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Abstract. In this paper, we prove the existence of Fujita-type critical exponents for x-dependent fully
nonlinear uniformly parabolic equations of the type

(∗) ∂t u = F(D2u, x)+ u p in R
N × R

+.

These exponents, which we denote by p(F), determine two intervals for the p values: in ]1, p(F)[, the
positive solutions have finite-time blow-up, and in ]p(F),+∞[, global solutions exist. The exponent
p(F) = 1 + 1/α(F) is characterized by the long-time behavior of the solutions of the equation with-
out reaction terms

∂t u = F(D2u, x) in R
N × R

+.

When F is a x-independent operator and p is the critical exponent, that is, p = p(F). We prove as main
result of this paper that any non-negative solution to (∗) has finite-time blow-up. With this more delicate
critical situation together with the results of Meneses and Quaas (J Math Anal Appl 376:514–527, 2011),
we completely extend the classical result for the semi-linear problem.

1. Introduction

In [10], we proved the existence of critical exponents of Fujita type for parabolic
equations of the form

∂t u = F(D2u)+ u p in R
N × R

+, (1)

with the operator F uniformly elliptic and positively homogeneous. In that paper, we
proved the existence of exponents p = p(F) such that for p ∈]1, p(F)[, positive
solutions of (1) have finite-time blow-up, and for p ∈]p(F),+∞[, global solutions
exist. Moreover, from the local existence results for Eq. (1) (proved in [10]), we proved
that if p ∈]1, p(F)[, then there exists Tmax(u) such that

lim
t↑Tmax(u)

u(x∗, t) = ∞, for some x∗ ∈ R
N .

This last behavior is usually called finite-time blow-up.

Keywords: Fujita-type exponent, Blow-up in finite time, Viscosity solutions, Comparison arguments.
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The model problem that motivated our work is the classical semi-linear equation

∂t u = �u + u p in R
N × R

+, (2)

where p� = 1 + 2/N is the critical exponent, presented by H. Fujita in [4]. These
results are generalized and extended in [13] for the case p = p�, where (2) is a
particular case. Based on the existence of p�, it is possible to perform further studies
on such features as the blow-up rate, the blow-up set, and the asymptotic behavior of
global solutions. See, for example, [11] and [6] for more detail.

As the first result of this article, we prove the existence of Fujita-type exponents for
uniformly parabolic equations

∂t u = F(D2u, x)+ u p in R
N × R

+, (3)

extending the results of [10] for x-dependent operators. In particular, the results of
this paper cover linear elliptic operators with bounded Lipschitz coefficients.

As our second main result, we examine Eq. (1) and we prove that the critical value
p = p(F) always belongs to the blowup case.

In Eq. (3), we consider operators F : SN × R
N → R satisfying the following

conditions:

(F1) (F uniformly elliptic) There exist 0 < λ ≤ �, such that for all x ∈ R
N and

M ∈ SN , we have

λ tr N ≤ F(M + N , x)− F(M, x) ≤ � tr M, with N ≥ 0 in SN .

(F2) (F homogeneous) For α ≥ 0,

F(αM, x) = αF(M, x), for all x ∈ R
N and M ∈ SN .

(F3)(i) F(M, x) continuous operator in SN × R
N and concave (convex) in M .

(ii) There exists L F such that

|F(M, x)− F(M, y)| ≤ L F‖x − y‖(‖M‖ + 1),

for all x, y in R
N .

Here, SN denotes the N × N symmetric matrix space.
For F satisfying the above conditions, we consider the Cauchy problems for (3)

subject to a non-negative initial condition u0(x) 
≡ 0 that is bounded and uniformly
continuous in R

N , so that the local existence Theorem holds (see [10]). Moreover, for
the solution u(x, t), we can define the maximal existence time Tmax(u). Here and in
the rest of the paper, we suppose that u0(x) is bounded and uniformly continuous in
R

N . Our first main result for x-dependent F operators is presented below.

THEOREM 1.1. Let u(x, t) be the viscosity solution of (3), satisfying u(x, 0) =
u0(x) in R

N . There exists a unique exponent p(F) such that
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(i) If 1 < p < p(F), then Tmax(u) < ∞.
(ii) If p(F) < p, then there exists u0 such that Tmax(u) = ∞.

Furthermore, if p ∈]1, p(F)[, then the solutions have finite-time blow-up.

Those results are obtained using comparison arguments between the viscosity sub-
and super-solutions of (3). For the construction of sub- and super-solutions, some of
the ideas are taken from [15] and [9].

The exponent p(F) is characterized by studying the long-time asymptotical behav-
ior of the solutions of

∂t u = F(D2u, x) in R
N × R

+, (4)

for a class of initial condition u(x, 0) = u0(x), with some exponential spatial decay.
More precisely, we prove the existence of a unique α(F) > 0 such that for all u(x, t),
the solution of (4) satisfies

lim
t→∞ tα(F)‖u(·, t)‖∞ < ∞ (5)

and for each α > α(F), we have

lim
t→∞ tα‖u(·, t)‖∞ = ∞. (6)

This α(F) is already found in [2] for the case of x-independent operator. For this
α(F), we characterize the Fujita-type exponent as

p(F) = 1 + 1

α(F)
.

For the particular case F(·, x) = tr(·) and u0(x) satisfying the above conditions, we
have α(�) = N/2 and p(�) = p�. Therefore, the result given in Theorem 1.1 is a
generalization of the result presented by Fujita in [4].

As our second and main result, we consider (1) for the critical and more delicate
case p = p(F).

THEOREM 1.2. Assume F(·) is a x-independent operator satisfying (F1), (F2).
Let u(x, t) be a viscosity solution of (1) satisfying u(x, 0) = u0(x). If p = p(F), then
u(x, t) has finite-time blow-up.

With this Theorem and the results of [10], we have a complete generalization of
the results for Eq. (2). Therefore, both results together can be seen as a sort of elliptic
analog of results of [1]. Some ideas for our approach can be found in [12] and [5].

Finally, we use the result of Theorem 1.2 to obtain qualitative results for equations
with more general reaction terms.

This article is organized as follows. In Sect. 1, we present some preliminaries defin-
ing the concept of viscosity solutions, and we prove the long-term asymptotic behavior
of solutions to (4). Section 3 is devoted to the proof of the two main Theorem. In Sect. 4,
we state and prove a more general version of our results with more general reaction
terms.
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2. Preliminaries

We begin by recalling the concept of solution we will use. For the equation we
consider, the natural concept is the viscosity solution. More precisely, we use the defi-
nition of the parabolic viscosity solution given in [8]. Below, we present the definition
used in this work. For this purpose, we will say that V ⊂ R

N × R
+
0 is a parabolic

neighborhood of (x0, t0) if it has the form V ×]t0 − ε, t0], where V is a neighborhood
of x0.

DEFINITION 2.1. An upper semi-continuous function u:� → R is a parabolic
viscosity sub solution of equation ∂t u = G(x, t, u, D2u) in � if

∂tϕ(x0, t0) ≤ G(x0, t0, ϕ(x0, t0), D2ϕ(x0, t0)) (7)

for any (x0, t0) ∈ � and ϕ ∈ C2(�), such that u(x0, t0) = ϕ(x0, t0) and

u(x, t) ≤ ϕ(x, t) for all (x, t) ∈ V, (8)

where V is a parabolic neighborhood of (x0, t0). The functions ϕ(x0, t0) are called
test functions of u in (x0, t0).

Similarly, we define parabolic viscosity supersolutions considering u : � → R as
a lower semi-continuous function, satisfying (7) and (8) and switching “≤” for “≥”.

Finally, a continuous function u : � → R is a parabolic viscosity solution of
∂t u = G(x, t, u, D2u) if it is both a parabolic viscosity subsolution and a parabolic
viscosity supersolution. In this paper, of course, G(x, t, s, X) = F(X, x) + f (u).
For the proofs, we used fundamental comparison arguments between viscosity sub-
and super-solutions. Below, we use the comparison criterion presented in [10]; see
Theorem 2.1. We continue now by presenting Pucci’s extremal operators.

Let [[λ,�]] ⊂ SN be the matrix space with eigenvalues in [λ,�]. For M ∈ SN ,
Pucci’s extremal operators are defined as

M−
λ,�(M) = inf

A∈[[λ,�]](tr AM), M+
λ,�(M) = sup

A∈[[λ,�]]
(tr AM). (9)

They satisfy (F1), (F2) directly by their definition. Moreover, for F satisfying (F1),
(F2), the following equation holds:

M−
λ,�(M) ≤ F(M, x) ≤ M+

λ,�(M) for all M ∈ SN , x ∈ R
N . (10)

Now, we want to find the asymptotic behaviors given in (5), (6).
We continue to assume that F satisfies (F1), (F2), (F3), and the initial condition

u0(x) 
≡ 0 non-negative function in BUC(RN ), the space of bounded uniformly
continuous functions in R

N . We consider the Cauchy problem

{
∂t u = F(D2u, x) in R

N × R
+

u(x, 0) = u0(x) in R
N .

(11)
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We begin by considering the Eq. (11) with Pucci’s operators. Given the convexity and
concavity of these operators, using the existence result of [3], there is a global solution
for this case. For F satisfying (F1), (F2), (F3), from (10), using comparison arguments
and the Perron method, the problem (11) also has global solutions.

To obtain the asymptotic behavior for the solution of (11), we consider A(RN ) ⊂
BUC(RN ), a set of functions w(x) such that there exist A0, β0 positive constants
such that w(x) ≤ A0 exp{−β0‖x‖2}.

PROPOSITION 2.1. Let u(x, t) be a global viscosity solution of (11). If u0(x) ∈
A(RN ), then there exists a unique α = α(F) such that (5), (6) hold.

For the proof, we need the following lemmas.

LEMMA 2.1. Let u(x, t) be the global solution for (11). If u0(x) ∈ BUC(RN ),
then for all β > 0, there exist t0, C∗ positive constants such that u(x, t0) ≥
C∗ exp

{−β‖x‖2
}
.

Proof. By the relation given in (10) and comparison arguments, the result is presented
with F(·, x) = M−

λ,�(·).
From the concavity of the M−

λ,�(·) operator, there exists w(x, t), classically satis-
fying

∂tw = M−
λ,�(D

2w) in R
N × R

+

and the initial condition u(x, 0) = u0(x) in R
N . For the existence and the regularity

of u(x, t), we use [3] and [14], respectively. By the strong maximum principle, we
can also assume that w0(x) > 0 in R

N .
Let t0, α, γ, R0 be positive constants with R0 = 2

√
γ /α. Define� = R

N \BR0(0),
and let φ(x, t) ∈ C∞(�× [t0/2,∞[) be given by

φ(x, t) =
{

exp
{
−α|x |2−γ

t−t0/2

}
, x ∈ �, t > t0/2,

0, x ∈ �, t = t0/2.

Taking α = 1/(4λ), (2α)/β = t0 and γ > (�t0 N )/(4λ), we have

∂tφ − M−
λ,�(D

2φ) < 0, in �×]t0/2, t0[.
Let E = �×]t0/2, t0], and ∂p E = � × {t0/2} ∪ ∂� × [t0/2, t0] be the parabolic

boundary of E .
Define

s0 = min|x |≤R0
t0/2≤t≤t0

w(x, t) > 0,

and φ0(x, t) = s0φ(x, t). Because φ0(x, t0/2) − w(x, t0/2) = −w(x, t0/2) ≤ 0 for
x ∈ �̄, and φ0(x, t)−w(x, t) ≤ 0 for |x | = R0, t0/2 ≤ t ≤ t0, using the comparison
principle of [7], we find φ0(x, t) ≤ w(x, t) in all E . Hence, the result follows because
(2α)/t0 = β. �
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LEMMA 2.2. Let u(x, t) be a global solution of problem (11) with u0 ∈ A(RN ).
Then,

α(F, u0) := sup{α > 0 : lim sup
t→∞

tα‖ui (·, t)‖∞ < ∞}, (12)

is well defined.

Proof. Because u0 ∈ A(RN ), there exist A, β positive constants such that u0(x) ≤
A exp{−β‖x‖2}.

Consider now

u(x, t) = exp{−ϕ(t)‖x‖2 + ψ(t)}, (13)

with the sufficiently regular functions ϕ,ψ : [0,∞[→ [0,∞[, to be determined.
For v(r, t) with v(‖x‖, t) = u(x, t), from the radial representation of Pucci’s ex-

tremal operators, we have

∂t u − M+
λ,�(D

2u) ≥ (−‖x‖2(ϕ̇ + 4�ϕ2)+ ψ̇ + 2Nλϕ)u. (14)

Now, we consider ϕ(t), ψ(t) such that ϕ̇ + 4�ϕ2 = 0, ψ̇ + 2Nλϕ = 0. From (14),
we have ∂t u − M+

λ,�(D
2u) ≥ 0 in R

N × R
+. By substitution in (13), we obtain

u(x, t) = exp{ψ(0)}(1 + 4�ϕ(0)t)−
Nλ
2� exp

{
− ϕ(0)

1 + 4ϕ(0)�t
‖x‖2

}
.

Takingϕ(0)=β and exp{ψ(0)}= A, it follows directly that u0(x)≤ A exp{−β‖x‖2} =
u(x, 0). Using (10) and comparison arguments, we obtain u(x, t) ≤ u(x, t) in R

N ×
R

+
0 .
On the other hand, from Lemma 2.1, given β, there exist t0, C∗ positive constants

such that u(x, t0) ≥ C∗ exp
{−β‖x‖2

}
.

As in the above proof,

u(x, t) = C∗(1 + 4λβt)−
N�
2λ exp

{
− β

1 + 4βλt
‖x‖2

}

classically satisfies ∂t u ≤ M−
λ,�(D

2u) in R
N × R

+. So, by comparison, we have

u(x, t) ≤ u(x, t + t0) in R
N × R

+
0 . (15)

From here and u(x, t) ≤ u(x, t), we determine that α(F, u0) is well defined and

Nλ

2�
≤ α(F, u0) ≤ N�

2λ
.

�

Now, we present the proof of Proposition 2.1.
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Proof Proposition 2.1:
Let u1

0, u2
0 ∈ A(RN ). We need to prove that α(F, u1

0) = α(F, u2
0), where α(F, ui

0) is
defined in Lemma 2.2. Let ui (x, t) be the solutions of (11) with the respective initial
conditions ui

0, i = 1, 2.
Note that by assumption, there exist A1 andβ1 such that u1

0(x)≤ A1 exp
{−β1‖x‖2

}
.

From Lemma 2.1, given β1, there exist t0, C∗ positive constants such that u2(x, t0) ≥
C∗ exp

{−β1‖x‖2
}
. Thus,

u2(x, t0) ≤ C∗

A1
u1

0(x),

and by comparison,

u2(x, t0 + t) ≤ C∗

A1
u1(x, t).

Hence, we obtain α(F, u1
0) ≥ α(F, u2

0). In the same way, we obtain the reverse
inequality: therefore, α(F, u1

0) = α(F, u2
0). �

3. Proofs of the main results

As mentioned in the Introduction, the results given in Theorem 1.1 are obtained
using comparison arguments between the viscosity sub- and super-solutions. To con-
struct those functions, we use the v(x, t) solution of (11) and the asymptotical results
presented in Proposition 2.1. We mainly follow the ideas presented in [9].
Proof of Theorem 1.1:

Part (i) Let p(F) = 1+1/α(F), withα(F)given in Proposition 2.1. For all 1 < p <

p(F), the following holds: α(F) <
1

p − 1
. From the asymptotic results given in (5),

(6), for all v(x, t) satisfying (11), it holds that lim supt→∞ t1/(p−1)‖v(·, t)‖∞ = ∞.
Therefore, there exist T ∗ > 0 and x∗ ∈ R

N such that

lim
t↑T ∗(1−(p−1)t (v(x∗, t))p−1)=0, and 1−(p−1)t (v(x, t))p−1 > 0 in R

N × [0, T ∗[.
(16)

Let u(x, t) = v(x, t)/(1−(p−1)t (v(x, t))p−1)
1

p−1 . It is not hard to prove (see Lemma
4.1 of [10]) that u satisfies ∂t u ≤ F(D2u, x)+ (u)p in R

N ×]0, T ∗[. Moreover, from
(16), we have u blow-up at T ∗.

On the other hand, let u(x, t) be a solution of (3) satisfying the initial condition
u0(x). As u(x, 0) = u0(x), by comparison, we have u(x, t) ≤ u(x, t) in R

N ×[0, T ∗[.
Therefore Tmax(u) < ∞, which is the result in the first case.

Part (ii) Let v(x, t) be a solution of (11). To obtain a global super solution, we
begin by presenting the following result. Using Proposition 2.1, there exists M1 such
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that tα(F)‖v(·, t)‖∞ ≤ M1. If p > p(F), then we have α(F)(p − 1) > 1 directly.
Therefore, there exists t0 > 0 such that∫ ∞

t0
‖v(·, s)‖p−1∞ ds ≤ (M1)

p−1
∫ ∞

t0

1

s(p−1)α(F)
ds < ∞.

By rescaling, there exists u0 ∈ BUC(RN ) such that
∫ ∞

0
‖v(·, s)‖p−1∞ ds <

1

p − 1
.

Under the condition above, for h(t) =
(

1 − (p − 1)
∫ t

0
‖v(·, s)‖p−1 ds

)−1/(p−1)

,

consider the function u(x, t) = h(t)v(x, t) defined in all R
N × R

+.
Given (x0, t0) ∈ R

N ×R
+, letϕ(x, t)be sufficiently regular such that (u−ϕ)(x, t) ≥

(u − ϕ)(x0, t0) = 0 in V , a parabolic neighborhood of (x0, t0). From the definition of
u(x, t), for ψ(x, t) = ϕ(x, t)/h(t), we have (v − ψ)(x, t) ≥ (v − ψ)(x0, t0) =
0 in V . Thus, ψ is a test function for v(x, t) in (x0, t0). Then, it holds that
∂tψ(x0, t0) ≥ F(D2ψ(x0, t0)). From the regularity of functions h(t), ψ(x, t) the
following holds:

∂tϕ(x0, t0) = h(t0)∂tψ(x0, t0)+ ψ(x0, t0)ḣ(t0)

≥ h(t0)F(D
2ψ(x0, t0), x0)+ ψ(x0, t0)ḣ(t0) (17)

≥ F(D2ϕ(x0, t0), x0)+ ψ(x0, t0)ḣ(t0).

Because u(x0, t0) = ϕ(x0, t0) and from the definition of function h(t), we have

ψ(x0, t0)ḣ(t0) = ψ(x0, t0)‖v(·, t0)‖p−1∞ h(t0)
p

≥ ψ(x0, t0)(v(x0, t0))
p−1h(t0)

p

≥ (ψ(x0, t0))
ph(t0)

p

≥ (ϕ(x0, t0))
p = (u(x0, t0))

p.

By substitution in (18), we have

∂tϕ(x0, t0) ≥ F(D2ϕ(x0, t0), x0)+ (u(x0, t0))
p.

Because the choice of (x0, t0) and ϕ(x, t) was arbitrary, function u(x, t) satisfies

∂t u ≥ F(D2u, x)+ (u)p in R
N × R

+.

Finally, taking u(x, t) = v(x, t) as a subsolution and using the Perron method, there
exists u(x, t), a global solution of (3), satisfying u(x, t) ≤ u(x, t) ≤ u(x, t) in
R

N × R
+
0 . �

Based only on the asymptotic result, it is not possible to conclude directly that the
solutions are unbounded for the case p = p(F). Generally, behaviors in the critical
cases are obtained using other types of tools.

In our second main result, we present the unbounded behavior of the solution of
Eq. (1) in the critical case. In the proof, we use the construction of self-similar solu-
tions presented in [10]. The proof presented is completely independent of the proofs
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in the semi-linear case. The idea of the proof is to show that the positive solutions of
equations of the form ∂t u = F(D2u)+2u p(F) blow-up in finite time. Then, we obtain
the result by rescaling.
Proof of Theorem 1.2: For F(·, x) = F(·), let �(x, t) = (t + τ)−α(F)�(x/

√
t + τ)

be a solution of (4) where � is a positive solution of

F(D2�)+ 1

2
y · D� = −α(F)� in R

N ,

found in [10] (see also [2]). Moreover, we have �(·, t) ∈ A(RN ) for all t > 0, and
we can assume ‖�‖∞ = �(0).

Now, we want to find w(x, t) satisfying

∂tw = F(D2w)+ (�(x, t))p(F)−1w in R
N × R

+, and w(x, 0) = u0(x) in R
N .

For this purpose, we use a comparison principle (see Theorem 2.1 in [10]) and the
Perron method with the supersolution w̄ = veCt , where v is a solution of (11) and
C = �(0)p−1, and the subsolution w = �(x, t). Note that �(x, t) ≤ w(x, t), and
therefore, w satisfies ∂tw ≤ F(D2w)+ w p(F) in R

N × R
+.

Let u2(x, t) = w(x, t)(1 − (p(F)− 1)t (w(x, t))p(F)−1)
−1

p(F)−1 . Then, by
Lemma 4.1 of [10], we have

∂t u2 ≤ F(D2u2)+ 2(u2)
p(F) in R

N ×]0, T ], and u2(x, 0) = u0(x) in R
N ,

for each T < Tmax(u2). As in the previous proof, the idea is to obtain a result like
(16) for w(x, t). For this purpose, it suffices to work in the neighborhood of the point
where function w(x, t) reaches its maximum for a given t .

For k ∈ N, there exist (αk(F),�k) ∈ R
+ × C(RN ) satisfying

⎧⎨
⎩

F(D2�k)+ 1
2 y · D�k = −αk(F)�k in Bk(0)

�k(y) > 0 in Bk(0)
�k(y) = 0 in ∂Bk(0),

(18)

with

αk(F) = sup{μ > 0 : exists φ > 0, H(φ) ≤ −μφ en Bk(0), φ(y) = 0 in ∂Bk(0)},

holding αk(F) ↘ α(F). See [10] for the proof. Here, Bk(0) denotes the ball of radius
k centered in x = 0.

Moreover, for�k(x, t) = (t +τ)−αk (F)�k(x/
√

t + τ), we have ∂t�k = F(D2�k)

in Bk(0)× R
+.

Take ε > 0 such that�(0) > 2 (ε)1/(p(F)−1). Let N = N (ε) such that 0 ≤ αk(F)−
α(F) < ε for all k ≥ N . For this N , there exists t0 > 0 such that

�(x/
√

t + τ) ≥ �(x/
√

t0 + τ) > (ε)1/(p(F)−1), for each ‖x‖ ≤ N , and t ≥ t0.
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Then, (�(x, t))p−1 ≥ ε

τ + t
for ‖x‖ < N and t ≥ t0, and therefore, we have

∂tw ≥ F(D2w)+ ε

t + τ
w in BN (0)×]t0∞[,

holding w(x, t) > 0 in ∂BN (0)× [t0,∞[.
Taking v(x, t) = (t + τ)−εw(x, t), we have ∂tv ≥ F(D2v) in BN (0)×]t0,∞[.

Based on comparison arguments in bounded domains, by rescaling, we can assume
�N (x, t) ≤ (t + τ)−εw(x, t) in BN (0)× [t0,∞[.

From the previous result, and using ε − (αN (F)− α(F)) > 0, we have

lim
t→∞(τ + t)ε−(αN (F)−α(F))�+

N (0) ≤ lim
t→∞ tα(F)‖w(·, t)‖∞ = ∞,

and therefore, there exist T ∗ < ∞ and x∗ ∈ R
N such that

lim
t↑T ∗(1 − (p(F)− 1)t (w(x∗, t))p(F)−1) = 0, and

1 − (p(F)− 1)t (w(x, t))p(F)−1 > 0 in R
N × [0, T ∗[.

Then, the solutions of problems ∂t u2 = F(D2u2)+ 2(u2)
p(F) in R

N × R
+ and

u2(x, 0) = u0(x) in R
N have finite-time blow-up.

Finally, if we suppose that u(x, t) is a global solution of (3), taking u2(x, t) =
(1/2)1/(p(F)−1)u(x, t), we arrive at a contradiction of the previous result. �

4. Comments

In [10], we present finite-time blow-up existence conditions for

∂t u = F(D2u)+ f (u) in R
N × R

+, (19)

with function f , a regular function, where f (u) = |u|p−1u is a particular case. Under
certain conditions, we can associate the behaviors of f (s) for s → 0 with the behaviors
of the positive solutions of (19).

Let f : [0,∞[→ [0,∞[ satisfy

(f1) f ∈ C1(R+
0 ), convex and strictly non-decreasing, such that f (0) = 0.

(f2)
∫ ∞

s

1

f (s)
ds < ∞ for all s > 0.

The results in [10] are as follows:

(i) If lim sup
s↓0

s p(F)

f (s)
= 0, then the solutions of (19) have blow-up in finite time.

(ii) If lim inf
s↓0

s p(F)+δ

f (s)
> 0 for some δ > 0, then (19) has non-trivial global solutions.

From Theorem 1.2, we have the following corollary:
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COROLLARY 4.1. Let f satisfy the conditions above. If lim sup
s↓0

s p(F)

f (s)
< ∞, the

positive solutions of (19) have finite-time blow-up.

Proof. Let z(t; z0) satisfy ż = f (z) and z(0; z0) = z0. Taking Q(s) =
∫ ∞

s

1

f (y)
dy,

we have

z(t; z0) =
{

Q−1(Q(z0)− t) if 0 ≤ t < Q(z0)

0 if z0 = 0.

Moreover, forw(x, t) a subsolution of (19), the function u2(x, t) = Q−1(Q(w(x, t))−
t) satisfies (again by Lemma 4.1 of [10]) ∂t u2 ≤ F(D2u2) + 2 f (u2) in R

N ×]0, T ]
for all 0 < T < Tmax(u2).

We show first that the solutions of

∂t u = F(D2u)+ 2 f (u) in R
N × R

+ (20)

blow-up in finite time, and then we obtain the result by rescaling.
Now, we want to find a subsolution w(x, t) for (19) such that there exist 0 < T ∗ <

∞ and x∗ ∈ R
N satisfying Q(w(x∗, T ∗))− T ∗ = 0.

For this purpose, we begin with lim sup
s↓0

s p(F)

f (s)
< ∞. From the continuity of func-

tions s p(F), f (s), there exist ε > 0 and cε > 0 such that

cεs
p(F) ≤ f (s) for s < 2ε. (21)

Assume ‖u0‖∞ < 1
2ε and consider w(x, t), global solutions of

∂tw = F(D2w)+ cεw
p(F)(ε − w) in R

N × R
+,

satisfying w(x, 0) = u0(x) in R
N . This solution exists by the comparison princi-

ple (see Theorem 2.1 in [10]) and the Perron method together with the subsolu-
tion w a solution of (11). For the super solution for t ≥ 0, consider g(t) such that
dg

dt
= cεg

p(F)(ε − g) and g(0) = ‖u0‖∞. Because lim
t→∞ g(t) = ε,w(x, t) = g(t) is

a supersolution. Then, by comparison, we havew(x, t) ≤ ε in R
N ×R

+
0 . Moreover, if

lim
t→∞ ‖w(·, t)‖ < ε, there exists δ > 0 such thatw(x, t) ≤ ε− δ for all (x, t) ∈ R

N ×
R

+. Taking wδ(x, t) = δ1/(p(F)−1)w(x, t), we have ∂twδ ≥ F(D2wδ)+ cεw
p(F)
δ in

R
N × R

+, which contradicts Theorem 1.2. Then, the following holds:

lim
t→∞ ‖w(·, t)‖∞ = ε. (22)

From (21), we have cε(w(x, t))p(F)(ε − w(x, t)) ≤ cε(w(x, t))p(F) ≤ f (w(x, t)).
Then,

∂tw ≤ F(D2w)+ f (w) en R
N × R

+.
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From (22) and using condition (f2), we have lim
t↑∞ Q(‖w(·, t)‖∞) < ∞, and therefore,

lim
t↑∞ Q(‖w(·, t)‖∞)− t = −∞.

Then, equation Q(w(x, t)) − t = 0 has a solution; therefore, function u2(x, t) =
Q−1(Q(w(x, t)) − t) satisfies (see Lemma 4.1 of [10]) ∂t u2 ≤ F(D2u2) + 2 f (u2)

in R
N ×]0, T ] for all 0 < T < Tmax(u2) and Tmax(u2) < ∞. By comparison, the

solutions of (20) have finite-time blow-up.
Finally, if we suppose that there exists u(x, t) a global solution of (19), taking

u2(x, t) = u(
√

2x, 2t), we reach a contradiction with the previous result. �

The model function without power form is f (s) = (1 + s) lnp(1 + s). From the
previous result and the results in [10] for the Cauchy problem,

{
∂t u = F(D2u)+ (1 + u) lnp(1 + u) in R

N × R
+

u(x, 0) = u0(x) in R
N ,

(23)

we have:

If 1 < p ≤ p(F), then Tmax(u) < ∞.
If p > p(F), there exists u0 such that Tmax(u) = ∞.
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