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COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 24(9&10), 1655-1708 (1999)

NONTRIVIAL SOLUTIONS OF SOME
NONLINEAR ELLIPTIC PROBLEMS

Monica Musso Donato Passaseo

Dipartimento di Matematica
Universita di Pisa
Via Buonarroti, 2

56127 Pisa-ITALY

Abstract. This paper is concerned with a class of semilinear elliptic Dirich-

let problems approximating degenerate equations. The aim is to prove the
existence of at least 4 — 1 nontrivial solutions when the degeneration set

consists of k distinct connected components.

Key words. Semilinear elliptic equations. Degenerate equations. Varia-

tional methods. Nontrivial solutions.

1. Introduction

In this paper we deal with multiplicity of solutions for problem

div(a.(zx)Du) + g(z,u) =0 in Q
De u :,_w_é 0 in Q
u=20 on 00
1655
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where § is a smooth bounded domain of RY (N > 1); for all € > 0 and
z € Q, a.(z) is a positive defined symmetric N x N matrix with coefficients
abi(z) € L2, R), fori,j =1,...,N,and g: QxR — R is a Caratheodory
function, with superlinear and subcritical growth, such that g(z,0) = 0 for
all z € Q.

We assume that the matrix ac(x) degenerates, as € = 0, for all z in a suitable

subset D (the degeneration set) of Q.

As pointed out in [19], the behaviour of a.(z) as € — 0 gives rise to a
phenomenon of concentration of the solutions. Concentration phenomena of
this kind also appear in other elliptic problems: for instance, in the case of
elliptic equations with a critical or supercritical nonlinear term (see [1 - 3, 7 -
10, 20 - 25)); or in the case of elliptic equations with subcritical nonlinearity
when certain parameters are sufficiently large (see, for example, [4 - 6, 11,
18]).

As shown by the previous examples, whenever a phenomenon of concentra-
tion of solutions occurs, the geometrical properties of the domain affect the
solvability of the problem, the multiplicity and the qualitative properties of

the solutions.

In this context we consider problem ®.. In particular, our aim is to study
the solvability and the multiplicity of solutions for D, in dependence of the
geometrical properties of the degeneration set D, under suitable assumptions
on the function g(z, 7).

The solvability of problem . depends strongly on the sign of g (z,0), where
g’ denotes the derivative of g with respect to the second variable.

In [17] we show that, if ¢’(z,0) > 0 for all z in a subset of D, then, for
€ > 0 small enough, D, cannot have any solution with constant sign in that
subset; in particular, D, cannot have any positive solutions. On the other

hand, under suitable symmetry assumptions on g, ©. may have infinitely
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many solutions for all € > 0, but the sign of these solutions must change very
rapidly in the subset of D where ¢'(z,0) > 0, when ¢ is close to 0.
On the contrary, when ¢'(x,0) < 0 in €, for all ¢ > 0 D, has at least one

positive solution u. such that

€0

lim/|Du€|2d33 =0
Q
and

51_1)1(1)(/ |Du€[2dz)’1/(DuE[2dz: 1,
Q D

that is the solution u. tends to be localized near the degeneration set D.
Hence the following natural question arises: what happens when, for example,
the degeneration set consists of k¥ (k > 1) connected components?

The result we obtain shows that it is possible to relate the multiplicity of
solutions to the number of connected components of D.

Moreover, it is worth to remark that, if sup g'(:c, 0) < 0, then the concentra-
tion phenomena are accentuated: not onxlilﬂthe solutions tend to be localized
near the degeneration set D, but also they concentrate, as € — 0, like Dirac
mass near some points of D. This property allows us to estimate the number
of the positive solutions of ., for ¢ > 0 small enough, by the Ljusternik-
Schnirelman category of the degeneration set (see {16]); hence we may have
more than one solution even if D is connected (i.e. £ = 1) but has complex
topology.

Let us specify the assumptions required on a.(z) and on g¢:
(a.1) for all € > 0 and for almost all z € €, there exist A; = A1(e, ) > 0 and

Ay = Az(e, z) > 0 such that
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A€ < abF(2)&i€; < Agf€)? VEERY

(here and later on we write, as it is usual, al¥(z)€;; instead of

N
2 a?(z)86i5);
1,j=1
(a.2)

lim mf mf Ai(e,z) > 0
e—0

(a.3) there exist k nonempty subsets of ), we say {11, - - -, { (the degeneration

subsets for ac(z)), such that

k
1
limsup = sup{Aq(e,z) : z € U Q) < 400
e—=0 € =1

(a.4) foralln >0

k
lirerl)igxfinf{l\l(e,x) x e\ U Qu(m} > 0,

where 4(n) ={z € Q: d(z, %) < 1}

(D) Q,...,8% are smooth domains strictly contained in Q (ie. Q, CQV ¢t =
1,...,k). Forall ¢t = 1,...,k let us denote by C; the union of the
connected components of ﬁ\ Q,; which don’t meet 90 and set Q; =
QU Ct.

We require that the subsets Q_'l, .. Q_' are pairwise disjoined and that
every connected component of £\ U Q, meets Q (notice that 2\ U Q,

could have more than one connected component even if £ is connected)
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(g.1) For all 7 € R, g(z,7) is measurable with respect to z; for almost all
z € Q, g(z,7) is a C- function with respect to 7;
2N

(g2) there exist positive constants a and ¢, with ¢ < =5 if N > 3, such

that, for all 7 € R and for almost all z € Q,

l9(z,7)| < a+alrje”!

and

lg'(z,7)] < a+alr]?7%

(g:3) g(-,0) = 0 a.e. in 2 and there exist p > 2, withp < ZE- if N > 3, and a
strictly positive function A : @ — R*, with A € L>°(Q) and % € L),

such that

lim _9\nT) (z,7)
=0 (p — 1)|7|P~2

= A(z) uniformly on ;

(g-4) there exists 6 €]0, 1[ such that

Gz, 1) < brg(z,7)

-
for all 7 € R and for almost all z € 2, where G(z,7) = [ g(z, 5) ds.
0
Under the previous assumptions, there exists € > 0 such that, for all € €]0, €],
(1) D, has at least k positive solutions ue 1, .. ., Uk (see [13]), satisfying the

following properties:

lim (/|Du€yi|2dr)_1/|Due)i|2dr =1 Vie{l,...,k}
e—0
Q Q;
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(2) D, has at least 2* — 1 multibump positive solutions (see {15]). More
precisely, if we choose arbitrarily r distinct subsets among Q1,...,Q%
(say ©,, ..., ), one can construct a positive r-bumps solution wuit»ir

with the following properties:

. i1y in|2 -1 i1seein]2 _
21_£I(1)(/]D115 ? dz) / |Du! |[“dz =0
Q

2\ U ,

s=1

and

limiglf(/|Dui"“"i’]2dx)_1 / |Duittr2dr >0 Vse{l,...,r}
€—

Q Qi

(3) D, has at least k2 sign changing solutions (see [14]), having exactly two

nodal regions (i.e. both the supports of the positive and the negative

parts of the solutions are connected subsets of ). Moreover the obtained

solutions wu.; ;, for all ¢, j € {1,...,k}, have the following property:

e—0

i ([ 1Dz da)™ [ 1Dut 2 do =1
Q

i

and
. - -1 —
tig ([ 1Dz )™ [ 1D e = 1.
Q &,

In this paper we obtain 4% — 1 nontrivial solutions by showing that, if

we choose arbitrarily some subsets €;,,...,Q;. and Q; , ..., Q;, among
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Qy,...,8%, then we can construct a solution of ®. whose positive (respec-
tively negative) part can be decompose as sum of r (respectively s) non-
negative functions which, as € — 0, tend to be localized near the subsets
Qiys ..., S, (respectively Qj,,...,Q;,).

More precisely, we shall prove the following theorem.

Theorem 1.1.  Assume that conditions (a.1), ..., (a.4), (D), (g.1), ...,
(g-4) are satisfied.

Then there exists € > 0 such that, for all ¢ €]0,¢[, D, has at least 4% — 1
distinct nontrivial solutions.

Indeed, for all T, T~ subsets of {1,...,k} and for every ¢ €]0,€[, there

exists a solution 115T+’T~ of D, such that

1in(1]ez‘% [ @I T Y P dz =0,
- ’
¢ o\ U+ Q)
teT
_ 1.1
lime=s [ @I T ) Pds =0, 1)
e—0 B
o\ o
teET—

and

limigleZ—P [ @I T)HPdz >0 Ve TH,
€E— t
Qt

umiglfez-% (@IS T)~|pde >0 Vie T~
€ Q,

(1.2)

t

Moreover we have

0< Iimiélfezfp /leT'T_lzdx < limsup e 7 /IDU;‘F+’T_f2d:L‘ < +00
e—
Q bt

e—0

and




Downloaded by [University of Hong Kong Libraries] at 10:56 13 May 2013

1662 MUSSO AND PASSASEO

lim €77 / ]Dzzz"Jr’r"1_|2 dzr =0.

e—0

k
a\J

t=1

For the proof of this theorem we proceed as follows. We consider a functional

fe (see (2.1)), whose critical points correspond to solutions of problem D,

T+,7-
€

uT™ T for f. constrained on a suitable subset M5T+’T_ of Hy?(Q) (see Def-

and, in order to obtain the solution v , we find a local minimum point

inition 2.2). Then we prove that, for ¢ small enough, 7T~ is indeed a
T+, 17~

€

T+, T~
€

critical point for f. and so it gives rise to a solution v = 77y
of D,. However, it is worth to point out that MT T~ is not a smooth man-
ifold; hence the usual methods, which consist in proving that the Lagrange
multipliers are zero, do not apply in our case. Therefore we need a specific
device, based on topological arguments.

T+,7-

. as ¢ — 0 (see Proposition

Finally we remark that the behaviour of u
3.10) shows that, for € small enough, different solutions correspond to differ-
ent choices of the pair T7,T~. Thus we have, on the whole, 4 — 1 distinct

nontrivial solutions (notice that it is not required that 7T N T~ = 0).

2. Notations and some preliminary properties

Troughout the paper, Hy'?(Q2) will denote the usual Sobolev space en-

dowed with the norm |[u|| = ([ |Du/|? dz)?, while we will denote by Nullp =
Q

(f lul? dx)? the usual norm in LP(Q).
Q

In LP(Q) we also consider the following norm
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el gy = € / A(@)|u(@) P do)

Q
where A(z) is the positive function which appears in (g.3). Obviously ||-||(x p)
and || - ||, are equivalent norrms.
Notice that a function v € Hé’z(Q), v Z 0, is a weak solution for ®. if and
only if u = ¢~ 77y is a critical point for the functional fe: Hé’z(ﬂ) - R

defined by

€ e€r—2

1 [ aid 1 1
fe(u) = 3 £ 0, u0z,udr — —5 G(z,e72u) dz. (2.1)
Q Q

Let us introduce some useful tools.

Definition 2.1.  Let Q;,...,Q%,C; .. .,Ck,Qll, . Q; be as in condition
(D).
For every u € HY?(Q) and e > 0 let P<(u) be the function in HP2(Q) such
that

k
Pé(u)=u in Q\UQ;

t=1

and

/ai’j(x)aziPE(u)Bﬁjvdx =0 VYve HMPQ,), Vt=1,... k.

!

Qf
Set for allt =1,...,k

Pfu)=u—-Pu) in Q, Piu)=0 in Q\Q.
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Thus it results

w=P{(u)+ -+ Pf(u) + P(u) Vue Hy?(Q)

with PE(u) € HY*(Q) for all t = 1,...,k (indeed Pf is a projection of
Hy*(Q) on Hy*(Q)).

Definition 2.2. For all T, T, subsets of {1,...,k}, let us set

MITTT = {ue BYHQ) fL(w)l(Pfw)t] =0 W eTT,
fwi(Pfu)"]=0 vteT }.

For simplicity of notation, we write for all u € HS’Z(Q)

1
Ge(z,u) = ——Glz,e77u), (2.2)
€n-2
gela,u) = o 9(z, 770) (2.3)
€ b EE_% * .
and
2 1 ’ 1
gz, u) = ;g (z, €77 u). (2.4)

Definition 2.3. Let us set

NP
A= hIEll)lélf - inf{A;(e,z) : z € Q} (2.5)

and



Downloaded by [University of Hong Kong Libraries] at 10:56 13 May 2013

SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS 1665

k
— 1
A =limsup - inf{Aqz(e,2) : z € U Qi } (2.6)
€e—0

t=1
(see (a.1), (a.2) and (a.3)).

Moreover, for allt =1,...,k, we set

pe = inf{/wuf?dx cu e HY(S), / |[Du?dz =0,
2 2\
[r@u@rds=1}
@
di= i .

MER= et

Definition 2.4. LetT.: QxR -5 R, 7 : QxR >R and%: QxR > R

be the functions defined by

Belzn)  gorr 40
Te(z,7) =14 77 2.8
@ {m form=0 25)

e (z,7)

Ye(@,7) = { e prr e (2.9

Alz) forT=0

and
'(z,'r
Gy ={ B2 Jor#0 (2.10)
(p-1DAz) forr=0.

Because of (g.3), for almost all x € , [, 7. and 7. are continuous function

with respect to 7.

Lemma 2.5. Let g €]0, (Aﬂ)ﬁ[ and choose p > 0 large enough in such a
way that
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(we B ¢ [1DuPds <2 el = e} #0

!

a2,

for all t € {1,...,k}. Then there exist B > 0 and € > 0 such that, if
w € Hy*(Q) with jlw|| £ B and € €]0,€[, we have

inf{f,(u+w)[ut] : ue Hy2(), [ \Dul?dz < p?, llut || = 0} > 0
and

inf (£, (u+ w)[~u7] : ue Hy*(2)), /iDul2 dz < p%, [l llap) = 0} > 0,
¢

13

forallt € {1,...,k}.

Proof. Arguing by contradiction, assume that for all B > 0 and € > 0
there exist ¢ €]0,€] and w € Hy*(Q), with {jw|{ < B, such that the assertion
does nat hold. Hence there exist a sequence (en)n>1 of positive numbers,

converging to zero, a sequence of functions (wn)n>1, converging to zero in

H;?(Q), and, for some t € {1,...,k}, a sequence of functions (un)n>1 in
Hy3 (), with [ |Dug|?dz < p? for all n > 1, such that
@,
Huflloy =e Yn>1 and nl_i_}r{.lo f;n(un +wn)uf] <0 (2.11)

or
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luzllop = ¥n21 and  lm f, (un+wn)-u;] 0. (212)

Let us consider, for example, the case that (2.11) holds (analogous arguments
can be used in the case (2.12)).
Up to a subsequence, up, — u € Hy'*(£;), weakly in Hy'(;), in LP(£2,), in

L9(f,) and a.e. in Q;, with J 1Dul?dz < p? and [Jut]|(n p) = o
Q,
Moreover (2.11) and condition (a.4) imply that

/ |Duti?dz = 0. (2.13)

QAR

Notice that condition (g.3) implies

Jm ge, (@, un + wn)ul = m e, (2, un & wn)lun + wn [P~ (un + wp)uf

= A@)(u?)? ae. in Q; (2.14)

Hence (g.2) and (g.3) {where we can assume g > p) allow us to apply the

Lebesgue convergence theorem to obtain

lim [ ge. (%, up + wp)ut do = //\(x)[u"'l” dz. (2.15)
nN—ro0

o, Q

t

Then, from (2.11), (2.13) and (2.15), we infer that

02 lim £l (un +wa)lu) 2 A [ D0 P~ [ M@t do
Q, :

> Aillutl py ~ a2, ,) = Aig? — & > 0,

Q

t




Downloaded by [University of Hong Kong Libraries] at 10:56 13 May 2013

1668 MUSSO AND PASSASEO

where the last inequality is due to the choice of p. Hence we get a contradic-

tion. O

Definition 2.6. For all € > 0, let U, be the functional defined by

U (w,u) =

o=

/ge(z’w-}-u)udz—/Ge(z,w+u)dz‘ Yw,u € H01’2(Q).
Q Q

Notice that U, is a C* functional for all e > 0 and for all w,u,v € H&’z(Q)

%\Ile(w,u)[fu] = %{/g;(x,w +u)uvdr — /ge(z',w—f—u)vdr}.
Q Q

Lemma 2.7. Let 3> 0 and choose I > 0 large enough in such a way that

{ue Hy*(Q) : lull <7 [lullag 22} # 0.

Then there exist B > 0 and € > 0 such that, if w € Hy*(Q) with ||lw|| < B

and € €]0,€[, we have

.. 0 _ ~

inf{ W (w,u)[u’] : u€ Hg*(Q), |lull < B lu*ljap 22} >0
and

inf{ 20, (w,0){-u7] : w € HAQ), ull S flullngy > 2 >0
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Proof. Suppose, by contradiction, that for all B > 0 and € > 0 there exist
¢ €]0,€ and w € Hy?(Q), with |Jw|| < B, such that the first or the second
inequality do not hold. Hence there exist a sequence (€n)n>1 of positive num-
bers, converging to zero, a sequence {w,),>1 of functions in H(}’Z(Q), con-
verging to zero in Hy'2(€2), and a sequence of functions (un)n>1 in Hy? (),

with ||u,|| <& for all n > 1, such that

llufllapy =2 Yn>1 and lim —8—\Ilen(w,,,un)[u+] <0 (2.16)

n—soo Ju n

or

- _ .0 _
llugllapy =22 YR >1 and nli)n;o éﬂ‘l’fn (Wn,un)[—uy] <0 (2.17)

Let us consider the case (2.16) (analogous arguments hold in the case (2.17)).
Up to a subsequence, u, — u € Hy*(Q) weakly in H,*(Q), in LP(Q), in
L) and a.e. in Q, with ||u|| < 7 and [[ut]|p) > .

By (g.3), we have, for almost all z € ,

Lm g, (z,w, + up)u} = nll*rgo Ye, (Ty W + Un) (W + 1 P72 (wy + up)ut

n—oo
= Mz)(ut)P, (2.18)
lim g, (z,wn + n)unu] = Hm e, (2, Wn + Un)|wn + Un [P 2unut
n-4o00 " n—00
= (p— DA(z)(u")P. (2.19)

Taking into account (g.2) and (g.3), we can apply the Lebesgue convergence

theorem and obtain
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p—2_
(0 - Dy, 2 E=7 >0,

MI»—A

IE»m BB—\IIE" (W, un)[ut) =

which contradicts (2.16). O

3. Local minima and proof of the main result

In this section T+ and T~ are fixed subsets of {1,...,k}.

Definition 3.1, For all p > 0, let us set

KT3T™ = {ue HYX(Q) :||(Pew) o 2 ¢ VEE T,

H(Pfw) T llap 20 YEETT}
Definition 3.2. For all B > 0, let us define

NZ;’T_ ={ue H?*Q) : /|DP6u|2da:+ Z /|D (Pfu)* |2 dz
tET+

+ Z /|D(Ptu) |2d:z:< B%}

t¢T~ )

and

ONTLT™ = (e Hy*(Q) /|DP‘ul2d:::+ > /|D Pru)t|2dz
t¢T+

£y /ID Pru) |2dm—Bz}

T
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Definition 3.3. For all e > 0, let Q. : Hy*(Q) — R be defined by

i
Q.(u) = / L0, ud,,u .
Q

Definition 3.4. For all t € {1,...,k}, let us choose a function vy €
Hy?(Q) such that |jv] ||(xp) = [y llapy = 1 (we consider v, extended in Q
by setting vy = 0 in Q\ Q).

Then we put

(Il 11722 + o7 |[772).

1

M=

k
t=

Let us remark that, for all t € {1,...,k}, {lv;7|| > w and |[v; || > ps (see
Definition 2.3).

Proposition 3.5. For allt € {1,...,k}, let v; be the function introduced in
Definition 3.4. Then, for all € > 0, there exist some positive numbers a.q,

fort € T, and B+, fort € T, such that

_ + - TH,T-
Ve = 2 Qe 1V — g Betv; € M,

teT+ teT—

(see Definition 3.4). Moreover, we have

(Allv|[?)77 < liminfa,, < limsupa., < (A|jvf||2)72 Vie T+
e—0 e—0
and

(Alloy ||2)77 < liminf Be, < limsupBes < Aoy ||2)72 Vi€ T™.
€0 e—0
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Proof. For all t € T, let us consider the mapping z € Rt — f.(2v]").
Because of (g.3) and (g.4), this mapping has a local minimum in z = 0 and
zﬁ’fw fe(zvi7) = —oo. Then there exists a maximum point a,; > 0 such
that fe(eevf) > 0 and f.(ae07)ee 0] = 0.

In an analogous way, if we consider, for all t € T, the mapping 2 € RT —
fe(=2zv7), we find a maximum point B¢ > 0 such that fo(—B¢+v; ) > 0 and
Fo(=Begvy ) Beavi’] = 0.

Now let us consider ve = Y. @ctvs — Yo Berv; -
teT+ teT—

Taking into account the properties of o, and B, it is easy to verify that

+ -
’UEEMET I,

Let us show that lir’% e”pL—fae,t =0, for all t € T; in fact, by contradiction,
€=
suppose that there exists a sequence (en)n>1 of positive numbers such that
lim ¢, = 0 and lim enﬁaemt = oy > 0 for some ¢ € 7. Then, since
n—*00

o=+ 00
under our assumptions G(z,t) > 0 for t > 0, we get

2Allvf ]2
tg

limsup fe, (ae, ¢v;7) < limsup LT {a
el

N~ 00 n—ooo €,

1
~ = [ Gz, a0y ) dz}= —o0,
E’ﬂ
24
which is in contradiction with the fact that fe, (ce, tv;") > 0 for alln > 1.
Since lir% €77 aeq =0 for all t € T* and since (g.2), (g.3) allow us to apply
€—

the Lebesgue convergence theorem, it follows that

lim

tim [ oo, et do = lim [ e, aut )1t do
'

2 2

= o1y, =1

Moreover, f.(ce vy )[aesvy’] = 0 means that



Downloaded by [University of Hong Kong Libraries] at 10:56 13 May 2013

SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS 1673

1 abJd
/ge(m, Qe v )ae vy dz = ——— | —=—8,,vf 0,,0F dz Vte TT.
ae,tl’— € 7

Q Qt

ae,tp
Thus, taking into account Definition 2.3, we obtain for all t € T+

(Allo|[>)77 < liminfor, < limsupaes < (A]jof|[2) 7.
€—0 €0

In analogous way one can prove that, for all t € T, lir% 651_2,6“ =0 and
E—>

(AHv;HZ)ﬁ < liminf B, ¢ < limsup B, < (KHW_HZ)F%.
e—0 cem0

(]
Lemma 3.6. Let g €]0, (AL )P z|. Then there exists € > 0 such that
{ue MTTT KT, T (Pru)t =0Vt ¢ T+, (Piw)" =0Vt ¢ T,
and Pu=0}#0 Vee€lo,e;
moreover
limsupinf{fe(u) :u e MT T KT, T~ (Pfu)* =0Vt ¢ T,
e—0 ’
(Pfu)" =0Vt ¢ T, and Pu=0}
1 1
<(=z--= A
< (G- FM
(see Definitions 2.3, 3.1 and 3.4).
Proof. Because of the definition of i and since ¢ < (AL ) , Proposition

3.5 implies that v, € KET,L, "T” for all € > 0 small enough.
Let us now consider a sequence (e, ),>1 of positive numbers such that lim
- n—oc0

» = 0 and
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limsupinf{fe(u) tue MT"T KT T, (Pfu)t =0Vt ¢ TT,
e—0
(Pfu)" =0Vt ¢ T~ ,and Pu=0}
= lim inf{fe,(u) 1u€ MITTT N KT (Peru)t =0Vt ¢ T,
T o0

€n,0Q

(Pfru)" =0Vt ¢ T~,and Pou=0}. (3.1)

From Proposition 3.5 we infer that, for all n large enough, there exist a., 1,

for t € T*,and S, s, for t € T, such that

_ + - o T T~ T T
’UEn - Z asngtvt - Z ﬂEn,tvt € Men n Ken,g
teT+ teT—

(see Definition 3.4).

Moreover, by construction, we have that (P"ve,)* = 0 for all t ¢ T,

(Pirve, )" =0forallt ¢ T~ and Péry,, = 0.

Arguing as in the proof of Proposition 3.5, one can show that li_)m env—iz
7n—>00

e, s = 0forallt e TF, lim enp_i'ﬁﬁemt =0forallt € T and, up to a
=00

subsequence,
. 9 . a,ivj
Jim o=l = nlggo/ ;" Op, vy O v dz Yt €T, (3.2)
a
: p—2 : ay? - - -
nlin;o gy = nIerolo e—"c?mivt Oz,vy dx VteTT. (3.3)

n

Moreover we have, for all t € T,
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lim

n—co ap

€nt

Ge, (z, ae,.,tvj) = nliilgo re, (=, aen,tvt‘*)(vt-’-)p

—/\—(iv—)—v+zpaein .
_’p(t()) € in

and, forallt e T,

1 _ . Ny -
v G’eﬂ (l‘,,@emt’ut ) = hm Fen (zvﬂe",tvt )('Ut )p
€n,t

( )

lim
— 00

22 (w7 (z))P ae in Q.

Taking into account that (g.2) and (g.3) allow us to apply the Lebesgue
convergence theorem, (3.1), (3.2) and (3.3) imply (see Definition 3.3)

limsupinf{f.(x) : ue MT"T NKT, T, (Pru)t =0Vt ¢ T,
e—0
(Pfu)" =0 Vt¢ T, Pu=0}

< nlLII;o fea (Ve,)

2 i
. Fenit [ Ceyp
= nanolo{ Z { 52 / ;n 8z, v Oz, vf dz — /Gs,, (z, e, svi) dz}

teT+ Q, Q

1,7
+ Z{ 6"’ / = az,'ut 8zJ'Ut dz — /Gen(xv _ﬂémtvt_)dx}}

teT- Q.

=AY i (T @ )J#Jrz[@en(v;)]*?}

teT+ teT—
_(————)hmsup{z Qelv) ”2+Z vt)”z}
teT+ teT—
< <— - -){ 3T Al E + Y Rl 11777}
teT+ teT~
—<-—5)AP- {17 + S 172 )
teT+ teT—
< (5 - EM.
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Corollary 3.7. Let B > 0 and g €]0, (Aﬁ)v_}f[

Then we have

. . + - + e + -
limsup inf{fe(u) : ve M2 T ng‘g,T NNIZTY
e—0 ’

)
Lxetu
p

1
S(g—

(see Definitions 2.3, 3.2 and 3.4).

Lemma 3.8. Let g €]0, (Aﬂ)#'f[ Then there exist € > 0 and B > 0 such
that, for all € €]0, 7€,

- - + -
inf{fe(u) : uEMZ+’T ﬂKZ;’T ﬁNg:B’T }

is achieved by a function u., which satisfies sup |ju.|| < +oo .
0<ee

Proof. Let B > 0 and choose & > 0 so small that

MITTT KT, T ANTET %0 Ve €lo,&l (3.4)

(see Lemma 3.6),

=

inf{éi(ei}‘—) crx€Q} > Ve €10, (3.5)

and

sup inf{fe(u) i ue MIT AKT T ANT,T } <400 (3.6)
€€)0,& [ ’

(see Corollary 3.7).
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For all € €]0, [, let (uf)n>1 be a sequence of functions in MITT™ ﬂKgg’T_ N

+ —
NZB’T such that
. . + - + - +
nll,II;off(u;):lnf{ff(u) cue MITT nKSE,’T ONZB’T }.

First we prove that (uf)n>1 is bounded in Hy?(Q).

Taking into account that uf, € NGTJ;’T— for all n > 1, we have that the sets
{Peug = n > 1e€l0,al}, {(Prus)t : n > 1,e€)0,a[}, fort ¢ T, and
{(Pfug)™ : n > 1,6 €]0,&[}, for t ¢ T™, are bounded in H}*(Q). Hence
(g-2) implies

1 [ abd
fulul) = afa—z—az,u;azju; dz—/Ge(x,u;)dar
Q

Q
> (Pfug )T 8, (Pug)™ d
tET+ Q/
— | Gelz, (Pfug)™ + Put) dz]
Q,
+ (Pfug) " 0p,; (Pfuy,)™ dz
teT— Q/
— | Gz, —(Pfus)™ + Pfug) dz]-Co (3.7)
a,

for a suitable constant Cy > 0.

For all t € T+, since uf, € MT"-T™ and since (g.4) holds, we have

1,7
%/ aZ Oz, (Pfus)* 0s, (Piuy,) " dz — /Ge(fa (Pfup)t + Puy,) dz
Q, o
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1 [ abd
> 2 + +
> 5 [ 5 0, (Prug) o, (Prus)* do
a,
=8 [ ge(z, (Pfup)t + Poup,)[(Pfup)t + Peuj) do
2
ald
= 3G -0 [ Eon(Prus) o, (Prus)* do
€
Q,
€, €\+ €, € 11 €, € €, €
+ ge(xv(Ptun) + Py )[5(5 )(P ) ~ 6P U’n]dz' (38)
Q(

t

If weset QL = {z € Q: —Pui(z) < (Pfus)t(z) < 14926P6 £(z)} and
2 ={zecQ: 1%%Pﬁu;(av) < (Pfus)t(z) < —P<us(x)}, since under our
assumptions g.(z,s) > 0 for all s > 0 and g.(z,s) < 0 for all s < 0, we

obtain

1,1
[ oeta Py + Pus)5(; - O)(Prus)* — 0Peus do

Q
> Z / L(Prun)t 4 Pous)[2 (2 = 0)(Prus )t — 0Pfut] da
— n 249 t “n n
QN
>-C, VteT?t (3.9)

for a suitable constant C; > 0, as (Pfug),>1 is bounded in Hy?(2) and (g.2)
holds.
Hence from (3.8) and (3.9) it follows that there exists a suitable constant

C > 0 such that, for all t € T,

1 1,7
5/%a”‘(Pt€";)+611(Pteufm)+ dz—/Ge(z, (Pful)t + Pout) dx
Q, Q:

- l|(Prus)*2 - C. (3.10)

Qll
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In analogous way, for all t € T~ we have

4,7
3 [ S0 (Prus) ., (Prus) da - / Ge(, ~(Pfug)” + Pug) da
@
1
5/—81,(106 )0, (Pfug)” do

~0/g6 —(Pfu;)” + Put))[—(Pfus)™ + Pful]dx

@,
1 1 aiyj €,,€ € E
= 5(5—0)/78z,(P ) 0, (Pfug)  dz (3.11)
2
€, Yy~ €, € 1 1 €, € €, €
= [ 9z, —(Pug)™ + Prun)[5 (5 = 0)(Ffup)™ + 0P ] da.

Q,
Ifweset 23 = {z € Q: —Pui(z) < —(Pfu) " (z) < 1%%Peu;(m)} and
={z € Q : 2Pus(z) < —(Pfus) (z) < —P°uf(z)}, arguing as

before, we find a positive constant Cy such that

1.1
— [ oula~ Py + PR - O)(Prus)” + 0P uz]da

4
ny— €, € 1.1 €, €\~ €,,€
Z_Z / g€(z7—(Pt€ue) +Pun)[§(§_0)(Ptun) +6P un]dm
=3 .
Q,NNi

t n

—Cy. (3.12)

v

From (3.11) and (3.12) it follows that there exists a constant C' > 0 such
that, for allt € T,

1 ai’j €\ — - €, €\ — €, €
: / 0, (Prug) e, (Prug)™ di — [ Gule, ~(Bug)™ + Phus) da
Q, o,
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il Pe € 2 _ é 3.

> Z(Prus) | (3.13)
Taking into account (3.7}, (3.10) and (3.13), we can find a positive constant
C > 0 such that

fe(ut) > Hun[|2 C ¥n>1,Ve€0,7] (3.14)

Because of (3.6), (uf)n>1 is bounded in Hy?(Q) for all € €]0,%[; hence, up
to a subsequence, (uf)n>1 converges to u. € Hy'*(Q2) weakly in Hy?(Q)
in LP(Q), in LY(Q) and a.e. in Q. So we have u. € Kg;Tﬁ N Nz;’T—
fo(ue)[(Pfu)t] < 0 for allt € T, fi(ue)[—(Pfuc)~] < 0 for allt € T~ and

?

b

. . . - - + -
felwe) < lim fo(up) = inf{f(u) : we MITT A KIT AN

(3.15)
Furthermore, from (3.6) and (3.14) we get
sup |(Prun)*|| < +oo Vi e T (3.16)
0<e<E,;
and
sup [[(Pfue)7|l < +oo VteT™. (3.17)
0<e<E)

Now choose 7 €]0, o[ and p, 7 greater than max sup |{|(Pfuc)*|| and max
teT ge<E, teT-
sup |[{(Pfue)”|l; then we can fix € €]0,& [ and B > 0 such that the asser-
0<e<E
tions of Lemma 2.5 and Lemma, 2.7 hold.

In order to prove that, for all € €]0, €], u,. realizes
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inf{f.(u) : we MTT nKL T nNT,TTY,

it remains to show that u. € MT T~

Denote by It the subset of all # € T+ such that f,(u.)[(Pfuc)*] < 0 and
by I~ the subset of all t € T~ such that f, (uc)[—(Pfuc)~] < 0. Arguing by
contradiction, suppose that I* £ @ or I~ # 0.

For all t € I, since ||(Pfue)t|/(np > o, there exists £, €]0,1] such that
|16, (Pfue)™|{(x,p) = 0; taking into account that (3.16) holds, that {|Peu|| <
B and that ||€,(Pfuc)*|| < p, Lemma 2.5 implies f,(P¢u, + &, (Pfuc)™)
[€,(Pfuc)™] > 0. On the other hand, f,(uc){(Pfuc)*] < 0. Hence there exists
& €)€,, 1] such that £, (Puc + & (Pfue)™)[€(Pfue) ] = 0.

In analogous way, for all ¢ € I~ one can find 7, €]0,1] such that o =
17 (Pfue)~||(a,p); since (3.17) holds, since [|Péucl| < B and ||, (Pfue)~|| <
4, from Lemma 2.5 we get f, (Pu. — 7, (Pfue)™)[~7,(Pfuc)~] > 0. Again, as
Fi(ue)[—(Pfue)™] < 0, there exists 7; €]7,, 1] such that f,(Pu, — n(Pfue)™)
(= (Pfue)™] = 0.

Let us define

ve= 3 (Prut = 3 (Prug) ™+ 3 &(Ffu* = 3 mlFiud)™ + Pue

tgI+ tegl- telt tel—
It is clear that

+ = + p— T, T~
ve € MIT nKI,)T N g .

Thus, for all t € I, we have
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(PEus)t oy, (Pfu)* do

n—oo

B / Ge(z, Puf, + (Pfup)™) du}
o
= %/gﬁ(z’ (Pteu5)+ + PEUE)(Pt€u5)+ dz
Q
- /Gé(za (Pteus)+ + PEUE) dzr
Q,
1
=3 / 9e(z, &(Pfu )t + Poug)ée(Piue) " dz
Q,
- /Ge(.'c, Et(PtEUe)+ + Pe'u,e) dz
2

4 (1 6) P (Pue E(PEu) D I(PEu) ]

(see Definition 2.6) for a suitable £ €]&;, 1[.
Taking into account that |[(Pfuc)t|l(ap = € 2 0 ||€(Pfue)t|l < & and

l|Péue|| < B, Lemma 2.7 implies

e, (Piut )T 0, (Pfu eyt d:L‘—/Ge(x,Peu;—i-(Pfu;)"')dx}
n—o0
Q,

1

> 2 / gel(z, & (Pfud)t + Péu.)éy(Pfu,)™ dz — /Ge(x, & (Pfue)t + Pfu.) dz
Q '

1o a‘?j €, \+ €, \t+

= Eft —6—621 (Pt 'U/e) sz (Pt ’Lbe) dx
2

- /Ge(xv ft(Pteue)+ + Pfu.) dz, (3.18)

2,
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where the last equality follows from the fact that f.(Pu, + &(Pfue)*)

[€:(Pfue)*] =0.

Now for all t € I~ we have

Jm {5 /

/G (z, =(Pfu;,)” + Puf) dz}

t Un,) z, (Pfug)” dz

1
=5 [ 9 ~(Prud + Pul~(Pru) ] da
3
- /Gs(z,—(Pt‘ue)‘ + Pfu.) dz
3
1

-3 / gela.=m(Peu)” + Pug)[-m(Pfuo) ) da

/G —e(Piue)™ + Pue) dx

(1= 1) (P, ~n(Pfu) ) (Pfu) ]

(see Definition 2.6) for a suitable n €], 1[.
Since [7(Pfu.) llnp) > 0> , [In(Pfue)|| < 7 and ||Pu,]| < B, Lemma
2.7 implies

1im{/eaz,Pfe 0y, (Pfus)” dx

n-—o0

- / Gelz, Pou, — (Pfus)”) dz)

2,
1
> 5 [ 9m—n(Pru)” + Pul-m(Prug ] da

'
Qt
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- /Ge(z, —m(Pfue)™ + Pfue) dz

Q,

=% n? / 9 o (Prus)=0,, (Prus) dr
/G (z, —m(Pfue)™ + Pou,) dz, (3.19)
Q,

where the last equality follows from the fact that f;(Pfue = (Pfue)™)
[ne(Pfue)~] = 0.

Hence, by using (3.18) and (3.19), we conclude that, if J* # @ or I~ # 0,
then

inf{fo(u) - ue M T AKL, T ANTRT } = lim_ f.(ug)
’ n—o0

1 fabd
> E/a—:'—azipeucamjpeué dr ~ /Ge(mvpeué) de
Q Q

k
+ QZ/Ge(m,Psue)dz

t=1
Q

+Z{5t / ¢ a (Pruc)* 0y, (Pfud)t da

+
ter Qg

- / Gl &e(Prue)t + Poug) dz)

Q

n Z{"t / : )= 0y, (Pfu.)” dz
tel~ Q

- /Ge(z, —ne(Pfue)™ + Puc) dz}
Q

+Z{ / . 6 (Ptue) amJ(PtU€)+d1:

tgr+ "o
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- /Ge(z, (Pfue)t + Pu,) dm}

Qt
+Z{3 w’y (Pfu.)™ 8, (Pfue)™ dx
2 c zi\L ¢ Ue z;\4t Ye
tgI— a
—/Ge(m,—(Pfue)“ + Pfu.) dz}
Q,
- fE(UC)v

. . . . - - + -
which is impossible since v, € M€T+’T N KZ;'T N NZB’T . Hence IT =0
and I~ =0.

Finally it remains to remark that sup [[ue|| < +o0, which follows easily
O0<e<e

from (3.16) and (3.17), taking into account that u, € NZ;’T—. O

1

Lemma 3.9. Let 0 < g < (Aﬁ)i’i_? and 0 < B < (AZf%)7=2. Then there

erists € > 0 such that, for all € €]0,7¢[,

inf{f.(u) :ue M7 NKT T ANT,TT)

<int{fw s ue MIT QKT 0N T )

Proof. Let us argue by contradiction: suppose there exists a sequence

(€n)n>1 of positive numbers converging to zero such that

inf{f.,(w) :ue MV AKT' T naNT [Ty

< inf{fe, () : ue MIVT AKI T nNTTT).(3.20)

. . . + - o
Hence there exists a sequence of functions (un)n>1 in MeT T NKTTT
Py n

€n,0
BNZféT_ such that
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b
limsup fe, (un) < hmsuplnf{fen(u) tu€ MT T HK;”; QT Ng;),gT

n—0o0

(3.21)
The proof consists of 3 steps.
STEP 1. The sequence (un)n>1 is bounded in HyA(Q).
From Corollary 3.7, from (3.20) and (3.21) we have
. 1 1 -‘%
limsup fe, (un) < (5 = =)AP* M < +o0. (3.22)
n-—o00 2 p

- + = , .
Since u, € M3;+*T N Nz': 277 for all n > 1, arguing as in Lemma 3.8 one

can prove that the sequences ((Pfu,)") for t € T*, and ((Pf un)7),

n>1’
for t € T, are bounded in H&’Z(Q). Hence —the sequernce (uy)n>1 is bounded
in Hé’z(Q), as u, € 6N37:T§T_; it follows that, up to a subsequence, u, —
u € Hy?(9) weakly in Hy?(Q), in LP(Q), in LI(Q) and a.e. in Q.
Now, since (fe, (n))n>1 is bounded, from (a.4) we infer that

J  |Dul?dz = 0; hence, u = 0 in Q\ L’_CJ 2, and so we can write u =

ke t=1
oy

uy 4+ 4y with u, € Hy?(2,) and [ |Du?dz=0forallt € {1,...,k}.
2\
Moreover [[uf{[p = o for allt € TF, ||u|l(rp) > ¢ for all ¢ € T~ and

) f[Du;"lzd$+ 3 leut 2dx < B2
teT+ t¢T~ o

STEP 2. We prove that (up to a subsequence)

11m fe, (ug) = hm {(— - = Z Qe (Pfrun)™)

teT+

+ 3 Qu (Pirun) 7))

teT~

+ 30 /ena n 1) T On, (Pfmun)t dz
Q

tgT+
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- /Gen (z, (Pfrun)t + Pruy,) do
Q,

+ Z / 6"8 (Pfrun) T O, (P un)” da

tgT— Qi

— /Gén (z, —(Pfrup)” +P€"un)dx]
Q’

t

1 ,J
+3 / 2 9y, P Un Oz, P up, dz } (3.23)
€n
Q

(see Definition 3.3). Since u, € MET:'T_, we have, for t € T,

agl ] c
/ e: Oz, (Pimun) T8, (Pfrun) ™ da

_ / Geo (@, (PEun)t + Poun ) (Perun)* do (3.24)

'
t

Yen (T, (Ptenun)+ + Penun)'(Ptenun)+ + Penun|p_1(Pt€"“n)+ dz

and, for t € T,

i.j
/ S Oz, (Ptenun)_azj (Pirun)™ dz
€n

'

Q,

N /gen (, = (Pfrun)™ + Pug)[— (P ua) ™| dz (3.25)
Q,
- /%"(Iv = (P un)”™ + Prun )| — (Pirua) ™ + Pé"unlp_l[_(Ptenun)—]dx'
Q/

t

Since
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i
limsup/ 0 O (P un) Y0y, (Pirun)tdz < +00 ¥V teTT
n—o0 €n

’
Qt

and

alij
limsup/ ~ 0, (P{"Uun) " Oz, (Pfrun)"dz < 400 V teTT,
n—oo €n

'
Q,

we can assume that (up to a subsequence) the limits

. 0d £
Jim [ %20, (Pfun) O, (P ) da,
t

lim [ %28, (P uy)~ 85, (P up) ™ dr do exist.
n—oo Y, n

Taking into account that

lim enﬁ((P:"un)"' + Pun)(z) =0 ae in Q;, vie T+

n—od

and

Him enFl_?(—(Pf"un)’ + Pruy)(z) =0 ae in Q, VteT

00

from (g.2), (g.3), (3.24) and (3.25) it follows that

ij
lim [ 220, (P un)t0s, (Pfrun)t dz = |luf |y, VE€TT  (3.26)
n—o0 €n >

@,

and
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. ab’ € - € - - -
nan;o 6: 6zi (Ptnun) 63:_7- (Ptnuﬂ) dr = ”ut H()\,p) VteT™.

’
Qt

Again, by using (g.2) and (g.3), one can prove that

n—r0o0

1
lim /Ge,. (z, (Pfrun)t + Pruy,)dz = ;”U:’fo,m vteTt
Q/

t

and

. a \= . 1, _ -
nlLrgo G, (z,—(Pimun)™ + P*ruy,) dz = ;]]ut ”?»\,p) VieT.

Q,

1689

(3.27)

(3.28)

(3.29)

Since (a.4) implies Pé~u,, — 0 in LY(), (3.23) follows from (3.26), (3.27),

(3.28) and (3.29).
STEP 3. We arrive at a contradiction.

-
Since u,, € BNE::’ET for all n > 1, we have

1P unl+ Y NP ua) TP+ > 1(Pfrun)~ |2 = B2
tgT+ tgT-

(3.30)

Taking into account that Péru, + (Pf u,)t — uf for all t € T+ and, for

all t € T~, Pru, + (Pf*u,)~ — u; in LP(Q,) and a.e., arguing as in

Proposition 3.5, one can prove that, for n large enough, there exist some

positive numbers ay , for t € T* and f; , for t € T, such that

= Y an(Prun)t = > Bia(Piruy)” € MEDTT nKITTT (3.31)

teT+ teT—

and
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Fe(@un(Pfrug)t) >0 VEETH, fe (=Ben(Pirun)”) >0 VEET.
(3.32)

Clearly 2z, € NEI:L’;T_; hence, (3.21) implies that, up to a subsequence,

1_1_?;0 fen(un) < nli_{&} fen(2n). (3.33)

Arguing as in the proof of Proposition 3.5, from (3.32) one can easily prove
that Lim en77 cpn =0Vt € T+ and lim e, 72 fyn =0Vt € T

n—o00 n—00 . B
Since (g.2) and (g.3) hold, by using the facts that z, € MTI"T for all n large
enough and that u, — u1 + - + ug (with u € Hy(Q) fort=1,...,k) in
L?(9) and in L%(2), one can prove that

aivi ,

: €n €n, \t+ e, \t dp = |1y I|P ; p— +
nll?go ?n—azi(Pt un) ¥ 0z; (Piun) ™ dz = {luf I}y 5 nlgrolo ap, VteT
,
(3.34)
and
H ai—"‘z €n — €n - =[P 3 p—2 —
nlLU;O . Oz, (P tn) ™ 0o, (P un) ™ dz = |[u; H(x,p) nll{go an” VEETT.

i

Qt
(3.35)

Comparing respectively (3.26) with (3.34) and (3.27) with (3.35), it follows
that

nlLrg3 an=1 Vi€ T+ and nan;O Gin=1 VteT". (3.36)



Downloaded by [University of Hong Kong Libraries] at 10:56 13 May 2013

SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS

Thus, from (g.2), (¢.3) and (3.36) we get

oo, (Pfrun) oy, (P

Jim fo o) = Jim (5 '“ 2, /

teT+

+ Z/ ena AP un) "85, (Pimuy)” dx )

tET—

By using (3.23), (3.37) and (3.30), we obtain {up to a subsequence)

hm [fen (un) fe (z0)] = lim {(% - %)

> / e B, (Pr™un)F 0s, (Pfmup) ™t do

tET+
Pfrug)~ 0y (Pf"un)_dﬂ
teT—
+ Z o) a (PErun) T, (PEru,)t do
tgT+ .

Q,

B /Gen (z, (Pfrun)t + Poruy,) dz‘]

+ Z o) BZI(P Un)~ O, (P un) ™ dz

tgT- 9,

/Gsn —(Pfrun)” 4+ Poruy,) dx]

+ % / ;" Bz, P U8y, P up, dr
n
Q

1691

u,)t dz

(3.37)




Downloaded by [University of Hong Kong Libraries] at 10:56 13 May 2013

1692 MUSSO AND PASSASEO

,J
___) Z /ae" 61 Pt Un) 3zj(Pf“un)+da:

£€T+

2 / 5 B (PEm ) sy (P ) ]}

tGT—
e

> imint ({3 1PEru) 1P+ 3 (P )|+ [Pl ]

tgT+ tgT—
- Z /Gen(r (Pirun)t + Pouy) do
teT‘*'
_ Z /Ge" —(Pfrun)” + Pruy) do}
te_fT-
AL, o I, 7 1y
= EB - Z — - Z —
tgT+ tgT~
oAy (1T g et
27 b o et
A
2532—‘1?[2 ug |2 + Z lfug |1?]
puz tg T+ tgT—
A BP
>=B%- > 0,
2 Pt

where the last inequality is due to the fact that 0 < B < (A%ﬂg‘) -z
Thus we have a contradiction with (3.33). 0

Proposition 3.10. Let 0 < ¢ < (_Aﬂ)ﬁ. Then there exist B > 0 and
z> 0 such that, for all € €)0,€ and for all T+ and T~ subsets of {1,...,k},
there exists a function uT T7 which minimizes the functional fe in the set
M€T+*T N KZ;’T ON:B’T— and such that

€ .7
NPl T Y llop >0 VEETT,

WP T ) Nl >0 VEETT,
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. T+ T + - N
WP TP+ D PRl DT 2+ 3 (e TT)71? < B2
tgT+ tgT~

Moreover uf+’T_ satisfies the following properties:

(1)

lim / IDPEUT’T# [2dz =0,
e—0
Q

e—0

lim/ |ID(PfuT T )t Pdz=0 Vi¢ T,
QI

t

lim [ [D(PuT T Y Pde=0 Vig T .
e—0

!

2,

(2)

lim DuT" T 2dz =0 Vt=1,...k,

€e—0
Q:\Qt

lim inf M) WI TV Pdr) P> (AR Ve T

Q

RS

1

> (Ap)72 vteT .

S

liminf( [ A(z)|(uf"T7)" P dz)

€—0
Q

’
t

Proof. Let g, Tt and T~ be as in our assumptions. From Lemma 3.8

we infer that, if B > 0 and € > 0 are small enough, for all € €]0,€[, there
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. + = e e . + - + - +. 7" s opo.
exists u? 7" minimizing f. in M T N KZ,T HNZB’T and satisfying

sup ||uT " T7|| < +oc.
O<e<e

Moreover Lemma 2.5 implies

R o _
NPl T ) o > 0 YEeTH [(Pful T ) llop >0 VE€T™.

If, in addition, we choose B < (A%[Lg)ﬁ, Lemma 3.9 implies

P TR+ 37 P TP+ 3D NPl T2 < B2,
tgT+ teT-

Proving part (1) is equivalent to show that

. + - e, TH T~ Ty -
lim{|1Puf TP+ D0 1P TP+ Y NPT IR = 0.
tgT+ tgT -

By contradition, assume that there exist 3 €]0, B] and a sequence (€p)n>1 of

positive numbers converging to 0, such that

Jim (Pl TR+ Y PRl TR+ D B )P
tgT+ tgT~
= . (3.38)

Notice that the sequence (uT T~ ),>1 is bounded in HY?(2). Hence, up to

n

a subsequence, ug:f’T_ converges to uT T € H&’z(ﬂ) weakly in Hé‘z(Q),

in LP(Q), in LY(Q) and a.e. in Q. Moreover, from assumption (a.4) and
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Corollary 3.7, it follows that [ |Du|?dx = 0; therefore we can write
k
Q\ U Q4

t=1

u-Zut,wmhuteHéz( . forallt e {1,...,k}.

i=1
Arguing as in STEP 2 of Lemma 3.9, one can obtain that (up to a subse-

quence)

teT+
+ 3 Qe (Pl Ty
teT—
+ 31 / e axl(an I g, (Peral T )t dx
teT'* Q,

- /Gen (z, (Pf"uZ:f’T_ﬁ + Pen uZ:f’T_) dz]

Q

en n +y - €n
+§j a(PtfugT)aI](P TT)dm
tgT- /

2,

- / G., (z, —(Pf"uET:’T_)“ + PE"qu’T_)dz]

€n

+%/ E"a Pl T, Py TOT g (3.39)
Q

Now set, for n large enough,

=Y (Pl T = 3 (Pl T (3.40)

teT+ teT—

with oy, > 0 for allt € T, B, > 0 for all t € T, such that

+

-+
eMI™T nKI T
n ny




Downloaded by [University of Hong Kong Libraries] at 10:56 13 May 2013

1696 MUSSO AND PASSASEO

and fe_(2zn) > 0 (the existence of these numbers follows arguing as in Propo-
sition 3.5).

- + -
By definition, 2z, € NZ“ éT and so

Fer WT5TTY < foo (o). (3.41)

Moreover, arguing as in STEP 3 of Lemma 3.9, one can prove that
im oy, =1 VteTt and lim B,=1 VteT". (3.42)
n—oQ n—oo

Hence, from (3.39), (3.38) and (3.42), we infer that

lim [fen (u;":r'T_) - fsn (za)]

_ .
o 51 [ ooy, e i
tgT+ Q)
- / Ge, (z, (Prul Tt 4 Pl T7) dg]
Q
+ >0 1 / S az, (Perul TT) =8, (Perul T ) do
téT_ n/
- /Gen (z,—(Pf"uZ:r‘T_)_ +P‘"ug+'T_)dw]
QI

t

1 ai’ + - + -
+ - :" Bx'.PE"uZ; T asze"uZ; T dz}
n

>
be

>3 lim {3 @l TP+ 3 Pl TP

tgT+ tgT -

+ [Pl T2} - —{ Z Hu ity 5y + Z e i }

tgT+ tgT-
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A
> ? ~;23 Z lu11? + Z llug 11%)
PHZ e+ tgT~
>3 L.
2 piis

where the last inequality is due to the fact that 0 < 8 < B < (A%j )
Thus we have obtained a contradiction with (3.41).

Part (2) follows easily from assumption (a.4) and Corollary 3.7, taking into
account that uT T~ € MT"T",

In order to prove part (3) we argue by contradiction and assume that there
exist T CTH, It # 0, or I~ CT™, I” # 0, and a sequence (p)n>1 of

positive numbers converging to zero, such that

] THT \+p e +
nler;o A@)|(ug, 7 )TPdr < (Af)7-2 Vtel (3.43)
9
and
- LB -
lim [ Aaz)|(ul T )" |Pde < (A)7=2 Vtel™. (3.44)
n—00
2

Arguing as before, we have (up to a subsequence) uT T o WT7T7 ¢

HY(Q) weakly in Hy?(Q), in LP(Q), in L(Q) and a.e. in ; moreover,

uWITHT7 = Zut, with u, € Hy?(Q) and [ |Dul?dz = 0 for all t =
4\
1,... k.

Notice that |[uf||xp) > 0 ¥Vt € TF and ||u;{|np = 0 Vt € T~ because

TT T+, T-
EK, ;.

Since uZL T ¢ MeT;*T_ for all n > 1, (g.2) and (g.3) imply

n—o0

0= lim £ (@I T )(Peral T 2 A / \Duf [ dz — / @) P dz

’
Qt

> Aflug H (xp) ~ [fugt H(A,p) >0 vteI® (3.45)
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and

N—+00
‘
t

0= lim f. (I T ) (PFul T )] _A/|Dut_|2dx—/.>\(a:)!ut_|p dz
Q Q
> Adlluy gy = lug [fy ) >0 VEETT, (3.46)

where the last inequalities in (3.45) and (3.46) follow respectively from (3.43)

and (3.44). Hence we get a contradiction.

For the proof of Theorem 1.1 we need the following result.

Lemma 3.11. Let p, B,§, T, T~ be as in Proposition 3.10. For all € €

10,9, let u?+*T_ be a function which minimizes the functional fc in the set
T+~ Tt T~ T+, 7~

M nNK;, NN g" .

Then we have
timsup £ (TPl TIPS @-p)eP <O W T (347)
e—
and

limsup £, (I T (Pl T ) P <(2-p)eP <0 VteT™. (3.48)
e—0

Proof. Taking into account that uI™-T~ € MT"T", we have
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"

FGE TP = [odan )P e

2
! + p- e T+ T-
- / o, uT T (BeuT T Y2 da
2,
- / Ye(z, ul DT ) I P (Peu T ) da
o
‘/ Fe(e, ul T I TT PPl TV 2de Vot e T (3.49)
o
and
" + - e TH T \— + - e TH T \_
£ TP T ) P = [ gelm,ul T ) (Pl T ) da
o

~ | gulz, uTT TP T )P de

7
t

- "/ Ye(w,uf TP (Pl da

Q

t

[ Fel, a7 T YT TP 2Pl T ) 2de ¥ te T (3.50)

(see Definition 2.4).
Arguing by contradiction, assume that there exists a sequence of positive

numbers (en)n>1, converging to zero, such that

lim f:n (uZ:r’T_)[(Pf"uZ:f’T‘ 12> (2-p)oP forsome teTt (3.51)

n—oo

or
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lim f, (uf" (Perul ™ T) ]2 > (2 —p)g? forsome teT™. (3.52)
n o0

From Lemma 3.9 and Proposition 3.10 we have (up to a subsequence) P
uZ:f’T_ - 0 and Pf"uZ:L’TP — ug € Hy? () in LP(S), in LI(Q;) and a.e.
inQ forallt € {1,...,&}.

Let us consider, for example, the case that (3.51) holds for some t € T,
Notice that ||u;"|t(,\ p) = o since uT T7 € KT T for all n > 1. More-
over assumptions (g.2) and (g.3) allow us to apply the Lebesgue convergence

theorem obtaining

lim /75 (z,ul _)fuzr’T_!p‘l(Pt‘"uZ?’T_)“'dx = /A(z)!uﬂ" dx

n—oco
I '
Q, Q,

and

: ~ T+ 7T\, TT, T |p— no TT, T~
dim | e, (o,ul T T PPl T da

~ - 1) [ el P de

Hence we have

dim fo (uf TP T = @ = p)lluf iy, < (2- D),
which contradicts (3.51).
An analogous contradiction could be found in the case that (3.52) holds for

somet e T,
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Proof of Theorem 1.1. In order to prove this theorem, it suffices to show
that for all TF, T, subsets of {1,...,k}, and for all € > 0 small enough,

. + - . . . . . + - + -
every function I 7", which minimizes f, in the set MT T~ N KX T n

T+ T~

p as € = 0 (see

NZ;’T_, is a critical point for f.. The behaviour of u
Proposition 3.10) guarantees that, for ¢ small enough, different solutions
correspond to different choices of the pair T+, 7.

Notice that, for e sufficiently small, we have

i

@I TP T T Y2 <0 VieTt (3.53)
and
£ I TH(PT Ty P <0 VieT . (3.54)

Set Tt = {ly,..., b}, T™ = {mq,...,ms} (with r,s < k and [; # [;, m; #
m; for ¢ # j) and consider the functions o, and 4. defined as follows. The
function o, : R — Hy?(Q) is defined, for all € = (67,..., 65, 67,...,€5),
by

+ - . € + - - — e + =\ _
ge(&) = ul T DI PEITT)T =Y g (Pl )T, (3.55)
t=1 t=1

while 1, : Hy?(Q2) — R’** is the function defined by

Ye(u) = = (fUW[(PEw)*],..., fo)(PEu)*],
fe@IPLW)7 ], foW)(PE,u)7)). (3.56)

Notice that 1¢(u) = 0 if and only if u € MTT",
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For all § > 0, let us set B(6) = {¢ € R™* : |¢| < 6} and OB(6) = {¢ €
R™™*° : |¢| = §}. Because of (3.53) and (3.54), since ul T~ e MTTT™,
there exists § > 0, sufficiently small, such that

feooe(0) > feooc(§) V&€ B(d)\ {0} (3.57)
and

(€ (Yeo0e(§))) >0 VE€OB(O) (3.58)

(here (-) denotes the usual scalar product in R™**).
Moreover, taking also into account Proposition 3.10, & can be chosen small

enough, in such a way to have, in addition,

- + = -
oc(6) e KT, T NNIZT™ vé e BE).

In order to show that uz+’T- is a critical point for f,, that is
@I T)w =0 Ywe HY(Q), (3.59)

we assume, by contradiction, that there exists @ € Hy'?(2) such that

fo(uI™T7)[w@] < 0. Since £, (u)[w] depends continuously on u, there exists a

neighbourhood I.(uT T ) of uT™T™ in H}?(Q) such that

F(w)@ <0 Yue Ll T).

For all § > 0, let z; € C°(R"**;R) be a function satisfying the following

conditions:
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0<25(6) <6 VEER™,

z(§) =6 if |§l <4,

z5(€) =0 if ¢ =26

Hence we can choose ¢ > 0 small enough, such that

25(6) =0 VE € IB(d),

0 (&) + 25T € LT T7) V€€ B(26), Vrel01],

o(&) +rz5(6we KT, T AN, T vee BG), vreloll.

Now, since f,(u)[w] < 0 for all u € I, (uT"T7), it follows that

4 fuode) s ralOm <0 VE€ BE), Vreln]

and

d—d;fe(ae(f) +725(€)w) < 0 V€€ B(J), VvVrelo,1].

1703

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)
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Therefore
fe(oe(€) + 25(6)w) < feo(€)) YE € B(S)

and
fe(oe(€) + 25(8)w) < feloe(£)) VE € B(6).

Since 0 is the unique maximum point for f, o o, in B(d), it follows that
fe(oe(€) + 25(6)w) < fe0(0)) VE € B(). (3.66)

Taking into account that ¢¢(0) = uT*T" minimizes f, in MT™T NKT, TN

NTLT™ and that o(€) +25(6)@ € KT, T nNT5T™ Ve € B(3), from (3.66)
we infer that
{0c(6) + 2T : €€ BEINMI™T =0 (3.67)

Now. consider the continuous function @, : B(§) = R™**, defined by

Pe(§) = Ye(oe(§) + 26(£)W)

(see (3.56)).
Because of (3.63) and (3.58) we have

(€ 9e(€)) >0 VE€B(9).

Hence, by well known topological arguments (see, for example, [12]), we infer

that there exists £ € B(8) such that ¢ (€) = 0, i.e.
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0e(€) + zs(Ewe MT T,

in contradiction with (3.67).

T 71"

All the qualitative properties of the solutions v

Lt
=er2ul T follow

easily from Proposition 3.10.

Remark 3.12. Under the assumption that g(z,-) is an odd function, well
known results guarantee the existence of infinitely many solutions for D..
On the contrary, no symmetry assumption is required in Theorem 1.1. The
multiplicity result and the qualitative properties of the solutions of D, for ¢
small enough, depend only on the geometrical properties of the degeneration
set D and on the behaviour of g(z,7) as 7 — 0. Moreover, let us point out
that condition (g.3) could also be weakened by requiring only that there exist
pt,p~™ > 2, with pt,p™ < I—VZI_V—Q if N > 3, and two strictly positive functions
AT, A7 Q= R, with AT A, /\%, ;\—1_— € L°°(§2), such that

and lim g (z,7) = A" (z).

g (-T,T) = /\+(Z') e (p—_-——T”TIT_—E

70t (p+ - 1)!7—|P+—2

In fact it is easy to verify that all the claims and the proofs continue to hold

(with obvious modifications).
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