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Abstract. The paper is concerned with a class of semilinear elliptic Dirichlet
problems approximating degenerate equations. By using variational methods, it
is proved that, if the degeneration set consistk abnnected components, then
there exist at least“2- 1 multibump positive solutions.

1. Introduction and statement of the main theorem

Let 2 be a smooth bounded domain®F (N > 1) andg(x, t) a given function
which behaves liké|t[P~2 ast — 0, with p > 2 andp < & if N > 3.
We are concerned with the existence and multiplicity of nontrivial solutions

for problems like

{div(a€(x)Du) +g(x,u)=0 in{
u=0 onof?

where, for alle > 0 andx € 2, a.(x) = (&' (x)) is a positive defined symmetric
N x N matrix with coefficientsal belonging toL>*(£2, R).

We will assume that the matria.(x) degenerates, as— 0, for all x in a
suitable subset of? (the degeneration set). Our aim is to relate the number of
nontrivial solutions, fore > 0 small enough, to the geometric properties of the
degeneration set.

Some phenomena, pointed out in [31], describing the behaviour of the so-
lutions ase — 0, allow us to show that, if the degeneration set consistk of
connected components, then there exist (foe all 0 small enough) at lea&t+ 1
positive solutions (see [20]) and at ledst nodal solutions (see [21]) having
exactly two nodal regions (i.e. both the positive and the negative part of the
solutions have connected supports).

Similar phenomena also arise in some recent results concerning the spiked
solutions to singularly perturbed semilinear equations, such as the nonlinear
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Schibdinger equation (as in [17], [25], [26], [27], [32], [14], [23], [24], etc.)
and the Ginzburg-Landau equations (see [8], [2], [35], [19], [15], etc.).

In several nonlinear problems, when it is possible to show that the solutions
tend to be localized near some regions or points, one can relate the number of
the solutions to the metric and topological properties of the domain (see, for
example, [5], [6], [7], [11] and the references therein).

Concentration phenomena of this type play a fundamental role in existence,
non existence and multiplicity results for elliptic problems involving critical or
supercritical Sobolev exponents, that have been very much investigated in recent
years (see, for example, [9], [10], [28], [29], [30], [16], [13], [33], [34], [3] and
the references therein).

In our case, although the nonlinear tegrhas a subcritical growth, these
phenomena occur because of the degeneration of the equation.

Let us specify the conditions on the matexx) we shall assume throughout
the paper:

(a.1) for alle > 0 and for almost alk € {2 there existA; = Ai(e,x) > 0 and
Az = Ay(e, X) > 0 such that

A€ <all(x)&g < AfefP Ve RN (1.1)

. N
(here and later on we write, as it is usuah (x)&; & instead ofz all (x)&&);

ij=1
(a.2)

liminf 1 inf Aj(e,x) > 0; 12)
e—0 €exen
(a.3) there exisk nonempty subsets a®, we say(2,---, (& (the degeneration

subsets fom.(x)), such that

k
lim sup} sups Az(e,x) : x € |02 p < +oo; (1.3)
e—0 € s=1
(a.4) foralln >0
k
lim inf inf {Al(e,x) cxe 2\ Qt(n)} >0, (1.4)
e—0 =1

where2i(n) ={x € 2: d(x,2) < n};

(D) f2,..., £ are smooth domains strictly containedfih(i.e. 2s C 2V s =
1,...,k). Foralls=1,... k let us denote byCs the union of the connected
components of? \ {25 which don't meetds2 and setQ; = s UC..

We require that the subse@, .. .,ﬁ,'( are pairwise disjoined and that every
k

connected component 62 \ | 2, meetsds?.
t=1
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Roughly speaking, condition (D) means that, although the disjoint compo-
nentsf2s (s = 1,...,k) of the degeneration set may have holes (f)'g.;t £2s),
they are contained in pairwise disjoint subséXs without holes, whose union
does not contain holes.

The positive solutionsl, 1, ..., U x+1 Obtained in [20] have the following

property:

e—0

-1
lim /\u€7t\pdx /|u€,t|pdx:1 vte{1,....k}
2 Qtl

and there exist at most two subsets amé#g. . ., 22, (we sayf2; andf2) such

that
-1

lim /\uﬁkﬂ\p dx / U k1 |P dx = 1.
e—0
\ 2,u,
Analogous properties hold for the positive and the negative parts of the nodal

solutionsu.r s (r,s € {1,...,k}) obtained in [21]. In fact we have for all
r,se{l,...,k}:

-1
im | [z gPax | [ Pax=1
e—=0 o’ J en
2 Qr’
and

-1
lim /|u;,s|pdx /|u;s|pdx:1.
64)0 "y EAE)
(0} 2!

These properties show that, fer> 0 small enough, the solutions are localized
near some of the subsef, .. ., £, of the degeneration set.

So a natural question arises: is it possible to find multibump solutions, i.e.
solutions which can be decomposed as sum of functions localized near different
subsets chosen among, . . ., £2,?

In this paper we answer this question obtaining positive solutions of this type.

In recent years several papers have been devoted to study multibump solu-
tions for elliptic equations (see, for example, [33], [1], [18], [4]) as well as for
hamiltonian systems (see [12] and the references therein).

Let us specify the assumptions required on the function? x R* — R:

(g.1) for allt > 0, g(x,t) is measurable with respect tg for almost allx €
2, g(x,t) is aC?*- function with respect ta;

(g.2) there exist positive constardsand g, with q < % if N > 3, such that,
for all t > 0 and for almost alk € (2,

lg(x, )| <a+at?™t (15)
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and
lg (x,t)] <a+ati™? (16)
whereg'(x,t) denotes the derivative af with respect tat;
(9.3) there exisp > 2, with p < % if N > 3, and a strictly positive function

A2 — R, with A € L>°(£2) and € L>°(£2), such that

gt - .
ter& -2 A(x) uniformly on (2; a7

(9.4) there exist# €]0, 3[ such that
G(x,t) < ftg(x,t) (1.8)

t
for all t > 0 and for almost alk € 2, whereG(x,t) = [ g(x,7)dr.
0

We can now state the following multiplicity result:

Theorem 1.1. Assume that conditions (a.1)—(a.4), (D), (g.1)—(g.4) are satisfied.
Then there exists > 0 such that, for alle €]0, €[, the problem

div(a.(x)Du) + g(x,u) =0 in 2
P. {u >0 in 2
u=0 onof?

has at leas* — 1 distinct positive solutions.
Indeed, for every subséty, ...t} of {1,... k} and for all ¢ €]0, €[, there
exists a solution'* of P, such that

lim 75 / ()P dx = 0

e—0

r
2\ 2
s=1

lim in €7 /(v?"“’tf)p dx >0 vse{l,...,r}
€E—r

2

ts

(other properties ob* are described in Sect).

Notice that it is possible to obtain more than one solution even if the degen-
eration set is connected (i.k.= 1), but it is topologically complex: in [22] we
estimate the number of solutions Bf by the Ljusternik-Schnirelman category
of the degeneration set (under somehow different assumptiog$. on

The paper is organized as follows. In Sect. 2 we state some preliminary results
concerning the properties of the functiorfiakelated to our problem. In Sect. 3,
for every choice of the subsefs;, ...t} C {1,...,k}, we introduce suitable
subsets oHol’z(Q) and prove the existence of the minimum forconstrained
on each of these subsets. Moreover we state some properties of the minimizing
functionsul*, which are used in Sect. 4 in order to show, éor 0 small
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enough, thau®* is a local minimum point forf. constrained on a suitable
subseM !+t of Hol’z(()), thatM vt is a smooth submanifold in a neighbour-
hood ofuls+-' and, finally, thatu% is a critical point forf., giving rise to a
solution oyt = F2 ultt of problemP,, satisfying the properties described
in Theorem 1.1.

Thus we obtain, for alt € {1,...,k}, at least(¥) solutions having bumps;
so, on the whole, we get2- 1 distinct positive solutions.

2. Preliminary results

Throughout the papdﬂol’z(ﬁ) will denote the usual Sobolev space endowed with
the norm||u| = (/ |Du2dx)?, while we will denote byi|ul|, = ([ |ul? dx)? the
2

2
usual norm inLP(£2).
In LP(£2) we will also consider the following norm:

Ul = (/ A)IU[P dx)?
/

where\ is the positive function which appears in (9.8).//(»,p) IS equivalent to
[ llp in LP(£2).

A function v € Hol’z((Z) is a weak solution foP. if and only if u = 2y
is a nontrivial critical point for the functiond] : Hol’z((z) - R

1 [all 1 1

fe(u) = é/?a)(iua)qudx— g/G(X,GP*ZU)dX. (21)

€
0 0

Here we intend that the functignis extended td? x R by settingg(x, t) = O for
all't <0 and forx € (2. Let us observe that (g.3) and (g.4) imgl{x,t) > O if

t > 0. So every nontrivial critical point fof; is a positive function, which gives
rise to a solution of probler®. by the maximum principle.

Definition 2.1. Let (4,...,%,C;...,Cy, (2,... 12 be as in condition (D) of
Sect.l.

For every ue Ho%(£2) ande > 0 let P<(u) be the function in B?(£2) such
that

K
P =uin 2\ 2
t=1
/a‘gj (X)9 PEU)Ivdx =0 Yo € Hy?($2), Vt=1,...,k.
o
Setforallt=1,...,k

’

Pf(u)=u—Peu) in 2, PSfu)=0 elsewhere.
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Thus it results
u=P{(u)+... +Pg(u)+P(u) Yu € Hy?(82)

with Pf(u) € Hy%(¢2;) for all t = 1,... k (indeed P is a projection of K*(2)
on H2(62,)).

Definition 2.2. Let r be a fixed integer with <r <Kk.
Lett,...,t ber distinct integers such thdt< t; < k foralli =1,...,r.
We set

Mt = fu e HP(@2) - FWIPEWI=0 Ve {t,.. 4.

We shall obtain 2 — 1 solutions forP, in the following way: first, for every
choice of the subsdft;, ...t} C {1,...,k}, we obtain a constrained minimum
point for f. on M-t for all ¢ > 0 small enough; then we show that, for
e > 0 small enough, different minimum points correspond to different choices of
the subsetdty, ..., t }; finally we prove that these minimum points are indeed
critical points forf. for all e > 0 small enough; hence we obtain the desired
number of solutions.

We need some further notations and definitions which will be useful in the
next sections.

For simplicity of notation we write for all € Hol’z((z)

Ge(X,U) = ——G(X, e72U), (2.2)
€pP—2
1 1
ge(X,U) = p;lg(x)6 72“) (23)
€p-
and
g%, U) = S (x, 7). (2.4)
€

Moreover, for everyu € Hol’z(Q), u* andu~ denote respectively the positive
and the negative part af.

Definition 2.3. We call

A = liminf 1 inf {A1(e,x) : x € 2} (2.5)
e—0 €
and
1 k
A =limsup=supq Aa(e,x) : x € | J (2.6)
e—0 € t=1

(see (a.1), (a.2), (a.3)).
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Definition 2.4. Forallt =1,...,k let

m = inf /|Du|2dx LU e HEA),
2

/ IDufdx =0, //\(x)|u(x)|pdx:1
2\ 2

and setmE min  m.
te{l,...k}

Notice that{ u € Hy?(¢2) : [ [Duf2dx=0, [ AX)|u(x)Pdx=1} #
2\ o)
¢ and the infimum mis achieved since p< 2. For all t € {1,...,k}, let
v € Hy?(62), with [ |Dw[2dx=0and [ A(x)[u(x)[P dx = 1, be a positive
2\ 2/
function that realizes m

The imposition of vanishing dbu on the setQt' \ £2; (the union of the holes
of (%) will be clear below: it is related to the fact that, because of condition
(a.4), the critical points fof. we shall find are functions which tend to be flat
k

in 2\ |  ase — 0; moreover, since they belong Hbl’z(fz), they converge
t=1

k ’

to zero in2 \ | 2, because of condition (D), and the limit function can be
t=1

decomposed as sum of functionsl—ilal’z(fzt') t=1,...,k).

Definition 2.5. LetI. : 2 xR - R, 7. : 2 xR - Randq. : 2 xR — R be
the functions defined by

Gt fort >0
Te(x,t) = % fort =0 .7
0 fort <0,
26D fort >0
Ye(X, 1) = ¢ A(x) fort=0 (2.8)
0 fort <0
and ,
A fort >0
T ) =9 (p—DAX) fort=0 (2.9)
0 fort < 0.

Because of (I7), I, 7. and~, are continuous fot — 0* uniformly in £2.
We now prove some properties Q’f which are used to obtain the existence
of local minimum points forf. constrained oM '+~ (see Definition 2).
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Lemma 2.6. For all © > 0 andp €]0, (Am)ﬁ[, there exist B> 0 ande > 0
such that, ifw € Hy"?(£2) with ||w|| < B ande €]0, €[, then

1
2

inf { f.(u+w)u] : ue Hy(2)), / Duldx | <, [utllop=0p >0,
:

forallt € {1,...k}.

Proof. By contradiction, suppose that for 81> 0 ande > 0 there exist €]0, €[
andw € Hy?(£2), with ||w|| < B, such that the assertion does not hold.

Hence there exist an infinitesimal sequenggt1 of positive numbers and
a sequenceufy)n>1 of functions in Hol’z((z), with ||wn|| — 0 asn — oo, such
that

1
2
inf { f. (u+wn)u] : u e Hy?(2), /|Du|2dx < Ut lop=0p <O
2%
¥Yn>1. (2.10)

It follows that one can find a sequenas ),>1 of functions in Hol’z((){), with
[ |Dun|2dx < 1% and ||ui]|xp) = o for all n > 1, such that
2

lim f, (un +wn)[un] < O. (2.11)
n—oo

Since (in)n>1 is bounded inH "?(£2;), up to a subsequenag — u € Hy%(2;)
weakly in H%(¢2;), in LP(42;), in L9(£2)) and a.e. in2;, with [ |Duf2dx < 12
2
and |[u*([;xp) = -
Moreover, sinceu, — 0 in Hy*(£2) and

k
o1
liminf =inf ¢ Ay(e,x) : x €| J2i(n) p =+00 V15 >0,
e—0 € -1

(2.11) implies _
/ |Dul?dx = 0. (2.12)
2\
Sincen£|;nO ||wn|| = 0 andu, — u a.e. ing2;, and since (g.3) holds, from @
we have
nleOO en (X, (Un +wn))Un

= lim e, (X, (Un + wn))|Un + wn P2 = AX)(UT)P a.e. ing;
n—oo
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moreover, assuming > p, (g.2) and (g.3) imply the existence &f > 0 and
n > 0 such that

|'Yen(xa Un + wn)lun + wn|p_lun|§

QO (p — D)juy +wn P +[ualP) i [en? (Un + )] < 7
#((p - 1)|Un +wn‘p + ‘Un‘p)

+26052((Q — Dlun +wnl + [Un|9) iF |en 77 (Un +wn)] > .

Sinceu, — u andw, — 0 in LP andLY, from the generalized Lebesgue theorem
we infer that

n—oo

lim /gen(x, Un + wn)Uy dXx = /)\(x)(uJ’)p dx. (2.13)

’

2 2

From (211), by using (2.5), (22), (213) and Definition 24, we obtain

0 > lim f;n(un+wn)[un] > Aliminf [ |Dup|?dx — [ A(X)(u*)P dx
n—oo n—oo Q{ _Qt,

J |Dul?dx

ko

(f AX)|ulP dx)?
3

v

A ([ 20luP ) — [ Apowy ax

2/ 2

2 2
= Am|[u*(IE ) — U717y )
= Amg® — o° >0

where the last inequality is due to the choicegof
Hence we get a contradiction. O

Definition 2.7. For all ¢ > O let &, : Hol’z(()) — R be the functional defined by

d.(u) = %/ge(x,u)u dx—/Ge(x,u)dx

2 2
(see (2.2) and (2.3)).

For all e > 0, &, belongs toC(H,*(£2); R) and

@, (u)[u] = % {/g;(x,u)uzdx - /ge(x,u)u dx}

0 0

(see (2.4)).
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Lemma 2.8. For all @ > 0 andg > O, there exist B> 0 and€ > 0 such that, if
w € HY?(£2) with ||w|| < B ande €]0, €[, then

int {@/(u+w)[u] : ueHFAD), |ull <7, U]l > B} >0,

Proof. By contradiction, suppose that for &l > 0 and for alle > 0 there exist
€ €]0,¢[ andw € Hol’z(()) with ||w|| < B, such that the claim does not hold.

Hence there exist an infinitesimal sequenggnt1 of positive numbers and
a sequenceuf)n>1 in Hy2(12), with |lw, | — 0 asn — oo, such that

inf { @, (u+wo)lul : u e HF(@), Jull <7 |u*lop 2 2) <O (214)

It follows that there exists a sequena),>1 of functions in Hy%(2), with
lun|| <& and|jus]|(r,p) > @, such that

lim @, (Un +wn)[un] < O. (2.15)
n—oo

Since (in)n>1 is bounded inH"(£2), up to a subsequence, — u € Hg"2(£2)
weakly in Hy%(£2), in LP(£2), in L9(2) and a.e. in®2. It is clear that||u|| < &
and[[u*[[oxp) > 2-
Since|jwy|| — 0 asn — oo, (9.3) yields
im g, (X, Un +wn)Uy = lim e, (X, Up + wn)|Un + wn [P~ un
n—oo n—oo

AX)(UHP  a.e.ing2 (2.16)

(see (2.8)) and

L 2 . 2,2
n“—>moo e (X, Un + wn)Up n||—>moo Fen (X, Un + wn)[Un + wn|P~“up

P —DAX)(UTP a.e.ing (2.17)

(see (2.9)).
Moreover, assuming] > p, (g.2) and (g.3) imply that there exist some
constantC > 0 andn > 0 such that

|7€n(X7 Un + wn)|un + wn|pilun|§
) 1
QO () — 1)Uy + wn P+ [Un[P) i [en T (Un + wn)| <7
=1 ((P = Dun +wn[P + |un[P)
#2607 (0 — 1)[un + wn|9+ [un|) i [en7 2 (Un +1wn)| > 7;
and
[Fen (X, Un + wn)|Un + wn|p_2U§|§
. 1
(p— 1)%(@ = 2)|un +wnlP +2Jun[P) if |enP=2 (Un +wn)| <
ﬁ((p — 2)|un +wp [P + 2{un |P)

#2052 () — 2)|up + wn| % + 2y %) it [en? 2 (Un +wn)| > 7.
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From (215), sinceu, — u andw, — 0 in LP(£2) and inL9({2) and since (2L7),
(2.18) hold, the generalized Lebesgue theorem implies

0> lim &, (Un +wn)[un]
n—oo

=510 [xouPd- [Aupext =P Zp o
(e (2
which is a contradiction. O

3. Constrained minimum points

Let us introduce two useful notations.

Definition 3.1. Letr € {1,...,k} and{ty,...,t} C {1,... k} with § # ¢t if
i #j. Forall o €]0,(Am)72[ (see Definitior2.1) let us set

Kt = {u e HPAD) « (P o >0 ¥ s=1....1}.

Definition 3.2. Let B > O, r € {1,... ,k} and {ts,...,t} C {1,...,k} with
ti 2t ifi #j. Letus define

N = ue Hi#(9) /|DPEu|2dx+ > IDPful?dx < B?
(9] tg{tl""atf}gt’
and
ONg " = S u e Hy?(02) - /|DP€u|2dx+ > IDPfu|? dx = B2
0 tgé{tl,...,tr}ﬂt/

Proposition 3.3. Let{t;,...,tt} C {1,...,k}. Foralls=1,...,r, let v, be the
positive function in B*(2), with [ |Du|?dx = 0and [ A(x)of dx = 1,
2\ 2
which achieves m
Then, for alle > 0, there exist some positive numbers,, . . ., o, such that
the function

r
ve= Y acsn, € ME,
s=1
Moreover, foralls=1,...,r,

(Am,)72 < liminf aes < limsupaes < (Am,)72
e—0 e—0

(see Definition.2, 2.3, 2.4).
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Proof. Foralls=1,...,r let us consider the mappirge R* — f.(zv). From
(¢.3) and (g.4) it follows that it has a local minimumarn= 0 andZ Ii+m fe(zu,) =
—+00

—00.
Then there exists a maximum poiat. s such thatf.(acsv,) > 0 and
fel(a67svt5) facsn ] =0foralls=1,...r,ie.v. € Mt

Let us show that's=1,...,r l[)noep%zae,s = 0; in fact, by contradiction,
suppose that there exists an infinitesimal sequeaggs(i of positive numbers
such that lim enpflzaen,s = ag > 0forsomes € {1,...r}. Then, sincés(x,t) >
0 fort >n€€f)y (9.3) and (g.4)), we get

. . 1 A 1
lim supf., (o, svt,) < limsup—; aszﬂ _ =
n—oo n—oo e, P2 2 €n

/G(X,asvts)dx = —00

2
which is a contradiction with the fact th&f (o, sv,) >0 vn > 1.
Because of (g.2) and (g.3), there exi3t> 0 andn > 0 such that, for all
s=1...,r,

1
A(X) + C)oP if l[er2aesur | <
e, aegubl< 4 QOFC e s <
T +ta(er2acs) Poy  if |er 2o sy | > 7.

1

Since limer—2a, s =0 Vs=1,...,r, it follows that

e—0
. 1
llm ge(xa ae,svts)ae,svts dX
e—0 Cke_rsp
o}
T p — P — _
= !@O/%(X, e st )Vt X = [Jog [y =1 Vs =1,...,r.

’
ts

0,

Moreoverf, (a.sur, ) aesur,] = 0 implies

1 1 ali(x)
—— [ 9e(X, e sv) e sy, dX = 57 ——— OO, dX Vs=1...r.
Qe,s Qe s €
'Qts ts

Thus, taking into account Definitionsand 24, we obtain, forals=1,...r,

1 .. . — 1
(Amy)p=2 < liminf o s < limsupaes < (Amy)r=2.
e—0 e—0

Definition 3.4. For all ¢ > 0 let Q. : Hy"%(2) — R be defined by

all
Qe(u):/ — Oy U0y U dX.

€
2
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Lemma 3.5. Let {t;,....t.} € {1,...,k} and g €]0, (Am)72[.
Then there exists > 0 such that

{ueMitr nKE Y D PU)=0 Yt ¢ {ty,... .6}, P(u)=0} #0
Ve €]0, ¢
and we have
lim sgjpinf {feu) 1 ueMB K" Pf(u) =
—
vt & {tg,...,t-}, P°(u) =0}

(———)Z )7 < 4o,

Proof. First let us observe that, singe< (Am)p%Z, Proposition 3 implies that
€ K&yt for all e > 0 small enough.
Let us now consider an infinitesimal sequenegy1 of positive numbers
such that

lim supinf {f(u) : ue M " NKEY Pe(u) =0

e—0

vt ¢ {ts,...,t}, P°(u) =0}
= lim mf{f (W:ueMib b nKis

an(u) =0vté{t,....tt}, P"(u)= }. (3.1)
From Proposition 3, for all n large enough there existy 1, ..., anr > 0 such
r
thatve, = > ansty, € Metrl1 """ b Kt

€n,0
s=1
MoreoverP" (v, ) =0 V t¢{ts,...,t;} andP(v.,) =
As in the proof of Proposition.3 one can show thar\1t limy, % =0 for
—00
alls=1,...,r and, up to a subsequence,
lim af?= lim Hudx ¥V s=1...r (3.2)

n—oo n—oo
g

by usingv,, € Mgg ----- ¥ ¥ n large enough, (g.2), (g.3) and the Lebesgue theorem.
Moreover¥ s=1,...,r,iti n;} )= nIi_)m I (X, an sve ol =

€n

Aéx)vtp a.e. in 2, and from (g.2) and (g.3), assumirg > p, we can find
C > 0,7 > 0 andb > 0 such that

. 1
b (M +C)vf if |enP—2ansvr | <1

[T, (X, an svt Jug | < 1 0.q 1
Ut +b(enP2an s)9 pvtS if |en ”*Zan,svts| >,

S

hence, from the generalized Lebesgue theorem) @d (32) imply
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lim supinf {f.(u) : ue M2 " AKE Y PE(U)=0 Wt ¢ {ti,....t}, P°(u) =0}

e—0
< lim f. (ve,)
n—oo

r 2 i
. o a’
= im > 022 [ g dgudx — [ G, (X, ansvr,) dX
n—oo >y 2 €n
- s 2,
r 2 i
. « a; Ge. (X, an st
= lim Z n.s / - Oy, vy, Ox Uy, dX — af ¢ / Mvg dx
n—o00 4= 2 €n ' (o s )P
s=1 S Q‘/S

1 1. < 1 1. !
= - p—2 <: -
G = p)dm > (Qu(w)™* < (G — )limsup

s=1 s=

(Qe (Uts)) %
1

IN

1 1. — n_
G -2 (Am,)77 < +o0.
2 p s=1

Lemma 3.6.Let B > 0 and ¢ e]O,(Am)Flz[. Then for all {t;,...,t} C
{1,...,k} we have

1 1~ 2
lim supinf {f6 u) :ue Mot QR Ntl"“’t’} <(=-= Am )72
sup ( ) € € €,0 e,B = (2 p);( ms)

e—0

(see Definition®.2, 3.1, 3.2 and 3.4).

For the proof it suffices to remark that € N;lé”"tr and argue as in the proof of
Lemma 35.

Lemma 3.7. Let g €]0, (Am)p%Z[. Then there exist > 0 and B > 0 such that
for all € €]0,¢[

inf {fe(u) fu€eMBt QK N:jg“’t’}
is achieved (see Definitiors2, 3.1, 3.2).
Proof. Let 0 < B <1 and choos&; > 0 small enough that
MEt A K AN Y 20V e €]0,7] (3.3)

(see Lemma B),

inf{Al(e’X):er}>

€

V€ €]0,&[ (3.4)

N[~

(see (25)) and
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sup inf {fe(u) e Mot Kt N},;--*r} <400 (35)
e€]0,e[

(see Lemma B).
For alle €]0, e[, let (u5)n>1 be a sequence of functionshif-+ AK 1, N
N5 such that

; — . ty,.. ot ty,. .t ty,. ot
lim fo(u) = inf {f.u) © ue ME-E AKE AN )

First we prove thaty)n>1 is bounded irH, ().
If we write ui = P{(uS) +-- - + PE(ug) + PE(uf) (see Definition 21), then we
obtain

fe(ug)

1 [al
- 5/

1 I
= 7/a6 Ox PEusOx PEug dx — /Ge(x,PfSuf,+P€uf,)dx

’
ts

UrOx Ug dx—/Gﬁ(x,u,ﬁ)dx
9]

Q

0,

1 ai,j €€ €€ €€ €11€
+ Z E/fa"ipt Up 9 Py Uy dx—/GE(x,Pt us +Peus) dx
tg{ts,... .t} Q) Q!
1 [ald
+§/;axip6uga)q PeuS dx — / Ge(x, Pcuf) dx. (3.6)
€

2 k
a2

t=1
Notice that the set§Pcus : n > 1, € €]0,€[} and{Pfus : n > 1, e €]0,€[},

forall t ¢ {ts,....t}, are bounded iy %(£2) sinceus € N " with B < 1.
Forallt € {ts,...,t}, sinceus € M- we get from (g.4)

1 [al
E/ 0y P¢ 6&(ijufdx—/Ge(x,Pfur§+P€urﬁ)dx

’

2

’

2

1 [all
> 5/ ——0x Pfugox Pfuedx—G/gE(X,Pfu§+P6u§)(Pfu§+P6u,§)dx
2/

= 7(7—9)/ e 8>QPt6 Oy Py dx

+/ge(x7Pt€u§+P6u§)[%( — 0)Pfuy; — 0P°ugs] dx.

’

o)
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If we set(2, = {x € 2 —Peus(x) < Pfus(x) < 1f—"ngﬁug(x)}, sinceg.(x,t)
> 0 andg.(x,t) =0 if t <0, we obtain

11
[ 9t Prus + Ul 5 - 00PEu; — 0P°us] o

’

2

11
> [ 0P PG - 0P — P YT = —C @)
£2n

for a suitable constan€ > 0, becauseK“u;)n>1 is bounded inHol’z(Q) and
(g-2) holds.
Hence we get for alt € {t1,...,t}
1 [al

1
> / ——0x Pfunox Peug dx — /Ge(x, Pfuy +Pcus)dx > C—||Pfur§||2 - Cy.
€ 1

‘Qt ‘Qt
(3.8)
for a suitable constar®; > O.
From (36) and (38), taking into account thats € N3 with B < 1, we
infer that there exists a consta@t > 0 such that

1
fo(u) > TN Jus|>—=C, ¥ n>1 Ve€]0,al (3.9)
2

It follows that (;)n>1 is bounded irHol"z(Q) for all € €]0,€[ ; hence, up to a
subsequencep(),>1 converges tal, € Hy%(£2) weakly in Hy(£2), in LP(12),
in L9(2) and a.e. inf2. So we haveu, € K&~ N NZ5", f/(u)[Pcu] < 0
fors=1,...,r and

fo(ud) < lim fe(us) = inf {fe(u) Lue MBSt QK Ngfg“"’}. (3.10)
Moreover (35), (38) and (39) imply
sup ||Pfu|| < +oo Vited{t,...,t}. (3.11)

O<e<er

Now, choosep €]0, o[ and i1, @ greater than sup||Pfu.|| forall t € {ts,...t},
0<e<E:
fix € €]0, €[ and B €]0, 1] such that the assertilons of Lemm# and 28 hold.
In order to prove that, for akt €]0, €[, u. is a function that realizes

inf {fe(u) © u e MB- AKE- NS

it remains to show that, € Mt

By contradiction, suppose there exi$ts {tj,...,t }, | # 0, such that

f (u)[Pfu] <Oforalltel.

Let us fixt € I. Since||(Pfu.)*||p > o, there existst; €]0,1] such that
0 = € (PEu)" [ py; Since (311) holds, [Peuc|| < B and||&Pfu|| < u, then
Lemma 26 implies thatf, (P€u, + £,Pfu.)[,Pfu.] > 0.
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On the other hand, (P€u, + Pfu.)[Pfu.] < O.
Hence there existg €]¢&,, 1[ such thaifE'(Pfue +&PEu)[&Peu] = 0, ie.
ve= 3 PE(U)+ Y &PfU+Peu € M

te{d,...k\I tel
For everyF C (2, let us set
1 ai Bl
fee(U) = 7/Lax.uax.udx—/GE(x,u)dx.
2 e 7
F F

Sinceug € M-t we obtain, for allt € I,

H €
nIL>moo fsm{ (un)

1 1 al€7J €€ €1,€
= n||_>mOo E/ ; Ox PupnOx Puy dx

2

€

1 [al
+= / — Oy PfuqOx Prug dx — /Ge(x, Pfus + Pcus) dx
2 2

. 1 [all 1
= lim E/ < axiPeurﬁaxiPeu;dx+f/ge(x,Pfu;+P€u;)Pfu,§dx

n— o0 € 2
2 (2

—/Ge(x, Pfug + Pcugs) dx

Qt
> ;/agl Ox PUc 0y Puc dx+%/ge(x,P{‘ue+P€u€)(P§u€)dx
o ‘ 2/
—/Ge(x,Pfu6+Pfu6)dx
2

1 [al 1
= */ < 8xipeu66xi Pu. dX+E/ge(xagtpteue+P€ue)(§tpt€ue)dx

2 €
o 2
- / Ge(X, &Pfu, + Peu.) dx + (1 — &)P.(X, EPfu + Pu)[Pu]
2/

for a suitable¢ €]&, 1].
Since||€(Pfus) || p) = 0 > o, [|EPfue|| < and||Peu.|| < B, then Lemma
2.8 can be applied obtaining
H € 1 aéjj € €
n“—>moof6m( (uy) > é/?&qP UcOx P€u, dx
2/

69
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+% /ge(x,&PfuE + P€u.)(&Pfue) dx

2/

i/@@@%w+wwmx
o/
= fe /(&Pteue +P6u6)v
2]

where the last equality holds becadééﬁ Pfu. + Peu) & Pfuc] = 0.

Sincef. = Y>> f. , +f. ,, we have found a function. € Mt such
tel \Qt |2\ Qt
tel

that
um=2g¢mwqumk¢gum,

tel tel

which is a contradiction with (30), sincev, € Ky N Nfg".
Hencel = 0. O

1

Lemma 3.8. LetO< p < (Am)v*12 and0 < B < A%mg 72 Then there exists
€ > 0 such that, for all{t;,...,t.} C {1,...,k} and for all e €]0, e[,

inf {f.(u): u e MEt KRS ANt

(see Definition®.3, 3.1, 3.2).

Proof. Suppose, by contradiction, there exists an infinitesimal sequepie {
of positive numbers such that

inf {fen(u) fuEeMBE T AKE S N ONE R }
< inf {fen(u) LUEMBt ARGt AN } (3.12)
for some{ty,...,t } fixed as in our assumption.
Hence there exists a sequence of functiamgnty in Mt N K-t 0
ON5" such that
lim supf.. (un) < lim supinf {fsn(u) DUE MBI RS AN }
n—oo

n—oo
(3.13)
The proof consists of 3 steps.
STEP 1. (n)n>1 is bounded inHg?(£2).
From Proposition 3, from (312) and (313), we have

1 1.~ 2
i <(Z-Z= E P2 . .
I|rr1n_>sotipf€n(un) < (2 IO) 2 (Am,) "% < +o00 (3.14)
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Sinceu, e Mt foralls=1,...,r, we have

. 1 [al 1 [al
“nrl'orlf E/ 6; 8)QPE”un8XiPE“undx+§/ 6: Ox PE"Un Ox P U dX

Q/

ts

0,

—/Gen(x, Pg"Un + P uy) dx

Q/

ts

Y

- 1 [al
Ilm[)r;f é/ - Ox P UnOx P“"up dx
Q/

s

11 all
+§(§ —0) / Er: Ox, P Un Ox P un dx

915
€ € l 1 € €
+ [ ge,(X,P"Un +P "u“)[§(§ — )P up — 0P uy] dx

Q/

ts

v

(% — 9)% lim inf /[\DPGn Un|? + |DP U [l dx — C (3.15)

Q

where the last inequality holds with a suitable cons@nt 0, sinceu, € N "
and S0 P“'uy)n>1 is bounded irH, (£2).

Taking into account thatRf"un)n>1 is bounded inHol’Z(Q) for all t €
{4,...,k}\ {ts, ...t }, (3.15) implies

lim supf,_(uy) > }(} — ) Aliminf \Dun\zdx - C
nosoo 2°2 n—oo
Q

for a suitable constart;.

Thus, because of (84), Un)n>1 is bounded inHol’z(Q); as a consequence,
Uy — U € Ho?(£2) weakly in Hy2(£2), in LP(£2), in L9(£2) and a.e. inf2 .
Now, since {,(un))n>1 is bounded and for aly > 0

k
o1 ) -
lim inf = inf {Al(e,x) PXe Uﬁt(n)} = +o0,

t=1
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k ’
it must be [ |Dul?dx = 0; henceu = 0 in 2\ |J f; and so we can
t=1

k
A\ @

t=1
write U = up + -+ with i € HP3(), [ |Dw|?dx = 0O for all
2\
t € {1,...,k}. Moreover we have|(u.)*||onp > o for all s = 1,...,r and
> [ |Dw|?dx < B2
t@{in e} o
STEP 2. We prove that (up to a subsequence)

lim fe (u) = lim {(; - %) > Qo (PE(Un))
s=1

1ral, o ‘
+ Oy é/ . O P{"Un Oy P Up dx
t¢ft, ) | 7

—/Gen(x, Pfun + Pup) dx

Qt
1 aiyj
+f/ O P UnOx Pup dx p . (3.16)
2 €n !
%)

Sinceu, € M-t foralls=1,...,r we have

g
/ -0 P Un O P Un dX

€n
o8
= / Gen (X, PE"Un + PUR)PE"Un dX
2
= /%n(x, P&Up + Pup)[PE Uy + Poun PP U dx; (3.17)
2
. all
as limsup [ =20y P{"un 0y PC"un dx < +oo, we can assume that (up to a subse-
n—oo oy n
S

. . all
guence) there eX|stns_>lef =20 Py Un 9 P dX.
ts

As in the proof of Proposition 3.3, sincae Iinf},TEZ(Pé"un +Peu,)(x) =0
— 00

a.e. in(){s vV s=1,...,r, from (g.3) we get

lim e, (x, P Uy + Pun) [P ug + P Un PP Uy = AU ae. in (2.
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Moreover, (g.2) and (g.3) (assumimg> p) imply that there exisC > 0 and
n > 0 such that

ey (X, PE7 U + P2l [Py + Pty P3P Uy <

. 1 .
Mp)&)((p = D|P"Un + Pup [P + [P Un[P)  if [en P2 (P"Un + Prupn)| <7

#((p — DIP{Uy + Prug [P + [P un [P)+

%GnH((q - 1)|Pt§nun +Puy |+ ‘Ptésnun|q) if |5np%2(PthUn +Pun)| > .

SinceP{"un + Perun, — W, in LP($2.) and inL9(£2,), it follows

all
Iim/ O PrUnOy Pl dx = [[(PLU)* (R ) ¥ s=1,...,r. (3.18)
n

n—oo €
02,

ts

/

Moreover, from (g.3), we get

AX) v

nIme I (X, PEun + PUp ) [P Un + Penup [P = Tuts ae.infavs=1,...r;

besides, (g.2) and (g.3) imply the existence®f> 0, n > 0, andb > 0 such
that, foralls=1,...,r

[T, (X, P Un + P U ) [P Uy + P [P <

(2 + C)IPE Uy + P if [en?(PE7 Uy + P )| <
P U + Pt P

+en 72 [P Un + Pt [T if [en 2 (P Uy + PE0UL)| > 7.

So we obtain

lim /Gsn(x,Ptznun+Pf"un)dx

n—oo
£2

’
ts

lim /Fen(x, P un + Pup)|PE Uy + Perup|P dx

n—oo
£,

’7
ts

1
BIIUQH&,p) : (3.19)

SincePu, — 0 in L9(£2), from (3.18) and (319) we get (up to a subsequence)
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1 1 1 aé;\J €| €
lim e, (un) = lim_ 2[5 / o O P Undy P un
S= ’
£,

ts

f/Gen(x, P&"Un + P up) dX]

1 [al
+ Z = / —- Oy P{"Un O P U dx — /Gen(x, Pup + Pruy) dx
€n

>
t it} | 7 o
1 [al
+§/ 00y P Uy, P Uy dX — / G, (X, P Uy) dx
€n
2

k
U
t=1

r

. 1 1 aij
= nl|—>moo Z[(i - B)/ .
2

Oy P Un Oy, P Uy dlx|

s=1

Lral, o ‘
Oy [E/ né))th”un&gPt“undx

€
tE{ts,....tr } o
t

€n

1 [al

—/Gen(x, Pfu, + Penun)dx]+§/ -y P Undy Py dx

o/ £
STEP 3. We arrive at a contradiction.
We have
IPoul®+ > [Pfu®=B? (3.20)

te{t,...t}

asun € ONg" foralln > 1. Sinceforalls = 1,...,r  P{"up+Pup —

in LP(Q{S) and a.e. in(){s, arguing as in the proof of Proposition33one can
prove that for alln large enough there exigi , ..., &n > 0 such that

r
5= Zfs,nptznun € Meti""’tr NKL (3.21)

€n,Q
s=1

and
fen(fs,nptinun) >0 Vs=1,...,r.

By definition,z, € N5 asP“z, =0 andP{"z, =0 V t¢ {ts,... .t }.
From (313) (up to a subsequence) we obtain

lim f. (uy) < lim f. (zy). (3.22)
n—oo n—oo
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As in the proof of Proposition.3, f, ({snPc"uUn) > 0 impliesnim enﬁfs,n =0
foralls=1,...,r.

Sincez, € Mo, foralls=1,...,r we have

al

2 -

6ua® [ 22000 P U= [ 00,0, 0P U )P
n

:

= §s,np/’Yen(xafs,nptesnun)|Pt§nUn|pdX~ (3.23)

’

!’
ts

£, £

.Qts
From (g.3) we hf;\V(—r:-HIim«yEn (X, &s,n P un (X)) P un (X) [P = )\(x)(u{;)p a.e. ith's
foralls=1,...,r.

Assumingqg > p, (g.2) and (g.3) imply

[Yen (X, s ptzn Un)|Ptz" Un |p |<

(A(X) + C)[P{"un P if |en™ 2 s nPE"Un| < 77
1 . 1
%“Dtes" Un[P +a(en?28sn) 7 P[PL"Un |9 if [enP=2Es nPL Un| > 1,

for suitable positive constants andr.
Hence, sinceP"u, — W, in L9(52) for all s = 1,...,r, from (323) we
obtain

i)

lim <n

n—oo €n
Q/

ts

O P Un Ol P n dx = [ (u,) "y py fim o2 (3.24)

Comparing (31L8) and (324), we get
lim &n=1 forall s=1,...,r. (3.25)
n—oo :

Moreover, (g.3) impliesn limI, (X, &,nPE"Un) [PEMUn [P = A(X)(u)Pace. in Qt's
— 00
and, using (g.2) and (g.3) as before, one can show that

1
; — p
nleOO/Fen(X7fs,npti"un)\PtinuﬂpdX = B”Ut:H(,\,p)-
!’
ts

2,

Thus, from (324) and (325), we get

lim f. (z,)
n—oo
) S [y
= n||_>moo§ 7 / 6: Ox P Un Oy P"up dX — / Ge, (X, Es,n P Un) dx

2,

ts ts
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r 52 ai,j
lim Sh B PEnun Oy P Uy, dx
i 1S [ %o ppua, e

S= /

2

ts

—fg,n /Fen(xafs,nptznunﬂptﬁsnun‘pdX

’

2,

ts

1 1.~ fald
nILmoc(E - p);/ . Oy P Un Oy P up dx . (3.26)
2

By using (316), (326), (320) and the fact thatl, € 8N€t§:é't’, we obtain

im [fe, (un) — fe,(z0)]

|
€n

R 101 a'ej @ .
= lim El [(é — B)/ O P Un Oy P Uy dlx|
S= /
02

l aé;] € € € €
+ Z [E/ . 8>QPt"un8xJPt”undx—/Gen(x,Pt"un+P"un)dx]

tg{ty,....tr} Q) Q

1 [al
+§/ €r: Ox P“"un Oy P"up dX
2

11
2. p

aé,] € €
[( ) / -0 P ndy P dx|

r
s=1
02

. 1 [ald
= md S [ [ TP
te{t,....tr} b n

1 [al
—/Gén(x,Pf”un+P6”un)dx]+§/ 6: Dy P"Undy P Uy, dx

o)

Lo A .
Ilnn—]>|<>r<]>f Z [§/|DPt“un|2dx
ot} gy

Y

A
_/Gen(xaptenun+PE"Un)dX]+§/|DPE”un|2dX
2

24
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A .
= ;Bz — lim Z G, (X, Pfun + P up) dx

rHoote,z{tl,...tr}(Z
p
- %Bzf Z HUIH()\,p)
ity P
A (luf®? _ A 1 :
> 5827 H t”% > 5827 7%[ Z HUtHZ]Z
t¢{t,..t,} PM M=ty
A 1
> =B? 0
= 3 >

\‘»—-

where the last inequality is due to the fact that B <
We have just found a contradiction with.22). O

N\ﬁ
Nh:
—
=

Nl

1
Proposition 3.9. Let 0 < o < (Am)p Zand0 < B < (Apmz) . Assume
B small enough, such that the inequality in Lemma 2.6 holds. Then there exists
€ > O such that, for alle €]0,¢[ and for all {t, ...t} C {1,...,k}, there exists
a function * which minimizes the functional in the set Mv- NK 1t 1
N5 with [|[(Puul¥)* |l p > o foralls = 1,...,r and ||Pu- tr||2 +
> [[Peugt2 < B2

t¢{ts,..tr}
Moreover | verifies the following properties:

M
lim / IDPeul ¥ 12dx = 0 (327)
e—0
(]
and
Iimo/|DPfu§1*""t'|2dx:0 vV ote{l... k}\{ty,...t:}; (3.28)
€—
2
(In
lim |Duf-¥|2dx = 0; (329)
e—0
2\
(1

1
p

|iminf(/A(x)|(u;1wtr)+|9dx) >(Am)aE ¥V s=1...r. (3.30)
e—0

2

Proof. Let {t;,...,t} C {1,...,k}. The existence of > 0 andul-% €

Ml Kbt N“’ + for all ¢ €]0, €[ follows from Lemma 37.
Moreover fore smaII enough, Lemma 3.8 implies
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Prut-t 2+ 37 [Prut P < B2,
t%{tl,...tr}

while Lemma 2.6 implieg|(Pfuft")" || p > o foralls=1,....r.
(1) Proving (327) and (328) is equivalent to show that

liLno ”PEU?MLHLF Z ||Pteuil’""t’||2 =0.
t%{th...,tr}

By contradiction, suppose there exist]0, B] and a sequence),>1 of positive
numbers, Withn_l>imen =0, such that

H enyotaye-s tr (12 enyotayenes tr (12 — 32
lim S Perul |2 YT Pou |28 =52 (33D)
tg{tlw")tf}
From Lemma 3 it follows that
1 1.¢ P
limsupf, (u%) < (5 - = Am ) P2 < +o0. 3.32
m supf,, (U ") < (5 p);( y (332)

for all n > 1 and (332) holds, arguing as in the proof of Lemma33one
can show thatL(Env---tf)nZl is bounded irHol’z(Q). Hence, up to a subsequence,
Ut 5wttt e H?(62), weakly inHg%(£2), in LP(£2), in L9(£2) and a.e. in
0.

Moreover, sincey 1 >0

K
T

— : . =+
|II;T1_:Qf ; inf ¢ Ag(e,X) 1 X € jl:1J 2 () ©0,

from (332) we get [ |Dul?dx =0; it follows that one can writei'-% =

k
A 2

t=1
Up+- - + U with u € HP2(2) for all t € {1,... k}.
Arguing as in STEP 2 of Lemma8 one can see that (up to a subsequence)

1 1.«
i 1,0t = i _ enpyli,.. ot
lim £, (ug") n'Lmoo{(z p);Qen(Pts ug )

1 [al
€nyl1,...t €nytl,...t
+ ) [5 Er:&th“u; "9 PEnulot dx
tEft, )
t

t1,...,8 t1,...,1
_/Gén (Xu Pth ueﬁ T+ P€n ueln r)dx]

2
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a|
+%/ g, Perul g Pt dx b (3.33)
9]

Let us now define Z) (for n large enough) in the following wayz, =
Zgn sPerultot with &g > 0 Vs = 1,...,r such thatz, € Mt N
Ktl’ -t and fen(zn) > 0; the existence of such numbers forlarge enough
and so (fomn large enough)

fe, (UE") < e, (20)- (3:34)

Sincez, € M+t NK4-t andP{"z, — U, a.e. ing2, in LP(£2,), in Lq(Q ),
arguing as in STEP 3 of Lemma&3 one can prove that forafi=1,.

lim & <=1 (3.35)
n—oo :
Hence, from (1), (333), (335), we get (up to a subsequence)
lim[f., () 1, ()]

— : 1 t
= {3 e

s=1

1 [al
+ Z [é / Eén 8)Q Pte.-. uzln,...,tr 8>q Pte,-, uiln,...,tr dx
n

t¢ {tl 11111 tr } .Q/
t

t,...t ny (tLeenst
—/Gen(x,Pf"u;n C+Pulot) dx|

2

v

; 1 [a) tyt tyt
im {3 [é/ 0 P{U B Pl

n—oo ¢{ }
te{ts,....t /
T QI

'Qt

+} aL;‘J 8 Pﬁnutlvmxtra PGnutla-u,tr dX
€n Xi €n X €n

2
Q
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1
> Zadim Pt 3 Rru
n—oo t¢{t1 7777 tr}
1
- Z BHut”?A.,p)
t¢{ty, ...t}
%
A 1
S I SR
P2\ tettr, ot}
A 1
2 562_ gﬁp>0
pm:

where the last inequality is due to the fact that (¥ < B < (Agm%)p%z.

This is a contradiction with (34).

Iy (3.29) follows from assumptiona(4) taking into account that the
minimizing functionu*--% € Mt and

:
i supf.(ut>) < (5 — ) 3" (Am,) 77 < +0c
e—0 2 p

s=1

(see Definitions 2, 34 and Lemma ).
() By contradiction, suppose there exist {1,...,r}, with | #(, and an
infinitesimal sequence:(),>1 of positive numbers such that, fere |,

P

lim / AGQ|(UE Y Pdx | < (Am)Fe. (3.36)

’

2
Arguing as in (), one can prove thauft"),>1 is bounded irHOl’z((z); hence,
up to a subsequencal- converges weakly it **(£2), in LP(£2), in L9(£2)
and a.e. inf2 to a functionu®-% which can be written ag®% =u; +-- - + U
with u; € Hy%(2) and [ |[Dw[?dx=0forallt e {1,...,k}.
O\

As showed in (), we haveP“ul--% — 0 and Pf"ut-% — 0O for all
t¢{t,....t}inHP3(R2);souw =0 Vte{l ... k}\{ts,... t}

Moreover we havellu’||np > o for all s = 1,...,r and, by (336),
Ul < (Am)p*iz forallsel.

Notice that

f, (u")[PouE¥]=0 ¥V s=1,...,r,¥n>1

€n €n
sinceult -t e Mo,

Since agaiP"ul ot +Peyltot — g in LP(12), in L9(£2), a.e. ing2, using
(9.2), (g.3) as before, we obtain, for alle I,
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0= lim f, (u")[PEu*1> A [ IDuPdx — [ Ax)|u[P dx
—00

(g Q{s
| |Dug|?dx _
> A s 2(/ /\(x)|u{;|pdx)% —/A(X)|Ut:|pdx
(f MU, P d)? J

ts ts

2

ts

2
> Am|lud It p) — ||ut:H?A,p) >0,

where the last inequality is due to the fact that @ < [lugp) < (Am)rflz.
Hence we have obtained a contradiction. O

4. Existence of multibump solutions

In order to get our main result, it remains to show that the constrained minimum
points, obtained in the previous section, are critical points for the functignal
and give rise to multibump solutions of our problem.

1
Lemma 4.1. LetO< o < (Am)r12 and0< B < 4%m% "%, Assume B small
enough, such that the inequality in Lemma 2.6 holds. Then there exis@ssuch
that, for all e €]0, €[, for all subset{ts,...,t } of {1,...k}, the function Q}tt

(see Lemm®&.7 and Proposition3.9), is a critical point for f.

Proof. Let {t;,...,t} C {1,...,k} . Lemma 37 and Proposition 3 im-
ply that, for all ¢ > 0 small enough, there exists®* which achieves
inf{fe(u) 1 u € ME QK4 NS | and satisfie§ (PEus+)* o, p >
oforalls=1...r and|Peult--% |2+ > |Pful--¥|2 < B2. Hence
tE{t,....tr }

there exists a neighbourhood oft in Hol’z(Q) which is contained in
Koyt A NS, ie. ul-t is a local minimum point forf, constrained on
Mt

We shall prove first that1 '+ is a smoothC1— manifold in a neighbouhood
of u't-t; then we will show that all the Lagrange multipliers are zero, i.e. that
ult--¥ is a critical point forf..

For simplicity of notation let us writel, instead ofuf .

Forallt € {1,...,k}, leth;.: Hol’z(Q) — R be the functional defined by

he.c(u) =1, (W[P{u].
Under our assumption$y; . € Cl(Hol’z(Q);R). Notice that

M=t = fu e HEHO) T hW)=0 ¥ te {t, .t}
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In order to prove thaM*-% is a smooth manifold in a neighbourhood wf,
by using the implicit function theorem, it suffices to verify that

r
> ushe (U)=0 = pg=0V¥s=1,...r.

s=1

This property holds it > 0 is small enough. In fact

r r
D nshg (U)=0 = > push (P u]=0.

s=1 s=1

Therefore, sincel. € M-, we obtain foro € {1,...,r}

0= s {1 (WIPLIIR, Ul + 1 )IPEPE U]}

= o {1 (WIPE UJ2 +1, (UIPE U §
= pof. (UIPE ud?.

The claim will be obtained if we shall prove that

lim supf, (U)IPEUJ? < 2—p)oP <OV o e {1,...,r}. (4.1)
e—0

Taking into account that, € M we have

£ (U)IPE UL / 9e(, U)PE U, dx / 4. (%, U)[PE U2 dx

’ ’

2 2
= /ye(x,ue)(u:)p’lptfrue dx 4.2)
Q/

to

- / 5%, U)(UP2[PE U2 dx
02,

’
to

(see notations (3), (24), (2.8), (29)).
Assume, by contradiction, that for someec {1,...,r} there exists a se-
guence of positive numbersyj,>1 — O such that

lim 1, (U IPE U, 12 > (2= p)oP. (4.3)
—00

From Proposition ® we infer that, up to a subsequend®u,, — O and
Pfu,, — U, € Ho?(¢2,) in LP(12, ), in L2, ) and a.e. in2; .

Notice that||u [|(x,p) > ¢ sinceu,, € K&;-¥ for all n > 1. Moreover

Yen (s U, J(US PP HPE U, — MG (U )P
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and
Fen (X, Ug, )(UZ P[P U, 12 — (p — DA (W )P

a.e.infg .
Hence assumptions (g.2) and (g.3) allow us to apply the Lebesgue theorem
as above and to obtain

Jm £ )PET = @< p) [ MW P X< @2 ple
Q/

to

which is in contradiction with ().

Thus (41) holds and sdM'*--% is a smooth manifold in a neighbourhood
of u, for all ¢ > 0 small enough.

Sinceu, is a local minimum point fof, onM ! | there exist some constants
ALe, - .- Ar,e (the Lagrange multipliers) such that

f(Ue) = Agehy (Ue) + -+ Al (ue)

£ U] = Archy ULl + -+ A chy (UlP]l ¥ @ € Hy(92).

Let us choosey = P¢ u; sinceu. € MUt we obtain
fe (U)IPE (ue)]

> s {1 UAIPCUIPE ud + £ (WIPL(PE u) }
s=1

0

Moot (UDIPE U2,

which implies A, . = 0 for e > 0 small enough, because of. 14
Hence there exists > 0 such that, for alk €]0,€[, A1 =--- =X\ =0, i.e.
U, is a critical point forf.. O

Proof of Theorem 1.1f u, is a nontrivial critical point foff., thenv, = €2 Uc is
a solution of problenP, by the maximum principle, sincg(x,t) =0 fort <0
andg(x,t) > 0 fort > 0.

The behaviour of the functiong!* ase — 0 follows from Proposition
3.9. In particular we have that, far > 0 small enough, different choice of the

subset{t;,...,t } produce (by Lemma 4) different solutions of our problem.
Hence, for every € {1,...,k} there exist('r‘) r —bump solutions; so, on
the whole, we get'2— 1 distinct positive solutions. O

Finally in the following proposition we summarize the main properties of the
obtained solutions.

Proposition 4.2. For all ¢ €]0,¢[ and for all {t3,...,t} C {1,...,k} there
exists a solution-* of problem R such that
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0 .
lim supez=s |[o'% || < +o0;
e—0
()
1
P
|imi9feﬁ /A(x)w}-wtr Pax | > (Am)p2 Vse {1,...,r};
e—
2
()

Q\O e

s=1

. 2 . P
lim 25 Dol 2 dx = lim €7 ot P dx = 0.
e—0 e—0
r
2\ a2,
s=1

The proof follows easily from Proposition®and Lemma J and 41, taking
into account the proof of Theorem 1.1.

Remark 4.3.Let vi% be the solution of problen?. given by Theorem 1.
The method used in the proof shows that, up to a subsequence, the function

1 . .
ulr = ezl converges, as — 0, to a functionu'-%, which can be
written as follows: )
ty,..t —
u 1yeenlr = Z utsa
s=1

where, for alls = 1,...,r, U, is a positive function inH,*(¢2,) such that
Du, =0 in 2 \ 2.

Moreover, if in addition we assume th&t(x) — A(x) in L>(f2,) ase — 0,
thenu, satisfies the equation

div(A(X)Duy,) + A(x)ul " =0 Wx € 12,

(with other conditions on the boundaryﬁfs\fzts) and the functioru;, =
realizes the minimum

Utg
llus llx,m

min /Ai T(x)d udgu dx : u € Hy (2, [lulloup = 1, / IDul?dx =0

‘le Qtls \ ‘Q'ls

Remark 4.4.The method used in the proof of Theorenil an be adapted to
state analogous multiplicity results when the coefficient matrix) degenerates
only at a finite collection of pointg,, ..., X belonging tos?2.

In this case the degree of vanishing near the degeneration points plays an
important role (as in [31]).

For example, let us consider the problem
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. div(A(x)Du) + g(x,u) =0 in {2
P. u>0 in 2
u=0 onof?

where, for alle > 0, A, : 2 — R is defined by
Ac(x) = max{e, Ax)}

and A(x) € L*°({?2) is a positive function which behaves &s — x|, with
o> w near the degeneration poings(t = 1,...,k).

Then it is possible to find > 0 such that, for alk €]0,¢[, P, has at least
2¢ — 1 multispike solutiongs% ({ty,...,t:} € {1,...,k}) such thatul -t
can be decomposed in the following way:

r
t ~~~7tr = ts
u:’ = E u;
s=1
u's

where, for alls = 1,...,r, u® — 0 in Hy?(2) ase — 0 and ot —
. . i . . e p)
concentrates like Dirac mass near the degeneration goint
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