

where ri is large enough, such that

the map y→ �i; i+1

(
U
(
· − xi + xi+1

2
− riy

))
is homotopically equivalent in

RN
∖{

± xi+1 − xi
2|xi+1 − xi|

}
to the identity map on @B(0; 1)∪

(
Ti; i+1− (xi + xi+1)

2

)
:

(4.33)

Furthermore, we have

� ¡ sup
{
fa(U (· − y)): y∈T1;2 ∩B

(
x1 + x2
2

; r1

)}

¡ inf{fa(u): u∈M; �i+1(u)= 0}
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≤ sup{fa(U (· − y)): y∈B(xi+1; Ri+1)}
¡ inf{fa(u): u∈M; �i(u)= 0}
≤ sup{fa(U (· − y)): y∈B(xi; Ri)}¡21−(2=p)� for i=1; : : : ; k − 1; (4.34)

� ¡ sup{fa(U (· − y)): y∈ @B(xj; Rj)}¡inf{fa(u): u∈M; �j(u)= 0}
≤ sup{fa(U (· − y)): y∈B(xj; Rj)}¡21−(2=p)� for j=1; : : : ; k (4.35)

and (see Remark 3.3)

the map y→ �j(U (· − xj − Rjy)) is homotopically equivalent in RN\{0}
to the identity map on @B(0; 1): (4.36)

Step 4. Our aim is now to prove the existence of 2k − 1 critical points for fa

constrained on M .
Let us de�ne, for i=1; : : : ; k − 1;

bi= inf{fa(u): u∈M; �i; i+1(u)∈ Si; i+1};

di=sup
{
fa(U (· − y)): y∈Ti; i+1 ∩B

(
xi + xi+1

2
; ri

)}

and, for j=1; : : : ; k,

ej = inf{fa(u): u∈M; �j(u)= 0};
gj =sup{fa(U (· − y)): y∈B(xj; Rj)}:

Using the inequalities stated in the previous steps, we can now show the existence of
a critical value in [bi; di], for any i=1; : : : ; k − 1, and the existence of a critical value
in [ej; gj], for any j=1; : : : ; k.
Let us observe that, since

�¡ bk−1≤dk−1¡bk−2≤dk−2¡ · · ·¡b1≤d1

¡ek ≤ gk¡ek−1≤ gk−1¡ · · ·¡e1≤ g1¡21−(2=p)�;

the critical values we shall �nd are pairwise distinct; so they correspond to 2k − 1
distinct critical points for fa constrained on M ; moreover, these critical points are
nonnegative functions, because of Proposition 2:4.
Let us now �x i∈{1; : : : ; k − 1} and let us show the existence of a critical value in

[bi; di].
Arguing by contradiction, assume that [bi; di] does not contain any critical value.

Since �¡bi ≤di¡21−(2=p)� and the Palais–Smale condition holds in ]�; 21−(2=p)�[, it
follows that there exists �¿0 such that (see, for instance, [27]) the sublevel fbi−�

a is a
deformation retract of the sublevel fdi

a (as usual, we set fc
a = {u∈M : fa(u)≤ c}
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∀c∈R). This means, in particular, that there exists a continuous map �i : [0; 1] ×
fdi
a →fdi

a such that

�i(0; u)= u ∀u∈fdi
a ;

�i(1; u)∈fbi−�
a ∀u∈fdi

a :

Let

	i : [0; 1]×
(
@B(0; 1)∪

(
Ti; i+1 − xi + xi+1

2

))
→RN

∖{
± xi+1 − xi
2|xi+1 − xi|

}

be a homotopy such that (see (3:19), Remark 3:5 and Eq. (4.33))

	i(0; y)=y and 	i(1; y)= �i; i+1

(
U
(
· − xi + xi+1

2
− riy

))

for all y∈ @B(0; 1)∪ (Ti; i+1 − (xi + xi+1)=2).
Now de�ne

�i : [0; 1]×
(
@B(0; 1)∪

(
Ti; i+1 − xi + xi+1

2

)
∩B(0; 1)

)
→RN

by

�i(t; y)=



	i(2t; y) if t ∈ [0; 12 ];
�i; i+1

(
�i

(
2t − 1; U

(
· − xi + xi+1

2
− riy

)))
if t ∈ [ 12 ; 1]:

The function �i is well de�ned (because of Eq. (4.32)), it is continuous and, for all
y∈ @B(0; 1)∪ (Ti; i+1 − (xi + xi+1)=2)∩B(0; 1), it satis�es

�i(0; y)=y; �i(t; y) 6= ± xi+1 − xi
2|xi+1 − xi| ∀t ∈ [0; 1]

(as we infer from Eq. (4.32) and the properties of 	i and �i) and, moreover,

�i(1; y) =∈ Si; i+1

since

�i

(
1; U

(
· − xi + xi+1

2
− riy

))
∈fbi−�

a :

Thus �i is a continuous deformation in

RN
∖{

± xi+1 − xi
2|xi+1 − xi|

}
from

(
@B(0; 1)∪

(
Ti; i+1 − xi + xi+1

2

)
∩B(0; 1)

)

to a set which does not intersect Si; i+1, which is impossible.
Therefore [bi; di] must contain a critical value ci.
On the whole we get k − 1 distinct critical points for fa constrained on M , say

v1; : : : ; vk−1, such that �¡bi ≤fa(vi)≤di¡ek¡21−(2=p)� for i=1; : : : ; k − 1.
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Let us now �x j∈{1; : : : ; k} and prove that there exists a critical value cj ∈ [ej; gj].
Assume, by contradiction, that [ej; gj] does not contain any critical value for fa

constrained on M . Since the Palais–Smale condition holds in ]�; 21−(2=p)�[, taking into
account Eq. (4.35), it follows that there exists �¿0 such that the sublevel fej−�

a is a
deformation retract of fgj

a and

sup{fa(U (· − y)): y∈ @B(xj; Rj)}¡ej − �: (4.37)

Thus, in particular, there exists a continuous function 
j :f
gj
a →fej−�

a such that


j(u)= u ∀u∈fej−�
a : (4.38)

Moreover, we have

{U (· − y): y∈ @B(xj; Rj)}⊆fej−�
a (4.39)

(because of Eq. (4.37)) and

{U (· − y): y∈B(xj; Rj)}⊆fgj
a ; (4.40)

as follows from the de�nition of gj.
Hence, we can consider the map �j : [0; 1] × @B(0; 1)→RN de�ned, for all z ∈

@B(0; 1), by

�j(t; z)=

{
(1− 2t)z + 2t�j(U (· − xj − Rjz)) for t ∈ [0; 12 ];
�j ◦ 
j(U (· − xj − 2(1− t)Rjz)) for t ∈ [ 12 ; 1]:

The function �j is well de�ned (because of Eq. (4.40)), it is continuous (because of
Eqs. (4.38) and (4.39)) and it satis�es

�j(0; z)= z and �j(1; z)= �j ◦ 
j(U (· − xj)) ∀z ∈ @B(0; 1): (4.41)

Moreover, taking into account Remark 3:3, Eq. (4.35), the de�nition of ej and the
properties of 
j, we infer that

�j(t; z) 6=0 ∀t ∈ [0; 1]; ∀z ∈ @B(0; 1): (4.42)

It is clear that Eqs. (4.41) and (4.42) give a contradiction, since @B(0; 1) is not con-
tractible in RN\{0}. Hence [ej; gj] must contain a critical value cj.
Since j∈{1; : : : ; k}, we have k distinct critical points for fa constrained on M , say

v1; : : : ; vk , such that �¡dk−1¡ej ≤fa(vj)≤ gj¡21−(2=p)�.
Summarizing, if we set

ui(x)= [fa(vi)]1=(p−2)vi(x) for i=1; : : : ; k − 1
and

ui(x)= [fa(vj)]1=(p−2)vj(x) for j=1; : : : ; k;

we have on the whole 2k − 1 distinct solutions of problem (P).
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The proof of Theorem 2:1 suggests that a weaker multiplicity result can be stated
even when no assumption is required on the positive numbers �1; : : : ; �k , which appears
in Eq. (1.3).
In fact, missing Step 1 and arguing as in the other steps of the proof of Theorem 2:1,

one can prove the following:

Theorem 4.1. Let p¿2 and p¡2N=(N − 2) if N ≥ 3. Let �1; : : : �k be given nonneg-
ative functions belonging to LN=2(RN ) such that ‖�j‖N=2 6=0 for all j=1; : : : ; k.
Then there exist %1 = %1(|x1|)¿0; : : : ; %k−1 = %k−1(|x1|; : : : ; |xk−1|)¿0 such that, if

|xj|¿%j−1 for j=2; : : : ; k, problem (P) with a(x) of the form

a(x)=
k∑

j=1

�j(x − xj) (4.43)

has at least k − 1 distinct solutions.

Remark 4.2. Let us notice that the multiplicity results stated in this paper show
some possible way to choose the positive numbers �1; : : : ; �k and the points x1; : : : ; xk
in order to obtain distinct solutions of problem (P) (indeed distinct critical values of
the corresponding functional).
On the other hand, using Morse theory (see, for example, [7]), it is possible to

obtain the same number of solutions, choosing �1; : : : ; �k large or small enough and
|xi − xj| su�ciently large for i 6= j (i; j=1; : : : ; k), without any other relation between
them. But let us point out that the solutions one could obtain by means of Morse
theory are not really distinct: they are counted with their own multiplicity (de�ned
in a suitable way).

For example, results like the following ones could be proved by means of Morse
theory.
Let p¿2 and p¡2N=(N−2) if N ≥ 3. Let �1; : : : ; �k be given nonnegative functions

belonging to LN=2(RN ), such that ‖�j‖N=2 6=0 for all j=1; : : : ; k.
Then:
(a) there exists %¿0 such that, if

|xi − xj|¿% for i 6= j (i; j=1; : : : ; k); (4.44)

then problem (P), with a(x) of the form Eq. (4.43), has at least k − 1 solutions,
which are counted with their multiplicity;

(b) there exist �¿0 and %= %(�1; : : : ; �k) such that, if

�i¡� or �i¿
1
�

for all i=1; : : : ; k;

and Eq. (4.44) holds, then problem (P) with a(x) of the form Eq. (1.3) has at
least 2k − 1 solutions, which are counted with their own multiplicity.
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Finally, let us remark that the proof of Theorem 2:1 gives some information about the
behaviour of the solutions u1; : : : ; uk−1, u1; : : : ; uk . In fact, one can infer that

fa

(
ui

‖ui‖p

)
→ � as |xi+1 − xi|→∞ for i=1; : : : ; k − 1

and

fa

(
uj

‖uj‖p

)
→ � as �j → 0 or �j →∞ for j=1; : : : ; k:

Therefore, taking into account [21], we obtain:
(a) if |xi+1 − xi|→∞, there exist zi ∈RN and wi → 0 in H 1;2(RN ) such that

ui(x)= �1=(p−2)[U (x − zi) + wi(x)];

(b) if �j → 0 or �j →∞, there exist zj ∈RN and wj → 0 in H 1;2(RN ) such that

uj(x)= �1=(p−2)[U (x − zi) + wi(x)]:
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