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Abstract

We prove existence of a special class of solutions to the (elliptic) nonlinear

Schrödinger equation �"2� C V.x/ D j jp�1 on a manifold or in Eu-

clidean space. Here V represents the potential, p an exponent greater than 1,

and " a small parameter corresponding to the Planck constant. As " tends to 0

(in the semiclassical limit) we exhibit complex-valued solutions that concentrate

along closed curves and whose phases are highly oscillatory. Physically these

solutions carry quantum-mechanical momentum along the limit curves. © 2008

Wiley Periodicals, Inc.

1 Introduction
In this paper we are concerned with concentration phenomena for solutions of

the singularly perturbed elliptic equation

(NLS") �"2�g C V.x/ D j jp�1 on M;

where M is an n-dimensional compact manifold (or the flat Euclidean space Rn),

V a smooth, positive function on M satisfying the properties

(1.1) 0 < V1 � V � V2; kV kC3 � V3

(for some fixed constants V1; V2, and V3),  a complex-valued function, " > 0

a small parameter, and p an exponent greater than 1. Here �g stands for the

Laplace-Beltrami operator on .M; g/.

Equation (NLS") arises from the study of the focusing nonlinear Schrödinger

equation

(1.2) i„ @
Q 
@t

D �„2� Q C V.x/ Q � j Q jp�1 Q on M � Œ0;C1/;
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where Q D Q .x; t/ is the wave function, V.x/ a potential, and „ the Planck con-
stant. A special class of solutions to (1.2) consists of functions whose dependence

on the variables x and t are of the form Q .x; t/ D e�i!t=„ .x/. Such solutions

are called standing waves and up to substituting V.x/ with V.x/ � !, they give

rise to solutions of (NLS") for " D „.

An interesting case is the semiclassical limit " ! 0, where one should expect

to recover the Newton law of classical mechanics. In particular, near stationary

points of the potential, one is led to search highly concentrated solutions, which

could mimic point particles at rest.

In recent years, much attention has been devoted to the study of the above prob-

lem: one of the first results in this direction was due to Floer and Weinstein [21],

where the case of M D R and p D 3 was considered, and where existence of

solutions highly concentrated near critical points of V has been proved. This result

has since been extended by Oh [48] to the case of Rn for arbitrary n, provided

1 < p < nC2
n�2 . The profile of these solutions is given by the ground state Ux0

(namely, the solution with minimal energy, which is real-valued, positive, and ra-

dial) of the limit equation

(1.3) ��uC V.x0/u D up in Rn;

where x0 is the concentration point. The solutions u" obtained in the aforemen-

tioned papers behave qualitatively like

u".x/ ' Ux0

�
x � x0
"

�
as " tends to 0, and since Ux0

decays exponentially to 0 at infinity, u" vanishes

rapidly away from x0.

The above existence results have been generalized in several directions, includ-

ing the construction of solutions with multiple peaks, the case of degenerate poten-

tials, potentials tending to 0 at infinity, and more general nonlinearities. We refer

the interested reader to the (incomplete) list of works [1, 2, 3, 6, 7, 8, 13, 17, 23, 28]

and to the bibliographies therein.

We also mention the mathematical similarities between (NLS") and problem

(P")

8̂<
:̂

�"2�uC u D up in �;
@u
@�

D 0 on @�;

u > 0 in �;

where � is a smooth bounded domain of RN , p > 1, and � denotes the exterior

unit normal vector to @�. Problem (P") arises in the study of some biological mod-

els; see, e.g., [44] and references therein, and as (NLS"), it exhibits concentration of

solutions at some points of N�. Since the last equation is homogeneous, the location

of the concentration points is determined by the geometry of the domain. About

this topic, we refer the reader to [14, 18, 24, 25, 26, 27, 31, 32, 33, 45, 46, 47, 52].
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More recently new types of solutions to (NLS") have been found, since when "

tends to 0 these solutions do not concentrate at points but instead at sets of higher

dimension. Before stating our main result, it is convenient to recall the progress

on this topic and to illustrate the new phenomena involved. Some first results

in this direction were given in [9, 11] in the case of radial symmetry, and later

improved in [4] (see also [5] for the problem in bounded domains), where necessary

and sufficient conditions for the location of the concentration set have been given.

Unlike the previous case, the limit set is not stationary for the potential V : indeed,

from heuristic considerations, the energy of a solution concentrated near a sphere

of radius r depends both on V and on its volume, proportional to "rn�1.

Based on the above energy considerations, in [4] a conjecture is stated concern-

ing concentration on k-dimensional manifolds for k D 1; : : : ; n � 1; it is indeed

expected that, under suitable nondegeneracy assumptions, the limit set should sat-

isfy the equation

(1.4) �krNV D VH with �k D p C 1

p � 1 � 1

2
.n � k/;

where rN stands for the normal gradient and H for the curvature vector, and the

profile of the solutions at a point x0 in the limit set should be asymptotic, in the

normal directions, to the ground state of

(1.5) ��uC V.x0/u D up in Rn�k :
Since the Pohozaev identity implies p < n�kC2

n�k�2 for the existence of nontrivial

solutions, the latter condition is expected to be a natural one for dealing with this

phenomenon.

Actually, concerning (P") another conjecture has been stated, asserting exis-

tence of solutions concentrating at sets of positive dimension. About the latter

problem, starting from the paper [40], there has been some progress in the general

setting (without symmetry assumptions), and after the works [34, 39, 41], existence

is now known for arbitrary dimension and codimension. About problem (NLS"),

the conjecture in [4] has been verified in [19] for n D 2 and k D 1. Some other

(and related) results, under some reduced symmetry assumptions have been given

in [10, 15, 43, 49].

It is worth pointing out a major difference between the symmetric and the non-

symmetric situation. In fact, since the ground states of (1.3) or (1.5) are of moun-

tain-pass type (namely critical points of some Euler functional with Morse index

equal to 1), equation (NLS") becomes highly resonant. To explain this phenome-

non, we consider a real-valued function  in R2 with a radial potential. We can

begin by finding approximate (radial) solutions of the form u Nr;".r/ ' U Nr. r�Nr
"
/,

where U Nr is the solution of (1.3) for n D 1 corresponding to V. Nr/. Then, with a

good choice of Nr , we can try to linearize the equation and find true solutions via a

local inversion. The linearized equation, taking  real for simplicity, becomes

�"2� C V.r/ � pu Nr;".r/p�1 in R2:
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Using polar coordinates .r; #/ and a Fourier decomposition of  with respect to # ,

 .r; #/ D P
j e

ij# j .r/, we see that the following operator acts on each compo-

nent  j :

(1.6) �"2 00
j � "2 1

r
 0
j C V.r/ j � pu Nr;".r/p�1 j„ ƒ‚ …

L1;" j

C 1

r2
"2j 2 j

on Œ0;C1/;

where L1;" (apart from the term "2 1
r
 0
j , which is not relevant to the next discus-

sion) represents the linearized equation of (NLS") in one dimension near a soliton.

Since one expects to deal with functions that are highly concentrated near r D Nr ,

the last term in the above formula naively increases the eigenvalues by a quantity

of order 1
Nr2 "

2j 2 compared to those of L1;".

The operator L1;" possesses a negative eigenvalue �" lying between two nega-

tive constants independent of " (since U Nr is of mountain-pass type, as explained

before) and a (nearly) zero eigenvalue �", by the translation invariance of (1.3) in

R1. As a consequence, the operator in (1.6) possesses two sequences of eigenval-

ues qualitatively of the form �j;" ' �" C "2j 2 and �j;" ' �" C "2j 2. This might

generate two kinds of resonances: for small values of j , when �j;" ' 0, and for j

of order 1
"

, when �j;" could be close to 0.

A comment is in order on resonant modes, which can be roughly studied with a

separation of variables as before. The ones relative to �j;" (for j small) oscillate

slowly along the limit set, while the ones relative to the resonant �j;"’s oscillate

quickly with the number of oscillations proportional to k ' 1
"

.

The invertibility of the linearized operator will then be equivalent to having all

the �j;"’s and all the �j;"’s different from 0. A control on the resonant �j;"’s can be

obtained (via some careful expansions) from a suitable nondegeneracy condition

involving the limit set and the potential V . On the other hand, the possible van-

ishing of some �j;" is peculiar to this concentration behavior and more intrinsic, so

invertibility can only be achieved by choosing suitable values of ".

These formal considerations can also apply to the case of concentration near a

general manifold (without symmetries) in higher dimension or codimension, and

related phenomena appear in some geometric problems as well that deal with the

construction of surfaces with constant mean curvature; see [38, 42]. When � is a

radially symmetric domain and the potential V is radially symmetric, the problem

is simpler, since working in spaces of invariant functions avoids most of the above

resonances.

In this paper we construct a new type of solution, which concentrates along some

curve � , and which physically carries momentum along the limit set. Differently

from those discussed before, these solutions are complex valued and their profile

near any point x0 in the image of � is asymptotic to a solution to (1.3), which

decays exponentially to 0 away from the xn-axis of Rn and is periodic in xn. More
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precisely, we consider profiles of the form

(1.7) �.x0; xn/ D e�i yf xn yU.x0/; x0 D .x1; : : : ; xn�1/;
where yf is some constant and yU.x0/ a real function. With this choice of �, the

function yU satisfies

(1.8) �� yU C . yf 2 C V.x0// yU D j yU jp�1 yU in Rn�1

and decays to 0 at infinity. Solutions to (1.8) can be found by considering the (real)

function U satisfying ��U C U D U p in Rn�1 (decaying to 0 at infinity), and

by using the scaling

(1.9)
yU.x0/ D yhU.ykx0/;

yh D . yf 2 C V.x0//
1

p�1 ; yk D . yf 2 C V.x0//
1
2 :

In the above formulas yf can be taken arbitrarily, and yh and yk have to be chosen ac-

cordingly, depending on V.x0/. The constant yf represents the speed of the phase

oscillation and is physically related to the velocity of the quantum-mechanical par-

ticle described by the wave function.

Usually standing waves have zero angular momentum, and with the exception

of the present paper we are aware of only one result in this direction, given in [16]

(see also the comments there) where the case of an axially symmetric potential

is considered. Our goal here is to treat this phenomenon in a generic situation,

without any symmetry restriction. Some of the difficulties of such an extension

were naively summarized in the above discussion, but some new ones arise due

to the fact that the standing waves are complex valued and their phase is highly

oscillatory; more comments on these issues are given later.

Before stating our main result, we discuss how to determine the limit set. If we

look for a solution  to (NLS") with the above profile, then it should qualitatively

behave as

(1.10)  .Ns; 	/ ' e�i f .Ns/
" h.Ns/U

�
k.Ns/	
"

�
;

where Ns is the arc length parameter of � , and 	 a system of geodesic coordinates

normal to � . To obtain more flexibility, we choose the phase oscillation to depend

on the point �.Ns/, while h.Ns/ and k.Ns/ should satisfy

(1.11) h.Ns/ D �
.f 0.Ns//2 C V.�.Ns//� 1

p�1 ; k.Ns/ D �
.f 0.Ns//2 C V.�.Ns//� 1

2 ;

which is the counterpart of (1.9) for a variable potential.

The function f .Ns/ can be (heuristically) determined by using an expansion of

(NLS") at order "; a computation performed in Subsection 2.3 (see in particular

formula (2.8)) shows that

(1.12) f 0.Ns/ ' Ah� .Ns/ with � D .n � 1/.p � 1/
2

� 2;
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where A is an arbitrary constant. At this point, only the curve � should be deter-

mined.

First of all, we notice that the phase should be a periodic function in the length

of the curve, and therefore by (1.12) it is natural to work in the class of loops

(1.13) 
 WD
�
� W R ! M periodic W A

Z
�

h.Ns/� d Ns D const

�
;

where Ns stands for the arc length parameter on � . Problem (NLS") has a variational

structure, with the Euler-Lagrange functional given by

E". / D 1

2

Z
M

."2jrg j2 C V.x/j j2/ � 1

p C 1

Z
M

j jpC1:

For a function of the form (1.10), by a scaling argument (see (2.11)) we have

(1.14) E". / ' "n�1
Z
�

h.Ns/�d Ns with � D p C 1 � 1

2
.p � 1/.n � 1/I

therefore a limit curve � should be a critical point of the functional
R
� h.Ns/� d Ns in

the class 
 . With a direct computation (see Subsection 2.4), we can check that the

extremality condition is

(1.15) rNV D H
�
p � 1
�

hp�1 � 2A2h2�
�

where, as before, rNV represents the normal gradient of V and H the curvature

vector of � . Similarly, via some long but straightforward calculation, we can find

a natural nondegeneracy condition for stationary points that is expressed by the

invertibility of the operator in (2.22) acting on the normal sections to � (we refer

the reader to Section 2 for the notation used in the formula). We notice that, since

formula (1.12) determines only the derivative of the phase, to obtain periodicity we

need to introduce some nonlocal terms; see (2.14). After these preliminaries, we

are in position to state our main result.

THEOREM 1.1 Let M be a compact n-dimensional manifold, let V W M ! R be
a smooth, positive function, and let 1 < p < nC1

n�3 . Let L > 0; then there exists
a positive constant A0, depending on V , p, and L, for which the following holds:

If 0 � A < A0, if � has length less than or equal to L and satisfies (1.15), and
the operator in (2.22) is invertible on the normal sections of � , there is a sequence
"k ! 0 such that problem (NLS"k

) possesses solutions "k
having the asymptotics

in (1.10), with f satisfying (1.12).

Remark 1.2.
(i) The statement of Theorem 1.1 remains unchanged if we replace M by Rn

(or with an open manifold asymptotically Euclidean at infinity), and we assume
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V to be bounded between two positive constants and for which krlV k � Cl ,

l D 1; 2; 3, for some positive constants Cl .

(ii) The restriction on the exponent p is natural, since (1.8) admits solitons if

and only if p is subcritical with respect to dimension n � 1.

(iii) The smallness requirement on A is technical, and we believe this condition

can be relaxed. Anyway, for nC2
n�2 � p < nC1

n�3 , A should have an upper bound

depending on V to have solvability for both (1.9) and (1.12). About this condition,

see Remark 2.2 and Remark 4.7.

(iv) Apart from the assumption on A, Theorem 1.1 improves the result in [16].

In fact, in addition to removing the symmetry condition (which is the main issue),

the characterization of the limit set is explicit, the assumptions on V are purely

local, and the upper bound on p is sharp.

(v) The existence of solutions to (NLS") only for a suitable sequence "k ! 0

is related to the resonance phenomenon described above. The result can be ex-

tended to a sequence of intervals in the parameter " approaching 0 but, at least with

our proof, we do not expect to find existence for all epsilons.

Taking A D 0 (hence f 0 � 0), from (1.11) it follows that V D hp�1 and that

(1.15) is equivalent to (1.4), so as a consequence of our theorem, we can prove the

conjecture in [4] for k D 1, extending the result in [19].

COROLLARY 1.3 Let M be a compact Riemannian n-dimensional manifold with
metric g, let V W M ! R be a function satisfying (1.1), and let 1 < p < nC1

n�3 .
Let � be a simple closed curve that is a nondegenerate geodesic with respect to the
weighted metric

V
pC1
p�1

� n�1
2 g:

Then there exists "k ! 0 such that problem .NLS"k
/ has real-valued solutions

 "k
concentrating near � as j ! C1 and having the asymptotics

 "k
.Ns; 	/ ' V.�.Ns// 1

p�1U

�
V.�.Ns// 1

2

"k
	

�
;

where Ns stands for the arc length parameter of � , and 	 for a system geodesic
coordinates normal to � .

Corollary 1.3 also gives some criterion for the applicability of Theorem 1.1; in

fact, starting from a nondegenerate geodesic in the weighted metric, via the implicit

function theorem for A sufficiently small, we obtain a curve for which (1.15) and

the invertibility of (2.22) hold. In particular, when V is constant, we can start with

nondegenerate close geodesics on M in the ordinary sense.

To prove Theorem 1.1 we proceed as follows: We collect some preliminary

material in Section 2, where we recall some geometric facts, and we study the

functional in (1.14) constrained to the class of curves 
 , determining the Euler-

Lagrange equation together with the nondegeneracy condition.
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In Section 3 we derive some expansions (in powers of ") of equation (NLS") for

 of the form (1.10). To do this, it is convenient to scale problem (NLS") in the

following way:

(1.16) ��g"
 C V."x/ D j jp�1 in M";

where M" denotes the manifold M endowed with the scaled metric g" D .1="2/g

(with an abuse of notation we might often write M" D 1
"
M , and if x 2 M", we

write "x to indicate the corresponding point on M ).

We are now looking for a solution concentrated near the dilated curve �" WD 1
"
� .

We let s be the arc length parameter of �" so that Ns D "s, and we let .Ej /jD2;:::;n
denote an orthonormal frame inN� (the normal bundle of � ) transported in parallel

to the normal connection; see Section 2. We also let .yj /j be a corresponding set

of normal coordinates. Since we want to allow some flexibility both in the choice

of the phase and of the curve of concentration, we define Qf0.Ns/ D f .Ns/C "f1.Ns/,
and we set j́ D yj � ĵ .Ns/, where . ĵ /jD2;:::;n are the components (with respect

to the coordinates y) of a section ˆ in N� . Then, with a formal expansion of  in

powers of " up to second order, in the coordinates .s; ´/ near �", we set

 2;".s; ´/ D e�i zf0."s/

" fh."s/U.k."s/´/C "Œwr C iwi �C "2Œvr C ivi �g;

s 2 Œ0; L
"
�, ´ 2 Rn�1, and L D L.�/, the length of � , for some corrections wr ,

wi , vr , and vi (which have to be determined) to the above approximate solutions.

In Subsection 3.2 we show that these terms satisfy equations of the form Lrwr
D Fr , Liwi D Fi , Lrvr D QFr , and Livi D QFi where

(1.17)

(
Lrv D ��´v C V.Ns/v � ph.Ns/p�1U.k.Ns/´/p�1v
Liv D ��´v C V.Ns/v � h.Ns/p�1U.k.Ns/´/p�1v

in Rn�1;

and where Fr , Fi , QFr , and QFi are given data that depend on V , � , Ns, A, ˆ, and

f1. The operators Lr and Li are Fredholm (and symmetric) from H 2.Rn�1/ into

L2.Rn�1/, and the above equations for the corrections can be solved provided the

right-hand sides are orthogonal to the kernels. It is well-known (see, e.g., [30]) that

Lr has a single negative eigenvalue, a kernel with multiplicity n � 1 spanned by

the functions @lU.k.Ns/´/, l D 2; : : : ; n (the generators of the normal translations),

while all the remaining eigenvalues are positive. The operator Li instead has one

zero eigenvalue with eigenfunction U.k.Ns/´/ (the generator of complex rotations)

and all the remaining eigenvalues positive. As explained above, condition (1.15)

and the nondegeneracy of the operator J help us to determine wr , wi , vr , and vi
(and f1), respectively, namely to solve (1.16) at order " first, and then at order "2.

As discussed before, some fast-oscillating functions (along � ) contribute to gen-

erate some resonance, but these aspects are treated in later sections. Even at this

stage, however, there are new difficulties compared to the results in [19, 34, 39, 40].
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In our case the solutions are complex valued, and this causes an extra degener-

acy due to their invariance under multiplication by a phase factor. As a conse-

quence, we have a further (infinite-dimensional) approximate kernel, correspond-

ing roughly to a factor of  " in the form e�if1.Ns/ for f1 arbitrary. The correction

in the phase can also be determined by a formal expansion in " and, as for f 0,
we still obtain nonlocal terms. Also, when expanding formally the solutions in

", the highly oscillatory behavior of solutions generates an increasing number of

derivatives in Ns.
In Section 4 then we set up the strategy to obtain true solutions from the approx-

imate ones. First of all, since U (and its derivatives) decay fast at infinity like

(1.18) U.r/ ' e�rr� n�2
2 as r ! C1;

it is possible to localize the problem in a neighborhood of the scaled curve �"; this

step is inspired by [19] and worked out in Subsection 4.2. We then try to find a true

solution of the form

e�i zf ."s/
" fh."s/U.k."s/´/C "Œwr C iwi �C "2Œvr C ivi �C Qwg;

with Qw suitably small and Qf close to Qf0, via some local inversion arguments. From

a linearization of the equation near  2;", the operator L" acting on Qw in the coor-

dinates .s; ´/ is then the following:

L" Qw WD �@2ss Qw ��´ Qw C V."x/ � j 2;"jp�1 Qw
� .p � 1/j 2;"jp�3 2;"<. 2;" NQw/:(1.19)

Here < denotes the real part. Decomposing first Qw into its real and imaginary parts,

and then in Fourier modes with respect to the variable "s, we can write

Qw D Qwr C i Qwi D
X
j

sin.j"s/ Qwr;j .´/C i
X
j

sin.j"s/ Qwi;j .´/

(forgetting for simplicity about the cosine functions). If we take (as a model prob-

lem) V � 1, then the operators (in the ´-variables) acting on the real and imaginary

components are, respectively, Lr C "2j 2 and Li C "2j 2.

As for (1.6), the kernels of Lr and Li produce a sequence of eigenvalues for

L" that behave qualitatively like "2j 2, and for small values of j these become

resonant. With an accurate expansion of these eigenvalues, we find that the non-

degeneracy assumption on (2.22) prevents each of them from vanishing. However,

the fact that Lr possesses a negative eigenvalue as well generates an extra sequence

of eigenvalues of L", qualitatively of the form �1 C "2j 2, j 2 N. As explained

before, the only hope to get invertibility is to choose the values of " appropriately.

For the Neumann problem (P") the resonance phenomenon was taken care of us-

ing a theorem by T. Kato [29, p. 445], which allows us to differentiate eigenvalues

with respect to ". In the aforementioned papers it was shown that when varying the

parameter " the spectral gaps near 0 shrink only slightly, and invertibility can be

obtained for a large family of epsilons.
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However, when the concentration set is one dimensional, the spectral gaps of

the resonant eigenvalues (with fast-oscillating eigenfunctions) are relatively large,

of order ", and the profile of the corresponding eigenfunctions can be analyzed by

means of a scalar function on Œ0; L� (see below and in Subsection 6.2). This might

allow us to bypass Kato’s theorem and use a more direct approach, employed in

[42] to exhibit constant mean curvature surfaces of cylindrical type embedded in

manifolds, and in [19] for studying solutions of (NLS") in R2. We can partially

take advantage of these techniques (see the comments in Section 4), but some new

difficulties arise due to the phase oscillations in (1.10).

From the above discussion, we expect to find three possible resonances: two

of them for small values of the index j (with eigenvectors roughly of the form

e�i.f ."s//="@lU.k.Ns/´/ sin."js/, l D 2; : : : ; n, and ie�i.f ."s//="U.k.Ns/´/ sin."js/,

respectively), and a third one for j of order 1
"

, precisely when �"2j 2 coincides

with the first eigenvalue of Lr .

To understand this behavior, we first study the spectrum of a model operator

similar to (1.19), where we assume V � yV > 0 and  2;" to coincide with the

function in (1.7). For this case we characterize completely the spectrum of the op-

erator and the properties of the eigenfunctions; see Subsection 4.3 and in particular

Proposition 4.5. The condition on the smallness of A appears precisely here (and

only here) and is used to show that the resonant eigenvalues are only of the forms

described above. Removing the smallness assumption might indeed lead to further

resonance phenomena; see Remark 4.7 for related comments.

We next consider the case of nonconstant potential V . Since this has a slow

dependence in s along �", one might guess that the approximate kernel of L" (see

(1.19)) might be obtained from that for constant V , allowing a slow dependence

in s of the profile of these functions. With this criterion, given a small positive

parameter ı, we introduce a set Kı (see (4.50) and the previous formulas) consist-

ing of candidate approximate eigenfunctions on L", once multiplied by the phase

factor e�i.f ."s//=". More comments on the specific construction of this set can be

found in Subsection 4.3, especially before (4.50).

In Proposition 4.9 we show that this guess is indeed correct; in fact, we prove

that the operator L" is invertible provided we restrict ourselves to the subset NH" of

functions that are orthogonal to e�i.f ."s//="Kı . This property allows us to solve

the equation up to a Lagrange multiplier in Kı ; see Proposition 4.14. For tech-

nical reasons, we prove invertibility of L" in suitable weighted norms, which are

convenient to deal with functions decaying exponentially away from �".

Compared to the other papers that deal with this kind of resonance, the approx-

imate kernel here depends genuinely on the variable s (in [34, 39, 40, 41, 42]; the

problem is basically homogeneous along the limit set, while in [19] it can be made

such through a change of variables). To deal with this feature, which is the main

cause of difficulty in Proposition 4.9, we localize the problem in the variable s

as well. Multiplying by a cutoff function in s, we show that orthogonality to Kı
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implies approximate orthogonality to the set yKı ; see (4.53) and the previous for-

mulas, which is the counterpart of Kı for a potential frozen at some point in �";

once this is shown, we use the spectral analysis of Proposition 4.5.

Section 5 is devoted to choosing a family of approximate solutions to (1.16);

since we have many small eigenvalues appearing, it is natural to try looking for

functions that solve (1.16) as accurately as possible. Our final goal is to annihilate

the Lagrange multiplier in Proposition 4.14, and to do this we choose approximate

solutions Q‰2;" (in the notation of Section 5), which depend on suitable parameters:

a normal sectionˆ, a phase factor f2, and a real function ˇ. These parameters cor-

respond to different components ofKı and are related to the kernels of Lr.C"2j 2/
and Li .C"2j 2/; see the above comments. The function ˇ in particular is highly

oscillatory and takes care of the resonances due to the fast Fourier modes.

We next need to derive rigorous estimates on the error terms and to study in

particular their Lipschitz dependence on the data ˆ, f2, and ˇ. Proposition 5.2

collects the final expression for ��g"
 CV."x/ �j jp�1 on the approximate

solutions Q‰2;"; the error terms QA are listed (and estimated) before in that section,

together with their Lipschitz dependence on the parameters.

Finally, after performing a Lyapunov-Schmidt reduction onto the set Kı (see

Proposition 6.1), we study the bifurcation equation. In doing this we crucially

use the formal computations in Section 3 and the error estimates in Section 5. In

particular, for ˆ and f2 we find as main terms, respectively, the operator J in

(2.22) and the one in the middle of (3.24), both appearing when we perform formal

expansions. These operators are both invertible by our assumptions, and therefore

we are able to determine ˆ and f2 without difficulty.

The operator acting on ˇ instead is more delicate, since it is qualitatively of the

form

(1.20) �"2ˇ00.Ns/C �.Ns/ˇ on Œ0; L�;

with periodic boundary conditions, where � is a negative function. This operator is

precisely the one related to the peculiar resonances described above. In particular,

it is resonant at frequencies of order 1
"

, and this requires us to choose a norm for ˇ

that is weighted in the Fourier modes; see (5.6) and Subsection 6.2. For operators

like that in (1.20) there is in general a sequence of epsilons for which a nontrivial

kernel exists. Using Kato’s theorem though, as in [34, 38, 39, 40, 41], we pro-

vide estimates on the derivatives of the eigenvalues with respect to ", showing that

for several values of this parameter the operator acting on ˇ is invertible. In this

operation also the value of the constant A (see (1.12)) has to be suitably modi-

fied (depending on ") in order to preserve the periodicity of our functions. Once

we have this, we apply the contraction mapping theorem to solve the bifurcation

equation as well.

The results in this paper were first written in two different preprints [35, 36].

Some lengthy proofs, consisting of many explicit computations, have been omitted
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here for reasons of brevity, but precise references to the preprints will be given.

Theorem 1.1 was announced in the note [37].

Notation and Conventions
� Dealing with coordinates, capital letters like A;B; : : : will vary between 1

and n while indices like j; l; : : : will run between 2 and n. The symbol i

will always stand for the imaginary unit.

� For summations, we use the standard convention of summing terms where

repeated indices appear.

� We will choose coordinates .x1; : : : ; xn/ near a curve � , and we will pa-

rametrize � by arc length letting x1 D Ns. Its dilation �" WD 1
"
� will be

parametrized by s D 1
"

Ns. The length of � is denoted by L.

� For simplicity, a constantC is allowed to vary from one formula to another,

and also within the same line.

� For a real positive variable r and integer m, O.rm/ (respectively, o.rm/)

will denote a complex-valued quantity for which jO.rm/=rmj remains

bounded (respectively, jo.rm/=rmj tends to 0) when r tends to 0. We might

also write o".1/ for a quantity that tends to 0 as " tends to 0.

2 Study of the Reduced Functional
In this section we consider the functional in the right-hand side of (1.14) defined

on the set 
 , representing the approximate energy E" of a function concentrated

near � with the profile (1.10). We first introduce a convenient set of coordinates

near an arbitrary (smooth) closed curve in M . Then, using these coordinates, we

write the Euler equation and the second variation formula at a stationary point.

2.1 Geometric Preliminaries
In this subsection we discuss some preliminary geometric facts, referring, for

example, to [20, 50]. Given an arbitrary simple closed curve � in M , we choose

coordinates x1; : : : ; xn near � , called Fermi coordinates, in the following way: We

let x1 parametrize the curve � by arc length. At some point q in the image of � , we

consider an orthonormal .n� 1/-tuple .Y2; : : : ; Yn/, which forms a basis for Nq� ,

the normal bundle of � at q. We extend the Yl ’s as vector fields along � via parallel

transport along the curve with respect to the normal connection rN , namely, by

the condition rNP� Yl D 0 for l D 2; : : : ; n.

Next we parametrize a point near � using the following coordinates .Ns; y/ 2
R � Rn�1,

.Ns; y2; : : : ; yn/ 7! exp�.Ns/.y2Y2 C � � � C ynYn/;

where expq is the exponential map in M through the point q. In this way, fixing Ns,
each curve t 7! ty, for y 2 Rn�1 n f0g and t close to 0, is mapped into a geodesic

in M passing through �.Ns/.
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Let us now define the vector fields E1 D @
@Ns and El D @

@yl
for l D 2; : : : ; n.

We notice that on � each El coincides with Yl , while E1 on � is nothing but P� .

By our choice of coordinates it follows that rEE D 0 on � for any vector field E

that is a linear combination (with coefficients depending only on Ns) of the Ej ’s,

j D 2; : : : ; n. In particular, for any l; j D 2; : : : ; n and for any ˛ 2 R, we have

rEl C˛Ej
.El C ˛Ej / D 0 on � , which implies rEl

Ej C rEj
El D 0 for every

l; j D 2; : : : ; n. Using the fact that EA’s are coordinate vectors for A D 1; : : : ; n

and in particular rEA
EB D rEB

EA for all A;B D 1; : : : ; n, we obtain that

rEl
Ej D 0 for every l; j D 2; : : : ; n. This immediately yields

@mglj D EmhEl ; Ej i
D hrEm

El ; Ej i C hEl ;rEm
Ej i D 0 on �; l; j;m D 2; : : : ; n:

Moreover, since the EA’s are coordinate vectors for A D 1; : : : ; n, we obtain

@mg1j D EmhE1; Ej i
D hrEm

E1; Ej i C hE1;rEm
Ej i

D hrE1
Em; Ej i C hE1;rEm

Ej i D 0 on �; m; j D 2; : : : ; n:

Here we used the fact that rNE1
Em D 0 on � , namely, that rE1

Em has zero normal

components.

If H D HmEm is the curvature vector of � (which is normal to the curve), then

we have hrE1
Em; E1i D �Hm on � , so we easily deduce that

(2.1) @mg11 D EmhE1; E1i D 2hrE1
Em; E1i D �2Hm on �:

We can also prove that the components R1m1j of the curvature tensor are given by

(2.2) R1m1j D �1
2
@2jmg11 CHmH j :

Indeed, we have

�R1m1j D hR.E1; Ej /E1; Emi D hrE1
rEj

E1; Emi � hrEj
rE1

E1; Emi
D hrE1

rEj
E1; Emi �Ej hrE1

E1; Emi � hrE1
E1;rEj

Emi
D hrE1

rEj
E1; Emi �Ej hrE1

E1; Emi
D hrE1

rEj
E1; Emi �EjE1hE1; Emi CEj hE1;rE1

Emi
D hrE1

rEj
E1; Emi CEj hE1;rEm

E1i
D E1hrEj

E1; Emi � hrEj
E1;rE1

Emi C 1
2
EjEmhE1; E1i

D 1
2
@2jmg11 � 1

4
@mg11 @jg11;

where here we have used the above properties and the fact that

rEj
E1 D rE1

Ej D 1
2
@jg11E1:

Using (2.1) and (2.2), the above discussion can be summarized in the following

result:
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LEMMA 2.1 In the coordinates .Ns; y/, for y close to 0 the metric coefficients satisfy

g11.y/ D 1 � 2
nX

mD2
Hmym C 1

2

nX
m;lD2

.HmH j �R1m1j j� /ymyl CO.jyj3/;

g1j .y/ D 1

2

nX
m;lD2

@2mlg1j
ˇ̌
�
ymyl CO.jyj3/;

gkj .y/ D ıkj C 1

2

nX
m;lD2

@2mlgkj
ˇ̌
�
ymyl CO.jyj3/:

The second derivatives @2
ml
g1j and @2

ml
gkj can be expressed in terms of the

curvature tensor and the curvature of � through reasoning as for (2.2). However, for

our purposes it is not necessary to have such a formula, so we leave the expansion

of these coefficients in a generic form.

2.2 First and Second Variations of the Length Functional
We next recall the formulas for the variations of the length of a curve with re-

spect to normal displacements. We start with a regular closed curve � in M of

length L, which we parametrize by arc length, using a parameter Ns 2 Œ0; L�. Then

we consider a two-parameter family of closed curves �t1;t2 W Œ0; L� ! M for t1; t2
in a neighborhood of 0 in R such that �0;0 � � . The length L.t1; t2/ of �t1;t2 is

given by

L.t1; t2/ D
Z

�t1;t2

dl D
Z L

0

h P�t1;t2 ; P�t1;t2i 1
2d Ns;

where dl is the arc length parameter and P�t1;t2 stands for d�t1;t2=d Ns. We also

define the vector fields V and W along �t1;t2 as V D @�t1;t2=@t1 and W D
@�t1;t2=@t2. In the above coordinates, the vector fields V and W along � can be

written as

V D
nX

jD2
Vj .Ns/Ej ; W D

nX
mD2

Wm.Ns/Em:

Differentiating L.t1; t2/ with respect to t1 we find

(2.3)
@L.t1; t2/

@t1
D �

Z L

0

hrV P�t1;t2 ; P�t1;t2i
h P�t1;t2 ; P�t1;t2i 1

2

d Ns:

Using (2.1), at .t1; t2/ D .0; 0/ we have

hrV P�t1;t2 ; P�t1;t2i D �VmHmI
therefore we can write the variation of the length at � in the following way:

(2.4)
@L.t1; t2/

@t1

ˇ̌̌
ˇ
.t1;t2/D.0;0/

D �
Z L

0

VmHm d Ns D �
Z L

0

hV ;Hid Ns:
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Using (2.3) we can evaluate the second variation of the length as

@2L.t1; t2/

@t1@t2
D

Z L

0

"
hrW P�t1;t2 ;rV P�t1;t2i C h P�t1;t2 ;rW rV P�t1;t2i

h P�t1;t2 ; P�t1;t2i 1
2

�h P�t1;t2 ;rV P�t1;t2ih P�t1;t2 ;rW P�t1;t2i
h P�t1;t2 ; P�t1;t2i 3

2

#
d Ns;

so at .t1; t2/ D .0; 0/ we find

@2L.t1; t2/

@t1@t2

ˇ̌̌
ˇ
.t1;t2/D.0;0/

D
Z L

0

ŒhrW P�;rV P�i C h P�;rW rV P�i � h P�;rV P�ih P�;rW P�i� d Ns:
By using the definition of the Riemann tensor and the fact that V and W are coor-

dinate vector fields (so that ŒV ;W � D 0), the last formula yields

@2L.t1; t2/

@t1@t2

ˇ̌̌
ˇ
.0;0/

D
Z L

0

�hr P�W ;r P�Vi C h P�;rW r P�Vi � h P�;r P�Vih P�;r P�Wi� d Ns

D
Z L

0

�hr P�W ;r P�Vi C hR.W ; P�/V ; P�i � h P�;r P�Vih P�;r P�Wi� d Ns

�
Z L

0

hr P� P�;rW Vid Ns:
Here, we have used the fact that

g. P�;rW r P�V/ D hR.W ; P�/V ; P�i C P�hrW V ; P�i � hr P� P�;rW Vi
and

R L
0 P�hrW V ; P�id Ns D 0. Since rEl

Ej D 0 on � for l; j D 2; : : : ; n, we have

rW V D
X

j;mD2;:::;n
WmVjrEm

Ej H)
Z L

0

hr P� P�;rW Vid Ns D 0:

Moreover, recalling (2.1), we obtain

r P�V D
nX

jD2
PVjEj C

nX
jD2

VjrE1
Ej D

nX
jD2

PVjEj �
nX

jD2
H jVjE1:

This implies, at � ,

hr P�W ;r P�Vi C hR.W ; P�/V ; P�i � h P�;r P�V ih P�;r P�Wi D
nX

jD2
PVj PWj �

nX
j;lD2

R1j1lV
jW l :
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In this way the second variation of the length at � becomes

(2.5)
@2L.t1; t2/

@t1@t2

ˇ̌̌
ˇ
.t1;t2/D.0;0/

D
Z L

0

	 nX
j

PVj PWj �
nX

j;lD2
R1j1lV

jW l


d Ns:

2.3 Determining the Phase Factor
In this section we formally derive the asymptotic profile of the solutions to

(NLS") that concentrate near some curve � , and we determine some necessary

conditions satisfied by the limit curve. For doing this, using the coordinates .Ns; y/
introduced in Subsection 2.1, we look for approximate solutions  .Ns; y/ of (NLS")

making the ansatz

 .Ns; y/ D e�i f .Ns/
" h.Ns/U

�
k.Ns/y
"

�
; Ns 2 Œ0; L�; y 2 Rn�1;

where the function U is the unique radial solution (see [12, 22, 30, 51]) of the

problem

(2.6)

8̂<
:̂

��U C U D U p in Rn�1;
U.y/ ! 0 as jyj ! C1;

U > 0 in Rn�1;
and where the functions f , h, and k are periodic on Œ0; L� and have to be deter-

mined. With some easy computations we obtain

@ 

@Ns D � if
0.Ns/
"

h.Ns/U
�
k.Ns/y
"

�
e�i f .Ns/

" C e�i f .Ns/
" h0.Ns/U

�
k.Ns/y
"

�

C e�i f .Ns/
" h.Ns/k0.Ns/ryU

�
k.Ns/y
"

�
� y
"
;

@2 

@Ns2 D
�
�i f

00.Ns/
"

h.Ns/U
�
k.Ns/y
"

�
� 2i f

0.Ns/
"

h0.Ns/U
�
k.Ns/y
"

�

� 2i f
0.Ns/
"

h.Ns/k0.Ns/ryU
�
k.Ns/y
"

�
� y
"

� .f 0.Ns//2
"2

h.Ns/U
�
k.Ns/y
"

�

C 2h0.Ns/k0.Ns/rU
�
k.Ns/y
"

�
� y
"

C h.Ns/k00.Ns/ryU
�
k.Ns/y
"

�
� y
"

C h.Ns/.k0.Ns//2r2yU
�
k.Ns/y
"

� hy
"
;
y

"

i
C h00.Ns/U

�
k.Ns/y
"

��
e�i f .Ns/

" ;

and also

�y .Ns; y/ D .k.Ns//2
"2

�yU

�
k.Ns/y
"

�
e�i f .Ns/

" h.Ns/:
Since U decays to 0 at infinity (exponentially indeed, by the results in [22]), and

since the function  is scaled of order " near the curve � , in a first approximation

we can assume the metric g of M to be flat in the coordinates .Ns; y/; see the

expansions in Lemma 2.1.
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We look now at the leading terms in (NLS"), which are of order 1. Since ��g 
is multiplied by "2, we have to focus on the terms of order 1="2 in the Laplacian

of  . In the above expressions of @ =@Ns, @2 =@Ns2, and �y , we have that the

function U and its derivatives are of order 1 when jyj D O."/; therefore when

the variables y appear as factors in these expressions, we consider them to be of

order ". For example, r2U.k.Ns/y
"
/Œy
"
; y
"
� will be regarded as a term of order 1.

With these criteria, using the above computations and assumptions, and if we

impose that the leading terms in (NLS") vanish, we obtain

� k2.Ns/h.Ns/�yU
�
k.Ns/y
"

�
C h.Ns/ �

V.Ns/C .f 0.Ns//2�U �
k.Ns/y
"

�
D

h.Ns/pU
�
k.Ns/y
"

�p
:

From (2.6), we have the two relations

(2.7) k2.Ns/ D h.Ns/p�1 and ŒV .Ns/C .f 0.Ns//2� D k.Ns/2 D h.Ns/p�1:

We next obtain an equation for f , which is derived looking at the next-order

expansion of (NLS"). The next coefficient arises from the terms of order 1
"

in

��g , which are given by

i

�
f 00.Ns/
"

h.Ns/U
�
k.Ns/y
"

�
C 2

f 0.Ns/
"

h0.Ns/U
�
k.Ns/y
"

�

C 2
f 0.Ns/
"

h.Ns/k0.Ns/ryU
�
k.Ns/y
"

�
� y
"

�
e�i f .Ns/

" :

Multiplying this expression by U.k.Ns/y
"
/, integrating in y 2 Rn�1, and if we im-

pose that this integral vanishes as well, we get

0 D f 00.Ns/h.Ns/
Z

Rn�1

U 2
�
k.Ns/y
"

�
dy C 2h0.Ns/f 0.Ns/

Z
Rn�1

U 2
�
k.Ns/y
"

�
dy

C 2f 0.Ns/h.Ns/k0.Ns/
Z

Rn�1

U

�
k.Ns/y
"

�
ryU

�
k.Ns/y
"

�
� y
"
dy:

Integrating by parts and reasoning as for the usual Pohozaev’s identity, we obtain

that f must satisfy

f 00.Ns/h.Ns/C 2f 0.Ns/h0.Ns/ � .n � 1/f 0.Ns/h.Ns/k
0.Ns/
k.Ns/ D 0:

This is solvable in f 0.Ns/ and gives, for an arbitrary constant A,

(2.8) f 0.Ns/ D Ak.Ns/n�1h.Ns/�2 D Ah.Ns/ .n�1/.p�1/
2

�2;
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p−1

V+A h 2σ

h

h

2

 2σ

h

h
p−1

V+A h
2

FIGURE 2.1. The graphs of V C A2h2� and hp�1 for p < nC2
n�2 and for

p D nC2
n�2 with A < 1.

where we have used equation (2.7) for k. Now we can solve the equation for h.Ns/
depending on the potential V.Ns/ and the above constant A. In fact, we get that h.Ns/
should solve

(2.9) V.Ns/C A2h.Ns/2� WD V.Ns/C A2h.Ns/.n�1/.p�1/�4 D h.Ns/p�1;
where we have set

(2.10) � D .n � 1/.p � 1/
2

� 2:
Remark 2.2. We notice that, assuming A to be small enough (depending on V and

p), the above equation is always solvable in h.Ns/. More precisely, when p < nC2
n�2

(and hence when 2� < p � 1), the solution is also unique. For p � nC2
n�2 there

might be a second solution. In this case, we just consider the smallest one, which

stays uniformly bounded (both from above and below) when A is small enough;

see Figures 2.1 and 2.2.

Remark 2.3. In the above expansions, considering the terms of order ", as already

noticed, we considered the metric g to be flat near the curve � , and we tacitly as-

sumed the potential V to depend only on the variable Ns. Indeed, expanding the

Laplace-Beltrami operator and the potential V and taking the variables y into ac-

count, we obtain an extra term of order " that does not affect our computations

since it turns out to be odd in y, so it vanishes once multiplied by U.k.Ns/y="/
and integrated over Rn�1. For more details, we refer to Section 3, where precise

estimates are worked out (in a system of coordinates scaled in ").

2.4 The Euler Equation
Using the heuristic considerations of the previous subsection, we now compute

the energy of an approximate solution  concentrated near a closed curve � , and
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2  2σ

h
p−1

h

V+A h

  2σ

p−1

h

V+A h2

h

FIGURE 2.2. The graphs of V C A2h2� and hp�1 for p D nC2
n�2 with

A � 1 and for p > nC2
n�2 with A small.

then find the � ’s for which this energy is stationary. We let �;A denote the function

constructed in Subsection 2.3. In order for the function  �;A to be globally well

defined, we need to impose one more restriction, namely that  �;A is periodic in

Ns with period L. This is equivalent to requiring that
R L
0 f

0.Ns/d Ns be an integer

multiple of 2", since we have the phase factor e�i.f .Ns/="/ in the expression of

 �;A. From (2.8), we then find that
R L
0 h.Ns/� d Ns is also an integer multiple of 2".

Multiplying (NLS") by  �;A and integrating by parts, from the fact that  �;A is

an approximate solution we find

E". �;A/ D 1

2

Z
M

."2jrg �;Aj2 C V.x/j �;Aj2/dVg � 1

p C 1

Z
M

j �;AjpC1

'
�
1

2
� 1

p C 1

� Z
M

j �;AjpC1 dVg :

Since  �;A is highly concentrated near � , using the coordinates .Ns; y/ introduced

in 2.1, we have thatZ
M

j �;AjpC1 dVg '
Z L

0

d Ns
Z

Rn�1

h.Ns/pC1
ˇ̌̌
ˇU

�
k.Ns/y
"

�ˇ̌̌
ˇpC1

dy:

Using a change of variables, the last two formulas, and (2.7), we find that

(2.11) E". �;A/ ' NC0"n�1
Z
�

h.Ns/� d Ns;
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where

NC0 D
�
1

2
� 1

p C 1

� Z
Rn�1

jU.y/jpC1 dy;

and where we have set

(2.12) � D p C 1 � 1

2
.p � 1/.n � 1/ D p � � � 1:

Consider now a one-parameter family of closed curves �t W Œ0; L� ! M , where t

belongs to a neighborhood of 0 in R and where �0 � � . We compute next the

approximate value of the derivative in t of the corresponding energy defined by

(2.11).

As in Subsection 2.2 we let Vt denote the vector field Vt .Ns/ D @�t

@t
.Ns/, and we

assume that V WD V0 is normal to � . For any t near 0, we let kt .Ns/, ht .Ns/, and

ft .Ns/ be defined by (2.7), replacing � by �t and V.Ns/ by Vt .Ns/ WD V.�t .Ns//. Since

we require periodicity of each curve �t in the variable Ns, we also allow the constant

A given in (2.8) to depend on t . Denoting this by At , by the above considerations

we choose At so that the following condition holds for every value of t :

(2.13)

Z L

0

Atht .Ns/� d Ns D
Z L

0

f 0
t .Ns/d Ns D const:

Below, we let A0
t D d

dt
At , and we will consider ht .Ns/ to be a function of At

while Vt .Ns/ is as implicitly defined in (2.9). From (2.4),

@Vt .Ns/
@t

ˇ̌̌
ˇ
tD0

D hrNV.Ns/;V.Ns/i;
and differentiating (2.13) with respect to t at t D 0, we getZ L

0

A�h��1 @h
@V

hrNV;Vid Ns � A

Z L

0

h� hV ;Hid Ns

C AA0�
Z L

0

h��1 @h
@A

d Ns C A0
Z L

0

h� d Ns D 0;

where we have set A0 D A0
0 and where rNV stands for the component of rV

normal to � . From this formula we obtain the following expression for A0:

(2.14) A0 D �A

R L
0

�
�h��1 @h

@V
hrNV;Vi � h� hV ;Hi�d NsR L

0

�
A�h��1 @h

@A
C h�

�
d Ns

:

Similarly, computing the derivative of the (approximate) energy with respect to t ,

we find

dE".u�t ;At
/

dt

ˇ̌̌
ˇ
tD0

DZ L

0

�
�h��1 @h

@V
hrNV;Vi � h� hV ;Hi C �A0h��1 @h

@A

�
d Ns:
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Using (2.14), we deduce that the variation is given by

dE".u�t ;At
/

dt

ˇ̌̌
ˇ
tD0

D
Z L

0

@h

@V
hrNV;Vi

"
�h��1 � A�h��1 R L

0 �h
��1 @h

@A
d NsR L

0

�
A�h��1 @h

@A
C h�

�
d Ns

#
d Ns

�
Z L

0

hV ;Hi
"
h� � A h�

R L
0 �h

��1 @h
@A
d NsR L

0

�
A�h��1 @h

@A
C h�

�
d Ns

#
d Ns:

Differentiating (2.9) with respect to A and V , we get

(2.15)
@h

@A
D 2Ah2�

.p � 1/hp�2 � 2�A2h2��1 D 2Ah2�
@h

@V
;

so it follows that

(2.16) A�h��1 @h
@A

C h� D .p � 1/hp�1

.p � 1/h� � 2�A2h�
:

Similarly, since � D p � � � 1 (see (2.10) and (2.12)), we deduce that

h��1 @h
@A

D 2AhpC��2
.p � 1/hp�2 � 2�A2h2��1 :

Therefore we also find

(2.17)
�h��1 @h

@A

A�h��1 @h
@A

C h�
D 2A�

p � 1:

Hence from the last formulas the variation of the energy becomes

(2.18)

dE". �t ;At
/

dt

ˇ̌̌
ˇ
tD0

D
Z L

0

hrNV;Vi @h
@V

�
�h��1 � 2A2��

p � 1 h��1
�
d Ns

�
Z L

0

hV ;Hi
�
h� � 2A2�

p � 1 h
�

�
d Ns:

Also, from the second equality in (2.15), dividing by h� , multiplying by �
p�1 , and

using the identity p � � � 2 D � � 1, we obtain

h�� �

p � 1 C 2�A2h��1 @h
@V

�

p � 1 D �hp���2 @h
@V

D �h��1 @h
@V
:

Using (2.18) and the last formula, we get the following simplified expression:

dE". �t ;At
/

dt

ˇ̌̌
ˇ
tD0

DZ L

0

�

p � 1h
��

�
hrNV;Vi � hV ;Hi

�
p � 1
�

hp�1 � 2A2h2�
��
d Ns:
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Therefore the stationarity condition for the energy (under the constraint (2.13))

becomes hrNV;Vi D hV ;Hi.p�1
�
hp�1 � 2A2h2� / for every normal section V ,

namely,

(2.19) rNV D H
�
p � 1
�

hp�1 � 2A2h2�
�
:

We will see that this formula will be crucial to finding approximate solutions.

Remark 2.4. By (2.16), we have that

@

@A
.Ah� / D .p � 1/hp�1

.p � 1/h� � 2�A2h�
:

If A is sufficiently small (depending on V and p), then @
@A
.Ah� / > 0. This will

be used in the last section where, for a fixed ", we will adjust the value of the

constant A for obtaining periodicity of the function f .

2.5 Second Variation and Nondegeneracy Condition
We next evaluate the second variation of the Euler functional. As in Subsec-

tion 2.2 we consider a two-parameter family of closed curves �t1;t2 , where t1
and t2 are two real numbers belonging to a small neighborhood of 0 in R, and

where �0;0 D � . As before, we require the constraint (2.13) along the whole two-

dimensional family of curves, and we assume that the functions f; h, and k and the

constant A depend on t1 and t2, and we will use the notation At1;t2 , etc. Keeping

this in mind, we define the two vector fields

Vt1;t2 D @�t1;t2
@t1

; Wt1;t2 D @�t1;t2
@t2

;

and we can assume that V WD V0;0 and W WD W0;0 are normal to the initial

curve � .

With some computations, which are worked out in [36, sec. 5.2], we find that, at

.t1; t2/ D .0; 0/,

@2E".u t1;t2
;At1;t2

/

@t1@t2
(2.20)

D
Z L

0

�
h� � 2A2�

p � 1 h
�

� h X
j

PVj PWj �
X
j;m

R1j1mVjWm
i
d Ns

C �

p � 1
Z L

0

˚
..rN /2V /ŒV ;W � � hrNV;VihH;Wi

� hrNV;WihH;Vih��d Ns �
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� ��

p � 1
Z L

0

h���1 @h
@V

hrNV;VihrNV;Wid Ns

C A0
1A

0
2

2�

p � 1
Z L

0

�
A�h��1 @h

@A
C h�

�
d Ns:

Here

A0
l D @Aot1;t2

@tl

ˇ̌̌
ˇ
.t1;t2/D.0;0/

; PVj D dVj

d Ns ; and PWj D dWj

d Ns ;

where the Vj and Wj are the components of V and W with respect to the basis

.Ej /j introduced in Subsection 2.1.

Integrating by parts and using (2.14), from the last formula we derive that the

nondegeneracy condition is equivalent to the invertibility of the linear operator

J W �.N�/ ! �.N�/ (from the family of smooth sections of the normal bundle to

� into itself) whose components are defined by

.JV/m D �
�
h� � 2A2�

p � 1 h
�

� h RVm C
X
j

R1j1mVj
i

� �
�
h��1 � 2A2�

p � 1 h
��1

�
h0 PVm

C �

p � 1 h
��˚

..rN /2V /.V ; Em/ �HmhrNV;Vi

� hH;VihrNV;Emi
� ��

p � 1 h
�.�C1/ @h

@V
hrNV;VihrNV;Emi

� 2�

p � 1 AA0
1

�
�h��1 @h

@V
hrNV;Emi � h�Hm

�
;

(2.21)

where h0 D dh.Ns/
d Ns .

Using (2.19) and some other elementary computations (see subsection 2.5 in

[36]), we also find

.JV/m D �
�
h� � 2A2�

p � 1 h
�

�
RVm � �

�
h��1 � 2A2�

p � 1 h
��1

�
h0 PVm

C �

p � 1h
�� ..rN /2V /ŒV ; Em�C 1

2

�
h� � 2A2�

p � 1 h
�

�	X
j

.@2jmg11/V
j




� 2AA0
1

.� � �/hp�1
Œ.p � 1/h� � 2�A2h� �

Hm

CHmhH;Vi
��.p � 1/.3C �

�
/h2� � 16��A4

p�1 h2� C 2A2.5� C 3�/h�C�

.p � 1/h� � 2A2�h�
�
:

(2.22)
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The latter expression of JV is going to be useful later on. We summarize the results

of this section in the following proposition.

PROPOSITION 2.5 Consider the functional on curves
R
� h

� .Ns/d Ns restricted to the
set 
 in (1.13). Then the stationarity condition is (2.19), and the nondegeneracy of
a critical point is equivalent to the invertibility of the operator J in (2.22).

3 Some Preliminary Expansions
In this section we find a family of approximate solutions to the scaled equation

(1.16). We consider a simple closed curve � that is stationary within the class 
 ,

namely satisfying (2.19). First, we introduce some convenient coordinates near the

scaled curve �" D 1
"
� , expanding the Laplace-Beltrami operator with respect to

the scaled metric in powers of ". Then, using these expansions, we construct the

approximate solutions formally solving (1.16) up to order ".

3.1 Choice of Coordinates in M" and Expansion of the Metric Coefficients
Using the coordinates .Ns; y/ of Section 2 defined near � , for some smooth nor-

mal section ˆ.Ns/ in N� , we define the following new coordinates .s; ´/ (here and

below we use the notation Ns D "s) near 1
"
�

(3.1) ´ D y �ˆ."s/; ´ 2 Rn�1:

In this choice we are motivated by the fact that in general we allow the approximate

solutions to be tilted normally to �", where the tilting ˆ depends (slowly) on the

variable s; this allows some extra flexibility in the construction, as in [19, 34,

39]. As we will see, the choice of ˆ is irrelevant for solving (1.16) up to order

"; on the other hand, the nondegeneracy assumption will be necessary to guarantee

solvability of the equation up to higher orders.

We denote by QgAB the metric coefficients in the new coordinates .s; ´/. Since

y D ´Cˆ."s/, it follows that

QgCD D
X
AB

gAB

�
@yA

@´C

��
@yB

@´D

�
:

Explicitly, we then find

Qg11 D g11
ˇ̌
´Cˆ C 2"

X
j

ˆ0
jg1j

ˇ̌
´Cˆ C "2

X
j;m

ˆ0
j ."s/ˆ

0
m."s/gjm

ˇ̌
´Cˆ;

Qg1j D g1j
ˇ̌
´Cˆ C "

X
m

ˆ0
m."s/gjm

ˇ̌
´Cˆ; Qgjm D gjmj´Cˆ:
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At this point, it is convenient to introduce some notation. For a positive inte-

ger q, we denote by Rq.´/, Rq.´;ˆ/, and Rq.´;ˆ;ˆ
0/ error terms that satisfy,

respectively, the following bounds, for some positive constants C and d :

jRq.´/j � C"q.1C j´jd /;(
jRq.´;ˆ/j � C"q.1C j´jd /;
jRq.´;ˆ/ �Rq.´; Q̂ /j � C"q.1C j´jd /Œ jˆ � Q̂ j�;

and(
jRq.´;ˆ;ˆ0/j � C"q.1C j´jd /;
jRq.´;ˆ;ˆ0/ �Rq.´; Q̂ ; Q̂ 0/j � C"q.1C j´jd /Œjˆ � Q̂ j C jˆ0 � Q̂ 0j�:

We also introduce error terms involving second derivatives of ˆ, Rq.´;ˆ;

ˆ0; ˆ00/, which satisfy

jRq.´;ˆ;ˆ0; ˆ00/j � C"q.1C j´jd /C C"qC1.1C j´jd /jˆ00j
and

jRq.´;ˆ;ˆ0; ˆ00/ �Rq.´; Q̂ ; Q̂ 0; Q̂ 00/j
� C"q.1C j´jd /Œjˆ � Q̂ j C jˆ0 � Q̂ 0j�.1C ".jˆ00j C j Q̂ 00j//

C C"qC1.1C j´jd /jˆ00 � Q̂ 00j:
Using the expansion of the metric coefficients gAB in Lemma 2.1 and this notation,

we then obtain

Qg11 D 1 � 2"
nX

mD2
Hm.´m Cˆm/

C 1

2
"2

nX
m;lD2

@2mlg11
ˇ̌
�
.´m Cˆm/.´l Cˆl/

C "2jˆ0j2 CR3.´;ˆ;ˆ
0/;

(3.2)

Qg1j D "ˆ0
j C 1

2
"2

nX
m;lD2

@2mlg1j
ˇ̌
�
.´m Cˆm/.´l Cˆl/CR3.´;ˆ;ˆ

0/;

Qgkj D ıkj C 1

2
"2

nX
m;lD2

@2mlgkj
ˇ̌
�
.´m Cˆm/.´l Cˆl/CR3.´;ˆ;ˆ

0/:
(3.3)

Next we compute the inverse metric coefficients. Recall that, given a formal

expansion of a matrix as M D 1C "AC "2B , we have

M�1 D 1 � "AC "2A2 � "2B:
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In our specific case the matrix A is the following:

(3.4) A D
0
@�2

nP
mD2

Hm.´m Cˆm/ ˆ0
j

ˆ0
j 0

1
A ;

and the elements of its square are given by

.A2/11 D 4
	 nX
mD2

Hm.´m Cˆm/

2 C

X
j

.ˆ0
j /
2;

.A2/1j D �2
	 nX
mD2

Hm.´m Cˆm/


.ˆ0
j /; .A2/lj D .ˆ0

l/.ˆ
0
j /:

Therefore, using the above formula, the inverse coefficients are

Qg11 D 1C 2"

nX
mD2

Hm.´m Cˆm/

� 1

2
"2

nX
m;lD2

@2mlg11
ˇ̌
�
.´m Cˆm/.´l Cˆl/

C 4"2
	 nX
mD2

Hm.´m Cˆm/

2 CR3.´;ˆ;ˆ

0/:

We also get

Qg1j D �"ˆ0
j � 1

2
"2

nX
m;lD2

@2mlg1j
ˇ̌
�
.´m Cˆm/.´l Cˆl/

� 2"2
	 nX
mD2

Hm.´m Cˆm/


ˆ0
j CR3.´;ˆ;ˆ

0/:

Moreover,

@j . Qg1j / D �"2
nX
lD2

@2ljg1j
ˇ̌
�
.´l Cˆl/ � 2"2H jˆ0

j CR3.´;ˆ;ˆ
0/:

Similarly, with some simple calculations we also find

@1. Qg11/ D 2"2
nX

mD2
.Hm/0.´m Cˆm/

C 2"2
nX

mD2
Hmˆ0

m CR3.´;ˆ;ˆ
0; ˆ00/:
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Differentiating now Qg1j with respect to the first variable, we obtain

@1. Qg1j / D �"2ˆ00
j � 2"3

	 nX
mD2

Hm.´m Cˆm/


ˆ00
j CR3.´;ˆ;ˆ

0; ˆ00/:

Analogously, we get

Qgkj D ıkj � 1

2
"2

nX
m;lD2

@2mlgkj
ˇ̌
�
.´m Cˆm/.´l Cˆl/

C "2ˆ0
kˆ

0
j CR3.´;ˆ;ˆ

0/;

@k. Qgkj / D �"2
nX
lD2

@2klgkj
ˇ̌
�
.´l Cˆl/CR3.´;ˆ;ˆ

0/:

Finally, using the formal expansion QgCD D ıCD C "ACD C "2BCD C o."2/

and carefully analyzing the error terms, we obtain

p
det Qg D 1C 1

2
" tr.A/C "2

�
1

8
.tr.A//2 � 1

4
tr.A2/

�

C 1

2
"2 tr.B/CO."3/:

From the above expressions in (3.2) and (3.3) we deduce thatp
det Qg D 1 � "

X
m

Hm.´m Cˆm/

C "2
�
1

4

X
m;l

@2mlg11.´m Cˆm/.´l Cˆl/

� 1

2

	 nX
mD2

Hm.´m Cˆm/

2� CR3.´;ˆ;ˆ

0/;

@m
p

det Qg D �"Hm C "2
�
1

2

X
l

@2mlg11.´l Cˆl/

�Hm
	X
l

H l.´l Cˆl/

�

CR3.´;ˆ;ˆ
0/:

Moreover,

@1
p

det Qg D �"2
X
m

.Hm/0.´m Cˆm/ � "2
X
m

Hmˆ0
m

CR3.´;ˆ;ˆ
0; ˆ00/:
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The Laplacian of a smooth function u in coordinates .s; ´/ has the following

expression:

�� Qgu D �
X
A;B

QgAB@2ABu �
X
A;B

@B. QgAB/@Au

� 1p
det Qg

X
A;B

QgAB�
@B

p
det Qg�

@Au:

We are going to expand next each of these terms. First, we consider the determinant

of Qg. Recall that for a matrix of the form 1 C "A C "2B , the square root of the

determinant admits the formal expansion

(3.5)
p

detg D 1C "

2
trAC "2

�
1

8
.trA/2 � 1

4
tr.A2/C 1

2
trB

�
C o."2/:

LEMMA 3.1 Let u be a smooth function. Then in the above coordinates .s; ´/, we
have that

� Qgu D @2ssuC�´u � "
X
j

H j @ju � 2"
X
j

ˆ0
j @
2
sjuC 2"hH; ´Cˆi@2ssu

� "2hH; ´Cˆi
X
m;j

H j @ju � 1

2
"2@2mlg11.´m Cˆm/.´l Cˆl/@

2
ssu

C 4"2hH; ´Cˆi2@2ssu � "2@2mlg1j .´m Cˆm/.´l Cˆl/@
2
sju

� 4"2hH; ´Cˆi
X
j

ˆ0
j @
2
sjuC "2

X
t;j

ˆ0
tˆ

0
j @
2
tju

� 1

2
"2

X
m;l

@2mlgtj .´m Cˆm/.´l Cˆl/@
2
tjuC "2hH0; ´Cˆi@su

� "2
X
l;j

@2ljg1j .´l Cˆl/@su � "2
X
j

ˆ00
j @ju

� "2
X
t;j;l

@2tlgtj .´l Cˆl/@ju � 2"3hH; ´Cˆi
X
j

ˆ00
j @ju

CR3.´;ˆ;ˆ
0/@2ssuCR3.´;ˆ;ˆ

0/@2sju

CR3.´;ˆ;ˆ
0/@2ljuCR3.´;ˆ;ˆ

0; ˆ00/.@suC @ju/:

Moreover, given two smooth normal sections ˆ and Q̂ and defining the corre-
sponding coordinates

.s; y �ˆ."s// and .s; y � Q̂ ."s//;
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we set uˆ.s; y/ WD u.s; y �ˆ."s//, u Q̂ .s; y/ WD u.s; y � Q̂ ."s//. We then have

� Qguˆ �� Qgu Q̂
D �2"

X
j

.ˆ0
j � Q̂ 0

j /@
2
sjuC 2"hH; ˆ � Q̂ i@2ssuC "2

X
t;j

.ˆ0
tˆ

0
j � Q̂ 0

t
Q̂ 0
j /@

2
tju

� 1

2
"2

X
m;l

@2mlgtj
�
2´m.ˆl � Q̂

l /Cˆl .ˆm � Q̂
m/C Q̂

l .ˆm � Q̂
m/

�
@2tju

� "2
X
m;l

@2mlg1j
�
2´m.ˆl � Q̂

l /Cˆl .ˆm � Q̂
m/C Q̂

l .ˆm � Q̂
m/

�
@2sju

� 1

2
"2

X
m;l

@2mlg11
�
2´m.ˆl � Q̂

l /Cˆl .ˆm � Q̂
m/C Q̂

l .ˆm � Q̂
m/

�
@2ssu

� 2"2
X
l

H j
�
´l .ˆ

0
l � Q̂ 0

l /Cˆl .ˆ
0
l � Q̂ 0

l /C Q̂ 0
l .ˆl � Q̂

l /
�
@2sju

C 4"2
X
m;l

HmH l
�
2´m.ˆl � Q̂

l /Cˆl .ˆm � Q̂
m/C Q̂

l .ˆm � Q̂
m/

�
@2ssu

� "2
X
j

.ˆ00
j � Q̂ 00

j /@ju � "2
X
t;j;l

@2tlgtj .ˆl � Q̂
l /@ju � "2hH; ˆ � Q̂ i

X
j

H j @ju

C "2hH0; ˆ � Q̂ i@su � "2
X
l;j

@2ljg1j .ˆl � Q̂
l /@su

� 2"3
X
mj

Hm
�
.´m Cˆm/.ˆ

00
j � Q̂ 00

j /C Q̂ 00
j .ˆm � Q̂

m/
�
@ju

CO.1C j´jd /�"4.jˆ � Q̂ j C jˆ0 � Q̂ 0j/j@2ssuj
C "3.jˆ � Q̂ j C jˆ0 � Q̂ 0j/.j@2sjuj C j@2lju/j

�
CO.1C j´jd /�"3.jˆ � Q̂ j C jˆ0 � Q̂ 0j/

C "4.jˆ00jjˆ � Q̂ j C jˆ00 � Q̂ 00j/�.j@suj C j@juj/:

PROOF: The proof is based on the Taylor expansion of the metric coefficients

given above. We recall that the Laplace-Beltrami operator is given by

� Qg D
X
A;B

1p
det Qg @A

�p
det Qg.g"/AB@B/;

where indices A and B run between 1 and n. We can also write

� Qg D
X
A;B

�
QgAB@2AB C .@A QgAB/@B C 1p

det Qg QgAB.@B
p

det Qg/@A
�
:
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Using the expansion of the metric coefficients determined above and (3.5), we can

easily prove thatX
AB

QgAB@2ABu

D �´uC @2ssu � 2"
X
j

ˆ0
j @
2
sjuC 2"hH; ´Cˆi@2ssu

C "2
X
l;j

ˆ0
lˆ

0
j @
2
ljuC 4"2hH; ´Cˆi2@2ssu

� 1

2
"2

X
m;l

@2mlgkj .´m Cˆm/.´l Cˆl/@
2
kju

� 1

2
"2

X
m;l

@2mlg1j .´m Cˆm/.´l Cˆl/@
2
sju

� 4"2hH; ´Cˆiˆ0
j @
2
sju

� 1

2
"2

X
m;l

@2mlg11.´m Cˆm/.´l Cˆl/@
2
ssu

CR3.´;ˆ;ˆ
0/.@2ssuC @2sjuC @2lju/;

X
A;B

@A QgAB@Bu

D �"2
X
j

ˆ00
j @ju � "2

X
i;j;l

@2klgkj .´l Cˆl/@ju

� 2"3hH; ´Cˆi
X
j

ˆ00
j @juC 2"2hH0; ´Cˆi@su

� "2
X
l;j

@2ljg1j .´l Cˆl/@suCR3.´;ˆ;ˆ
0; ˆ00/.@suC @ju/;

X
A;B

1p
det Qg QgAB�

@B
p

det Qg�
@Au

D �"
X
j

H j @ju � "2hH; ´Cˆi
X
j

H j @ju � "2hH0; ´Cˆi@su

C 1

2

X
j

@2ljg11.´l Cˆl/@juCR3.´;ˆ;ˆ
0/.@suC @ju/:

The result then follows by collecting these three terms. �



SOLUTIONS TO NLS CARRYING MOMENTUM ALONG A CURVE 1185

3.2 Expansion at First Order in "

In this subsection we solve equation (1.16) up to order ", discarding the terms

that turn out to be of order "2 and higher. Here and in the next two subsections we

will display formal expansions only: we will assume that all the data are smooth

and writeO."k/ for terms that appear at the kth-order in a formal expansion. Since

all the functions we are dealing with decay exponentially in ´, the error terms do

also: precise statements are given in Lemma 3.2 and Proposition 3.3 below.

For the approximate solution as in (1.10), we make a more precise ansatz of the

following form:

(3.6)
 1;".s; ´/ D e�i zf0."s/

" fh."s/U.k."s/´/C "Œwr C iwi �g;
s 2 Œ0; 2�; y 2 Rn�1;

where zf0."s/ D f ."s/ C "f1."s/. By direct computation, the first and second

derivatives of  1;" satisfy

@s 1;" D e�i zf0."s/

"

��i zf 0
0."s/h."s/U.k."s/´/C "h0."s/U.k."s/´/

C "h."s/k0."s/rU.k."s/´/ � ´�
C e�i zf0."s/

" Œ�i"f 0wr C "f 0wi �CO."2/;

@i 1;" D e�i zf0."s/

" Œh."s/k."s/@iU.k."s/´/C "@iwr C i"@iwi �;

@2ss 1;" D �. zf 0
0/
2hU.k´/e�i zf0."s/

"

� i"e�i zf0."s/

" Œf 00hU.k´/C 2f 0h0U.k´/C 2f 0hk0rU.k´/ � ´�
� "f 02e�i zf0."s/

" Œwr C iwi �CO."2/;

@2lj 1;" D e�i zf0."s/

"

�
h."s/k2."s/@2ljU.k."s/´/C "@2ljwr C i"@2ljwi

�
;

@2sj 1;" D e�i zf0."s/

"

��i zf 0
0."s/h."s/C "h0."s/

�
k."s/@jU.k´/

C "e�i zf0."s/

" h."s/k0."s/
h
k

X
l

@2ljU.k´/´l C @jU.k´/
i

� i"f 0."s/@jwr."s; ´/e�i zf0."s/

"

C "f 0."s/@jwi ."s; ´/e�i zf0."s/

" CO."2/:

Similarly, the potential V satisfies

V."x/ D V."s/C "hrNV; ´Cˆi CO."2/:
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Expanding (1.16) in powers of ", we obtain

ei
zf0."s/

" .��g 1;" C V."x/ 1;" � j 1;"jp�1 1;"/ D "Rr C i"Ri CO."2/;

with

Rr D Lrwr C 2f 0f 0
1hU C 2f 02hU.k´/hH; ´Cˆi C hkhH;rU.k´/i

C hrNV; ´CˆihU.k´/;(3.7)

Ri D Liwi C Œf 00hU.k´/C 2f 0h0U.k´/C 2f 0hk0rU.k´/ � ´�
� 2

X
j

Œˆ0
jf

0hk@jU.k´/�;(3.8)

and where we have defined the two operators Lr and Li as

Lrw D ��´w C .V C f 02/w � php�1U.k´/p�1w;
Liw D ��´w C .V C f 02/w � hp�1U.k´/p�1w:

It is well-known (see, e.g., [48]) that the kernel of Lr is generated by the .n � 1/-

tuple of functions @2U.k�/; : : : ; @nU.k�/, while that of Li is one-dimensional and

generated by U.k�/.
We choose the functions wr and wi in such a way that Rr and Ri vanish. Since

Lr is Fredholm, the solvability condition for wr is that the right-hand side of this

equation is orthogonal in L2.Rn�1/ to @2U.k�/; : : : ; @nU.k�/. Therefore, to get

solvability, we should multiply the right-hand side by each of these functions and

get 0. The same holds true for wi , but by replacing the functions @
j́
U.k�/ by

U.k�/.
We discuss the solvability in wi first. Writing this equation as Liwi D f, we

can multiply it by U.k�/ and use the self-adjointness of Li to get

0 D
Z

Rn�1

wiLiU.k�/ D
Z

Rn�1

U.k�/Liwi D
Z

Rn�1

fU.k�/:

Following the computations of Subsection 2.3, this condition yields

f 00hk�.n�1/ C 2f 0h0k�.n�1/ D .n � 1/hk0k�nf 0;

which implies

f 0 D A
kn�1
h2

D Ah� :

This equation is nothing but (2.8), and hence the solvability is guaranteed. Since

Li clearly preserves the parity in ´, we can decompose wi in its even and odd

parts as

wi D wi;e C wi;o;



SOLUTIONS TO NLS CARRYING MOMENTUM ALONG A CURVE 1187

with wi;e and wi;o solving, respectively, the equations

Liwi;e D �Œf 00hU.k´/C 2f 0h0U.k´/C 2f 0hk0rU.k´/ � ´�;
Liwi;o D 2

X
j

Œˆ0
jf

0hk@jU.k´/�;

where the right-hand sides are, respectively, the even and odd parts of the datum

in (3.8). We notice that, since the kernel of Li consists of even functions, only the

even part of the equation plays a role in the solvability, since the product with the

odd part vanishes by oddness.

Indeed, (3.7) and (3.8) can be solved explicitly, and the solutions are given by

(3.9) wi;e D p � 1
4

f 0h0j´j2U.k´/; wi;o D �
X
j

ˆ0
jf

0h j́U.k´/:

In fact, as we can easily check, we have the following relations:

Li . j́U.k´// D �2k@jU.k´/;
Li .j´j2U.k´// D �2.n � 1/U.k´/ � 4krU.k´/ � ´;

which imply the above claim (here we also used (2.7) and some manipulations).

Turning to wr , if we multiply by @jU , integrate by parts, and use some scaling,

we find that the following condition holds true, for j D 2; : : : ; n:

2H j

�
.f 0/2

Z
Rn�1

U 2 d´ � k2

n � 1
Z

Rn�1

jrU j2 d´
�

C hrNV;Ej i
Z

Rn�1

U 2 d´ D 0:

Using (2.7), we get equivalently, for j D 2; : : : ; n,

2H j

�
A2h2�

Z
Rn�1

U 2 d´ � hp�1
n � 1

Z
Rn�1

jrU j2 d´
�

C hrNV;Ej i
Z

Rn�1

U 2 d´ D 0:

From a Pohozaev-type identity (playing with (2.6) and integrating by parts) we findZ
Rn�1

jrU.´/j2 d´ D .n � 1/.p � 1/
.3 � n/.p C 1/C 2.n � 1/

Z
Rn�1

U.´/2 d´(3.10)

D .n � 1/.p � 1/
2�

Z
Rn�1

U.´/2 d´:
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By using this formula, the solvability condition then becomes

H j

�
.p � 1/h

p�1
�

� 2A2h2�
�

D hrNV;Ej i; j D 2; : : : ; n;

which is nothing but the stationary condition (2.19). Therefore, since we are indeed

assuming this condition, the solvability for wr is also guaranteed. As for wi , we

can decompose wr in its even and odd parts as

wr D wr;e C wr;o;

where wr;e and wr;o solve, respectively,

Lrwr;e D �2f 0f 0
1hU � 2.f 0/2hU.k´/hH; ˆi � hrNV;ˆihU.k´/;(3.11)

Lrwr;o D �2.f 0/2hU.k´/hH; ´i � hk
X
j

H j @jU.k´/

� hrNV; ´ihU.k´/:
(3.12)

Using the Euler equation, we get

Lrwr;o D �h
X
j

H j

�
k@jU C hp�1 p � 1

�
j́U

�
:

It is also convenient to have the explicit expression of wr . We notice first that

Lr

�
� 1

.p � 1/hp�1 U.k´/ � 1

2k
rU.k´/ � ´

�
D U.k´/:

Hence it follows

wr;e D �
hhrNV C 2.f 0/2H; ˆi C 2f 0f 0

1h
�

�
�

1

.p � 1/hp�1U.k´/C 1

2k
rU.k´/ � ´

�
:

(3.13)

Using (2.19) we finally find

wr;e D
�
p � 1
�

hphH; ˆi C 2f 0f 0
1h

��
1

.p � 1/hp�1 U.k´/C 1

2k
rU.k´/ � ´

�
:

By the above computations (and the comments at the beginning of this subsection)

we obtain the following result:

LEMMA 3.2 Suppose h.Ns/ and f .Ns/ satisfy (1.11) and (1.12) for some A > 0;

assume also that the curve � satisfies (1.15). Then there exist two smooth functions
wr.Ns; ´/ and wi .Ns; ´/ for which the terms Rr and Ri in (3.7)–(3.8) vanish iden-
tically. Therefore, the function  1;" in (3.6) satisfies (1.16) up to an error of the
form R2.´/e

�k."s/j´j.
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3.3 Expansions at Second Order in "

Next we compute the terms of order "2 in the above expression. Adding a cor-

rection "2Œvr C ivi � to the function in (3.6), we define an approximate solution of

the form

(3.14)  2;".s; ´/ D e�i zf0."s/

" fh."s/U.k."s/´/C "Œwr C iwi �C "2Œvr C ivi �g

with s 2 Œ0; 2� and y 2 Rn�1, where Qf0 D f ."s/C"f1."s/. The first and second

derivatives of  2;" are given by

ei
Qf0."s/

" @s 2;"

D ��i Qf 0
0."s/h."s/U.k."s/´/C "h0."s/U.k."s/´/

C "h."s/k0."s/rU.k."s/´/ � ´�
C ��i" Qf 0

0wr C " Qf 0
0wi

� C ��i"2 Qf 0
0vr C "2 Qf 0

0vi
�

C "2.@swr C iwi /CO."3/;

ei
Qf0."s/

" @j 2;"

D �
h."s/k."s/@jU.k."s/´/C "@jwr C i"@jwi C "2@j vr C i"2@j vi

�
;

ei
Qf0."s/

"
@2 2;"

@s2

D �. Qf 0
0/
2hU.k´/ � i"Œ Qf 00

0 hU.k´/C 2 Qf 0
0h

0U.k´/C 2 Qf 0
0hk

0rU.k´/ � ´�
� " Qf 02

0 Œwr C iwi � � "2 Qf 02
0 Œvr C ivi �

C "2
�
2 Qf 0
0@swi C h00U.k´/C 2h0k0rU � ´C hk00rU � ´

C hk02r2U.k´/Œ´; ´�C Qf 00
0 wi

� � i"2Œ2 Qf 0
0@swr C Qf 00

0 wr �CO."3/;

ei
Qf0."s/

" @2lj 1;"

D �
h."s/k2."s/@2ljU.k."s/´/C "@2ljwr C i"@2ljwi C "2@2lj vr C i"2@2lj vi

�
;

ei
Qf0."s/

" @2sj 2;"

D ��i Qf 0
0."s/h."s/k."s/C "h0."s/k."s/C "h."s/k0."s

�
@jU.k´/

C "h."s/k."s/k0."s/
X
l

@2ljU.k´/´l C @jU.k´/ � i" Qf 0
0@jwr

C " Qf 0
0."s/@jwi � i"2 Qf 0

0@j vr C "2 Qf 0
0."s/@j vi C "2@2sjwr C i"2@2sjwr :
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We also have the formal expansion

ei
Qf0."s/

" j 2;"jp�1 2;"

D hpjU jp�1U C p"hp�1jU jp�1wr C i"hp�1jU jp�1wi

C 1

2
p.p � 1/"2hp�2jU jp�3Uw2r

C 1

2
.p � 1/"2hp�2jU jp�3Uw2i C i.p � 1/"2hp�2jU jp�3Uwrwi

C p"2hp�1jU jp�1vr C i"2hp�1jU jp�1vi CO."3/:

Similarly, expanding V up to order "2, we have

V."x/ D V."s/C "hrNV; ´Cˆi
C 1

2
"2.rN /2V Œ´Cˆ; ´Cˆ�CR3.´;ˆ/:

Using the expansions of Subsection 2.3, we obtain

ei
Qf0."s/

" .��g 2;" C V."x/ 2;" � j 2;"jp�1 2;"/
D "2. QRr C i QRi /

D "2. QRr;e C QRr;o/C "2i. QRi;e C QRi;o/
C "2. QRr;e;f1

C QRr;o;f1
/C "2i. QRi;e;f1

C QRi;o;f1
/

C "2Lrvr C "2iLivi CO."3/;

where

QRr;e D �1
2
.f 0/2hU.k´/

X
l;m

@2lmg11.´m´l Cˆmˆl/(3.15)

C 2.f 0/2hH; wr;eˆC wr;o´i

C 4.f 0/2hU.k´/ŒhH; ´i2 C hH; ˆi2�C 2f 0@swi;e C f 00wi;e

� �
h00U.k´/C 2h0k0rU.k´/ � ´C hk00rU.k´/ � ´

C h.k0/2r2U.k´/Œ´; ´�� C 2ˆ0
jf

0@jwi;o

C
�
1

2

X
l;m

@2lmgtj .´m´l Cˆmˆl/ �ˆ0
tˆ

0
j

�
hk2@2tjU.k´/

C hk
X
l;m;j

@2lmgmj´l@jU.k´/C
X
m

Hm@mwr;o C
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C hkhH; ´i
X
m

Hm@mU.k´/

C kh
X
m

�
hH; ´iHm � 1

2

X
l

@2mlg11´l

�
@mU.k´/

� 1

2
p.p � 1/hp�2U.k´/p�2.w2r;e C w2r;o/

� 1

2
.p � 1/hp�2U.k´/p�2.w2i;e C w2i;o/

C hrNV;wr;o´C wr;eˆi

C 1

2

X
m;j

@2mjV.´m j́ Cˆm ĵ /hU.k´/;

(3.16)

QRr;o D �.f 0/2hU.k´/
X
l;m

@2lmg11´mˆl C 8.f 0/2hU.k´/hH; ´ihH; ˆi

C 2.f 0/2hH; wr;e´C wr;oˆi � 2f 0@swi;o � f 00wi;o

C 2h0k
X
j

ˆ0
j @jU.k´/

C 2h0k
X
j

ˆ0
j

h
k

X
l

@2ljU.k´/´l C @jU.k´/
i

C 2f 0 X
j

ˆ0
j @jwi;e C hkhH; ˆi

X
m

Hm@mU.k´/

C
�
1

2

X
l;m

@2lmgtj .´mˆl C ´lˆm/

�
hk2@2tjU.k´/

C hk
X

�00
j @jU.k´/C

X
m

Hm@mwr;e

C hk
X
m

�
hH; ˆiHm � 1

2

X
l

@2mlg11ˆl

�
@mU.k´/

� p.p � 1/hp�2U.k´/p�2wr;ewr;o

� .p � 1/hp�2U.k´/p�2wi;ewi;o C hrNV;wr;e´C wr;oˆi
C

X
j;l

@2jlV j́ˆlhU.k´/C
	 X
j;l;m

@2lmgmjˆl



hk@jU.k´/;
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QRi;e D 2
�
f 00hU.k´/C 2f 0h0U.k´/C 2f 0hk0rU.k´/ � ´�hH; ˆi

C 2.f 0/2hH; wi;eˆC wi;o´i C 2f 0@swr;e C f 00wr;e

� 2f 0 X
j

ˆ0
j @jwr;o

� 2f 0hk
X
j

@jU.k´/

�
2hH; ´iˆ0

j

C 1

2

X
l;m

@2lmg1j .´mˆl C ´lˆm/

�

� f 0hU.k´/
	 X
m

.@21mg11ˆm � 2hH; ˆ0i/



� f 0h
h
2hH; ˆ0i C

X
j;l

@2ljg1jˆl

i
U.k´/

C 1

2
f 0h

	 X
l

@1lg11ˆl



U.k´/C

X
j

H j @jwi;o

� .p � 1/hp�2U.k´/p�2.wr;ewi;e C wr;owi;o/

C hrNV;wi;o´C wi;eˆi;

(3.17)

QRi;o D 2
�
f 00hU.k´/C 2f 0h0U.k´/C 2f 0hk0rU.k´/ � ´�hH; ´i(3.18)

C
X
i

H j @jwi;e C 2.f 0/2hH; wi;e´C wi;oˆi C 2f 0@swr;o

C f 00wr;o � 2f 0 X
j

ˆ0
j @jwr;e

� 2f 0hk
X
j

@jU.k´/

�
2hH; ˆiˆ0

j

C 1

2

X
l;m

@2lmg1j .´m´l Cˆlˆm/

�

� f 0hU.k´/
	 X
m

@21mg11´m



� f 0h

	 X
j;l

@2ljg1j´l



U.k´/

C 1

2
f 0h

	 X
l

@21lg11´l



U.k´/ �
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� .p � 1/hp�2U.k´/p�2.wr;ewi;o C wr;owi;e/

C hrNV;wi;e´C wi;oˆi:

We used the notation QRr;e;f1
, QRr;o;f1

, QRi;e;f1
, and QRi;o;f1

for the terms involving

f1, namely,

(3.19)

QRr;e;f1
D .f 0

1/
2hU C 2f 0f 0

1wr;e C 4hH; ˆif 0f 0
1hU

� 2p.p � 1/hp�2jU jp�2h2f 02f 02
1

QU 2

C 2f 0f 0
1hhrNV;ˆi QU C 4hH; ˆi.f 0/3f 0

1h
QU

� 2p .p � 1/2
�

h2p�1f 0f 0
1hH; ˆiU p�2 QU 2;

(3.20)

QRr;o;f1
D 2f 0f 0

1wr;o C 4hH; ´if 0f 0
1hU

� 2p.p � 1/f 0f 0
1h
p�1U p�2 QUwr;o

C 2f 0f 0
1hhrNV; ´i QU C 2H jf 0f 0

1hk@j
QU

C 4hH; ´i.f 0/2f 0f 0
1h

QU ;

(3.21)

QRi;e;f1
D 2h0f 0

1U C 2hf 0
1k

0rU � ´C 2f 0f 0
1wi;e C f 00

1 hU

C 4f 0@s.hf 0f 0
1

QU/C 2f 00hf 0f 0
1

QU
� 2.p � 1/hp�1jU jp�2f 0f 0

1
QUwi;e;

(3.22)
QRi;o;f1

D 2f 0f 0
1wi;o � 2.p � 1/hp�1jU jp�2f 0f 0

1
QUwi;o

� 4.f 0/2hkf 0
1ˆ

0
j @j

QU � 2hkf 0
1ˆ

0
j @jU;

where we wrote for brevity

QU D 1

.p � 1/hp�1 U.k´/C 1

2k
rU.k´/ � ´:

Again, we collect the results of this section in one proposition.

PROPOSITION 3.3 Suppose ˆ and f1 are smooth functions on Œ0; L�. Let ´ be the
normal coordinates given in (3.1), and wi and wr be as in Lemma 3.2. Then, if
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 2;" is as in (3.14), in the coordinates .s; ´/ we have

(3.23)

�� Qg"
 2;" C V."x/ 2;" � j 2;"jp�1 2;"

D "2.Lrvr C iLivi /

C "2
� QRr;e C QRr;o C i QRi;e C i QRi;o C QRr;e;f1

C QRr;o;f1
C i QRi;e;f1

C i QRi;o;f1

�
CR3.´/e

�k."s/j´j;

where the above error terms are given, respectively, in (3.15)–(3.22).

It is useful next to evaluate the projections of the errors on the kernels of the

operators Li and Lr to see what the effect of ˆ and f1 is. Concerning Li , the

kernel is spanned by iU.k."s/�/. To compute this projection, for parity reasons,

we need to multiply QRi;e and QRi;e;f1
by U.k."s/�/ and to integrate over Rn�1.

For brevity, we only display the final results, referring to [36, sec. 4] for complete

proofs.

Contribution of QRi;e:Z
Rn�1

QRi;eU.k´/ D �2A
h

�
p � 1
2�

� 1
� Z

Rn�1

U 2@shH; ˆi:

Contribution of QRi;e;f1
:

h

C0

Z
Rn�1

QRi;e;f1
U.k´/ D @Ns

�
h2f 0

1

kn�1

�
1 � 2f 02 �

.p � 1/k2
��

D @Ns
�

h2f 0
1

.p � 1/knC1 Œ.p � 1/hp�1 � 2�A2h2� �

�
:

To annihilate this projection, we should find f1 such thatZ
Rn�1

QRi;e;f1
U.k´/C

Z
Rn�1

QRi;eU.k´/ D 0:

This is equivalent to

Tf1 WD @Ns
�

h2f 0
1

.p � 1/knC1 Œ.p � 1/hp�1 � 2�A2h2� �

�

D 2A

�
p � 1
2�

� 1
�
@NshH; ˆi:

(3.24)
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Hence it is sufficient to set

f 0
1 D 2A.p � 1/knC1

.p � 1/hpC1 � 2�A2h2�C2

�
p � 1
2�

� 1
�

hH; ˆi

C c
.p � 1/knC1

.p � 1/hpC1 � 2�A2h2�C2 ;

where c is a constant to be chosen so that
R L
0 f

0
1 ds D 0. By (2.16), we have

.p � 1/knC1
.p � 1/hpC1 � 2�A2h2�C2 D A�h��1 @h

@A
C h� ;

and so the required condition becomes

c D �
�
p � 1
2�

� 1
�
2A.p � 1/

R L
0

knC1

.p�1/hpC1�2�A2h2�C2 hH; ˆidsR L
0 A�h

��1 @h
@A

C h� ds
:

As we can easily check from (2.14) and (2.19), c coincides with A0 and therefore

we have in conclusion

(3.25)

f 0
1 D 2A.p � 1/knC1

.p � 1/hpC1 � 2�A2h2�C2

�
p � 1
2�

� 1
�

hH; ˆi

C A0 .p � 1/knC1
.p � 1/hpC1 � 2�A2h2�C2 :

We evaluate next the projection of the QR’s in (3.23) onto the kernel of Lr . This

corresponds to multiplying the error terms by @mU.k�/, m D 1; : : : ; n � 1, inte-

grating over Rn�1, and taking the real part. As before, we are left to consider only

two terms: QRr;o and QRr;o;f1
. The final result (proven in section 4 of [36]) is the

following:

(3.26)

Z
Rn�1

. QRr;o C QRr;o;f1
/@mU.k."s/´/d´

D �p � 1
2�

1

hk
C0

(
�

�
h� � 2A2�

p � 1 h
�

�
ˆ00
m

� �
�
h��1 � 2A2�

p � 1 h
��1

�
h0ˆ0

m C �

p � 1h
�� ..rN /2V /ˆm

C 1

2

�
h� � 2A2�

p � 1 h
�

�	X
j

.@2jmg11/ ĵ




� 2AA0
1

.� � �/hp�1
Œ.p � 1/h� � 2�A2h� �

Hm

CHmhH; ˆi
��.p � 1/.3C �

�
/h2� � 16��A4

p�1 h2� C 2A2.5� C 3�/h�C�

.p � 1/h� � 2A2�h�
�)
:

We notice that the operator between brackets coincides precisely with the one in

(2.22), corresponding to the second variation of the reduced functional that we
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determined in Subsection 2.5. This is going to be useful in the last section to get

full solvability.

Remark 3.4. According to the considerations in Subsection 2.4, to every normal

variation of � there corresponds some variation in the phase due to both the vari-

ation of position and the variation of the constant A. Recall that the phase of the

approximate solution is the following:

F" D 1

"
f ."s/ D 1

"

Z "s

0

f 0 dl:

Differentiating with respect to a variation � (see (1.12)) we obtain

@

@�
F" D 1

"

Z "s

0

A�h
� C 1

"

Z "s

0

A�h��1
�
@h

@A
A� C @h

@V

@V

@�

�

C 1

2

1

"

Z "s

0

@�g11Ah
� :

Recalling formula (2.17), we find

@

@�
F" D 1

"

p � 1
2A

A�

Z "s

0

h��1 @h
@A

C 1

"

Z "s

0

A�h��1 @h
@V

@V

@�

C 1

2

1

"

Z "s

0

@�g11Ah
� :

Therefore, when we take a variation �2 of � , this also corresponds to a variation

of the phase of @
@�2
F". Notice that multiplying the horizontal part by h@mU corre-

sponds to adding a variation of ��2

k
.

Hence, integrating by parts, we get

A

�
p � 1
2�

� 1
� Z �X

m

ˆm@mg11

��
p � 1
2A

A�2
h��1 @h

@A
� A�h��1 @h

@V

@V

@�2

� 1

2
Ah�@�2

g11

�
:

Remark 3.5. If we multiply the operators J and T (see (2.22) and (3.24)) by

h.Ns/k.Ns/ and h.Ns/, respectively, they become self-adjoint. This fact will become

crucial below; see in particular Subsection 4.3.

4 Lyapunov-Schmidt Reduction of the Problem
In this section we show how to reduce problem (1.16) to a system of three ordi-

nary (integro)differential equations on R=Œ0; L�. We first introduce a metric on the

normal bundle N�" of �" and then study operators that mimic the properties of the

linearization of (1.16) near an approximate solution. Next, we turn to the reduction

procedure: this follows basically from a localization method, since the functions

we are dealing with have an exponential decay away from �". We introduce a set

Kı consisting of approximate (resonant) eigenfunctions of the linearized operator



SOLUTIONS TO NLS CARRYING MOMENTUM ALONG A CURVE 1197

L": calling NH" the orthogonal complement of this set (which has to be multiplied

by a phase factor close to e�i.f ."s//="), we show in Proposition 4.14 that L" is

invertible on the projection onto this set once suitable weighted norms are intro-

duced.

4.1 A Metric Structure on N�"

In this subsection we define a metric yg" on N�", the normal bundle to �", and

then introduce some basic tools that are useful for working in local coordinates on

this set.

First of all, we choose a local orthonormal frame .Ei /i in N� and, using the

notation of [34, subsection 2.2], we set rN
@Ns
Ej D ˇlj .@Ns/El , j; l D 1; : : : ; n� 1. If

we impose that the Ej ’s are transported in parallel via the normal connection rN ,

as in Subsection 2.1, we find that ˇlj .@Ns/ � 0 for all j; l . As a consequence (see

formula (18) in [34]), we have that if .V j /j , j D 1; : : : ; n� 1, is a normal section

to � , then the components of the normal Laplacian �NV are simply given by

(4.1) .�NV /j D �� .V
j / D @2Ns NsV j ; j D 1; : : : ; n � 1:

We next define a metric yg on N� as follows. Given v 2 N� , a tangent vector

W 2 TvN� can be identified with the velocity of a curve w.t/ in N� that is equal

to v at time t D 0. The metric yg on N� acts on an arbitrary couple .W; QW / 2
.TvN�/

2 in the following way (see [20, p. 79])

yg.W; QW / D g.�W;� QW /C
�
DNw

dt

ˇ̌̌
ˇ
tD0

;
DN Qw
dt

ˇ̌̌
ˇ
tD0

�
N

:

In this formula  denotes the natural projection from N� onto � , DNw=dt the

(normal) covariant derivative of the vector field w.t/ along the curve w.t/, and

Qw.t/ a curve in N� with initial value v and initial velocity equal to QW .

Following the notation in Subsection 2.1 we have that, if w.t/ D wj .t/Ej .t/,

then

DNw

dt
D dwj .t/

dt
Ej .t/:

Therefore, if we choose a system of coordinates .Ns; Ny/ on N� defined by

.Ns; Ny/ 2 R � Rn�1 7! NyjEj .�.Ns//;
we get that

yg11.Ns; Ny/ D g11.Ns/C Nyl Nyj
˝rNE1

El ;rNE1
Ej

˛
N

D g11.Ns/ � 1

and

yg
1 Nl.Ns; Ny/ � 0; yg Nl Nj .Ns; Ny/ D ı Nl Nj ;
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where we have set @ Nl D @=@ Nyl . We also notice that the following co-area type

formula holds for any smooth compactly supported function f W N� ! R:

(4.2)

Z
N�

f dVyg D
Z
�

� Z
N�.Ns/

f . Ny/d Ny
�
d Ns:

This follows immediately from the fact that det yg D detg and by our choice of

.Ns; Ny/.
Since in the above coordinates the metric yg is diagonal, the Laplacian of any

(real- or complex-valued) function � defined on N� with respect to this metric is

�yg� D @2Ns Ns� C @2Nj Nj� in N�:

We next endow N�" with a natural metric, inherited by yg through a scaling. If

T" denotes the dilation x 7! "x, we define a metric yg" on N�" simply by

yg" D 1

"2
Œ.T"/� yg�:

In particular, choosing coordinates .s; y/ on N�" via the scaling .Ns; Ny/ D ".s; y/,

we easily check that the components of yg" are given by

.yg"/11.s; y/ D g11.Ns/ � 1; .yg"/1l.s; y/ � 0; .yg"/lj .s; y/ D ılj :

Therefore, if is a smooth function inN�", it follows that in the above coordinates

.s; y/

�yg"
 D @2ss C @2jj in N�":

In the case  .s; y/ D e�i yf su.s; y/, for yf D Ayh� (see (1.9)) and for u real, we

clearly have that

�yg"
 D e�i yf s@2ssu � 2i yf e�i yf s@su � yf 2e�i yf suC e�i yf s@2jju:

Similarly to (4.2), we easily find that

(4.3)

Z
N�"

f dVyg"
D

Z
�"

� Z
N�".s/

f .y/dy

�
ds:

4.2 Localizing the Problem to a Subset of the Normal Bundle N�"

We next exploit the exponential decay of solutions (or approximate solutions)

away from �" to reduce (1.16) from the whole scaled manifold M" to the normal

bundle N�". This step of the proof closely follows a procedure in [19]. We first

define a smooth, nonincreasing cutoff function N� W R ! R satisfying8̂<
:̂

N�.t/ D 1 for t � 0;

N�.t/ D 0 for t � 1;

N�.t/ 2 Œ0; 1� for every t 2 R:
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Next, if .s; y/ are the coordinates introduced above inN�", and ifˆ."s/ is a section

of N� , using the notation of Subsection 3.1, we define

´ D y �ˆ."s/:
We will assume throughout the paper that ˆ satisfies the following bounds:

(4.4) kˆk1 C kˆ0k1 C "kˆ00k1 � C"

for some fixed constant C > 0. Next, for a small Nı > 0 and for a smooth function

K."s/ > 0, both to be determined below, and for h; k W Œ0; L� ! R as defined in

the introduction, we set

Q 0;" D N�".s; ´/ 0;"

WD N�
�
K."s/

�
j´j � "� Nı

K."s/

��
e�i Qf ."s/

" h."s/U.k."s/´/;
(4.5)

where Qf (to be defined later) is close to the function f (also defined in the intro-

duction). For � 2 .0; 1/, we let S" W C 2;� .M"/ ! C � .M"/ be the operator

(4.6) S". / D ��g"
 C V."x/ � j jp�1 in M":

If we let Q " denote an approximate solution of (1.16) (we will later take Q " equal

to Q 0;" with some small correction), then setting  D Q "C Q�, we have S". / D 0

if and only if

L". Q�/ D S". Q "/CN". Q�/ in M";

where L". Q�/ stands for the linear correction in Q�, namely,

L". Q�/ D ��g"
Q� C V."x/ Q� � j Q "jp�1 Q�

� .p � 1/j Q "jp�3 Q "<. Q " NQ�/ in M";
(4.7)

and where the nonlinear operator N". Q�/ is defined as

N". Q�/ D j Q " C Q�jp�1. Q " C Q�/ � j Q "jp�1 Q " � j Q "jp�1 Q�
� .p � 1/j Q "jp�3 Q "<. Q " NQ�/:

(4.8)

Then, in the coordinates .s; ´/, we can write

Q� D N�".´/� C '

where, with an abuse of notation, we assume � defined on N�" (through the expo-

nential map normal to �") and where the correction ' is defined on the whole M".

In this way we need to solve the equation

(4.9) L". N�".´/�/C L".'/ D S". Q "/CN". N�".´/� C '/ in M":

We will require � to be supported in a cylindrically shaped region in N�" cen-

tered around the zero section. For technical reasons, convenient for proving the
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results in the next subsection, we define

(4.10) QD" D
�
.s; ´/ 2 N�" W j´j � "� Nı C 1

K."s/

�
;

and then the subspace of functions in N�" as

H QD"
D fu 2 L2.N�"I C/ W u is supported in QD"g:

Using elementary computations, we see that (4.9) is satisfied if (tautologically) the

following two conditions are imposed:

L".�/ D �
S". Q "/CN". N�".´/� C '/

� C j Q "jp�1'
C .p � 1/j Q "jp�3 Q "<. Q " N'/ in QD"; � 2 H QD"

;
(4.11)

L Q "
' D .1 � N�".´//

�
S". Q "/CN". N�".´/� C '/

�
C 2rg"

N�".´/ � rg"
� C�g"

N�".´/� in M";
(4.12)

where

L Q "
' D ��g"

' C V."x/'

� .1 � N�".´//
�j Q "jp�1' C .p � 1/j Q "jp�2 Q "<. Q " N'/�:(4.13)

We next have an existence result for equation (4.12). In order to state it, we

need to introduce some notation. For a regular periodic function p W Œ0; L� ! R,

for m 2 N and � 2 .0; 1/, we define the weighted norms

(4.14) k'kCm;�
p

D sup
x2 QD"

Œep."s/j´jk'kCm;� .B1.x//�; x D .s; ´/:

We also recall the definition of k."s/ in (1.11).

PROPOSITION 4.1 Let k2.Ns/ < k1.Ns/ < k0.Ns/;K.Ns/ be smooth positive L-peri-

odic functions in Ns, and � 2 .0; 1/. Then, if V.Ns/;K2.Ns/ > k22.Ns/ and if

k Q "kC �
k0

; kS". Q "/kC �
k0

� 1, there exists a positive constant C depending on Nı,
� , k, k0, k1, and k2 such that given any � with k�k

C
1;�
k1

� 1, problem (4.12) has a

unique solution '.�/ whose restriction to QD" satisfies

k'.�/kC �
�k2

� C
	
e�"�Nı inf

k2Ck0
K kS". Q "/kC �

k0

C e�"�Nı inf
k1Ck2

K k�k
C

1;�
k1



:

(4.15)

Moreover, if Q 1" ; Q 2" satisfy kS". Q j" /kC �
k0

� 1, j D 1; 2, if k�j k
C

1;�
k1

� 1, j D
1; 2; and if 'j .�j /, j D 1; 2, are the corresponding solutions, for the restrictions
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to QD", we also have

k'.�1/ � '.�2/kC �
�k2

� C
	
e�"�Nı inf

k2Ck0
K

��S". Q 1" / � S". Q 2" /
��
C �

k0

C e�"�Nı inf
k1Ck2

K k�1 � �2kC1;�
k1



:

(4.16)

Remark 4.2.

(1) The choice of the norm in (4.14) is done for considering functions that

grow at most like e�p."s/j´j, and in particular functions that decay at infinity if p is

positive. In the left-hand side of (4.15) we have a negative exponent, representing

the fact that ' can grow as j´j increases. However (we will later take k0; k1; k2,

andK very close), the coefficients in the right-hand side are so tiny that ' is every-

where small in QD", and indeed with an even smaller bound for j´j close to 0. This

reflects the fact that the support of the right-hand side in (4.12) is

"� Nı
K."s/

< j´j < "� Nı C 1

K."s/
;

so ' should decay away from this set.

(2) We introduced the functions k0; k1, and k2 for technical reasons, since we

want to allow some flexibility for the (exponential) decay rate in j´j.
PROOF: We prove the result only when the manifold M in (NLS") is compact.

For the modifications needed for M D Rn, see Remark 4.3(2).

Consider a smooth, nondecreasing cutoff function � W Œ0; 1� ! Œ0; 1� satisfying8̂̂̂
<
ˆ̂̂:
�.t/ D 0 for t � 1

4
;

�.t/ D t for t � 3
4
;

0 � �0.t/ � 4 for all t;

0 � �00.t/ � 16 for all t:

Next, given a large constant B (to be specified later) depending only on V and k2,

we define Q�.Ns; j´j/ as

Q�.Ns; j´j/ D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
:̂

B�
� j´j

B

�
for j´j � B;

j´j for B � j´j � "�Nı

k2.Ns/ � 1;
j´j � "�Nı

k2.Ns/ � 1
2

� 2��j´j � "�Nı

k2.Ns/ � 1
2

�
for "�Nı

k2.Ns/ � 1 � j´j � "�Nı

k2.Ns/ C 1;

2 "
�Nı

k2.Ns/ � j´j for "�Nı

k2.Ns/ C 1 � j´j � 2 "
�Nı

k2.Ns/ � B;

B�
�2"�Nı=k2.Ns/�j´j

B

�
for 2 "

�Nı

k2.Ns/ � B � j´j � 2 "
�Nı

k2.Ns/ ;
0 for j´j � 2 "

�Nı

k2.Ns/ :
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By our choice of �, the function Q� satisfies the following inequalities (where, here,

the gradient and the Laplacian are taken with respect to the Euclidean metric)

jr´ Q�j � 1; �´ Q� � 16C 4.n � 2/
B

:

Using the above coordinates .s; ´/, we next define the barrier function u W M" !
R as

u.s; ´/ D ek2."s/ Q�."s;´/ for j´j � 2
"� Nı
k2."s/

;

and we extend u identically equal to 1 elsewhere. By our choice of Q�, this function

is indeed smooth and strictly positive on the wholeM". We consider next the linear

equation (motivated by (4.13))

L Q "
' D # on M";

where # W M" ! R is Hölder-continuous (with supp.#/ b QD"; see (4.18) below).

Since the operator L Q "
is uniformly elliptic, the latter equation is (uniquely) solv-

able, and we would next like to derive some pointwise estimates on its solutions.

To this aim we define

v.x/ D '.x/

u.x/
; x 2 M":

With this notation, we have that

uL Q "
v � v�g"

u � 2rg"
v � rg"

u D # on M":

Using the expression of the metric coefficients in the coordinates .s; ´/ (see Lem-

ma 2.1), (4.4), and the properties of the cutoff function Q�, we easily check that

�g"
u

(
� .k2.Ns/2 C oB.1/C o".1//u for j´j � "�Nı

k2.Ns/ ;
D 0 elsewhere;

where o".1/ ! 0 as " ! 0 and oB.1/ ! 0 as B ! C1. Therefore we obtain

that the function v satisfies(ˇ̌�
L Q "

� k22.Ns/C oB.1/C o".1/
�
v
ˇ̌ � j#j

u for j´j � 2 "
�Nı

k2.Ns/ ;
L Q "

v D #
u elsewhere:

Since we assumed V.Ns/ > k2.Ns/2, we obtain that V � k2.Ns/2 C oB.1/ C o".1/

is strictly positive (provided B is sufficiently large and " sufficiently small) for

j´j � 2."� Nı=k2.Ns//, and hence the function v satisfies a uniformly elliptic equation

with a nonnegative coefficient in the zeroth-order term with right-hand side given

by #
u . Therefore from the maximum principle we derive the estimate

max
M"

jvj � C max
M"

j#j
u
;
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where C depends on the uniform lower bound of the above coefficient. The latter

formula clearly implies

j'.x/j � Cu.x/max
M"

#

u
for every x 2 M":

We next define the weighted norm

k'km;�;u WD sup
x2M"

���'
u

���
Cm;� .B1.x//

;

which is equivalent (with constants depending on B only) to k�kCm;�
�k2

on the set QD".
Using the explicit form of the function u and standard elliptic regularity results, we

can improve the latter inequality to

(4.17) k'k2;�;u � Ck#k0;�;u:
The proof of the proposition now follows from this linear estimate and the contrac-

tion mapping theorem; in fact, defining

G�;".'/ D .1 � N�".s; ´//ŒS". Q "/CN". N�".´/� C '/�

C 2rg"
N�".´/ � rg"

� C�g"
N�".´/�;

equation (4.12) is equivalent to

(4.18) ' D L�1
Q "
G�;".'/:

First of all, notice that L Q "
is invertible since we are assuming M (and hence

M") to be compact (see the beginning of the proof). Second, to apply (4.17), we

need to estimate kG�;".'/k0;�;u, together with its Lipschitz dependence in '.

Let us consider, for instance, the term .1 � N�".s; ´//S". Q "/. Using the fact that

.1 � N�"/ is 0 for j´j � "� Nı=K."s/, that S". Q "/ is 0 for j´j � ."� Nı C 1/=K."s/,

and that k2 < K, we obtain

(4.19)

k.1 � N�"/S". Q "/k0;�;u � C sup˚
"�Nı

K."s/
�j´j� "�NıC1

K."s/


����S". Q "/

u

����
C � .B1.´//

� Ce�"�Nı inf
k0Ck2

K kS". Q "/kC �
k0

:

Now to estimate the remaining terms of G�;", we notice that

jN". N�".´/� C '/j �
(
C j Q "jp�2j N�".´/� C 'j2 if j N�".´/� C 'j � j Q "j;
j N�".´/� C 'jp otherwise.
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Since p > 1, we can find a number 	 2 .0; 1/ such that p � 2C 1 � 	 > 0, so the

last formula implies

(4.20)
jN". N�".´/� C '/j � C

�j Q "jp�1�� .j N�".´/�j� C j'j� /.j N�".´/�j C j'j/
C jN�".´/�jp C j'jp�

:

Using the fact that k Q "kC �
k0

; k�k
C

1;�
k1

� 1 and reasoning as for (4.19), after some

computations we deduce (assuming k'k1 � 1, which will be verified later)

(4.21)

kG�;".'/k0;�;u
� C

	
e�"�Nı inf

k2Ck0
K kS". Q "/kC �

k0

C e�"�Nı inf
k2Ck1

K k�k
C

1;�
k1

C e�"�Nı inf
pk1Ck2

K k�k
C

0;�
k1

C e�"�Nı inf
.p�1/k0Ck1Ck2

K k�k
C

0;�
k1



C C

�
e�"�Nı.p�1��/ inf

k0
K C k'kp�11

�k'k0;�;u:
Similarly, for two functions '1 and '2 with k'1k1; k'2k1 � 1 and with finite

k � k0;�;u norm, we have

(4.22) kG�;".'1/ �G�;".'2/k0;�;u ��
e�"�Nı.p�1��/ inf

k0
K C k'1kp�11 C k'2kp�11

�k'1 � '2k0;�;u:
We now consider the map ' 7! G�;".'/ in the set

B D
n
' W k'k0;�;u �

C1
�
e�"�Nı inf

k2Ck0
K kS". Q "/kC �

k0

C e�"�Nı inf
k2Ck1

K k�k
C

1;�
k1

�o
;

where C1 is a sufficiently large positive constant. Notice that if ' 2 B, then

k'k1 D o".1/. From (4.21) and (4.22), it then follows that this map is a contrac-

tion from B into itself, endowed with the above norm, and therefore a solution '

exists as a fixed point ofG�;". The fact that k2 < K implies that the norm k�kC �
�k2

is equivalent to k � k0;�;u in QD" (see also the comments in Remark 4.2), so we ob-

tain (4.15). A similar reasoning, still based on regularity theory and elementary

inequalities, also yields (4.16). �
Remark 4.3.

(1) From elliptic regularity theory it follows that in (4.15)–(4.16) the norm

k �kC �
�k2

can be replaced by the stronger k �k
C

2;�
�k2

, yielding an estimate in the norm

k � k
C �0

�k2

for any � 0 2 .�; 1/.
(2) In the case M D Rn, the above proof needs to be slightly modified: in

fact, the invertibility of L Q "
will be guaranteed provided we work in an appro-

priate class of functions Y decaying exponentially at infinity. To guarantee this
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condition, we can vary the form of the barrier function u in order that it both re-

mains a supersolution of L Q "
D 0 and decays exponentially to 0 at infinity. This is

indeed possible using the uniform positive lower bound on V ; see (1.1). We omit

the details of this construction.

As a consequence of Proposition 4.1, we obtain that the solvability of (NLS") is

equivalent to that of (4.11).

PROPOSITION 4.4 Suppose the assumptions of Proposition 4.1 hold, and consider
the corresponding ' D '.�/. Then  D Q " C N�".´/� C '.�/ solves (1.16) if and
only if � 2 H QD"

satisfies

(4.23) L".�/ D QS".�/ in QD";
with

QS".�/ D S". Q "/CN". N�".´/� C '.�//C j Q "jp�1'.�/(4.24)

C .p � 1/j Q "jp�3 Q "<. Q " N'.�// in QD";
where N�"; S", and N" are given in (4.5), (4.6), and (4.8), respectively.

4.3 Construction of an Approximate Kernel for L"

We perform here some preliminary analysis useful to understand the spectral

properties of L". More precisely, we consider a model case, when the domain QD"
(see (4.10)) is replaced by Œ0; L

"
� � Rn�1 and the profile of approximate solutions

is independent of the variable s (only the phase varies, periodically in s). As in

formula (1.9), we consider positive constants yV ; yh, and yk satisfying

(4.25) yh D . yf 2 C yV / 1
p�1 ; yk D . yf 2 C yV / 1

2 :

Our goal is to study the following eigenvalue problem, which models our linearized

equation:

yL"u D �u in Œ0; L
"
� � Rn�1;

yL"u D ��yg"
uC yV u � yhp�1U.yky/p�1u

� .p � 1/yhp�1U.yky/p�1e�i yf s<.e�i yf s Nu/;
(4.26)

and in particular we would like to characterize the small eigenvalues and the cor-

responding eigenfunctions.

First of all, we can write u as

u D e�i yf s.ur C iui /
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for some real ur and ui . With this notation, we are reduced to studying the coupled

system 8̂̂̂
<
ˆ̂̂:

��yg"
ur C . yV C yf 2/ur

� pyhp�1U.yky/p�1ur � 2 yf @ui

@s
D �ur in Œ0; L

"
� � Rn�1;

��yg"
ui C . yV C yf 2/ui

� yhp�1U.yky/p�1ui C 2 yf @ur

@s
D �ui in Œ0; L

"
� � Rn�1:

Making the change of variables y 7! yky and using (4.25), we are reduced to

(4.27)

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

� 1
yk2

@2ur

@s2 ��yur C ur

� pU.y/p�1ur � 2 yf
yk2

@ui

@s
D 	

yk2
ur in Œ0; L

"
� � Rn�1;

� 1
yk2

@2ui

@s2 ��yui C ui

� U.y/p�1ui C 2 yf
yk2

@ur

@s
D 	

yk2
ui in Œ0; L

"
� � Rn�1:

It is now convenient to use a Fourier decomposition in s of ur and ui , writing

ur D
X
j

�
cos

�
2"js

L

�
ur;c;j .y/C sin

�
2"js

L

�
ur;s;j .y/

�
;

ui D
X
j

�
cos

�
2"js

L

�
ui;c;j .y/C sin

�
2"js

L

�
ui;s;j .y/

�
;

where s 2 Œ0; L
"
� and y 2 Rn�1. In this way the functions ur;c;j ; ur;s;j ; ui;c;j , and

ui;s;j satisfy the following systems of equations:8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

��yur;c;j C
	
1C 4
2"2j 2

L2 yk2



ur;c;j

� pU.y/p�1ur;c;j � 4
 yf "j
Lyk2

ui;s;j D 	
yk2
ur;c;j in Rn�1;

��yui;s;j C
	
1C 4
2"2j 2

L2 yk2



ui;s;j

� U.y/p�1ui;s;j � 4
 yf "j
Lyk2

ur;c;j D 	
yk2
ui;s;j in Rn�1;8̂̂̂

ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

��yur;s;j C
	
1C 4
2"2j 2

L2 yk2



ur;s;j

� pU.y/p�1ur;s;j C 4
 yf "j
Lyk2

ui;c;j D 	
yk2
ur;s;j in Rn�1;

��yui;c;j C
	
1C 4
2"2j 2

L2 yk2



ui;c;j

� U.y/p�1ui;c;j C 4
 yf "j
Lyk2

ur;s;j D 	
yk2
ui;c;j in Rn�1:

If we set

2"j

Lyk D ˛;
2 yf
yk D �; and Q� D �

yk2 ;
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then the latter two systems are equivalent to the following:

(4.28)

(
��yuC .1C ˛2/u � pU.y/p�1uC �˛v D Q�u in Rn�1;
��yv C .1C ˛2/v � U.y/p�1v C �˛u D Q�v in Rn�1:

The equivalence with the second system is obvious: for the first one it is suffi-

cient to switch the sign of the second component. We characterize the spectrum of

the last system in the next proposition: the value of � is fixed, while ˛ is allowed to

vary. We remark that it is irrelevant for our purposes to take ˛ positive or negative,

since we can still switch the sign of one of the two components.

PROPOSITION 4.5 Let �˛; �˛, and �˛ denote the first three eigenvalues of (4.28).
Then there exists �0 > 0 such that for � 2 Œ0; �0� the following properties hold:

(i) There exists ˛0 > 0 such that �˛ is simple, increasing, and differentiable
in ˛ for ˛ 2 Œ0; ˛0�, @�˛

@˛
> 0 for ˛ 2 .0; ˛0�, �0 < 0, and �˛0

> 0.
(ii) The eigenvalue �˛ is 0 for ˛ D 0 with multiplicity n, it satisfies @�˛

@˛
> 0

for ˛ small and positive, and stays uniformly bounded away from 0 if ˛
stays bounded away from 0.

(iii) �˛ is strictly positive and stays uniformly bounded away from 0 for all ˛’s.
(iv) The eigenfunction u˛ corresponding to �˛ is simple, radial in y, and radi-

ally decreasing and depends smoothly on ˛I for ˛ D 0 the eigenfunction
of (4.28) corresponding to �0 < 0 is of the form . QZ; 0/ with QZ radial
and radially decreasing, while those corresponding to �0 D 0 are linear
combinations of .ryj

U; 0/, j D 1; : : : ; n � 1, and .0; U /.
(v) Let N̨ be the unique ˛ for which � N̨ D 0 (see (i)); then the corresponding

eigenfunction is of the form .Z;W / for some radial functions Z and W
satisfying the decay jZjCjW j � Ce�.1Cy�/jyj for some constantsC; y� > 0.

PROOF: This result is known for � D 0; see, for example, [34, prop. 4.2] and

[39, prop. 2.9].

For � ¤ 0 sufficiently small, the functions ˛ 7! �˛, ˛ 7! �˛, and ˛ 7! �˛
will be C 1-close to those corresponding to � D 0; therefore, to prove (i)–(iv), it

is sufficient to show that �˛ and �˛ are twice-differentiable in ˛ for ˛ small, that

@�˛=@˛ D @�˛=@˛ D 0, and that @2�˛=@˛
2; @2�˛=@˛

2 > 0.

We prove this statement only heuristically, but a rigorous proof can easily be

derived. Differentiating

(4.29)

(
��yu˛ C .1C ˛2/u˛ � pU.y/p�1u˛ C �˛v˛ D �˛u˛ in Rn�1;
��yv˛ C .1C ˛2/v˛ � U.y/p�1v˛ C �˛u˛ D �˛v˛ in Rn�1;
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with respect to ˛, we find

(4.30)

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

��y @u˛

@˛
C .1C ˛2/@u˛

@˛
� pU.y/p�1 @u˛

@˛

C �˛ @v˛

@˛
C 2˛u˛ C �v˛ D �˛

@u˛

@˛
C @�˛

@˛
u˛ in Rn�1;

��y @v˛

@˛
C .1C ˛2/@v˛

@˛
� U.y/p�1 @v˛

@˛

C�˛ @u˛

@˛
C 2˛v˛ C �u˛ D �˛

@v˛

@˛
C @�˛

@˛
v˛ in Rn�1:

To compute @�˛

@˛
at ˛ D 0 it is sufficient to multiply the first equation by u˛ and

the second by v˛ to take the sum and integrate; if we choose @u˛

@˛
and @v˛

@˛
so thatR

Rn�1 u˛
@u˛

@˛
C v˛

@v˛

@˛
D 0 (choosing, e.g.,

R
.u2˛ C v2˛/ D 1 for all ˛’s), then with

an integration by parts we find that

@�˛

@˛

ˇ̌̌
ˇ
˛D0

Z
Rn�1

u2˛ C v2˛ D 2�

Z
Rn�1

u0v0:

Using the fact that v0 D 0 (see (iv)), we then obtain @�˛

@˛
j˛D0 D 0. The same

argument applies for evaluating @�˛

@˛
j˛D0, since the eigenfunctions corresponding

to �0 D 0 always have one component vanishing.

To compute the second derivative with respect to ˛, we differentiate (4.30) once

more at ˛ D 0, obtaining8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

��y @2u˛

@˛2 C @2u˛

@˛2

� pU.y/p�1 @2u˛

@˛2 C 2�@v˛

@˛
C 2u0 D @2�˛

@˛2 u0 in Rn�1;

��y @2v˛

@˛2 C @2v˛

@˛2

� U.y/p�1 @2v˛

@˛2 C 2�@u˛

@˛
C 2v0 D @2�˛

@˛2 v0 in Rn�1:
As for the previous case we get

@2�˛

@˛2

ˇ̌̌
ˇ
˛D0

D 2C 2�

Z
Rn�1

�
u0
@v˛

@˛

ˇ̌̌
ˇ
˛D0

C v0
@u˛

@˛

ˇ̌̌
ˇ
˛D0

�
I

so, using the smallness of �, the claim follows.

For the second derivative of �˛ the procedure is similar, but notice that in this

case we might obtain a multivalued function, due to the multiplicity (n) of �0
(see (ii)). However, if in the last formula we plug in the corresponding eigen-

functions (see (iv)), we still obtain a sign condition for each of the two branches

of �˛ (one of them will have multiplicity n � 1 by the rotation invariance of the

equations). �
Remark 4.6. Using the same argument in the previous proof, we can show that

@�

@˛

ˇ̌̌
ˇ
˛D N̨

D 2 N̨ C 2�

Z
Rn�1

Z N̨W N̨ :
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Remark 4.7. Proposition 4.5 is the only result where the smallness of the constant

A is used; see Theorem 1.1. We remark that V � yV implies yf D Ayh� , and

that � D 2. yf =yk/, so the smallness of A is equivalent to that of �. Notice that by

(1.1) and (1.9), when A ! 0, yh and yk stay uniformly bounded and bounded away

from 0.

We believe that dropping this smallness condition might lead to further reso-

nance phenomena in addition to those encountered here (see the introduction and

the last section).

Remark 4.8. Considering (4.30) with �˛ replacing �˛ and for ˛ D 0, we find that

L0
r
@u˛

@˛
j˛D0 D ��v0 and L0

i
@v˛

@˛
j˛D0 D ��u0, where

L0
rv D ��yv C v � pU.y/p�1v;

L0
i v D ��yv C v � U.y/p�1v:

Since for ˛ D 0 we have .u0; v0/ D .@jU; 0/ or .u0; v0/ D .0; U / (see (iv)) and

(4.31) L0
r

�
� 1

p � 1U � 1

2
rU.y/ � y

�
D U; L0

i .yjU.y// D �2@jU;
see Subsection 3.2, we find that

@v˛

@˛

ˇ̌̌
ˇ
˛D0

D �

2
yjU.y/;

@u˛

@˛

ˇ̌̌
ˇ
˛D0

D �

�
1

p � 1 U C 1

2
rU.y/ � y

�
:

These expressions, together with (3.26) and some integration by parts, allow us

to compute explicitly @2�˛=@˛
2, whose values along the two branches are

@2�˛

@˛2
D 2

.p � 1/
�
.p � 1/ � 2A2� yh2��pC1�;

@2�˛

@˛2
D 2

.p � 1/
�
.p � 1/ � 2A2� yh2��pC1�:

Therefore, we find that the second derivatives of the eigenfunctions satisfy, respec-

tively, the equations

L0
r

@2u˛

@˛2
D 2

p � 1
�
.p � 1/ � 2A2� yh2��pC1�rjU

� 2rjU � 4A2yh2��pC1yjU;
(4.32)

L0
i

@2v˛

@˛2
D 2

p � 1
�
.p � 1/ � 2A2� yh2��pC1�U

� 2U � 8A2yh2��pC1 QU :
(4.33)

These formulas will be crucial later on. Below, we will denote for brevity

(4.34) yVj WD 1

2

@2u˛

@˛2
; j D 1; : : : ; n � 1; yW WD 1

2

@2v˛

@˛2
:
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The factor 1
2

arises in the Taylor expansion of the eigenfunctions in ˛, and j is the

index in (4.32).

We next consider the case of variable coefficients, which can be reduced to the

previous one through a localization argument in s. To have a more accurate model

for L", the constants yk and yf in (4.27) have to be substituted with the functions

k."s/ and f ."s/ satisfying (1.11). Specifically, in N�" we define

(4.35)
L1"u D ��yg"

uC V."s/u � h."s/p�1U.k."s/y/p�1u

� .p � 1/h."s/p�1U.k."s/y/p�1e�i f ."s/
" <.e�i f ."s/

" Nu/

(recall the definition of yg" in Subsection 4.1; in particular, working with the coor-

dinates .s; y/ integrals will be computed using the co-area formula (4.3)).

Before proving rigorous results, we first discuss heuristically what the approx-

imate kernel of L1" should look like. Using Fourier expansions as above (freezing

the coefficients at some Ns), the profile of the functions that lie in an approximate

kernel of L1" will be given by the solution of (recall (4.28))

(4.36)

(
��yuC .1C ˛2/u � pU.y/p�1uC 2f

0.Ns/
k.Ns/ ˛v D Q�u in Rn�1;

��yv C .1C ˛2/v � U.y/p�1v C 2f
0.Ns/
k.Ns/ ˛u D Q�v in Rn�1;

where Q� is close to 0. For ˛ small (low Fourier modes), Proposition 4.5(iv) gives

the profile ryU.k.Ns/y/ or iU.k.Ns/y/ (recall also the scaling in y before (4.27)).

The remaining part of the approximate kernel is the counterpart of that given in

Proposition 4.5(v); for variable coefficients it is a uniquely defined function ˛.Ns/
such that

(4.37) �˛.Ns/ D 0;

where �˛ here stands for the first eigenvalue of (4.36). We denote by�
Z˛.Ns/.k.Ns/y/;W˛.Ns/.k.Ns/y/

�
the components of the relative eigenfunction.

We next consider two bases of eigenfunctions for the weighted eigenvalue prob-

lems (the operators J and T are defined in (2.22) and (6.18) and are self-adjoint)

(4.38) J'j .Ns/ D h.Ns/��j'j .Ns/; T!j D h.Ns/���j!j :

Because of the weights on the right-hand sides, we can choose these eigenfunctions

to be normalized so that
R L
0 h

�'j'l D ıjl and
R L
0 h

��!j!l D ıjl ; this choice will

be useful in Subsection 6.2.
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These heuristic arguments suggest that the following subspaces K1;ı and K2;ı ,

where ı is a small positive constant, once multiplied by e�if ."s/=", consist of ap-

proximate eigenfunctions for L1" with eigenvalues close to 0 (this will be verified

below, in the proof of Proposition 4.9; see also Remark 4.11):

K1;ı D span

�
h."s/

pC1
4

�
h'j ."s/;ryU.ky/i C i"h'0

j ."s/; yif
0
k
U.ky/

� "2

k2
h'00
j ."s/;V.ky/i

��
;

(4.39)

K2;ı D span

�
h."s/

1
2

�
!j ."s/iU.ky/C 2"f 0."s/

k
!0
j ."s/

QU.y/

� "2

k2
!00
j ."s/W.ky/

��
;

(4.40)

j D 0; : : : ; ı
"

, where

QU D
�

1

hp�1.p � 1/ U.ky/C 1

2k
rU.ky/ � y

�
:

Here V D .Vj /jD1;:::;n�1 is the counterpart of yV in (4.34) substituting yh with

h.Ns/ (the same holds for W). The choice of the weights (as powers of h) in (4.38)

and in K1;ı and K2;ı are again done for technical reasons, and will be convenient

below; see, in particular, Subsection 6.2.

We also need to construct an approximate kernel with the profile .Z;W /; see

Proposition 4.5(v). To this aim we introduce the functions (recall (4.37))

(4.41)

Q1;˛.Ns/ D
Z

Rn�1

Z2˛.Ns/; Q2;˛.Ns/ D
Z

Rn�1

W 2
˛.Ns/;

Q3;˛.Ns/ D
Z

Rn�1

Z˛.Ns/W˛.Ns/;

and consider the following eigenvalue problem (with periodic boundary condi-

tions)

�"2� 00 � k2˛2� D Q�
1C 2f 0Q3;˛

k˛

� on Œ0; L�:

By Weyl’s asymptotic formula we have that the eigenvalues Q�j (counted with mul-

tiplicity) have the qualitative behavior Q�j ' �1C"2j 2 as j ! C1. Hence, there

is a first index j" (of order 1
"

) for which Q�j"
� 0. Setting �j D Q�j"Cj and denoting
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by �j the eigenfunctions corresponding to �j , we then have

(4.42)

�"2� 00
j � k2˛2�j D �j

1C 2f 0Q3;˛

k˛

�j ;

�j D yC0"j CO."2j 2/CO."/ if jj j � ı2

"
;

where ı > 0 is any given positive (small) constant. Notice that the family .�j /j
can be chosen normalized in L2 with the weight

1

1C 2f 0Q3;˛

k˛

(this follows from (4.42) and the Courant-Fischer formula). Next we set

(4.43) ǰ D � 1

k˛

�
1 � Q1;˛

k2˛2 C 2f 0k˛Q3;˛
�j

�
"� 0
j :

By our choices, the functions ǰ and �j satisfy (this system will be useful in Sub-

section 6.3) for jj j � ı2="

(4.44)

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

�"2ˇ00
j � k2˛2 ǰ � 2f 0Q3;˛

Q1;˛
."� 0

j C k˛ ǰ / D
�j ǰ C .O.�2j /CO."// ǰ ;

�"2� 00
j � k2˛2�j C 2f 0Q3;˛

Q2;˛
."ˇ0

j � k˛�j / D
�j �j C .O.�2j /CO."//�j :

Our next goal is to introduce a family of approximate eigenfunctions of L1" that

have the profile (from now on, we might denote .Z˛.Ns/; W˛.Ns//, see (4.37), simply

by .Z˛; W˛/)

(4.45) v3;j WD . ǰ C qj /Z˛ C �j
@Z˛

@˛
C i�jW˛ C i�j

@W˛

@˛
I

the functions ǰ and �j are as in (4.42)–(4.43), while qj , �j , and �j are small cor-

rections to be chosen properly so that L1".e
�iŒf ."s/="�v3;j / D �j e

�iŒf ."s/="�v3;j ,

up to an error o.�j /CO."/.

With simple computations, using (4.29), (4.30), Remark 4.6, and (4.44), we find

that

ei
f ."s/

"

�
L1".e

�i f ."s/
" v3;j / � �j e�i f ."s/

" v3;j
�

D Z˛2f
0 Q3;˛
Q1;˛

Œ2Q1;˛�jk C ."� 0
j C k˛ ǰ /�

CW˛2f
0.��jk � ."� 0

j C ǰk˛/ � k˛qj /

C @Z˛

@˛
.�"2� 00

j � ˛2k2�j /C @W˛

@˛
2f 0.�"�0

j � k˛�j /C
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C iZ˛2f
0.��jk � k˛�j C "ˇ0

j C "q0
j /

C iW˛2f
0 Q3;˛
Q2;˛

.2Q2;˛k�j C k˛�j � "ˇ0
j /

C i
@Z˛

@˛
2f 0.�k˛�j C "� 0

j /C i
@W˛

@˛
.�"2�00

j � ˛2k2�j /

CZ˛.�"2q00
j � ˛2k2qj /C .O.�2j /CO."//�j C .O.�2j /CO."// ǰ :

To make the coefficients of the terms Z˛,W˛, and iW˛ in the second and fourth

lines vanish, we choose

�j D � 1

2kQ1;˛
."� 0

j C k˛ ǰ /; �j D � 1

2kQ2;˛
.k˛�j � "ˇ0

j /;

qj D � 1

k˛
."� 0

j C ǰk˛ C k�j /:

Using (4.43) we get

�j D �"� 0
j

1

2k

1

k2˛2 C 2f 0k˛Q3;˛
�j ;

�j D 1

2k

�j

1C 2f 0Q3;˛

k˛

�j CO.�2j /�j :
(4.46)

These equations and (4.42) imply the relations �"2� 00
j � ˛2k2�j D O.�2j / ǰ ,

�"�0
j � k˛�j D O.�2j / ǰ , �k˛�j C "� 0

j D O.�2j /�j , and �"2�00
j � ˛2k2�j D

O.�2j /�j . Similarly, we find

(4.47) qj D �j
1

2k

1

k˛ C 2f 0Q3;˛
�j :

This also yields ��jk� ."� 0
j C ǰk˛/�k˛qj D O.�2j / ǰ , ��jk�k˛�j C "ˇ0

j C
"q0
j D O.�2j /�j and �"2q00

j � ˛2k2qj D O.�2j / ǰ , so we obtain

L1".e
�i f ."s/

" v3;j / D �j e
�i f ."s/

" v3;j C .O.�2j /

CO."//�j C .O.�2j /CO."// ǰ for jj j � ı2

"
;

(4.48)

which was our claim. We next define

K3;ı D span

�
. ǰ C qj /Z˛ C �j

@Z˛

@˛
C i�jWj C i�j

@W˛

@˛
W

j D �ı
2

"
; : : : ;

ı2

"

�
:

(4.49)

In the Kl;ı ’s we added some corrections to the approximate eigenfunctions that

take into account the variation of the profile with the frequency; see the derivation

of (4.28) and Remark 4.8. In K1;ı and K2;ı the corrections are up to the second
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order (in "j ), while inK3;ı only up to the first; the reason is that the corresponding

eigenvalues have a quadratic dependence in "j forK1;ı andK2;ı (they correspond

to �˛ in Proposition 4.5), and an affine dependence in "j for K3;ı (corresponding

to �˛ in Proposition 4.5). Since the former dependence is more delicate in the

indices, we need a more accurate expansion of the eigenfunctions. We finally set

(4.50) Kı D spanfK1;ı ; K2;ı ; K3;ıg:

4.4 Invertibility of L" in the Orthogonal Complement of Kı

Since Kı (multiplied by e�i.f ."s//=") is a good candidate for the span of the

eigenfunctions of L1" with small eigenvalues, it seems plausible to invert L1" on the

orthogonal complement to e�i.f ."s//="Kı ; this is the content of the next result. We

recall the definition of the constant A in the introduction.

PROPOSITION 4.9 There exists A0 sufficiently small such that for any A 2 Œ0;A0�

the following property holds: For ı > 0 small enough there exists C > 0 (indepen-
dent of ı/ such that if

(4.51) <
Z
N�"

e�i f ."s/
" v N� dVyg"

D 0 for all v 2 Kı ;

we have k…"L1".�/kL2.N�"/
� C�1ı2k�kL2.N�"/

. Here …" denotes the projec-
tion in L2.N�"/ onto the orthogonal complement of the set fe�i.f ."s//="v W v 2
Kıg.

Before starting the proof, which relies on a localization argument and the spec-

tral analysis of Proposition 4.5, we introduce some notation and a preliminary

lemma. We fix ys 2 Œ0; L� and denote by yf , yh, yk, and y̨ the values of f 0.ys/,
h.ys/, k.ys/, and ˛.ys/, respectively, so that the counterpart of (1.11) holds true. For

a large constant QC0 to be fixed later, we also define

yK1;ı D span

�
hy'j ."s/;ryU.yky/i

C i"hy'0
j ."s/; yi

yf
yk U.

yky/ � "2

k2
h'00
j ."s/;

yV.yky/i
�
;

yK2;ı D span

��
y!j ."s/iU.yky/

C 2"f 0."s/
yk y!0

j ."s/
yQU.y/ � "2

yk2 Q!00
j ."s/

yW.yky/
��
;
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j D 0; : : : ; ı=. QC0"/, and

yK3;1;ı D span

�
cos.y̨j s/Zy̨j

.yky/ � i sin.y̨j s/Wy̨j
.yky/ W

j D � ı2

QC0"
; : : : ;

ı2

QC0"
�
;

yK3;2;ı D span

�
sin.y̨j s/Zy̨j

.yky/C i cos.y̨j s/Wy̨j
.yky/ W

j D � ı2

QC0"
; : : : ;

ı2

QC0"
�
;

where

yQU D
�

1

yhp�1.p � 1/U.
yky/C 1

2ykrU.yky/ � y
�
;

y̨j D
� y̨ ykL
2"

C j

�
2"

L

(4.52)

(again, the latter square bracket stands for the integer part, and this choice makes

the functions L
"

-periodic). In the above formulas .y'j /j are the eigenfunctions of

the normal Laplacian with the flat metric on � , and y!j those of @2Ns Ns on Œ0; L�; the

symbols Zy̨j
and Wy̨j

stand for the components of the eigenfunctions of (4.28)

corresponding to �y̨j
.

In analogy with (4.50), we also define

(4.53) yKı D span
˚ yK1;ı ; yK2;ı ; yK3;1;ı ; yK3;2;ı


:

Given a small constant � > 0 to be chosen later (of order
p
"), we consider then

a smooth cutoff function �� (depending only on s) with support near ys
"

and with

length of order �
"

. For example, we can take ��.s/ D �. "
�
.s � ys

"
// for a fixed,

compactly supported cutoff � that is 1 in a neighborhood of 0. The next result uses

Fourier cancellation and is related to lemma 2.7 in [39].

LEMMA 4.10 There exists QC0 sufficiently large (depending only on V , L, and A0)

with the following property: for any given integer number m there exists Cm > 0

depending on m and �� such that for jj j � ı2=. QC0"/ and for jl j � ı2=" we have

ˇ̌̌
ˇ
Z
��.s/�l.s/ cos.y̨j s/ds

ˇ̌̌
ˇ C

ˇ̌̌
ˇ
Z
��.s/�l.s/ sin.y̨j s/ds

ˇ̌̌
ˇ �

1

"

Cm

j�l jm
�
�.1C j�l j/C "

�

�m
:
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PROOF: We clearly have that .cos.y̨j s//00 D �y̨2j cos.y̨j s/; therefore, integrat-

ing by parts, after some manipulation we obtain that

(4.54)

Z
���l .s/ cos.y̨j s/ds

D 1

y̨2j � yk2 y̨2 C �l

1C2 yf Q3;y̨
yk y̨

�
�Z

���l .s/ cos.y̨j s/
�
k2˛2 � yk2 y̨2 C �l

1C 2 yf Q3;y̨

yk y̨
� �l

1C 2f 0Q3;˛

k˛

�

�
Z

cos.y̨j s/Œ�00
��l .s/C 2�0

��
0
l .s/�

�
:

By (4.52) the numbers y̨j satisfy y̨j ' yk y̨ C 2
"j
L

for jj j � ı2=. QC0"/, while by

(4.42) j�l j � 1
2

yC0ı2 for jl j � ı2=". Notice also that 1 C 2f 0Q3;˛

k˛
is uniformly

bounded above and below by positive constants when A0 tends to 0 (see, for ex-

ample, the comments in Remark 4.7). By these facts and the properties of �� we

find ˇ̌̌
ˇ
Z
���l.s/ cos.y̨j s/ds

ˇ̌̌
ˇ � 1

"

C

j�l j
�
�.1C j�l j/C "

�

�
;

which yields the statement for m D 1 (similar computations can be performed to

deal with the sine function). The factor 1
"

inside the brackets arises from the fact

that we are integrating over the interval Œ0; L
"
� and from the normalization of �j (see

the comments before (4.42)). To obtain the statement for general m, it is sufficient

to iterate the procedure for (4.54) m times and integrate by parts. �

PROOF OF PROPOSITION 4.9: The proof relies mainly on a localization argu-

ment and Lemma 4.10. If � D p
" and �� is as in Lemma 4.10, we show next that

the function ��� is almost orthogonal to e�i yf s yKı if " is sufficiently small. We

consider, for example, a function yv 2 yK3;1;ı of the form

yv D
ı2=. QC0"/X

jD�ı2=. QC0"/

ybj
�
cos.y̨j s/Zy̨j

.yky/ � i sin.y̨j s/Wy̨j
.yky/�;

for some arbitrary coefficients .ybj /j , and we also set

Qv D
ı2=. QC0"/X

jD�ı2=. QC0"/

ybj
�
cos.y̨j s/Z˛."s/.k.Ns/y/ � i sin.y̨j s/W˛."s/.k.Ns/y/

�
:
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We are going to evaluate the real part of the integralZ
N�"

e�i yf syv�� N�:

First of all, since jk.Ns/ � ykj � C� and jy̨j � ˛.Ns/j � C.�C ı2/ on the support of

��, we have that

kZ˛."s/.k.Ns/y/ �Zy̨j
.yky/kL2.Rn�1/ D O.�C ı2/ in supp.��/;

so, clearly

(4.55) <
Z
N�"

e�i yf syv�� N� D

<
Z
N�"

e�i yf s Qv�� N� CO.�C ı2/k���kL2.N�"/
kyvkL2.N�"/

:

Next we write

yw.s/ D ��.s/

ı2=. QC0"/X
jD�ı2=. QC0"/

ybj sin.y̨j s/;

and notice that

yw0.s/ D �0
�.s/

ı2=. QC0"/X
jD�ı2=. QC0"/

ybj sin.y̨j s/C ��.s/

ı2=. QC0"/X
jD�ı2=. QC0"/

ybj y̨j cos.y̨j s/

D k˛��.s/

ı2=. QC0"/X
jD�ı2=. QC0"/

ybj cos.y̨j s/C �0
�.s/

ı2=. QC0"/X
jD�ı2=. QC0"/

ybj sin.y̨j s/(4.56)

� ��.s/
ı2=. QC0"/X

jD�ı2=. QC0"/

ybj .k˛ � y̨j / sin.y̨j s/:

Using this formula and the same argument as for (4.55), we get (recall our notation

before (4.45))

(4.57) �� Qv D 1

k˛
yw0.s/Z˛ � i yw.s/W˛ CO.�C ı2/k��yvkL2.N�"/

:

Notice that, by the explicit form of yw and y̨j , for any integer m we have

k ywk2Hm.Œ0;L="�/ � Cmk ywk2
L2.Œ0;L="�/

I
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therefore, if we write yw with respect to the basis �l as (notice the shift of index

before (4.42))

(4.58) yw.s/ D
1X

lD�j"

Lbl�l."s/;

we also find that
1X

lD�j"

.1C j�l j/m Lb2l � Cmk ywk2Hm.Œ0;L="�/ � Cmk ywk2
L2.Œ0;L="�/

� Cmkyvk2
L2.N�"/

:

(4.59)

Differentiating (4.58) with respect to s and using the definition of �j together with

(4.43), we find that

yw0.s/ D
1X

lD�j"

Lbl"� 0
l."s/ D

1X
lD�j"

Lbl.�k˛ CO.�l//ˇl."s/:

The last formula and (4.57) imply

(4.60)

�� Qv D �
1X

lD�j"

Lbl.ˇlZ˛ C i�lW˛/

C
1X

lD�j"

LblO.�l/ˇlZ˛ CO.�C ı2/k��yvkL2.N�"/

D �
1X

lD�j"

Lblv3;l C
1X

lD�j"

Lbl.v3;l � ˇlZ˛ � i�lW˛/

C
1X

lD�j"

LblO.�l/ˇlZ˛ CO.�C ı2/k��yvkL2.N�"/
:

In the support of �� there exists y� 2 R such that .f ."s//=" D yf s C y� CO.�/,

which yieldsZ
N�"

Qve�i yf s�� N� D
Z
N�"

Qve�i f ."s/
" �� N� CO.�/k�kL2.supp.��//

kyvkL2.N�"/
:

Now, recalling that � D p
" and that � and e�if ."s/="Kı are orthogonal, from the

last two formulas we obtainZ
N�"

Qve�i yf s�� N� D A1 C A2 C A3

CO.�C ı2/k�kL2.supp.��//
kyvkL2.N�"/

(4.61)
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where

A1 D �
Z

supp.��/

e�i yf s N�
X

jlj� ı2

"

Lblv3;l ;

A2 D
Z

supp.��/

e�i yf s N�
1X

lD�j"

Lbl.v3;l � ˇlZ˛ � i�lW˛/;

A3 D
Z

supp.��/

e�i yf s N�
1X

lD�j"

LblO.�l/ˇlZ˛:

To estimate these terms we first notice that, by the normalization of �j before

(4.43), the coefficients Lbl in (4.58) can be computed as

Œ Lbl D "

Z L="

0

yw.s/
1C 2f 0Q3;˛

k˛

�l."s/ds

D "

ı2=. QC0"/X
jD�ı2=. QC0"/

ybj
Z L="

0

��.s/
sin.y̨j s/

1C 2f 0Q3;˛

k˛

�l."s/ds:

Using this formula, Lemma 4.10, and the Hölder inequality, we find that for any

integer m

(4.62)

Lb2l � Cm"
2mC2	 ı2=. QC0"/X

jD�ı2=. QC0"/

jybj j

2

� Cm"
2mC1

ı2=. QC0"/X
jD�ı2=. QC0"/

yb2j

� Cm"
2mC2kyvk2

L2.N�"/
; jl j � ı2

"
:

From the explicit expression for the functions v3;ı the above term A1 can be esti-

mated as

A1 � C

�
1

"

X
jlj�ı2="

.1C j�l j2/2 Lb2l
� 1

2 k�kL2.supp.��//
:

As before, the factor 1
"

inside the brackets arises from the fact that we are integrat-

ing over Œ0; L
"
�.

Using the fact that C�1j"l j � j�l j � C.j"l j C "2l2/ for jl j � ı2=" (which

follows from Weyl’s asymptotic formula for the eigenvalue problem in (4.42)),
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(4.59), and (4.62), we find that for any large integer m and any d 2 .1; m
8
/X

ı2

"
�jlj�"�d

.1C j�l j2/2 Lb2l � Cm"
11C2m�8dkyvk2

L2.N�"/
;

X
jlj�"�d

.1C j�l j2/2 Lb2l � Cm"
.d�1/.m�4/kyvk2

L2.N�"/
:

By the arbitrariness of m it follows that for any m0 2 N

jA1j � Cm0"m
0kyvkL2.N�"/

k�kL2.supp.��//
:

Dividing the set of indices l into fjl j � ı2="g and fjl j � ı2="g and using similar

arguments (also taking into account (4.46) and (4.47)), we get

jA2j C jA3j � Ck�kL2.supp.��//

�
1

"

1X
lD�j"

.�2l C �4l /
Lb2l

� 1
2

� Cı2k�kL2.supp.��//
kyvkL2.N�"/

:

Therefore, using (4.55) and (4.61) we find

<
Z
N�"

e�i yf syv�� N� D O.�C ı2/k�kL2.supp.��//
kyvkL2.N�"/

; yv 2 yK3;1;ı :

Similar estimates hold for yv 2 spanf yK1;ı ; yK2;ı ; yK3;2;ıg, so we obtain

(4.63)

Z
N�"

e�i yf syv�� N� D

O.ı2 C �/k�kL2.supp.��//
kyvkL2.N�"/

for every yv 2 yKı :
Next we let yL" denote the operator in (4.26) with coefficients frozen at ys. Since

e�i yf s yKı consist of all the eigenfunctions of yL" (up to an error o.ı2/) with eigen-

values smaller in absolute value than ı2 (see Proposition 4.5 and Remark 4.8), from

(4.63) we then deduce

(4.64) kyL".e�i yf s���/kL2.N�"/
�

ı2

C
k���kL2.N�"/

CO.ı4 C ı2�/k�kL2.supp.��//

for some fixed constant C independent of ı.

It is now possible to choose the cutoff function � (see the comments before

Lemma 4.10) so that it is even and compactly supported in Œ�2; 2�, � � 1 in

Œ�1; 1�, and �.2 � t / C �.t/ � 1 for t 2 Œ1; 2�. With this choice, we can find a

partition of unity .��;j /j of Œ0; L
"
� consisting of translates of �� (plus a negligible

scaling), with j running between 1 and a number of order L=
p
". For each index
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j we choose a point ysj in the support of ��;j , and we denote by yLj the operator

corresponding to (4.26) with coefficients frozen at ysj . Then, using (4.64), with

easy computations we find

kL1"�k2
L2.N�"/

D ��L1" X
j

��;j�
��2
L2.N�"/

D �� X
j

yLj .��;j�/
��2
L2.N�"/

CO.
p
"/k�k2

L2.N�"/

� ı4

C

X
j

����;j���2
L2.N�"/

CO.
p
"/k�k2

L2.N�"/

D ı4

C
k�k2

L2.N�"/
CO.

p
"/k�k2

L2.N�"/

for some C independent of ı. To complete the proof, we need to bound from below

the norm of …"L
1
"�, showing that

k…"L1"�k2
L2.N�"/

� ı2

C
k�k2

L2.N�"/
:

To see this, by the last formula it is sufficient to have

(4.65) .L1"�; e
�i f ."s/

" v/L2.N�"/
D
o.ı2/k�kL2.N�"/

kvkL2.N�"/
for any v 2 Kı :

We prove this claim for v 2 K1;ı only; for the other Kj;ı ’s the arguments are

similar (see Remark 4.11 below for more details). Setting v D vr C ivi we find

(see (1.17))

L1"
�
e� if ."s/

" v
� D e� if ."s/

" .Lrvr C iLivi / � e� if ."s/
"

�
@2vr

@s2
C i

@2vi

@s2

�

C 2if 0e� if ."s/
"

�
@vr

@s
C i

@vi

@s

�
:

When differentiating v with respect to s, we either hit the functions 'j ’s (and their

derivatives) or other functions like k."s/ or f 0."s/ (see the definition of K1;ı
above). The latter ones have a slow dependence in s, and therefore these terms

can be collected within an error of the form O."/kvkL2.N�"/
.

However, by our choices of the second and third parts of the elements in K1;ı
(see Remark 4.8, in particular formulas (4.31), (4.32), and (4.33)), terms containing

zeroth- or first-order derivatives of 'j will have coefficients bounded by ", while the

only term containing second derivatives of 'j will be a linear combination (in j )

of the expressions

�"2h."s/pC1
4

�
1 � 2A2�

p � 1 h.Ns/
���

�
h'00
j ."s/;ryU.k.Ns/y/i; j D 0; : : : ;

ı

"
:



1222 F. MAHMOUDI, A. MALCHIODI, AND M. MONTENEGRO

The remaining terms will contain third and the fourth derivatives of 'j only (mul-

tiplied, respectively, by "3 and "4). Therefore, if we set

v1;j D h."s/
pC1

4

�
h'j ."s/;ryU.ky/i

C i"h'0
j ."s/; yif

0
k
U.ky/ � "2

k2
h'00
j ."s/;V.ky/i

�
;

by the above comments and the fact that J'j D h."s/��j'j (see (4.38)) we have

L1"

	
e�i f ."s/

"

ı="X
jD0

aj v1;j



D e�i f ."s/

"

ı="X
jD0

�jaj v1;j CR.v/;

v D
ı="X
jD0

aj v1;j ;

(4.66)

where R.v/ contains terms of order " or linear combinations of third and fourth

derivatives of 'j ."s/. Thus, using Fourier analysis, we can derive the estimate

kR.v/kL2.N�"/
� C

�
1

"

ı="X
jD0

a2j ."C "3j 3/2
� 1

2

� C."C ı3/kvkL2.N�"/

(4.67)

for some constant C > 0. Therefore, using (4.66) and (4.67), we obtain�
L1"�; e

�i f ."s/
" v

�
L2.N�"/

D O."C ı3/k�kL2.N�"/
kvkL2.N�"/

;

which yields (4.65) and concludes the proof. �

Remark 4.11. The last step in the proof of Proposition 4.9 is nearly identical for

v 2 K2;ı except that, still by the computations in Remark 4.8, in the counterpart of

(4.66) we will obtain �j instead of �j (see (4.38)). When consideringK3;ı , setting

v D Pı2="

jD�ı2="
aj v3;j (see (4.48)), we find

L1"
�
e�i f ."s/

" v
� D e�i f ."s/

"

ı2="X
jD�ı2="

�jaj v3;j C QR.v/;

k QR.v/kL2 � C

�
1

"

ı2="X
jD�ı2="

a2j ."C "2j 2/2
� 1

2

� C."C ı4/kvkL2.N�"/
:

(4.68)
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4.5 Invertibility of L" in Weighed Spaces
Our goal is to show that the linearized operator L" (see (4.7)) at approximate

solutions is invertible on spaces of functions satisfying suitable constraints. We

begin with some preliminary notation and lemmas; we first collect decay properties

of Green’s kernels in Euclidean space. Let us consider the equation

(4.69) ��uC u D f in Rn�1;
where f decays to 0 at infinity. The solution of the above equation can be repre-

sented as

u.x/ D
Z

Rn�1

G0.jx � yj/f .y/dy;

where G0 W RC ! RC is a function singular at 0 that decays exponentially to 0 at

infinity. Using the notation of Subsection 4.2 and standard elliptic regularity theory,

we can prove the following result (the choice ˛ � 1
2

for the Hölder exponent is

technical and is used in the proof of Lemma 4.13).

LEMMA 4.12 Let NQ > 0, ˛ � 1
2

, 0 < � < 1, 0 < & < 1, and f 2 C ˛� .
Then equation (4.69) has a (unique) solution u of class C 2;˛&� that vanishes on
@B NQ.0/. Moreover, there exist &0 > 0 sufficiently close to 1 and LC0 sufficiently
large (depending only on n, ˛, minf NQ; 1g, and &/ such that for &0 � & < 1

kuk
C

2;˛
&�

� LC0kf kC˛
&
:

Let now �; & 2 .0; 1/ (to be fixed later). For any integer m we let NCm;�&; denote

the weighted Hölder space

(4.70) NCm;�& D ˚
u W Rn�1 ! C W sup

y2Rn�1

e& jyjkukCm;� .B1.y// < C1
:

We also consider the following set of functions L
"

-periodic in s:

NL2. NCm;�& / D ˚
u W Œ0; L

"
� � Rn�1 ! C W

s 7! u.s; � / 2 L2�Œ0; L
"
�I NCm;�&

�
;

(4.71)

and for l 2 N, we similarly define the functional space

NH l. NCm;�& / D ˚
u W Œ0; L

"
� � Rn�1 ! C W

s 7! u.s; � / 2 H l.Œ0; L
"
�ICm;�& /


:

(4.72)

The weights here are suited for studying functions that decay in y like e�jyj, as

the fundamental solution of ��Rn�1u C u D 0. The parameter & < 1 has been

introduced to allow some flexibility in the decay rate. When dealing with functions

belonging to the above three spaces, the symbols

k � k NCm;�
&

; k � k NL2. NCm;�
& /; and k � k NH l . NCm;�

& /
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will denote norms induced by formulas (4.70), (4.71), and (4.72). Also, we keep

the same notation for the norms when considering functions defined on subsets of

Œ0; L
"
� � Rn�1.

We next consider some positive constants yV ; yf ; yh, and yk that satisfy the relations

in (1.9). If ı and yKı are as in the previous subsection and Nı as in Section 4, letting

DL;" D Œ0; L
"
� � B

"�NıC1.0/ � Œ0; L
"
� � Rn�1;

we define the space of functions

yH" WD
�
� W <

Z
DL;"

N�.s; y/e�i yf sv
�
s; y=

p
yV � D 0 for all v 2 yKı

�
:

This condition represents, basically, orthogonality with respect to yKı (multiplied

by the phase factor), when the function � is scaled in y by
p
V . This is a choice

made for technical reasons, which will be helpful in Proposition 4.14. We next

have the following result, related to Proposition 4.9 once we scale y.

LEMMA 4.13 Let 1
2

� � < 1 and & 2 .0; 1/. Then, for ı small there exists
a positive constant C , depending only on p, � , & , L, yV , and yf , such that the
following property holds: for yf small, for " ! 0, and for any function b 2 NL2. NC �& /
there exist u 2 yH" and v 2 yKı such that, in DL;",

(4.73)

8̂̂̂
<
ˆ̂̂:

� 1
yV @
2
ssu ��yuC u � yhp�1

yV U.y yk=
p yV /p�1u

� .p � 1/ yhp�1

yV U.y yk=
p yV /p�1e�i yf s<.e�i yf s Nu/ D b C e�i yf sv;

u D 0 on @DL;"

(notice that v above is intended to be scaled in y) and such that we have the
estimates

kuk NL2. NC2;�
& /

C kuk NH1. NC1;�
& /

C kuk NH2. NC �
& /

�
C

ı2
inf
v2 yKı

kb C e�i yf svk NL2. NC �
& /
;

(4.74)

kvk NL2. NC �
& /

� Ckbk NL2. NC �
& /
:(4.75)

PROOF: First of all we observe that a solution to (4.73) of class L2 exists. In

fact, by replacing DL;" with Œ0; L
"
�� Rn�1, this would simply follow from Propo-

sition 4.9 with V � yV . However, since the functions in yKı decay exponentially

to 0 as jyj ! C1, the Dirichlet boundary conditions do not affect the solvability

property; for more details, see, for example, [40, lemma 5.5]. Notice that indeed,

by (1.18) and Proposition 4.5(v), the elements of Kı decay at the rate e�ykjyj, and

by (1.9), yk >
p yV . In particular, kvk NL2. NC �

& /
is finite and (4.75) holds. We also
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have (4.74) replacing the left-hand side by the L2 norm of u. We divide the rest of

the proof into two steps.

Step 1. u 2 NL2. NC �& / AND kuk NL2. NC �
& /

� C
ı2 kbk NL2. NC �

& /
. We set u D e�i yf sv

and c D e�i yf s.b C v/, so v satisfies8̂̂̂
<
ˆ̂̂:

��v C �
1C yf 2

yV
�
v C 2i

yf
yV @sv � yhp�1

yV U.y yk=
p yV /p�1v

� .p � 1/ yhp�1

yV U.y yk=
p yV /p�1<. Nv/ D c in B

"�NıC1.0/;

v D 0 on @B
"�NıC1.0/:

We now use a Fourier decomposition in the variable s; setting

c.s; y/ D
X
j

cj .y/e
ij"s; v.s; y/ D

X
j

vj .y/e
ij"s

(here we are assuming for simplicity that L D 2), we see that each cj belongs to

C �
&; yV , that

X
j

kcj k2NC �
&

D 1

"
kck2NL2. NC �

& /
;

X
j

kvj k2NC �
&

D 1

"
kvk2NL2. NC �

& /
� C

"ı2
kbk NL2. NC �

& /
;

(4.76)

and that each vj solves

(4.77)

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

��yvj C �
1C yf 2C"2j 2�2 yf "j

yV
�
vj

� yhp�1

yV U.y yk=
p yV /p�1vj

� .p � 1/ yhp�1

yV U.y yk=
p yV /p�1<. Nvj / D cj in B

"�NıC1.0/;

vj D 0 on @B
"�NıC1.0/:

From elliptic regularity theory, we find that for any R > 0 there exists a constant

C depending only on R, p, and � such that

kvj kC � .BR/ � Ckcj k NC �
&

C Ckvj kL2 :

Now we choose R (depending on p and & ) so large that

p
yhp�1

yV U p�1
�
y ykp yV

�
<
1

4
.1 � &/ for jyj � R

2
;
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and a smooth radial cutoff function y� such that y�.y/ D 1 for jyj � R
2

, and

y�.y/ D 0 for jyj � R. Next, we write equation (4.77) as8̂̂<
ˆ̂:

��yvj C �
1C yf 2C"2j 2�2 yf "j

yV
�
vj � .1 � y�/p yhp�1

yV U.y yk=
p yV /p�1vj D

Qcj C y�p yhp�1

yV U.y yk=
p yV /p�1vj ;

vj D 0 on @B
"�NıC1.0/:

We notice that the first linear coefficient of vj is bounded below (uniformly in j )

by 1. Therefore, using Green’s representation formula, the maximum principle,

and our choice of R (see Lemma 4.12) for any & 0 < & , we have the estimate

kvj k NC �
&0

� C.kcj k NC �
&

C kvj kL2/

for some fixed constant C depending only on p, & , and � . Taking the square and

summing over j , we get

kuk2NL2. NC �
&0 /

D kvk2NL2. NC �
&0 /

� Ckbk2NL2. NC �
& /

C Ckvk2
L2 � kbk2NL2. NC �

& /
:

We next want to replace in the last formula & 0 with & . Rewrite (4.73) as8̂̂̂
<
ˆ̂̂:

� 1
yV @
2
ssu ��yuC u D yc WD yhp�1

yV U.y yk=
p yV /p�1u

C .p � 1/ yhp�1

yV U.y yk=
p yV /p�1e�i yf s<.e�i yf s Nu/C b C e�i yf sv;

u D 0 on @DL;":

Using the same procedure as above, write yc.s; y/ D P
j ycj .y/eij"s and u.s; y/ DP

j uj .y/e
ij"s .

We now consider the function U p�1uj : by (1.18), if we choose

& 0 C .p � 1/ykp yV
> &;

it follows from the above estimates that kyck NL2. NC �
& /

is finite and that

X
j

kycj k2NC �
&

� C

"
kbk2NL2. NC �

& /
:

Moreover, uj satisfies(
��uj C �

1C "2j 2

yV
�
uj D ycj in B

"�NıC1.0/;
uj D 0 on @B

"�NıC1.0/:
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Also, it is easy to show

(4.78)

kuk2NL2. NC2;�
& /

C kuk2NH1. NC1;�
& /

C kuk2NH2. NC �
& /

D 1

"

X
j

h
kuj k2NC2;�

&

C .1C "2j 2/kuj k2NC1;�
&

C .1C "2j 2 C "4j 4/kuj k2NC �
&

i
;

and therefore we are reduced to finding the estimates

kuj k2NC2;�
&

; kuj k2NC1;�
&

; kuj k2NC �
&
;

done in the next step.

Step 2. CONCLUSION OF PROOF. We now set aj D 1 C "2j 2= yV and

vj .y/ D uj .y=
p
aj /. Then, from a change of variables we have the equation8<

:��vj .y/C vj .y/ D yFj .y/ WD 1
aj

ycj
� yp

aj

�
in Bp

aj ."�NıC1/.0/;
vj D 0 on @Bp

aj ."�NıC1/.0/:

Notice that aj > 0 stays bounded from below independently of j , and therefore

by a scaling argument (and some elementary inequalities), we find

(4.79)

sup
y;´2B1.x/

j yFj .y/ � yFj .´/j

D 1

aj
sup

y;´2B1=
p

aj
.x/

ˇ̌̌
ˇycj

�
yp
aj

�
� ycj

�
´p
aj

�ˇ̌̌
ˇ

� C

aj
sup

y;´2B1.x/

ˇ̌̌
ˇycj

�
yp
aj

�
� ycj

�
´p
aj

�ˇ̌̌
ˇ

�
Ckycj k NC �

&

a
1C �

2

j

sup
y;´2B1.x/

jy � ´j�e� &jxjp
aj

where C depends only on � , and hence we get

(4.80) k yFj k NC �
&=

p
aj

� C

a
1C�=2
j

kycj k NC �
&
:

Now Lemma 4.12 implies that

kvj k NC2;�

&=
p

aj

� C

a
1C�=2
j

kycj k NC �
&
:

From this estimate, we will obtain some control on uj by scaling back the variables.
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We consider an arbitrary x 2 Rn�1. As before, we have

sup
y;´2B1.x/

juj .y/ � uj .´/j
jy � ´j� D sup

y;´2B1.x/

jvj .pajy/ � vj .paj´/j
jy � ´j� :

Since aj can be arbitrarily large, we cannot evaluate the difference vj .
p
ajy/ �

vj .
p
aj´/ directly using the weighted norm in the definition (4.70) (as we did for

the first inequality in (4.79)), since the two points
p
ajy and

p
aj´ might not be-

long to the same unit ball. We avoid this problem by choosing Œ
p
aj � (the integer

part of
p
aj ) points .yl/l lying on the segment Œ

p
ajy;

p
aj´� at equal distance

from each other and using the triangle inequality. Now the distance of two consec-

utive points yl and ylC1 will stay uniformly bounded from above, and the minimal

norm of the yl ’s is bounded from below by C�1paj .jxj � 1/. Therefore, adding

Œ
p
aj � times the inequality and using (4.80), we obtain

sup
y;´2B1.x/

juj .y/ � uj .´/j
jy � ´j� � C

p
aj

jy � ´j�
C

a
1C�=2
j

ˇ̌̌
ˇy � ´p

aj

ˇ̌̌
ˇ�e�p

aj &
.jxj�1/p

aj kycj k NC �
&

� C

a
1C��1=2
j

e�& jxjkycj k NC �
&

� C

aj
e�& jxjkycj k NC �

&
� C

aj
e�& jxjkQcj k NC �

&
;

since we chose � � 1
2

and since aj is uniformly bounded from below.

Similarly, taking first and second derivatives, we find that

sup
y;´2B1.x/

jruj .y/ � ruj .´/j
jy � ´j� � Cp

aj
e�& jxjkQcj k NC �

&
;

sup
y;´2B1.x/

jr2uj .y/ � r2uj .´/j
jy � ´j� � Ce�& jxjkQcj k NC �

&
;

where, again, C depends only on � . Recalling that aj D yV C "2j 2, we have in

this way proved that

kuj k2NC2;�
&

� CkQcj k2NC �
&
; kuj k2NC1;�

&

� C

1C "2j 2
kQcj k2NC �

&
;

kuj k2NC �
&

� C

.1C "2j 2/2
kQcj k2NC �

&
:

Now the conclusion follows from (4.76), (4.78), the last formula, and the fact that

kQck NL2. NC �
& /

� C inf
v2 yKı

kb C vk NL2. NC �
& /

I

see the beginning of Step 1. �
We next consider the operator L" in QD" (see (4.7)), acting on a suitable subset

of H QD"
(verifying an orthogonality condition similar to (4.51)). We want to allow
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some flexibility in the choice of approximate solutions: to do this we consider a

normal section ˆ to � that satisfies the following two conditions:

(4.81) ˆ 2 span

�
h

pC1
4 'j W j D 0; : : : ;

ı

"

�
and kˆkH2.0;L/ � c1":

Here .'j /j are as in (4.38), while c1 is a large constant to be determined later.

Notice that by (4.81) ˆ has, naively, only Fourier modes with index bounded by
1
"

. This yields estimates of the type kˆ.kC1/kL2 � Ck;ı
1

kˆ.k/kL2 . We have

therefore kˆ000kL2Œ0;L� � C , which implies kˆ00kL1 � C , so also (4.4) holds

true. This will allow us, in the next section, to apply Proposition 4.1.

Next, consider the variables ´ defined in (3.1). In the coordinates .s; ´/, we will

consider the approximate solution

(4.82) Q " D e�i Qf ."s/
" �"

�
h."s/U.k."s/´/C U1.s; ´/

� WD Q 0;" C y ";
where "s D Ns, and where Qf and U1 satisfy, for some fixed C > 0 and � 2 .0; 1/,

k Qf � f kH2.Œ0;L�/ � C"2; jU1j.s; ´/ � C".1C j´jC /e�k.Ns/j´j;(4.83)

kjhU.k�/C U1jp�1 � jhU.k�/jp�1kC � � C" in QD":(4.84)

With this choice of Q ", we are going to study the analogue of Lemma 4.13 for L"
(see (4.7)), using a perturbation method.

To state our final result, we need to introduce some more notation. Recalling the

definition in (4.70) and still using the coordinates .s; ´/ for � 2 .0; 1/ and & > 0,

we define the function space

(4.85) L2.C
m;�
&;V / D�

u W QD" ! C W s 7! u

�
s;

�p
V."s/

�
2 L2�Œ0; L

"
�ICm;�&;1

��
:

Also, for m 2 N, we similarly define

(4.86) H l.C
m;�
&;V / D�

u W QD" ! C W s 7! u

�
s;

�p
V."s/

�
2 H l

�
Œ0; L

"
�ICm;�&;1

��
:

We next let QKı be the counterpart of Kı (see (4.50)), when we replace the

coordinates y by ´. Finally, we denote by NH" the following subspace of functions:

(4.87) NH" WD
�
� 2 H QD"

W <
Z
QD"

e�i Qf ."s/
" v N� D 0 for all v 2 QKı

�
:

Defining

(4.88) k � k&;V WD k � k
L2.C

2;�
&;V /

C k � k
H1.C

1;�
&;V /

C k � kH2.C �
&;V /

;

we then have the following result (recall the definition of QD" in (4.10)):
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PROPOSITION 4.14 Suppose 0 < & < 1 and 1
2

� � < 1. Suppose Q " is as in
(4.82), with Qf and U1 satisfying (4.83). Then, if K2."s/ D V."s/ and if A and
ı are sufficiently small, in the limit " ! 0 the following property holds: for any
function b 2 L2.C �&;V / there exist Qu 2 NH" and Qv 2 QKı such that

(4.89)

8̂̂<
ˆ̂:

��g"
QuC V."x/ Qu � j Q "jp�1 Qu

�.p � 1/j Q "jp�3 Q "<. Q " NQu/ D b C e�i Qf ."s/
" Qv in QD";

Qu D 0 on @ QD";
is solvable, and such that for every & 0 < & there exists some C > 0 for which we
have the estimates

k Quk& 0;V � C

ı2
inf

Qv2 QKı

kb C e�i Qf ."s/
" QvkL2.C �

&;V /

k QvkL2.C �
&;V /

� CkbkL2.C �
&;V /

:

(4.90)

PROOF: We divide the proof into two steps.

Step 1. SOLVABILITY OF (4.89). First of all, we notice that, from Proposi-

tion 4.9 and from elliptic regularity results, if H" denotes the subspace of function

in H 2.N�"/ satisfying (4.51), then the operator L1" is invertible from

.H"; k � kH2.N�"/
/ onto .…"L

2.N�"/; k � kL2.N�"/
/; moreover, the norm of the

inverse operator is bounded by C=ı2.

From the comments at the beginning of the proof of Lemma 4.13, we also de-

duce the following property: Given b 2 L2.fjyj � ."� Nı C 1/=K."s/g/ there exist

u 2 H 2.fjyj � ."� Nı C 1/=K."s/g/ and v 2 Kı such that

(4.91)

QL"u WD ��yg"
uC V."s/u � h."s/p�1U.k."s/y/p�1u

� .p � 1/h."s/p�1U.k."s/y/p�1e�i Qf ."s/
" <.e�i Qf ."s/

" Nu/
D b C e�i Qf ."s/

" v in fjyj � ."� Nı C 1/=Kg;

<
Z

fjyj�."�NıC1/=Kg
Nue�i f ."s/

" vdVyg"
D 0 for every v 2 Kı :

Again, we have the estimates

(4.92)
kuk

H2.fjyj�."�NıC1/=Kg/ � C

ı2
kbk

L2.fjyj�."�NıC1/=Kg/;

kvk
L2.fjyj�."�NıC1/=Kg/ � Ckbk

L2.fjyj�."�NıC1/=Kg/:

Using a perturbative argument, we show that we can recover the same invertibility

result for (4.89) where, compared to (4.91), we need to substitute y with ´, �yg"

with � Qg"
, f with Qf , and e�i.f ."s/="hU with Q ".
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In fact, let us denote by …y and …´ the orthogonal projections in L2 onto the

orthogonal complements of the sets fe�i.f ."s//="v W v 2 Kıg, fe�i Qf =."s/"v W
v 2 QKıg with respect to the scalar products induced by the metrics yg" and Qg",
respectively. By (4.81), Lemma 3.1, and (4.83) for every u 2 H 2. QD"/ and every

b 2 L2. QD"/, we have

kL"u � QL"uk
L2. QD"/

� C.c1/"kuk
H2. QD"/

;

k…yb �…´bk
L2. QD"/

� C.c1/"kbk
L2. QD"/

;

where C.c1/ is a positive constant which depends on � , V , and the constant c1 in

(4.81).

From (4.92) and the last formula we deduce the solvability of (4.89), together

with the estimates k Quk
H2. QD"/

� .C=ı2/kbk
L2. QD"/

and kQvk
L2. QD"/

� Ckbk
L2. QD"/

.

Step 2. PROOF OF (4.90). Recall that the coordinates y (see the beginning of

this section) are not global, since they are defined locally in s by normal parallel

transport; the same holds, of course, for the coordinates ´. Therefore, if we prolong

the ´’s along �", there will be a discontinuity between 0 and L
"

.

To reduce ourselves to the periodic case, as in Lemma 4.13, we apply a rotation

R" D R"."s/ to the ´-axes that makes the coordinates Q́ WD R."s/´ periodic in s.

To compute the Laplace-Beltrami operator in the new coordinates Q́ , we should

apply the chain rule in this way:

@
j́
u D .R"/jl@ Q́l

u; @2s j́
u D "@Ns.R"/jl@ Q́l

uC .R"/jl@
2
s Q́l
u;

@2
j́´l
u D RmjRtl@

2
Q́m Q́ t

u:

In particular, since R" is orthogonal,

@2
j́ j́
u D RmjRtj @

2
Q́m Q́ t

u D .R"/mj .R
�1
" /jt@

2
Q́m Q́ t

u

D @2Q́m Q́m
u;

namely, the main term in the Laplacian stays invariant. Taking into account Lem-

ma 3.1 and the last formulas, for & 00 2 .& 0; &/ we find

(4.93) k� Q́
Qg"
u ��´Qg"

ukL2.C �
&00;k

/ � C.c1/"kuk& 00;V :

We next use a localization argument as in the proof of Proposition 4.9. If ysj and

��;j are as in that proof, by (4.83) we can find y�j 2 R such that Qf ."s/=" � yfj s �
y�j D O.

p
"/ in the support of ��;j . If we set �

.s; Q́/
Rn D � Q́

Rn�1 C @2ss , and if we
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scale the Q́ -variables by K."s/ D p
V."s/, the function ��;j .s/u.s; Q́/ (which is

now periodic in s) satisfies the equation

8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂:

� 1
yVj

@2ss��;ju �� Q́
Rn�1.��;ju/C ��;ju � yhp�1

j

yVj

U
� Q́ ykj =

q
yVj

�p�1
��;ju

� .p � 1/ yhp�1

j

yVj

U
� Q́ ykj =

q
yVj

�p�1
e�i. yf sC y�j /<.e�i. yf sC y�j /��;j Nu/

D Fj in
˚j Q́ j � "�NıC1

K


;

��;ju D 0 on
˚j Q́ j D "�NıC1

K


;

where

Fj D 1

V.Ns/��;j e
�i Qf ."s/

" .b C v/C 1

V.Ns/
�
� Q́

Qg"
��.s; Q́/Rn

�
��;ju

� 1

V.Ns/
�
2r Q́

Qg"
u � r Q́

Qg"
��;j C u� Q́

Qg"
��;j

� C 1

V.Ns/.
yVj � V /��;ju

C 1

V.Ns/ j
Q "jp�1��;juC 1

V.Ns/.p � 1/j Q "jp�2 Q "<. Q "��;j Nu/

�
yhp�1
j

yVj
U

� Q́ ykj =
q

yVj
�p�1

��;ju

� .p � 1/
yhp�1
j

yVj
U

� Q́ ykj =
q

yVj
�p�1

e�i. yf sC y�j /<.e�i. yf sC y�j /��;j Nu/:

In the last formula, the functions b, v, V , and Q " are intended to be scaled in Q́
by

p
V."s/. Reasoning as for (4.63), from (4.87) we find that

Z
QD"

e�i yfj s�y�j yv��;j N� D O.ı2 C p
"/k�kL2.supp.��;j //

kyvk
L2. QD"/

for every yv 2 yKı . Moreover, as for (4.93) we can show that

k.� Q́
Qg"

��.s; Q́/Rn /��;juk NL2. NC �
&00 /

�
C.c1/"

�k��;juk NL2. NC2;�

&00 /
C k��;juk NH1. NC1;�

&00 /
C k��;juk NH2. NC �

&00 /

�
:



SOLUTIONS TO NLS CARRYING MOMENTUM ALONG A CURVE 1233

Therefore, using Lemma 4.13, (4.83), and (4.84) we obtain the estimate

k��;juk NL2. NC2;�

&00 /
C k��;juk NH1. NC1;�

&00 /
C k��;juk NH2. NC �

&00 /

� C

ı2
kFj k NL2. NC �

&00 /

� C

ı2
k��;j bk NL2. NC �

&00 /
C C

ı2
k��;j vk NL2. NC �

&00 /

C C
p
"
	
kuk NL2. NC2;�

&00 ;supp.��;j //
C kuk NH1. NC1;�

&00 ;supp.��;j //

C kuk NH2. NC �
&00 ;supp.��;j //



;

(4.94)

where the last symbols denote the restrictions of the weighted norms to supp.��;j /.

Recall that the functions in the previous formula have been scaled in Q́ by
p
V."s/;

therefore, from the uniform continuity of V.Ns/, for some C > 0 we have (recall

that & 00 2 .& 0; &/)
1

C
k��;juk& 0;V � k��;ju. � ;

p
V.Ns/ �/k NL2. NC2;�

&00 /
C k��;ju. � ;

p
V.Ns/ �/k NH1. NC1;�

&00 /

C k��;ju. � ;
p
V.Ns/ �/k NH2. NC �

&00 /
:

A similar inequality holds for the restriction of u to the support of ��;j , together

with

k��;j b. � ;
p
V.Ns/ �/k NL2. NC �

&00 /
C k��;j v. � ;

p
V.Ns/ �/k NL2. NC �

&00 /
�

C
�k��;j bkL2.C �

&;V /
C k��;j vkL2.C �

&;V /

�
:

Using the last two inequalities, taking the square of (4.94), and summing over j ,

we can bring the last term in the right-hand side to the left, so we get (4.90). �

5 Approximate Solutions
In this section we construct some approximate solutions to (1.16) that depend

on suitable parameters and find estimates on the error terms. As in the previous

subsection, we let y be a system of Fermi coordinates in N�", and for a normal

section ˆ of N�" of class H 2 we define the coordinates (see (3.1))

´ D y �ˆ."s/; ´ 2 Rn�1:
By the results in Subsection 4.2, we will restrict our attention to the set QD".
Remark 5.1. In the spirit of Proposition 4.4, we will work with approximate solu-

tions Q " supported in QD". Therefore, using the above coordinates, Q ".s; ´/ has to

vanish for j´j sufficiently large. This can be achieved by formally defining Q ".s; ´/
on N�" and multiplying it by a cutoff function �" as in Subsection 4.2. However,

since the functions we are dealing with decay exponentially to 0 as j´j ! 1, the

effect of this cutoff on the expansions below is exponentially small in ", and it will
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turn out to be negligible for our purposes. Therefore, for reasons of brevity and

clarity, we will tacitly assume that Q ".s; ´/ is multiplied by such a cutoff without

writing it explicitly.

Recall that in (4.6) we defined

S". / D ��g C V."x/ � j jp�1 :
We set Qf0.Ns/ D f .Ns/ C "f1.Ns/, where f is given in (1.12) and f1 in (3.25) (we

refer to Subsection 2.4 for the definition of A0). If wr and wi are smooth functions

of Ns, we saw in Subsection 3.2 that

S"
�
e�i Qf0."s/

" .hU.k´/C ".wr C iwi //
� D

e�i Qf0."s/

" .".Rr C iRi //CR2.´/e
�k."s/j´j

for some quantities Rr and Ri . We choosewr D wr;eCwr;o andwi D wi;eCwi;o
(see (3.13), (3.9), and (3.12)) to make Rr and Ri vanish, using the stationarity

condition (1.15) (see Lemma 3.2).

From Proposition 3.3 we also have that

(5.1)

ei
Qf0."s/

" S". 1;"/

D "2. QRr;e C QRr;o/C "2. QRr;e;f1
C QRr;o;f1

/

C "2i. QRi;e C QRi;o/C "2i. QRi;e;f1
C QRi;o;f1

/CR3.´/e
�k."s/j´j:

Here we want to prove error estimates when ˆ and the phase satisfy some precise

conditions in terms of Fourier analysis and Sobolev norms, and we add further

correction terms.

To allow more flexibility in the choice of approximate solutions, we substitute

the phase Qf0 with the function Qf D f C "f1 C "2f2, where f2 is some function

of class H 2. On ˆ and f2 we assume the following conditions for some constants

c1 and c2 to be determined later:

(5.2) kˆkH2 � c1"; kf2kH2 � c2:

Moreover, letting ı be as in Subsection 4.3 and 'j and !j as in (4.38), we also

assume that

ˆ 2 span

�
h

pC1
4 'j W j D 0; : : : ;

ı

"

�
;

f2 2 span

�
h

1
2!j W j D 0; : : : ;

ı

"

�
:

(5.3)

Notice that for f2 we have similar observations to those made for ˆ after (4.81).

Since, again, the Fourier modes of f2 have index bounded by 1
"

, we get estimates

of the type kf .kC1/
2 kL2 � Ck;ı

1

kf .k/2 kL2 . This allows us to control terms in-

volving f 000
2 , f

.4/
2 , etc. To deal with the resonance phenomenon mentioned in the
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introduction, related to the components in K3;ı of the approximate kernel, we add

to the approximate solutions a function vı like

(5.4) vı D ˇ."s/Z˛."s/ C i�."s/W˛."s/

(see (4.37) and the lines after), with ˇ and � given by

(5.5) ˇ."s/ D
ı2="X

jD�ı2="

bj ǰ ."s/; � D
ı2="X

jD�ı2="

bj �j ."s/;

where, we recall, �j solves (4.42) and is related to ǰ by (4.43). Below we will

regard ˇ as an independent variable, and � as a function of ˇ. Introducing the

norm

(5.6) kˇk] WD
	 ı2="X
jD�ı2="

b2j .1C jj j/2

 1

2
;

we will assume later on that

(5.7) kˇk] � c3"
2

for some constant c3 > 0 to be specified below.

We will look for approximate solutions of the form

Q‰2;".s; ´/ WD e�i zf ."s/
"

˚
h."s/U.k."s/´/

C "Œwr C iwi �C "2zv C "2v0 C vı

:

(5.8)

In this formula Qf is as above, while zv and v0 are corrections whose choice is given

below in order to improve the accuracy of the approximate solutions.

Our goal is to estimate with some accuracy the quantity S". Q‰2;"/: for simplicity,

to treat separately some terms in this expression, we will write Q‰2;" as

(5.9) Q‰2;".s; ´/ D Q‰1;".s; ´/CE.s; ´/C F.s; ´/CG.s; ´/;

where Q‰1;", E, F , and G are, respectively, defined by

Q‰1;".s; ´/ WD e�i zf ."s/
" fh."s/U.k."s/´/C "Œwr C iwi �g

WD e�i "2f2."s//

" Q 1;";

E.s; ´/ WD "2e�i zf ."s/
" zv; F.s; ´/ WD "2e�i zf ."s/

" v0;

G.s; ´/ WD e�i zf ."s/
" vı :

To expand S".‰2;"/ conveniently, we can write

S". Q‰2;"/ D S". Q‰1;"/C A3 C A4 C A5 C A6;
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where A3; : : : ;A6 are, respectively, the linear terms in the equation that involve E,

F , and G (see (5.9)):

A3 D ��gE C V."x/E � j Q‰1;"jp�1E
� .p � 1/j Q‰1;"jp�3 Q‰1;"<. Q‰1;" NE/;(5.10)

A4 D ��gF C V."x/F � j Q‰1;"jp�1F
� .p � 1/j Q‰1;"jp�3 Q 1;"<. Q‰1;" NF /;(5.11)

A5 D ��gG C V."x/G � j Q‰1;"jp�1G
� .p � 1/j Q‰1;"jp�3 Q‰1;"<. Q‰1;" NG/;(5.12)

and where A6 contains the contribution of the nonlinear part

(5.13)
A6 D �j Q‰2;"jp�1 Q‰2;" C j Q‰1;"jp�1.E C F CG/

C .p � 1/j Q‰1;"jp�3 Q‰1;"<. Q‰1;". NE C NF C NG//:

Next we write (tautologically)

S". Q‰1;"/ D e�i "2f2."s/

" S". Q 1;"/C A1;

A1 D S". Q‰1;"/ � e�i "2f2."s/

" S". Q 1;"/;
(5.14)

and set

(5.15)

A2 D e�i Qf ."s/
"

�
ei

Qf0."s/

" S". Q 1;"/
� "2. QRr;o C QRr;e/ � "2. QRr;o;f1

C QRr;e;f1
/

� "2i. QRi;e C QRi;o/ � "2i. QRi;e;f1
C QRi;o;f1

/
�
;

so that A2 represents the terms that are formally of order "3 and higher in S". Q 1;"/
(multiplied by a phase factor). Therefore, from definitions (5.10)–(5.15), we find

that

(5.16)

S". Q‰2;"/ D e�i Qf ."s/
"

�
"2. QRr;o C QRr;e/C "2. QRr;o;f1

C QRr;e;f1
/

C "2i. QRi;e C QRi;o/C "2i. QRi;e;f1
C QRi;o;f1

/
�

C A1 C A2 C A3 C A4 C A5 C A6:
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To estimate rigorously the Ai ’s, we display the first- and second-order deriva-

tives of z‰2;":

@s Q‰2;" D �i zf 0."s/e�i zf ."s/
"

�
h."s/U.k."s/´/C "Œwr C iwi �

C "2zv C "2v0 C vı
�

C e�i zf ."s/
"

�
"h0U.k´/C "hk0rU � ´C "2@swr C i"2@swi

C "3@szv C "3@sv0 C @svı
�
;

@j Q‰2;" D e�i zf ."s/
"

�
hk@jU.k."s/´/C "Œ@jwr C i@jwi �C "2@j zv
C "2@j v0 C @j vı

�
;

@2ss
Q‰2;" D .� zf 02 � i" zf 00/."s/e�i zf ."s/

"

�
h."s/U.k."s/´/C "Œwr C iwi �C "2zv
C "2v0 C a."s/Z.k´/

�
C e�i zf ."s/

"

�
"2h00U.k´/C 2"2h0k0rU � ´C "2hk00rU � ´
C "2hk02r2U Œ´; ´�C "3@2sswr C i"3@2sswi C "4@2sszv
C "4@2ssv0 C @2ssvı

�
� 2i zf 0."s/e�i zf ."s/

"

�
"h0U.k´/C "hk0rU � ´C "2@swr

C i"2@swi C "3@szv C "3@sv0 C @svı
�
;

@2jl
Q‰2;" D e�i zf ."s/

"

�
h."s/k2@2jlU.k."s/´/C "Œ@2jlwr C i@2jlwi �C "2@2jl zv
C "2@2jlv0 C @2jlvı

�
;

@2sj
Q‰2;" D �i zf 0."s/e�i zf ."s/

"

�
h."s/k@jU.k."s/´/C "Œ@jwr C i@jwi �C "2@j zv
C "2@j v0 C a."s/k@jZ.k´/

�
C e�i zf ."s/

"

�
"h0k@jU.k´/C "hk0@jU C "hkk0´l@2jlU C "2@2sjwr

C i"2@2sjwi C "3@2sj zv C "3@2sj v0 C @2sj vı
�
:

To simplify the expressions of the error terms, we introduce some convenient no-

tation. For any positive integer q, the two symbols Rq.ˆ;ˆ
0/ and Rq.ˆ;ˆ

0; ˆ00/
will denote error terms satisfying the following bounds for some fixed constants C

and d (which depend on q; c1; c2, and c3 but not on "; s, or ı)

(
jRq.ˆ;ˆ

0/j � C"q.1C j´jd /e�kj´j;
jRq.ˆ;ˆ

0/ � Rq. Q̂ ; Q̂ 0/j � C"q.1C j´jd /Œjˆ � Q̂ j C jˆ0 � Q̂ 0j�e�kj´j;
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while the term Rq.ˆ;ˆ
0; ˆ00/ (which also involves second derivatives ofˆ) stands

for a quantity for which

jRq.ˆ;ˆ
0; ˆ00/j � C"q.1C j´jd /e�kj´j C C"qC1.1C j´jd /e�kj´jjˆ00j;

jRq.ˆ;ˆ
0; ˆ00/ � Rq. Q̂ ; Q̂ 0; Q̂ 00/j

� C"q.1C j´jd /Œjˆ � Q̂ j C jˆ0 � Q̂ 0j�e�kj´j

C C"qC1.1C j´jd /�jˆ00 C Q̂ 00j.jˆ � Q̂ j C jˆ0 � Q̂ 0j/
C jˆ00 � Q̂ 00j�e�kj´j:

Similarly, we will let Rq.Ns/ denote a quantity (depending only on Ns and ´) such

that

jRq.Ns/j � C"q.1C j´jd /e�kj´j;
and which depends smoothly on Ns.

In the estimates below, assumptions (5.2)–(5.3) will be used. On one hand, by

(5.2) we have L1 estimates on ˆ, f2, and their first derivatives; on the other, by

(5.3) we have L2 estimates on the higher-order derivatives, of the type kˆ.l/kL2 �
Cl.ı

l="l/kˆkL2 , for l 2 N.

We will also use notation like ˆRq.ˆ;ˆ
0/, f 00

2 Rq.ˆ;ˆ
0/, etc., to denote error

terms that are products of functions of Ns, like ˆ or f 0
2, and the above Rq’s. Having

defined this notation, we can compute (and estimate) S". Q‰2;"/ term by term.

5.1 Estimate of A1

From the expression of the Laplace-Beltrami operator (see Subsection 3.1) it

follows that

ei
"2f2."s/

" S". Q‰1;"/ � S". Q 1;"/
D Qg11�"4.f 0

2/
2 Q 1;" C i"3f 00

2
Q 1;" C 2i"2f 0

2@s
Q 1;"

�
C 2i

X
l

Qg1l"2f 0
2@l

Q 1;" C ip
det Qg@A

�
gA1

p
det Qg�

"2f 0
2

Q 1;":

Using the expressions of wr ; wi and the expansions of the metric coefficients in

Subsection 3.1 and multiplying the last equation by ei.
Qf0."s//=", we obtain

(5.17)

ei
Qf ."s/

" A1 D ei
Qf0."s/

"

�
ei

"2f2."s/

" S". Q‰1;"/ � S". Q 1;"/
�

D ei
Qf ."s/

" S". Q‰1;"/ � ei
Qf0."s/

" S". Q 1;"/
D A1;0 C QA1
WD A1;0 C A1;r;e C A1;r;o C A1;i;e C A1;i;o C A1;1;
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where

(5.18)

A1;0 D 2"2f 0f 0
2hU;

A1;r;e D "3f 0
2Œ2f

0
1hU C 4hH; ˆif 0hU C 2f 0wr;e�;

A1;r;o D "3f 0
2Œ4hH; ´if 0hU C 2f 0wr;o�;

A1;i;e D i"3f 00
2 hU C 2i"3f 0

2Œf
0wi;e C h0U C hk0rU � ´�;

A1;i;o D 2i"3f 0f 0
2wi;o;

A1;1 D .f 0
2/
2R4.ˆ;ˆ

0/C f 00
2 R5.ˆ;ˆ

0/C f 0
2ˆ

00R4.ˆ;ˆ
0/

C f 0
2R4.ˆ;ˆ

0/:

5.2 Estimate of A2

Reasoning as for the previous estimate and collecting the terms of order "3 and

higher in S". Q 1;"/, we obtain

(5.19) ei
Qf ."s/

" A2 D A2;0 C QA2 WD A2;r;e C A2;r;o C A2;i;e C A2;i;o C A2;1;

where A2;0 D 0 and where the remaining terms are given by

A2;r;e D "3ˆ00Fe.Ns/;

A2;r;o D 2"3hkhH; ˆi
X
j

ˆ00
j @jU C "3f 0hf 0

1

X
j

j́ˆ
00
jU

C 2"3f 02hhH; ˆi
X
j

ˆ00
j j́U;

A2;i;e D �2i"3f 0h
X
j;l

ˆ0
lˆ

00
j @l. j́U/C 2i"4f 0hhH; ´i

X
j

ˆ000
j j́U;

A2;i;o D i"3
X
j

ˆ00
j j́ .f

00hU C f 0h0U C f 0hk0rU � ´/C i"3ˆ000Fo.Ns/

C 2i"4f 0hhH; ˆi
X
j

ˆ000
j j́U;

A2;1 D R3.Ns/C .ˆCˆ0/R3.ˆ;ˆ
0; ˆ00/C R4.ˆ;ˆ

0; ˆ00/;
where Fe.Ns/ and Fo.Ns/ are, respectively, an even real function and an odd real

function in the variables ´, with smooth coefficients in Ns D "s, and satisfying the

decay property jFe.Ns/j C jFo.Ns/j � C.1C j´jd /e�kj´j.

5.3 Choice of Qv and Estimate of A3

We choose the function Qv in such a way to annihilate (roughly) one of the main

terms in (5.17), namely 2"2f 0f 0
2hU.k´/. Hence we define Qv so that it solves

(5.20) Lr zv D �2f 0f 0
2hU.k´/:
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Reasoning as for the definition of wr (see Subsection 3.2), we can explicitly deter-

min zv as

zv D 2f 0f 0
2h

zU.k´/:
With this definition, using the above estimates on the metric coefficients and the

expressions of error terms, the linear terms involving E in S". Q‰2;"/ can be written

as

(5.21)
ei

Qf ."s/
" A3 D A3;0 C QA3

WD A3;0 C A3;r;e C A3;r;o C A3;i;e C A3;i;o C A3;1;

where

A3;0 D "2Lr Qv;(5.22)

A3;r;e D 2"3f 0hf 0
2

�
2.f 0/2hH; ˆi C hrNV;ˆi

� p.p � 1/hp�2U p�2wr;e
� QU

C 4"3.f 0/2f 0
1hf

0
2

QU.k´/ � 2"4f 0f 000
2 h

zU ;

A3;r;o D 2"3f 0hf 0
2

�
2.f 0/2hH; ´i C hrNV; ´i

� p.p � 1/hp�2U p�2wr;o
� QU

C 2"3f 0f 0
2hk

X
j

H j @j QU.k´/

� 2"4f 0hkf 0
2

X
j

ˆ00
j @j

zU ;

A3;i;e D 4if 0"3@Ns.hf 0f 0
2

QU/

C 2i"3f 0f 0
2

�
f 00h � .p � 1/hp�1U p�1wi;e

� QU ;

A3;i;o D �2.p � 1/i"3f 0f 0
2h
p�1U p�1wi;o QU

� 4i"3.f 0/2f 0
2hk

X
j

ˆ0
j @j

QU ;
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A3;1 D f 0
2ŒR4.ˆ;ˆ

0; ˆ00/�C f 00
2 ŒR4.ˆ;ˆ

0/C R6.ˆ;ˆ
0; ˆ00/�

C "4f 000
2 ŒR1.ˆ;ˆ

0/�C R4.ˆ;ˆ
0/f 0

2Œf
0
2.1C "2f 0

2/C "f 00
2 �

C R5.ˆ;ˆ
0/f 00

2 f
0
2 C R6.ˆ;ˆ

0; ˆ00/.f 0
2/
2:

5.4 Choice of v0 and Estimate of A4

In order to make the approximate solution as accurate as possible, we add a

correction "2v0 in such a way to compensate (most of) the terms "2. QRr;e C i QRi;o/;
see Subsection 3.3. We notice that these terms contain parts that are independent

of ˆ, which we denote by QR0r;e and QR0i;o, and parts that are quadratic in ˆ or

its derivatives QRˆr;e and QRˆi;o, respectively. Since we will take ˆ of order ", we

regard the latter ones as higher-order terms, and we add corrections to cancel QR0r;e
and QR0i;o.

Specifically, we define v0r;e and v0i;o by

�Lrv
0
r;e D �1

2
.f 0/2hU.k´/

X
l;m

@2lmg11´m´l C 2.f 0/2hH;Cwr;o´i(5.23)

C 4.f 0/2hU.k´/hH; ´i2 C 2f 0@swi;e C f 00wi;e

� �
h00U.k´/C 2h0k0rU.k´/ � ´C hk00rU.k´/ � ´

C h.k0/2r2U.k´/Œ´; ´��
C 1

2

X
l;m

@2lmgtj´m´lhk
2@2tjU.k´/C khŒhH; ´iHm

� 1

2

X
l

@2mlg11´l �@mU.k´/C

C hk
X
l

@2lmgmj´l@jU.k´/C
X
l

H l@lwr;o

C hkhH; ´iH l@lU.k´/C hrNV;wr;o´i
� 1

2
.p � 1/hp�2U.k´/p�2w2i;e

� 1

2
p.p � 1/hp�2U.k´/p�2w2r;o

C 1

2

X
m;j

@2mjV´m j́hU.k´/;
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�Liv
0
i;o D 2

�
f 00hU.k´/C 2f 0h0U.k´/C 2f 0hk0rU.k´/ � ´�hH; ´i

C
X
i

H j @jwi;e C 2.f 0/2hH; wi;e´i C 2f 0@swr;o

C f 00wr;o � f 0hk
X
j

@jU.k´/
X
l;m

@2lmg1j´m´l

� f 0hU.k´/
	X
m

@21mg11´m



� f 0h

	X
j;l

@2ljg1j´l



U.k´/

C 1

2
f 0h

	X
l

@21lg11´l



U.k´/

� .p � 1/hp�2U.k´/p�2wr;owi;e C hrNV;wi;e´i:

(5.24)

We notice that the right-hand side of (5.23) is even in ´, and hence orthogonal to

the kernel of Lr . As a consequence, the equation is indeed solvable in v0r;e; see the

comments after (1.17). The same comment applies to (5.24), where the right-hand

side is odd in ´. Furthermore, the right-hand sides decay at infinity at most like

.1C j´jd /e�kj´j for some integer d , so the same holds true for v0r;e and v0i;o.

In conclusion, after some computations we find

ei
Qf ."s/

" A4 D A4;0 C QA4 WD A4;0 C A4;r;e C A4;r;o C A4;i;e C A4;i;o C A4;1;

where

(5.25)

A4;0 D "2Lrv
0
r;e C i"2Liv

0
i;o;

A4;r;e D "3F4;r;e.Ns/; A4;r;o D "3F4;r;o.Ns/;
A4;i;e D "3F4;i;e.Ns/; A4;i;o D "3F4;i;o.Ns/;

(5.26)
A4;1 D R4.ˆ;ˆ

0/C .ˆCˆ0/.1C f 0
2/R3.ˆ;ˆ

0/C f 00
2 R5.ˆ;ˆ

0/
C .f 0

2/
2R6.Ns/Cˆ00R4.ˆ;ˆ

0/:

As for Fe.Ns/ and Fo.Ns/ in A2, the F4’s depend only on V; � , and M and are

bounded above by C.1C j´jd /e�kj´j.

5.5 Estimate of A5

The term involving vı in S". Q‰2;"/ is given by

A5 D A5;0 C QA5 WD A5;0 C A5;r;e C A5;r;o C A5;i;e C A5;i;o C A5;1(5.27)
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where

A5;0 D ˇLrZ˛.k´/ � "2ˇ00Z˛.k´/ � 2"� 0W˛f 0 C i�LiW˛

� i"2� 00W˛ C 2i"ˇ0f 0Z˛;

A5;r;e D �"f 00�W˛ � 2"2ˇ0
�
@Z˛

@˛
˛0 C k0rZ˛.k´/ � ´

�

� 2"f 0�
�
@W˛

@˛
˛0 C k0rW˛.k´/ � ´

�

� .p � 1/"hp�2U p�2�wi;eW˛;

A5;r;o D "ˇ
X
j

H j @jZ˛

C 2"hH; ´iŒ.f 0/2ˇZ˛ C "2ˇ00Z˛ � 2"� 0f 0W˛�

C "hrNV; ´iˇZ˛ � p.p � 1/"hp�2U p�2wr;oˇZ˛;

A5;i;e D "f 00ˇZ˛ � 2"2� 0
�
@W˛

@˛
˛0 C k0rW˛.k´/ � ´

�

C 2"f 0ˇ
�
@Z˛

@˛
˛0 C k0rZ˛.k´/ � ´

�
� .p � 1/"hp�2U p�2ˇwi;eZ˛;

A5;i;o D "�
X
j

H j @jW˛

C 2"hH; ´iŒ.f 0/2�W˛ C "2� 00W˛ C 2"ˇ0f 0Z˛�

C "hrNV; ´i�W˛ � .p � 1/"hp�2U p�2wr;o�W˛:

(5.28)

The error term A5;1 D A5;1.ˇ;ˆ; f2/ satisfies the following estimates:

jA5;1.ˇ;ˆ; f2/j � C."2 C "2jf 0
2j C "3jf 00

2 j C "3jˆ00j/.1C j´jd /e�kj´j

� .jˇj C "jˇ0j C "2jˇ00j C "3jˇ000j/;
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jA5;1.ˇ;ˆ; f2/ � A5;1. Q̌; Q̂ ; Qf2/j
� C

�
"jˆ � Q̂ j C "jˆ0 � Q̂ 0j C "3jˆ00 � Q̂ 00j
C "2jf 0

2 � Qf 0
2j C "3jf 00

2 � Qf 00
2 j�

� .1C j´jd /e�kj´j.jˇj C "jˇ0j C "2jˇ00j C "3jˇ000j/C
C C."2 C "2jf 0

2j C "3jf 00
2 j C "3jˆ00j/

� .1C j´jd /e�kj´j�jˇ � Q̌j C "jˇ0 � Q̌0j C "2jˇ00 � Q̌00j C "3jˇ000 � Q̌000j�:
By the form of the function ˇ (see (4.42), (4.43), and (5.5)), its Fourier modes are

mainly concentrated around indices of order 1
"

. As a consequence, L2 norms of

functions like "ˇ, "2ˇ00, "3ˇ000, etc., can be controlled with the L2 norm of ˇ; see

also the comments before (4.58).

5.6 Estimate of A6

First of all, we notice that we are taking ˆ0 and f 0
2 in H 1.Œ0; L�/, and hence

they belong to L1.Œ0; L�/. As a consequence, since we have the bound

kˇkL1.Œ0;L�/ C "kˇ0kL1.Œ0;L�/ C "2kˇ00kL1.Œ0;L�/

C"3kˇ000kL1.Œ0;L�/ � C"2

(which follows from (5.7) and the above comments), we have the estimate

(5.29) jEj C jF j C jGj � C"2.1C j´jd /e�kj´j:

If we then choose ı sufficiently small (also recall the expressions of wr and wi and

(5.9)), we deduce that

j Q‰2;" � Q‰1;"j � j Q‰1;"j in QD":
This estimate implies that A6 admits a uniform quadratic Taylor expansion in

j Q‰2;1 � Q‰1;"j and is bounded by j Q‰1;"jp�2j Q‰2;" � Q‰1;"j2.

Specifically, we can write

(5.30) A6 D A6;0 C QA6 WD A6;0 C A6;r;e C A6;r;o C A6;i;e C A6;i;o C A6;1;

where

A6;0 D A6;r;e D A6;r;o D A6;i;e D A6;i;o D 0;

A6;1 D R4.f
0
2; ˆ;ˆ

0; ˇ/;(5.31)

where R4.f
0
2; ˆ;ˆ

0; ˇ/ is a quantity satisfying the estimates

jR4.f 0
2; ˆ;ˆ

0; ˇ/j �
C

�
"4 C ."2 C kˇkL1 C "kˇ0kL1/.jˇj C "jˇ0j/�.1C j´jd /e�kj´j;
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jR4.f 0
2; ˆ;ˆ

0; ˇ/ �R4. Qf 0
2;

Q̂ ; Q̂ 0; Q̌/j
� C."2 C jˇj C "jˇ0j C j Q̌j C "j Q̌0j/.1C j´jd /e�kj´j

� �
"jˆ � Q̂ j C "jˆ0 � Q̂ 0j C "2jf 0

2 � Qf 0
2j C jˇ � Q̌j C "jˇ0 � Q̌0j�:

5.7 Final Estimate of S". Q‰2;"/

By (5.16), in the above notation we have

ei
Qf ."s/

" S". Q‰2;"/ D "2. QRr;o C QRr;e/C "2. QRr;o;f1
C QRr;e;f1

/

C "2i. QRi;e C QRi;o/C "2i. QRi;e;f1
C QRi;o;f1

/

C
6X
iD1

Ai;0 C
6X
iD1

QAi :

Recalling the choices of Qv, v0r;e, and v0i;o in (5.20), (5.23), and (5.24) (and recalling

the notation for the R’s after (5.1)), we finally obtain the following result:

PROPOSITION 5.2 Suppose ˆ, f2, and ˇ satisfy (5.2), (5.3), and (5.7) for some
c1; c2; c3 > 0. Let Qf D f C "f1 C "2f2, where f is given in (1.12) and f1 in
(3.25). Let also wr D wr;eCwr;o, with wr;e and wr;o given, respectively, in (3.13)

and (3.12), and wi D wi;eCwi;o, where wi;e and wi;o are given in (3.9). Let Q‰2;"
be defined in (5.8). Then, as " tends to 0, we have

(5.32)

ei
Qf

" S". Q‰2;"/ D "2. QRˆr;e C QRr;o C QRr;e;f1
C QRr;o;f1

/

C "2i. QRi;e C QRˆi;o C QRi;e;f1
C QRi;o;f1

/

C ˇLrZ˛.k´/C "2ˇ00Z˛.k´/ � 2"� 0W˛f 0

C i�LiW˛ C i"2� 00W˛ C 2i"ˇ0f 0Z˛ C ei
Qf

"

6X
jD1

QAj ;

where the R’s are as in (5.1), where QRˆr;e and QRˆi;o are the terms quadratic in ˆ
and ˆ0 within QRr;e and QRi;o, and where the latter error terms are given in (5.17),
(5.19), (5.21), (5.26), (5.27), and (5.30).

Remark 5.3. In some of the error terms listed above, we sometimes see derivatives

of order higher than 2 appearing on ˆ, f2, and ˇ. However, we are not only

assumingH 2 bounds on these functions, but also that they are linear combinations

of eigenfunctions corresponding to suitable eigenvalues. This fact then allows us

to derive bounds on higher-order norms; see the comments after (4.81) and (5.3)

and the last comments in the part concerning A5.
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6 Proof of Theorem 1.1
In this section we prove our main theorem. First we solve the equation in the

NH" components (see (4.87)), using a Lyapunov-Schmidt reduction. Then we turn

to the components in QKı and solve the bifurcation equation as well; this last step

crucially depends on the nondegeneracy assumption on � and an accurate choice

for the values of the parameter ".

6.1 Solvability in the Component of NH"

In Proposition 4.4 we showed that problem (1.16) is reduced to finding a solution

of L".�/ D QS".�/ in QD" (see (4.7), (4.23), and (4.24)) if we takeK2."s/ D V."s/.

Choosing Q " D Q‰2;" (the function constructed in the previous subsection) as an

approximation to the solution of Proposition 4.14, we have the following result

where, as usual, ı is sufficiently small. We recall Proposition 4.4, formulas (4.85)–

(4.88), and the definition of QKı after (4.86). Also, we denote by Q…" the orthogonal

projection onto the set fe�i. Qf ."s/="/ Qv W Qv 2 QKıg.

PROPOSITION 6.1 Let Q‰2;" be as in Proposition 5.2. Then there exists Lvı 2 QKı ,
depending on the parametersˆ, f2, and ˇ, such that the following problem admits
a solution:

(6.1)

8̂̂<
ˆ̂:

��g"
y� C V."x/y� � j Q‰2;"jp�1 y� � .p � 1/j Q‰2;"jp�3 Q‰2;"<. Q‰2;" Ny�/

D QS".y�/C e�i Qf ."s/
" Lv;

y� 2 NH"; Lvı 2 QKı :
Furthermore, if m 2 N and if QQ‰2;" is an approximate solution corresponding to
different ˆ, f2, and ˇ, for a fixed constant C independent of " and ı, for � D 1

2
and 0 < & 0 < & < 1 sufficiently small, we have

ky�k& 0;V � C

ı2
k Q…"S". Q‰2;"/kL2.C �

&;V /
C C"m;

k LvkL2.C �
&;V /

� CkS". Q‰2;"/kL2.C �
&;V /

;
(6.2)

ky� � yQ�k& 0;V � C

ı2

�� Q…".S". Q‰2;"/ � S". QQ‰2;"//
��
L2.C �

&;V /
:(6.3)

PROOF: The proof relies on Proposition 4.1, Proposition 4.14, and the contrac-

tion mapping theorem. By Proposition 4.14, the operator L" (see (4.7)) is invert-

ible from . NH"; k � k& 0;V / into L2.C �&;V /, and the norm of the inverse is uniformly

bounded by C=ı2. By this invertibility, (6.1) is satisfied if and only if y� is a fixed

point of the operator LF" W . NH"; k � k& 0;V / ! . NH"; k � k& 0;V / defined by

LF".y�/ DL�1
" Œ Q…". QS".y�//�

WDL�1
"

� Q…"
�
S". Q‰2;"/CN".�" y� C '.y�//C j Q‰2;"jp�1'.y�/
C .p � 1/j Q‰2;"jp�3 Q‰2;"<. Q‰2;" N

'.y /�/��:
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We recall that, in the last formula, '.y�/ is given by Proposition 4.1, while N" is

defined in (4.8).

Our next goal is to show that LF" is a contraction on a metric ball (in the k � k& 0;V

norm) of radius C
ı2 k Q…"S". Q‰2;"/kL2.C �

&;V /
C C"m for C large enough and m an

arbitrary integer. Setting for simplicity

LG".y�/ D N".�" y� C '.y�//C j Q‰2;"jp�1'.y�/
C .p � 1/j Q‰2;"jp�3 Q‰2;"<. Q‰2;" N

'.y /�/;
by the above invertibility we clearly find

(6.4)

(k LF".y�/k& 0;V � C
ı2

�k Q…"S". Q‰2;"/kL2.C �
&;V /

C k LG".y�/kL2.C �
&;V /

�
;

k LF".y�1/ � LF".y�2/k& 0;V � C
ı2 k LG".y�1/ � LG".y�2/kL2.C �

&;V /
:

We next evaluate k LG".y�/kL2.C �
&;V /

and show that it is superlinear in ky�kL2.C �
&0;V

/

up to negligible terms. We first make the following claim:

Claim. In the notation of (4.14), letting k1.Ns/ D .& 0/2
p
V.Ns/ we have

ky�k
C

1;1=2

k1

� Cky�k& 0;V

for some C > 0. Assuming the claim true and choosing & 00 < .& 0/2, we can

apply Proposition 4.1 with � D 1
2

, k0.Ns/ D &
p
V.Ns/, k1.Ns/ D .& 0/2

p
V.Ns/, and

k2.Ns/ D & 00pV.Ns/ to find

k'.y�/k
C

1=2

�k2

� C
�
e� inf

k2Ck0
K

"�Nı kS". Q‰2;"/kC1=2

k0

C e� inf
k2Ck1

K
"�Nı ky�k

C
1;1=2

k1

�
:

(6.5)

From the expressions for wr , wi , Qv, and v0 and formula (5.29), we can deduce that

j Q‰2;"j � Ce�k0j´j; moreover, from the estimates in the proof of Proposition 5.2

we also find that kS". Q‰2;"/kL2.C �
&;V /

! 0 as " ! 0. By (4.20) (recall that 	 > 0),

the latter bounds on Q‰2;", the previous claim, and (6.5), if m is an arbitrary integer

and if & 00 is sufficiently close to 1 after some elementary computations, we deduce

k LG".y�/kL2.C �
&;V /

� C
�ky�k1C�

L2.C �
&;V /

C ky�kp
L2.C �

&;V /
C "m

�
1C ky�kL2.C �

&;V /

��
:

Similarly, if ky�1kL2.C �
&;V /

and ky�2kL2.C �
&;V /

are finite, we also find

k LG".y�1/ � LG".y�2/kL2.C �
&;V /

�
C

�
max
lD1;2

˚ky�lk�^.p�1/
L2.C �

&;V /

 C "m
�ky�1 � y�2kL2.C �

&;V /
;
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where the symbol y stands for the minimum. The last inequality and (6.4) show

that LF" is a contraction, and we obtain (6.2); (6.3) follows similarly.

To prove the claim, we note that according to our previous notation, the norm

k � k& 0;V is evaluated using the variables .s; ´/, where the ´’s are defined in (3.1).

If we want to estimate the k � k
C

1;1=2

k1

norm instead, we should use Lipschitz with

respect to s and y.

Given s1; s2 2 R and y1; y2 2 Rn�1, we want to consider the difference

r y�.s1; y1/ � r y�.s2; y2/. Recalling (3.1), we can write that

@s y�.s1; y1/ � @s y�.s2; y2/ D @s y�.s1; ´1 Cˆ."s1// � @s y�.s2; ´1 Cˆ."s1//

C @s y�.s2; ´1 Cˆ."s1// � @s y�.s2; ´2 Cˆ."s2//:

By the definition of k � k& 0;V , @s y� 2 H 1.C �& 0;V / � C
1
2 .C �& 0;V /. This fact, the

smoothness of V.Ns/, and kˆk1 C kˆ0k1 � C.c1/" (which follows from (5.2))

imply that if .s1; y1/; .s2; y2/ 2 B1.s; y/, then

e.&
0/2

p
V.Ns/j´jj@s y�.s1; y1/ � @s y�.s2; y2/j �

C.c1/ky�k& 0;V .js1 � s2j 1
2 C j´1 � ´2j 1

2 C "js1 � s2j/:
A similar estimate holds for the derivatives of y� with respect to y, so from (4.14)

we get the conclusion. �

To apply Proposition 6.1, we establish explicit estimates on Q…"S". Q‰2;"/ and

Q…".S". Q‰2;"/ � S".
QQ‰2;"//. Specifically, assuming from now on � D 1

2
, we have

the following result:

PROPOSITION 6.2 Assume ˆ, f2, ˇ, Q̂ , Qf2, and Q̌ satisfy conditions (5.2), (5.3),
and (5.7). Then, if y� is defined as in Proposition 6.1, we have the estimates

p
"ı2ky�.ˇ;ˆ; f2/k& 0;V � C.c1; c2; c3/"

3;(6.6)
p
"ı2ky�.ˇ;ˆ; f2/ � y�. Q̌; Q̂ ; Qf2/k& 0;V �
C.c1; c2; c3/Œ"

2kˆ � Q̂ kH2 C "3kf2 � Qf2kH2 C "kˇ � Q̌k]�;
(6.7)

where C.c1; c2; c3/ is a positive constant depending on c1, c2, and c3 but indepen-
dent of " and ı.

PROOF: We prove (6.6) only; (6.7) will follow from similar considerations. To

show (6.6) we use Proposition 6.1, so we are reduced to estimating

k Q…"S". Q‰2;"/kL2.C �
&;V /

;

for which we can employ (5.32).
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By our assumptions on ˆ, f2, and ˇ and by the estimates of the previous sub-

section, it is easy to see that��"2. QRˆr;e C QRr;o C QRr;e;f1
C QRr;o;f1

/

C "2i. QRi;e C QRˆi;o C QRi;e;f1
C QRi;o;f1

/
��
L2.C �

&;V /
� C.c1; c2; c3/"

3

p
"

;

���ei Qf
"

6X
iD1

QAi
���
L2.C �

&;V /
� C.c1; c2; c3/"

3

p
"

:

Recall that, by the above choices of v0r;e and v0i;o in (5.23) and (5.24), we have

corrected all the terms in the equation of order up to "2, so we are left with terms of

order "3 and higher. The factor
p
" in the denominator arises from the fact that the

length of �" is L
"

; this gives a factor 1
"

when computing the L2 norm squared, and

we then need to take the square root. For the estimates in QA6, which also require

the L1 norm of ˇ, we can use the interpolation inequalities

kˇkL1.Œ0;L�/ � Ckˇk
1
2

L2.Œ0;L�/
kˇ0k

1
2

L2.Œ0;L�/
� C"

3
2 ;

kˇ0kL1.Œ0;L�/ � Ckˇ0k
1
2

L2.Œ0;L�/
kˇ00k

1
2

L2.Œ0;L�/
� C"

1
2 :

It now remains to consider the other terms in the right-hand side of (5.32) in-

volving the functions Z˛ and W˛. Let us call QL1" the operator obtained from L1"
(see (4.35)) by replacing the variables y with ´ and f with Qf . Let us first notice

that the terms under interest, with this notation, are nothing but Q…" QL1"vı .

Let us now recall the expression of ˇ in (5.5) and vı in (5.4); if Qv3;j stands for

the functions in K3;ı (see (4.49)) replacing y with ´, we define the function

Qvı D
ı2="X

jD�ı2="

bj Qv3;j :

From the expression of Qv3;j (see (4.45)), we find that

kvı � Qvık&;V � Cp
"

	 ı2="X
jD�ı2="

b2j "
2.1C j 2/


 1
2
;(6.8)

QL1"
�
e�i Qf ."s/

" vı
� D QL1".e�i Qf ."s/

" Qvı/

CO

�
1p
"

�	 ı2="X
jD�ı2="

b2j "
2.1C j 2/


 1
2

.in the k � kL2.C �
&;V /

norm/:

(6.9)
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Similarly to (4.68), recalling the asymptotic of �j (see (4.42) and the lines before)

we find that

(6.10) QL1".e�i Qf ."s/
" Qvı/ D e�i Qf ."s/

"

ı2="X
jD�ı2="

�j bj Qv3;j CR1;

where

kR1kL2.C �
&;V /

� Cp
"

	 ı2="X
jD�ı2="

b2j "
2.1C j 2/


 1
2 � C

p
"kˇk]:

This implies the conclusion, by (5.7). �

6.2 Projections onto QKı

In this section we estimate the projections of the equation onto the components

of QKı . We first estimate their size and their Lipschitz dependence in the data ˆ,

f2, and ˇ. Then we use the contraction mapping theorem to annihilate the function

Lv in Proposition 6.1, which implies the solvability of (1.16).

Projection onto QK1;ı

We want to evaluate the QK1;ı component of the function Lvı in (6.1). To do this

we consider a normal section ˆ to � that satisfies the first relation in (5.3), and the

function

vˆ WD h."s/
pC1

4

�
hˆ."s/;r´U.k´/i

C i"hˆ0."s/; ´if
0
k
U.k´/ � "2

k2
hˆ00."s/;V.k´/i

�
:

We then multiply both the left-hand side of (6.1) and QS".y�/ (see (4.24)) by the

conjugate of e�i. Qf ."s//="vˆ, integrate over QD", and take the real part. When mul-

tiplying the left-hand side, we can integrate by parts and let the operator L" act

on e�i. Qf ."s//="vˆ. Using the arguments in the proofs of Proposition 4.9 (see in

particular (4.66) and (4.67)) and of Proposition 6.2, we find that

L"
�
e�i Qf ."s/

" vˆ
� D e�i Qf ."s/

" Qvˆ CR.vˆ/;

where Qvˆ 2 QK1;ı and where

kR.vˆ/kL2.C �
&;V /

� C."C ı3/kvˆkL2.C �
&;V /

� Cp
"
."C ı3/kˆkL2.Œ0;L�/:
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Therefore, since y� is orthogonal to QKı , from (6.6) we deduce that

(6.11)

ˇ̌̌
ˇ<

Z
QD"

ei
Qf ."s/

" vˆL" y�
ˇ̌̌
ˇdV Qg"

� Cp
"
."C ı3/kˆkL2.Œ0;L�/ky�kL2.C �

&;V /

� C.c1; c2; c3/ı"
2kˆkL2.Œ0;L�/:

We next have to consider QS".y�/, whose main term is S". Q‰2;"/. For this we use

formula (5.32). Here we have three kinds of terms: the QR’s, those involving Z˛
and W˛ (which coincide with A5;0, with our notation in (5.28)), and the QA’s.

For the QR’s, since vˆ is odd in ´, the products with the even terms will vanish.

The products of the odd terms (notice that the two phases cancel and we use the

change of variables s 7! "s) instead give us

"2<
Z
QD"

. QRr;o C QRr;o;f1
/vˆdV Qg"

C "2<
Z
QD"

i. QRˆi;o C QRi;o;f1
/vˆdV Qg"

D �" p � 1
2�

C0

Z L

0

hJ.ˆ/;ˆi d Ns C QR0;

where C0 D R
Rn�1 U.y/

2 dy and j QR0j � Cı"kˆkL2.Œ0;L�/. To explain why this

estimate holds, we notice first that �p�1
2�
C0hJ.ˆ/;ˆi is exactly the first term of

vˆ multiplied by QRr;oC QRr;o;f1
, as shown in Subsection 3.3 (the factor h.pC1/=4 in

(4.39) is needed precisely to cancel the factor 1
hk

in (3.26)). The remaining terms

in the last equation are given either by products of the imaginary part of vˆ and the

imaginary QR’s or that of QRr;o C QRr;o;f1
and the last term in vˆ. In the latter case,

for example (see the comments after (4.81)), we obtain a quantity bounded by

C"2
Z L="

0

.jˆj C jˆ0j C jˆ00j/"2ˆ00 ds � C"2ı2kˆkL2.Œ0;L�/:

The last inequality follows from (5.2) and the fact thatˆ satisfies the first condition

in (5.3). On the other hand, the terms involvingˆ0 once integrated will be bounded

by C"2ıkˆkL2.Œ0;L�/, still by (5.3).

Concerning A5;0, we next claim that for any m 2 N we have

(6.12)

ˇ̌̌
ˇ<

Z
QD"

vˆA5;0 dV Qg"

ˇ̌̌
ˇ � C"mkˆkL2.Œ0;L�/ as " ! 0:

To see this, notice that ˆ satisfies (5.3), while A5;0 arises from functions involving

vı (in particular ˇ, see (5.5)); since j ranges between �ı2=" and ı2=", the main

modes of ˇ are much higher than those for ˆ. Hence, using Fourier cancellation



1252 F. MAHMOUDI, A. MALCHIODI, AND M. MONTENEGRO

as in Lemma 4.10, we can deduce (6.12). It is also easy to see that

(6.13)

ˇ̌̌
ˇ<

Z
QD"

vˆ

6X
jD1

QAjdV Qg"

ˇ̌̌
ˇ � C.c1; c2; c3/"

2kˆkL2.Œ0;L�/:

Finally, it remains to consider the product of vˆ and the last three terms in

(4.24). Indeed, since these are either superlinear in y� (see (4.20)) or contain '.y�/
(see (4.15)), they are of lower order compared to (6.11).

Using (6.11)–(6.13) and the above arguments, we finally obtain that, if Lv is as in

Proposition 6.1, then

Z
QD"

Lvvˆ dV Qg"
D �"p � 1

2�
C0

Z L

0

hJ.ˆ/;ˆid Ns CR1;

jR1j � C.c1; c2; c3/"
2kˆkL2.Œ0;L�/:

Similarly, using the estimates in Section 5, we find that if QLv corresponds to the

triple . Q̂ , Qf2, Q̌/, then

(6.14)

Z
QD"

. Lv � QLv/vˆ dV Qg"
D �" p � 1

2�
C0

Z L

0

hJ.ˆ � Q̂ /; ˆid Ns C QR1;

where QR1 satisfies

j QR1j � C.c1; c2; c3/
�
ı"kˆ � Q̂ kH2.Œ0;L�/

C "2kf2 � Qf2kH2.Œ0;L�/ C ıkˇ � Q̌k]
�kˆkL2 :

(6.15)

Projection onto QK2;ı

For this projection we will be sketchier since most of the arguments of the pre-

vious projection can be applied. If f
2

satisfies the second condition in (5.3), we

consider the function

vf
2

D h."s/
1
2

�
if

2
."s/U.k´/C 2"

f 0f 0
2
."s/

k
QU.k´/ � i"2 f

00
2
."s/

k2
W.k´/

�
:

As for the previous case, the main contribution to the projection is given by the

product of the first term in vf
2

and the imaginary parts of S". Q‰2;"/ listed in (5.32),

which are even in ´.
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We denote by yRi;e;f2
the sum of all imaginary even terms of order "3 appearing

in the equation, namely A1;i;e, A3;i;e, and A4;i;e D F4;i;e.Ns/ (see (5.18), (5.22),

and (5.25))

(6.16)

yRi;e;f2
D 2h0f 0

2U C 2hf 0
2k

0rU � ´C 2f 0f 0
2wi;e C f 00

2 hU

C 4f 0@s.hf 0f 0
2

QU/C 2f 00hf 0f 0
2

QU
� 2.p � 1/hp�1jU jp�2f 0f 0

2
QUwi;e C F4;i;e.Ns/

WD QRi;e;f2
C F4;i;e.Ns/:

Notice that QRi;e;f2
coincides with the function QRi;e;f1

in (5.1) (see Subsection 3.3

for the precise expression) if we replace f1 with f2. Therefore, from estimates

similar to the previous ones (which mainly use the computations in subsection 4.1

in [36]), we findZ
QD"

Lvvf
2
dV Qg"

D "2C0

Z L

0

T .f2/f 2
d Ns

C "2
Z L

0

� Z
Rn�1

F4;i;eU.k.Ns//
�
f
2
d Ns CR2;

(6.17)

where C0 D R
Rn�1 U.y/

2 dy,

(6.18) T .f2/ D @Ns
�

h2f 0
2

.p � 1/knC1 Œ.p � 1/hp�1 � 2�A2h2� �

�
;

and R2 satisfies

(6.19) jR2j � C.c1; c2; c3/ı"
2kf

2
kL2.Œ0;L�/:

Moreover, if QLv corresponds to the triple ( Q̂ ; Qf2; Q̌), then

(6.20)

Z
QD"

. Lv � QLv/vf
2
dV Qg"

D "2C0

Z L

0

T .f2 � Qf2/f 2 d Ns C QR2;

with

j QR2j � C
�
ı"2kf2 � Qf2kH2.Œ0;L�/

C ı"kˆ � Q̂ kH2.Œ0;L�/ C ıkˇ � Q̌k]
�kf

2
kL2.Œ0;L�/

(6.21)

with C D C.c1; c2; c3/.
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Projection onto QK3;ı

To compute the last components of the projection, we recall our notation in

Subsection 4.3 and define

ˇ."s/ D
ı2="X

jD�ı2="

bj ǰ ."s/; vˇ D
ı2="X

jD�ı2="

bj Qv3;j :

As for the previous cases, the main contribution to the projection here still comes

from S". Q‰2;"/. In particular, following the arguments for QK1;ı , when testing on

vˇ , by Fourier cancellation and parity the major terms are indeed A5;0, A5;r;e, and

A5;i;e. With straightforward computations, we find that

(6.22)

Z
QD"

Lvvˇ dV Qg"
D 1

"

Z L

0

ƒ.ˇ; �; ˇ; �/d Ns C yR3;

where

ƒ.ˇ; �; ˇ; �/ D ˇˇQ4;˛ � "2ˇ00ˇQ1;˛ � 2"� 0f 0ˇQ3;˛ C ��Q5;˛

� "2� 00�Q2;˛ � "f 00.�ˇ � �ˇ/Q3;˛ C 2"ˇ0f 0�Q3;˛
� 2"2˛0.ˇ0ˇQ6;˛ C �� 0Q7;˛/ � 2"2k0.ˇ0ˇQ10;˛ C �� 0Q11;˛/
� 2"f 0k0.�ˇQ12;˛ � ˇ�Q13;˛/ � 2"f 0˛0.�ˇQ8;˛ � �ˇQ9;˛/
� .p � 1/"hp�2.�ˇ C �ˇ/Q14;˛;

Q4;˛.Ns/ D
Z

Rn�1

Z˛.Ns/LrZ˛.Ns/; Q5;˛.Ns/ D
Z

Rn�1

W˛.Ns/LiW˛.Ns/;

Q6;˛.Ns/ D
Z

Rn�1

Z˛.Ns/
@Z˛.Ns/
@˛

; Q7;˛.Ns/ D
Z

Rn�1

W˛.Ns/
@W˛.Ns/
@˛

;

Q8;˛.Ns/ D
Z

Rn�1

Z˛.Ns/
@W˛.Ns/
@˛

; Q9;˛.Ns/ D
Z

Rn�1

W˛.Ns/
@Z˛.Ns/
@˛

;

Q10;˛.Ns/ D
Z

Rn�1

Z˛.Ns/r´Z˛.Ns/ � ´; Q11;˛.Ns/ D
Z

Rn�1

W˛.Ns/r´W˛.Ns/ � ´;

Q12;˛.Ns/ D
Z

Rn�1

Z˛.Ns/r´W˛.Ns/ � ´; Q13;˛.Ns/ D
Z

Rn�1

W˛.Ns/r´Z˛.Ns/ � ´;
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and

Q14;˛.Ns/ D
Z

Rn�1

U.k´/p�2wi;eW˛.Ns/Z˛.Ns/;

j yR3j � C.c1; c2; c3/ı"
2kˇkL2.Œ0;L�/:(6.23)

After some manipulation using the fact that .Z˛; W˛/ solves (4.29) with �˛ D 0,

the normalization
R

Rn�1.Z
2
˛ C W 2

˛ / D 1, and some integration by parts in ´, we

find that

(6.24)
1

"

Z L

0

ƒ.ˇ; �; ˇ; �/d Ns D
1

"

Z L

0

ƒ0.ˇ; �; ˇ; �/d Ns C
Z L

0

ƒ1.ˇ; �; ˇ; �/d Ns;

where

ƒ0.ˇ; �; ˇ; �/ D Q1;˛."
2ˇ0ˇ0 � k2˛2ˇˇ/CQ2;˛."

2� 0� 0 � ˛2k2��/
C 2f 0Q3;˛."ˇ0� � "� 0ˇ � k˛ˇˇ � k˛��/(6.25)

and

ƒ1 D .ˇ� C �ˇ/g.Ns/
with

g.Ns/ D Œf 00Q3;˛ C 2f 0k0Q13;˛ C 2f 0˛0Q9;˛ � .p � 1/hp�2Q14;˛�:

Now we notice that, by (4.43), we have

ˇ� C �ˇ D � "

k˛

h ı2="X
j;lD�ı2="

bj bl.�
0
j �l C �j �

0
l/

� F1
ı2="X

j;lD�ı2="

bj bl.�j �l�
0
j C �l�j �

0
l/

i
;

where

F1 D Q1;˛

k2˛2 C 2f 0k˛Q3;˛
:

Integrating by parts in Ns and using (4.42), we find that

(6.26)

Z L

0

ƒ1.ˇ; �; ˇ; �/d Ns D

"

Z L

0

��

�
g

k˛

�0
.Ns/d Ns CO.ı2/kˇkL2.Œ0;L�/kˇkL2.Œ0;L�/:
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Finally, combining (6.22), (6.23), (6.24), and (6.26), we deduce

(6.27)

Z
QD"

Lvvˇ dV Qg"
D 1

"

Z L

0

ƒ0.ˇ; �; ˇ; �/d Ns CR3;

where

(6.28) jR3j � C.c1; c2; c3/.ı"
2 C ."C ı2/kˇkL2.Œ0;L�//kˇkL2.Œ0;L�/:

Analogously we obtain

(6.29)

Z
QD"

. Lv � QLv/vˇ dV Qg"
D 1

"

Z L

0

ƒ0.ˇ � Q̌; � � Q�; ˇ; �/C QR3;

where QR3 satisfies

j QR3j � Cı
�
"kˆ � Q̂ kH2.Œ0;L�/

C "2kf2 � Qf2kH2.Œ0;L�/ C kˇ � Q̌k]
�kˇkL2.Œ0;L�/

(6.30)

with C D C.c1; c2; c3/.

Remark 6.3. Let us consider the eigenvalue problem in .ˇ; �/Z L

0

ƒ0.ˇ; �; ˇ; �/ D �

Z L

0

.Q1;˛ˇˇ CQ2;˛��/ for all .ˇ; �/

where Q1 and Q2 are defined in (4.41). Then the eigenvalue equation is the fol-

lowing:

(6.31)

8<
:

�"2 .Q1;˛ˇ
0/0

Q1;˛
� k2˛2ˇ � 2f 0 Q3;˛

Q1;˛
."� 0 C k˛ˇ/ D �ˇ;

�"2 .Q2;˛�
0/0

Q2;˛
� k2˛2� C 2f 0 Q3;˛

Q2;˛
."ˇ0 � k˛�/ D ��:

By (4.44), the couple of functions . ǰ ; �j / constructed in Subsection 4.3 represents

a family of approximate eigenfunctions corresponding to � D �j .

6.3 The Contraction Argument
The usual procedure in performing a fixed-point argument is to apply to the

equation an invertible linear operator first. In the expansions in the last subsection,

we showed that the main terms in the projections onto QKı are the operators J, T ,

and ƒ0 (the last is identified by duality with the associated quadratic form); see

(6.2), (6.17), and (6.27). By our nondegeneracy assumption on � , J is invertible

and the same holds also for T , since it is coercive (and in divergence form). It

remains then to invert ƒ0, which is the content of the next result. Before stating it

we introduce some notation. Using the symbology of Subsection 4.3 we define the

spaces

X1;ı D span

�
'j W j D 0; : : : ;

ı

"

�
; X2;ı D span

�
!j W j D 0; : : : ;

ı

"

�
;
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X3;ı D span

�
ǰ W j D �ı

2

"
; : : : ;

ı2

"

�
;

with X1;ı and X2;ı endowed with the H 2 norm on Œ0; L�, and X3;ı with the k � k]
norm.

We also call Y1;ı , Y2;ı , and Y3;ı the same spaces of functions, but endowed

with weighted L2 norms: by the normalization after (4.38), it is natural to put

the weights h� and h�� on Y1;ı and Y2;ı , respectively. Concerning Y3;ı , by

Remark 6.3, we will endow it with the product .ˇ; ˇ/Y3;ı
D R L

0 .Q1;˛ˇˇ C
Q2;˛��/d Ns where, as above, � is related to ˇ by (4.43) and (5.5). Notice that

by (4.38) J and T are exactly diagonal from X1;ı to Y1;ı and from X2;ı to Y2;ı ,

respectively, while ƒ0 is nearly diagonal (see also (4.44)).

LEMMA 6.4 Letting…Y3;ı
denote the orthogonal projection onto Y3;ı , there exists

a sequence "k ! 0 such that ƒ0 is invertible from X3;ı into Y3;ı and such that its
inverse satisfies k.…Y3;ı

ƒ0/
�1k � C

"k
for some fixed constant C .

PROOF: First of all, we show that there exists "k ! 0 such that …Y3;ı
ƒ0

cannot have eigenvalues in Y3;ı smaller in absolute value than C�1"k; after this,

we estimate the (stronger) X3;ı norm of its inverse.

To prove the claim, we apply Kato’s theorem (see [29, p. 445]), which allows

us to compute the derivative of an eigenvalue �."/ of …Y3;ı
ƒ0 with respect to ".

The (possibly multiple) value of this derivative is given by the eigenvalues of

…Y3;ı
@"ƒ0 restricted to the �."/-eigenspace of …Y3;ı

ƒ0.

Suppose that ˇ satisfies the eigenvalue equation …Y3;ı
ƒ0ˇ D �ˇ, which is

equivalent to

(6.32)

Z L

0

ƒ0.ˇ; �; ˇ; �/ D �

Z L

0

.Q1;˛ˇˇ CQ2;˛��/

for all .ˇ; �/with ˇ 2 Y3;ı :
Looking at the powers of " in ƒ0 (see (6.25)), we write ƒ0 D ƒ0;0 C "ƒ0;1 C

"2ƒ0;2; notice that ƒ0;0 is negative definite and ƒ0;2 positive definite. We also

point out that, since f 0 satisfies (1.12), for f ."s/=" to be L="-periodic, when we

vary ", A also needs to be adjusted. Specifically, since the total variation of phase

in (1.10) is

A

Z L="

0

h."s/�ds D A

"

Z L

0

h.Ns/d Ns D const;

when differentiating with respect to " we find that @A
@"

D A
"

. Hence, applying

Kato’s theorem, we find

(6.33)
@�

@"
2 �

min
ˇ1;ˇ2¤0

‚.ˇ1; ˇ2/; max
ˇ1;ˇ2¤0

‚.ˇ1; ˇ2/
�
;
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where

‚.ˇ1; ˇ2/ D
R L
0 .ƒ0;1 C 2"ƒ0;2/.ˇ1; �1; ˇ2; �2/R L

0 .Q1;˛ˇ1ˇ2 CQ2;˛�1�2/

C 1

"

R L
0 .2f

0Q3;˛."ˇ0
1�2 � "� 0

1ˇ2 � k˛ˇ1ˇ2 � k˛�1�2/R L
0 .Q1;˛ˇ1ˇ2 CQ2;˛�1�2/

;

and where .ˇ1; �1/; .ˇ2; �2/ are functions satisfying (6.32). By using this, we can

write ‚.ˇ1; ˇ2/ as

1
"

R L
0 .ƒ0 �ƒ0;0/.ˇ1; �1; ˇ2; �2/C "

R L
0 ƒ0;2.ˇ1; �1; ˇ2; �2/R L

0 .Q1;˛ˇ1ˇ2 CQ2;˛�1�2/

C 1

"

R L
0 .2f

0Q3;˛."ˇ0
1�2 � "� 0

1ˇ2 � k˛ˇ1ˇ2 � k˛�1�2/R L
0 .Q1;˛ˇ1ˇ2 CQ2;˛�1�2/

D �

"
C "

R L
0 .Q1;˛ˇ

0
1ˇ

0
2 CQ2;˛�

0
1�

0
2/R L

0 .Q1;˛ˇ1ˇ2 CQ2;˛�1�2/

C 1

"

R L
0 Œk

2˛2.Q1;˛ˇ1ˇ2 CQ2;˛�1�2/C 2f 0k˛Q3;˛.ˇ1ˇ2 C �1�2/�R L
0 .Q1;˛ˇ1ˇ2 CQ2;˛�1�2/

C 1

"

R L
0 .2f

0Q3;˛."ˇ0
1�2 � "� 0

1ˇ2 � k˛ˇ1ˇ2 � k˛�1�2/R L
0 .Q1;˛ˇ1ˇ2 CQ2;˛�1�2/

:

Applying (4.42), (4.43), and Q1;˛ C Q2;˛ D 1 (see (4.41) and the lines after

(4.30)), the last expression simplifies to

�

"
C 1

"

R L
0 .2˛

2k2 C 4f 0˛kQ3;˛/�1�2R L
0 �1�2

CO.ı2/
1

"
:

Since the numerator is symmetric in �1 and �2, the infimum of the above ratio is

realized by some �0, so by (6.33) and the latter formula we find

(6.34)

@�

@"
� �

"
C 1

"

R L
0 .2˛

2k2 C 4f 0˛kQ3;˛/�20R L
0 �

2
0

CO.ı2/
1

"

� 1

"
Œ� C inf

Œ0;L�
.2˛2k2 C 4f 0˛kQ3;˛/ � Cı2�:

Notice that for � and ı sufficiently small, the coefficient of 1
"

in the above for-

mula is positive and uniformly bounded away from 0. From (4.44) and the asymp-

totics in (4.42) (which follows from Weyl’s formula), we can show that …Y3;ı
ƒ0

has a number of negative eigenvalues of order ı2=". This fact and (6.34) yield

the desired claim, which can be obtained as in [41, prop. 4.5]; since the argument



SOLUTIONS TO NLS CARRYING MOMENTUM ALONG A CURVE 1259

is quite similar, we omit the details. The above claim provides invertibility of

…Y3;ı
ƒ0 in Y3;ı and gives

(6.35) k.…Y3;ı
ƒ0/

�1ˇkY3;ı
� C

"
kˇkY3;ı

for any ˇ 2 Y3;ı :

We next want to estimate the X3;ı norm of .…Y3;ı
ƒ0/

�1ˇ. Let

ˇ D
ı2="X

jD�ı2="

bj ǰ

and suppose y̌ D Pı2="

jD�ı2="
ybj ǰ is such that …Y3;ı

ƒ0 y̌ D ˇ in the sense that

Z L

0

ƒ0. y̌; y�; ˇ; �/ D
Z L

0

.Q1;˛ˇˇ CQ2;˛��/ for all .ˇ; �/ with ˇ 2 Y3;ı :

If ˇ D Pı2="

jD�ı2="
bj ǰ , then by (4.44), we find by integrating

ı2="X
jD�ı2="

�j ybj bj CO

�	 ı2="X
jD�ı2="

.�2j C "/2yb2j

 1

2
	 ı2="X
lD�ı2="

b2l


 1
2

�
�

C
	 ı2="X
jD�ı2="

yb2j

 1

2
	 ı2="X
lD�ı2="

b2l


 1
2
:

Choosing bj D ybj for j > 0 and bj D �ybj for j < 0, from the asymptotics of

�j in (4.42), we obtain for QC1 > 0 sufficiently large that

"
X

QC1�j�ı2="

jj jyb2j � C

ı2="X
jD�ı2="

yb2j � Ck y̌k2Y3;ı
:

By (6.35) we have k y̌kY3;ı
� C

"
kˇkY3;ı

, so recalling (5.6), we get

k y̌k2X3;ı
WD k y̌k2] � Ck y̌k2Y3;ı

� C 2

"2
kˇk2Y3;ı

;

which yields the conclusion. �

PROOF OF THEOREM 1.1: Let us introduce the operators

Gl W X1;ı �X2;ı �X3;ı ! Yl;ı ; l D 1; 2; 3;
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defined by duality as

.G1.ˆ; f2; ˇ/;ˆ/Y1;ı
D

Z
QD"

Lvvˆ dV Qg"
;

.G2.ˆ; f2; ˇ/; f 2
/Y2;ı

D
Z
QD"

Lvvf
2
dV Qg"

;

.G3.ˆ; f2; ˇ/; ˇ/Y3;ı
D

Z
QD"

Lvvˇ dV Qg"
;

where Lv D Lv.ˆ; f2; ˇ/ is the function appearing in Proposition 6.1.

By Proposition 4.4, equation (1.16) (or (NLS")) is solved if and only if Lv D 0.

In the above notation, this is equivalent to finding .ˆ; f2; ˇ/ such thatGl.ˆ; f2; ˇ/

D 0 for every l D 1; 2; 3. If "k is the sequence given in Lemma 6.4, then ƒ0 is

invertible, and the condition Lv D 0 is equivalent to the system (we set " D "k)

(6.36)

8̂̂̂
<
ˆ̂̂:
ˆ D G1.ˆ; f2; ˇ/ WD �1

"
QJ�1ŒG1.ˆ; f2; ˇ/ � " QJ.ˆ/�;

f2 � Lf2 D G2.ˆ; f2; ˇ/

WD � 1
"2

QT �1�G2.ˆ; f2; ˇ/ � "2 QT f2 � "2 R
Rn�1 F4;i;eU.k.Ns/´/d´

�
;

ˇ D G3.ˆ; f2; ˇ/ WD �".…Y3;ı
ƒ0/

�1�G3.ˆ; f2; ˇ/ � 1
"
…Y3;ı

ƒ0ˇ
�
;

where

QJ D �p � 1
2�

C0J; QT D C0T;

with (C0 D R
Rn�1 U.y/

2dy) and where

Lf2 D � QT �1
� Z

Rn�1

F4;i;eU.k.Ns/´/d´
�
:

By (6.2)–(6.21), (6.27)–(6.29), and (6.30) we find

kG1.0; 0; 0/kX1;ı
� C"; kG2.0; 0; 0/kX2;ı

� Cı; kG3.0; 0; 0/kX3;ı
� Cı"2I

moreover, if ˆ, f2, and ˇ satisfy the bounds (5.2) and (5.7), then

kG1.ˆ; f2; ˇ/ � G1. Q̂ ; Qf2; Q̌/kX1;ı
�

C.c1; c2; c3/

�
ıkˆ � Q̂ kX1;ı

C "kf2 � Qf2kX2;ı
C ı

"
kˇ � Q̌kX3;ı

�
;

kG2.ˆ; f2; ˇ/ � G2. Q̂ ; Qf2; Q̌/kX2;ı
�

C.c1; c2; c3/

�
ı

"
kˆ � Q̂ kX1;ı

C ıkf2 � Qf2kX2;ı
C ı

"2
kˇ � Q̌kX3;ı

�
;

kG3.ˆ; f2; ˇ/ � G3. Q̂ ; Qf2; Q̌/kX3;ı
�

C.c1; c2; c3/
�
ı"kˆ � Q̂ kX1;ı

C ı"2kf2 � Qf2kX2;ı
C ıkˇ � Q̌kX3;ı

�
:
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We now consider the scaled norms

"k � k yX1;ı
D k � kX1;ı

; ı
1
2 k � k yX2;ı

D k � kX2;ı
; "2k � k yX3;ı

D k � kX3;ı
:

With this new notation the last formulas become

(6.37)
kG1.0; 0; 0/k yX1;ı

� C; kG2.0; 0; 0/k yX2;ı
� Cı

1
2 ;

kG3.0; 0; 0/k yX3;ı
� Cı;

kG1.ˆ; f2; ˇ/ � G1. Q̂ ; Qf2; Q̌/k yX1;ı
�

C.c1; c2; c3/
�
ıkˆ � Q̂ k yX1;ı

C ı
1
2 kf2 � Qf2k yX2;ı

C ıkˇ � Q̌k yX3;ı

�
;

kG2.ˆ; f2; ˇ/ � G2. Q̂ ; Qf2; Q̌/k yX2;ı
�

C.c1; c2; c3/
�
ı

1
2 kˆ � Q̂ k yX1;ı

C ıkf2 � Qf2k yX2;ı
C ı

1
2 kˇ � Q̌k yX3;ı

�
;

kG3.ˆ; f2; ˇ/ � G3. Q̂ ; Qf2; Q̌/k yX3;ı
�

C.c1; c2; c3/
�
ıkˆ � Q̂ k yX1;ı

C ı
3
2 kf2 � Qf2k yX2;ı

C ıkˇ � Q̌k yX3;ı

�
:

If C is the constant appearing in (6.37), from the last four formulas we deduce that

if ı is sufficiently small then .G1;G2;G3/ has a fixed point in

fk � k yX1;ı
� 2C g \ fk � � Lf2k yX2;ı

� 2Cı
1
2 g \ fk � k yX3;ı

� 2Cıg:
This, by the comments before (6.36), leads to a solution of (NLS") with the desired

asymptotics. �
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