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Abstract

We prove existence of a special class of solutions to the (elliptic) nonlinear
Schrédinger equation —e2 Ay + V(x)¥ = |¥|?~!y on a manifold or in Eu-
clidean space. Here V represents the potential, p an exponent greater than 1,
and ¢ a small parameter corresponding to the Planck constant. As ¢ tends to 0
(in the semiclassical limit) we exhibit complex-valued solutions that concentrate
along closed curves and whose phases are highly oscillatory. Physically these
solutions carry quantum-mechanical momentum along the limit curves. © 2008
Wiley Periodicals, Inc.

1 Introduction

In this paper we are concerned with concentration phenomena for solutions of
the singularly perturbed elliptic equation

(NLS,) — Ay + V)Y = [y1P7'y on M,

where M is an n-dimensional compact manifold (or the flat Euclidean space R"),
V' a smooth, positive function on M satisfying the properties

(1.1) 0<Vi1 =V <=Va [|Vl]es=Vs

(for some fixed constants V7, V>, and V3), ¥ a complex-valued function, ¢ > 0
a small parameter, and p an exponent greater than 1. Here A, stands for the
Laplace-Beltrami operator on (M, g).

Equation (NLS;) arises from the study of the focusing nonlinear Schrédinger
equation

(1.2) ih %—‘f = —h2AY + V)Y — P on M x [0, +00),
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where ¥ = ¥/ (x, 1) is the wave function, V(x) a potential, and % the Planck con-
stant. A special class of solutions to (1.2) consists of functions whose dependence
on the variables x and 7 are of the form ¥ (x,¢) = e !/ (x). Such solutions
are called standing waves and up to substituting V(x) with V(x) — w, they give
rise to solutions of (NLS,) for ¢ = A.

An interesting case is the semiclassical limit ¢ — 0, where one should expect
to recover the Newton law of classical mechanics. In particular, near stationary
points of the potential, one is led to search highly concentrated solutions, which
could mimic point particles at rest.

In recent years, much attention has been devoted to the study of the above prob-
lem: one of the first results in this direction was due to Floer and Weinstein [21],
where the case of M = R and p = 3 was considered, and where existence of
solutions highly concentrated near critical points of V' has been proved. This result
has since been extended by Oh [48] to the case of R” for arbitrary n, provided
1l <p< ’::% The profile of these solutions is given by the ground state Uy,
(namely, the solution with minimal energy, which is real-valued, positive, and ra-
dial) of the limit equation

(1.3) —Au + V(xo)u = u? inR",

where xg is the concentration point. The solutions u#, obtained in the aforemen-
tioned papers behave qualitatively like

Ug(x) > Uxo(x _XO)
I3

as ¢ tends to 0, and since Uy, decays exponentially to O at infinity, u, vanishes
rapidly away from xg.

The above existence results have been generalized in several directions, includ-
ing the construction of solutions with multiple peaks, the case of degenerate poten-
tials, potentials tending to 0 at infinity, and more general nonlinearities. We refer
the interested reader to the (incomplete) list of works [1, 2, 3,6, 7, 8, 13, 17, 23, 28]
and to the bibliographies therein.

We also mention the mathematical similarities between (NLS;) and problem

—?Au+u=u? inQ,

(Pg) g—’\f:O on 0$2,
u>0 in Q,

where Q is a smooth bounded domain of RY, p > 1, and v denotes the exterior
unit normal vector to 2. Problem ( P,) arises in the study of some biological mod-
els; see, e.g., [44] and references therein, and as (NLS,), it exhibits concentration of
solutions at some points of . Since the last equation is homogeneous, the location
of the concentration points is determined by the geometry of the domain. About
this topic, we refer the reader to [14, 18, 24, 25, 26, 27, 31, 32, 33, 45, 46, 47, 52].
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More recently new types of solutions to (NLS,) have been found, since when &
tends to O these solutions do not concentrate at points but instead at sets of higher
dimension. Before stating our main result, it is convenient to recall the progress
on this topic and to illustrate the new phenomena involved. Some first results
in this direction were given in [9, 11] in the case of radial symmetry, and later
improved in [4] (see also [5] for the problem in bounded domains), where necessary
and sufficient conditions for the location of the concentration set have been given.
Unlike the previous case, the limit set is not stationary for the potential V': indeed,
from heuristic considerations, the energy of a solution concentrated near a sphere
of radius r depends both on V and on its volume, proportional to er™ 1.

Based on the above energy considerations, in [4] a conjecture is stated concern-
ing concentration on k-dimensional manifolds for k = 1,...,n — 1; it is indeed
expected that, under suitable nondegeneracy assumptions, the limit set should sat-
isfy the equation

1 1
(1.4) 0V = VH witho, = 2 _ Lo — k),

p—1 2
where V¥ stands for the normal gradient and H for the curvature vector, and the
profile of the solutions at a point x¢ in the limit set should be asymptotic, in the
normal directions, to the ground state of

(1.5) —Au + V(xo)u =u? inR" %,

Since the Pohozaev identity implies p < ;’__]]i—f; for the existence of nontrivial

solutions, the latter condition is expected to be a natural one for dealing with this
phenomenon.

Actually, concerning (P.) another conjecture has been stated, asserting exis-
tence of solutions concentrating at sets of positive dimension. About the latter
problem, starting from the paper [40], there has been some progress in the general
setting (without symmetry assumptions), and after the works [34, 39, 41], existence
is now known for arbitrary dimension and codimension. About problem (NLS;),
the conjecture in [4] has been verified in [19] for n = 2 and k = 1. Some other
(and related) results, under some reduced symmetry assumptions have been given
in [10, 15, 43, 49].

It is worth pointing out a major difference between the symmetric and the non-
symmetric situation. In fact, since the ground states of (1.3) or (1.5) are of moun-
tain-pass type (namely critical points of some Euler functional with Morse index
equal to 1), equation (NLS;) becomes highly resonant. To explain this phenome-
non, we consider a real-valued function v in R? with a radial potential. We can
begin by finding approximate (radial) solutions of the form w7 ¢(r) ~ Uz(7),
where U; is the solution of (1.3) for n = 1 corresponding to V(7). Then, with a
good choice of 7, we can try to linearize the equation and find true solutions via a
local inversion. The linearized equation, taking v real for simplicity, becomes

—&?AY + V()Y — pus e(r)?~'y  inR%
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Using polar coordinates (7, ¥) and a Fourier decomposition of i with respect to ¢,
Y(r,0)=> j e””g/fj (r), we see that the following operator acts on each compo-
nent ¥;:

1 _ 1 .
(1.6) =&y — &2~y + V(); — pus e ()P +— %7,

Ll,s‘ﬁj

on [0, +00),

where L1 . (apart from the term 82%1/fj’-, which is not relevant to the next discus-
sion) represents the linearized equation of (NLS;) in one dimension near a soliton.
Since one expects to deal with functions that are highly concentrated near r = r,
the last term in the above formula naively increases the eigenvalues by a quantity
of order =5 & j2 compared to those of L1 .

The operator L1 ¢ possesses a negative eigenvalue 7, lying between two nega-
tive constants independent of ¢ (since Ur is of mountain-pass type, as explained
before) and a (nearly) zero eigenvalue o, by the translation invariance of (1.3) in
R!. As a consequence, the operator in (1.6) possesses two sequences of eigenval-
ues qualitatively of the form n; , >~ 1, + €2j2 and Oje > 0g + €2 j2. This might
generate two kinds of resonances: for small values of j, when 0, ~ 0, and for j
of order %, when 7; . could be close to 0.

A comment is in order on resonant modes, which can be roughly studied with a
separation of variables as before. The ones relative to o (for j small) oscillate
slowly along the limit set, while the ones relative to the resonant 7n; .’s oscillate
quickly with the number of oscillations proportional to k >~ %

The invertibility of the linearized operator will then be equivalent to having all
the 0 ¢’s and all the 7, ¢’s different from 0. A control on the resonant 0;’s can be
obtained (via some careful expansions) from a suitable nondegeneracy condition
involving the limit set and the potential V. On the other hand, the possible van-
ishing of some 7; . is peculiar to this concentration behavior and more intrinsic, so
invertibility can only be achieved by choosing suitable values of ¢.

These formal considerations can also apply to the case of concentration near a
general manifold (without symmetries) in higher dimension or codimension, and
related phenomena appear in some geometric problems as well that deal with the
construction of surfaces with constant mean curvature; see [38, 42]. When 2 is a
radially symmetric domain and the potential V' is radially symmetric, the problem
is simpler, since working in spaces of invariant functions avoids most of the above
resonances.

In this paper we construct a new type of solution, which concentrates along some
curve y, and which physically carries momentum along the limit set. Differently
from those discussed before, these solutions are complex valued and their profile
near any point xo in the image of y is asymptotic to a solution to (1.3), which
decays exponentially to 0 away from the x,-axis of R” and is periodic in x,. More
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precisely, we consider profiles of the form
(1.7 p(x' xp) = T (K), X = (x1..... Xn1).

where f is some constant and U (x") a real function. With this choice of ¢, the
function U satisfies

(1.8) —AU + (f2+ V(xo))U = 01770 inR"!

and decays to O at infinity. Solutions to (1.8) can be found by considering the (real)
function U satisfying —AU 4+ U = UP in R"! (decaying to 0 at infinity), and
by using the scaling

U(x) = hU(kx"),

(19) ~ 1 ~ 1
h=(f?+ V@)™, k=(f*+V(x0)2.

In the above formulas fA can be taken arbitrarily, and /i and k have to be chosen ac-
cordingly, depending on V(xg). The constant fA represents the speed of the phase
oscillation and is physically related to the velocity of the quantum-mechanical par-
ticle described by the wave function.

Usually standing waves have zero angular momentum, and with the exception
of the present paper we are aware of only one result in this direction, given in [16]
(see also the comments there) where the case of an axially symmetric potential
is considered. Our goal here is to treat this phenomenon in a generic situation,
without any symmetry restriction. Some of the difficulties of such an extension
were naively summarized in the above discussion, but some new ones arise due
to the fact that the standing waves are complex valued and their phase is highly
oscillatory; more comments on these issues are given later.

Before stating our main result, we discuss how to determine the limit set. If we
look for a solution i to (NLS;) with the above profile, then it should qualitatively
behave as

(1.10) VG0 ~ e hG)U (k@;),

&

where § is the arc length parameter of y, and ¢ a system of geodesic coordinates
normal to y. To obtain more flexibility, we choose the phase oscillation to depend
on the point y(5), while /(5) and k(5) should satisfy

1 _ _ IR
(L1 2@ = ("G + VD)7, kG = ((f'G)* + V()2 .
which is the counterpart of (1.9) for a variable potential.

The function f(5) can be (heuristically) determined by using an expansion of
(NLS,) at order ¢; a computation performed in Subsection 2.3 (see in particular
formula (2.8)) shows that

(n=Dp-1

(1.12) f'(5) =~ AR?(5) witho = >

2,
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where # is an arbitrary constant. At this point, only the curve y should be deter-
mined.

First of all, we notice that the phase should be a periodic function in the length
of the curve, and therefore by (1.12) it is natural to work in the class of loops

(1.13) r:= {y : R — M periodic : A/h(i)a ds = const},
¥

where s stands for the arc length parameter on y. Problem (NLS;) has a variational
structure, with the Euler-Lagrange functional given by

_l 2 2 2 _; +1
Ep) = 5 [ @R+ VlyP) = — [t
M M

For a function of the form (1.10), by a scaling argument (see (2.11)) we have

(1.14)  Eg(y) ~&"! /h(s)"ds with = p+1— %(p — D(n—1);
Y

therefore a limit curve y should be a critical point of the functional |, v h(5)? d5 in
the class I'. With a direct computation (see Subsection 2.4), we can check that the
extremality condition is

(1.15) VNV=H(p;1h1’_1—2A2h2")

where, as before, VNV represents the normal gradient of V and H the curvature
vector of y. Similarly, via some long but straightforward calculation, we can find
a natural nondegeneracy condition for stationary points that is expressed by the
invertibility of the operator in (2.22) acting on the normal sections to y (we refer
the reader to Section 2 for the notation used in the formula). We notice that, since
formula (1.12) determines only the derivative of the phase, to obtain periodicity we
need to introduce some nonlocal terms; see (2.14). After these preliminaries, we
are in position to state our main result.

THEOREM 1.1 Let M be a compact n-dimensional manifold, let V : M — R be
a smooth, positive function, and let 1 < p < % Let L > 0; then there exists
a positive constant Ay, depending on 'V, p, and L, for which the following holds:
If 0 < A < A, if y has length less than or equal to L and satisfies (1.15), and
the operator in (2.22) is invertible on the normal sections of y, there is a sequence
ex — Osuchthat problem (NLSg, ) possesses solutions ¢, having the asymptotics

in (1.10), with f satisfying (1.12).
Remark 1.2.

(i) The statement of Theorem 1.1 remains unchanged if we replace M by R”
(or with an open manifold asymptotically Euclidean at infinity), and we assume
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V to be bounded between two positive constants and for which |V/V| < Cj,
[ = 1,2, 3, for some positive constants Cj.

(i) The restriction on the exponent p is natural, since (1.8) admits solitons if
and only if p is subcritical with respect to dimension n — 1.

(iii) The smallness requirement on + is technical, and we believe this condition
can be relaxed. Anyway, for % <p< Zi_;’ 4 should have an upper bound

depending on V to have solvability for both (1.9) and (1.12). About this condition,
see Remark 2.2 and Remark 4.7.

(iv) Apart from the assumption on +, Theorem 1.1 improves the result in [16].
In fact, in addition to removing the symmetry condition (which is the main issue),
the characterization of the limit set is explicit, the assumptions on V' are purely
local, and the upper bound on p is sharp.

(v) The existence of solutions to (NLS,) only for a suitable sequence ¢, — 0
is related to the resonance phenomenon described above. The result can be ex-
tended to a sequence of intervals in the parameter € approaching 0 but, at least with
our proof, we do not expect to find existence for all epsilons.

Taking #4 = 0 (hence f’ = 0), from (1.11) it follows that V = A”~1 and that
(1.15) is equivalent to (1.4), so as a consequence of our theorem, we can prove the
conjecture in [4] for k = 1, extending the result in [19].

COROLLARY 1.3 Let M be a compact Riemannian n-dimensional manifold with
metric g, let V : M — R be a function satisfying (1.1), and let 1 < p < %
Let y be a simple closed curve that is a nondegenerate geodesic with respect to the

weighted metric
r+l_n—1

Ve=t1"2 g
Then there exists g — 0 such that problem (NLSg, ) has real-valued solutions
Ve, concentrating neary as j — o0 and having the asymptotics

V(y())?
)

Vor 5.0) =~ V(y(f))p'—w(

where § stands for the arc length parameter of v, and { for a system geodesic
coordinates normal to y.

Corollary 1.3 also gives some criterion for the applicability of Theorem 1.1; in
fact, starting from a nondegenerate geodesic in the weighted metric, via the implicit
function theorem for + sufficiently small, we obtain a curve for which (1.15) and
the invertibility of (2.22) hold. In particular, when V is constant, we can start with
nondegenerate close geodesics on M in the ordinary sense.

To prove Theorem 1.1 we proceed as follows: We collect some preliminary
material in Section 2, where we recall some geometric facts, and we study the
functional in (1.14) constrained to the class of curves I', determining the Euler-
Lagrange equation together with the nondegeneracy condition.
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In Section 3 we derive some expansions (in powers of ¢) of equation (NLS;) for
Y of the form (1.10). To do this, it is convenient to scale problem (NLS;) in the
following way:

(1.16) —Ag ¥ + V(ex)y = [y [P~y in M.,

where M, denotes the manifold M endowed with the scaled metric g, = (1/¢?)g
(with an abuse of notation we might often write M, = %M ,and if x € M., we
write ex to indicate the corresponding point on M).

We are now looking for a solution concentrated near the dilated curve y, := %y.
We let s be the arc length parameter of y, so that s = es, and we let (Ej)j=2,...»
denote an orthonormal frame in Ny (the normal bundle of y) transported in parallel
to the normal connection; see Section 2. We also let (y;); be a corresponding set
of normal coordinates. Since we want to allow some flexibility both in the choice
of the phase and of the curve of concentration, we define f~0(§) = f(5) + ¢f1(5),
and we set z; = y; — ®;(5), where (®;);=2,... » are the components (with respect
to the coordinates y) of a section @ in Ny. Then, with a formal expansion of ¥ in
powers of ¢ up to second order, in the coordinates (s, ) near y,, we set

V(5. 2) = e 2 (o) Ulk(e)2) + elwr + iwi] + £2[y + ivil),

s € [0, %], z € R" ! and L = L(y), the length of y, for some corrections w,
w;, vy, and v; (which have to be determined) to the above approximate solutions.

In Subsection 3.2 we show that these terms satisfy equations of the form &£, w,
=%, Liw; = F;, Lrvy = ?7‘,, and £;v; = f‘l where

0 =—=Av +VE)v — ph(5)PIUKG)z)P 1o

. N N inR" 1,
Eiv=—A v+ VE)v—h@G)PLUMKG)Z)P v

(1.17)

and where %, ¥;, ﬁr, and 33‘1 are given data that depend on V, y, 5, +A, ®, and
f1. The operators £, and &; are Fredholm (and symmetric) from H?(R"~1) into
L2(R™~1), and the above equations for the corrections can be solved provided the
right-hand sides are orthogonal to the kernels. It is well-known (see, e.g., [30]) that
£ has a single negative eigenvalue, a kernel with multiplicity » — 1 spanned by
the functions d; U(k(5)z), [ = 2, ..., n (the generators of the normal translations),
while all the remaining eigenvalues are positive. The operator &£; instead has one
zero eigenvalue with eigenfunction U(k(5)z) (the generator of complex rotations)
and all the remaining eigenvalues positive. As explained above, condition (1.15)
and the nondegeneracy of the operator J help us to determine w;,, w;, v, and v;
(and f1), respectively, namely to solve (1.16) at order ¢ first, and then at order £2.

As discussed before, some fast-oscillating functions (along ) contribute to gen-
erate some resonance, but these aspects are treated in later sections. Even at this
stage, however, there are new difficulties compared to the results in [19, 34, 39, 40].
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In our case the solutions are complex valued, and this causes an extra degener-
acy due to their invariance under multiplication by a phase factor. As a conse-
quence, we have a further (infinite-dimensional) approximate kernel, correspond-
ing roughly to a factor of ¥ in the form e~/1®) for f; arbitrary. The correction
in the phase can also be determined by a formal expansion in ¢ and, as for f’,
we still obtain nonlocal terms. Also, when expanding formally the solutions in
¢, the highly oscillatory behavior of solutions generates an increasing number of
derivatives in 5.

In Section 4 then we set up the strategy to obtain true solutions from the approx-
imate ones. First of all, since U (and its derivatives) decay fast at infinity like

(1.18) U(r) ~ e asr ~+00,

it is possible to localize the problem in a neighborhood of the scaled curve y,; this
step is inspired by [19] and worked out in Subsection 4.2. We then try to find a true
solution of the form

e (h(es) Uk (e5)2) + e[wy + iwy] + £2[vy + iv] + B},

with W suitably small and f close to fo, via some local inversion arguments. From
a linearization of the equation near v/, ¢, the operator L, acting on  in the coor-
dinates (s, z) is then the following:

Lo := =020 — Az + V(ex) — |¥a.¢|? 10
— (p = DIY2,el? Y2, N (Y2 6).

Here N denotes the real part. Decomposing first w into its real and imaginary parts,
and then in Fourier modes with respect to the variable es, we can write

W =W, + il = »_sin(jes)iy;(2) +i »_ sin(jes)iby ;(2)
J J

(1.19)

(forgetting for simplicity about the cosine functions). If we take (as a model prob-
lem) V' = 1, then the operators (in the z-variables) acting on the real and imaginary
components are, respectively, £, + €22 and £; + &2 2.

As for (1.6), the kernels of £, and &£; produce a sequence of eigenvalues for
L that behave qualitatively like £2j2, and for small values of j these become
resonant. With an accurate expansion of these eigenvalues, we find that the non-
degeneracy assumption on (2.22) prevents each of them from vanishing. However,
the fact that £, possesses a negative eigenvalue as well generates an extra sequence
of eigenvalues of L, qualitatively of the form —1 + €22, j € N. As explained
before, the only hope to get invertibility is to choose the values of ¢ appropriately.
For the Neumann problem (P;) the resonance phenomenon was taken care of us-
ing a theorem by T. Kato [29, p. 445], which allows us to differentiate eigenvalues
with respect to €. In the aforementioned papers it was shown that when varying the
parameter ¢ the spectral gaps near O shrink only slightly, and invertibility can be
obtained for a large family of epsilons.
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However, when the concentration set is one dimensional, the spectral gaps of
the resonant eigenvalues (with fast-oscillating eigenfunctions) are relatively large,
of order ¢, and the profile of the corresponding eigenfunctions can be analyzed by
means of a scalar function on [0, L] (see below and in Subsection 6.2). This might
allow us to bypass Kato’s theorem and use a more direct approach, employed in
[42] to exhibit constant mean curvature surfaces of cylindrical type embedded in
manifolds, and in [19] for studying solutions of (NLS;) in RZ. We can partially
take advantage of these techniques (see the comments in Section 4), but some new
difficulties arise due to the phase oscillations in (1.10).

From the above discussion, we expect to find three possible resonances: two
of them for small values of the index j (with eigenvectors roughly of the form
e 1S EN/ey, Uk (5)z) sin(ejs),] = 2,...,n,andie "V EN/ Uk (5)z) sin(e)s),
respectively), and a third one for j of order %, precisely when —e? j 2 coincides
with the first eigenvalue of £, .

To understand this behavior, we first study the spectrum of a model operator
similar to (1.19), where we assume V = V > 0and Y2,¢ to coincide with the
function in (1.7). For this case we characterize completely the spectrum of the op-
erator and the properties of the eigenfunctions; see Subsection 4.3 and in particular
Proposition 4.5. The condition on the smallness of 4 appears precisely here (and
only here) and is used to show that the resonant eigenvalues are only of the forms
described above. Removing the smallness assumption might indeed lead to further
resonance phenomena; see Remark 4.7 for related comments.

We next consider the case of nonconstant potential V. Since this has a slow
dependence in s along y,, one might guess that the approximate kernel of L. (see
(1.19)) might be obtained from that for constant V', allowing a slow dependence
in s of the profile of these functions. With this criterion, given a small positive
parameter §, we introduce a set K (see (4.50) and the previous formulas) consist-
ing of candidate approximate eigenfunctions on L., once multiplied by the phase
factor e 1(/(€))/¢ More comments on the specific construction of this set can be
found in Subsection 4.3, especially before (4.50).

In Proposition 4.9 we show that this guess is indeed correct; in fact, we prove
that the operator L, is invertible provided we restrict ourselves to the subset H of
functions that are orthogonal to e ~*(/(e9)/¢ K¢ This property allows us to solve
the equation up to a Lagrange multiplier in Kg; see Proposition 4.14. For tech-
nical reasons, we prove invertibility of L. in suitable weighted norms, which are
convenient to deal with functions decaying exponentially away from ys.

Compared to the other papers that deal with this kind of resonance, the approx-
imate kernel here depends genuinely on the variable s (in [34, 39, 40, 41, 42]; the
problem is basically homogeneous along the limit set, while in [19] it can be made
such through a change of variables). To deal with this feature, which is the main
cause of difficulty in Proposition 4.9, we localize the problem in the variable s
as well. Multiplying by a cutoff function in s, we show that orthogonality to K
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implies approximate orthogonality to the set 1?5; see (4.53) and the previous for-
mulas, which is the counterpart of Kg for a potential frozen at some point in yg;
once this is shown, we use the spectral analysis of Proposition 4.5.

Section 5 is devoted to choosing a family of approximate solutions to (1.16);
since we have many small eigenvalues appearing, it is natural to try looking for
functions that solve (1.16) as accurately as possible. Our final goal is to annihilate
the Lagrange multiplier in Proposition 4.14, and to do this we choose approximate
solutions \ilz, ¢ (in the notation of Section 5), which depend on suitable parameters:
anormal section @, a phase factor f>, and a real function . These parameters cor-
respond to different components of K5 and are related to the kernels of £, (+¢&2j2)
and £;(+¢2j?); see the above comments. The function B in particular is highly
oscillatory and takes care of the resonances due to the fast Fourier modes.

We next need to derive rigorous estimates on the error terms and to study in
particular their Lipschitz dependence on the data ®, f>, and B. Proposition 5.2
collects the final expression for —Ag, ¥ + V(ex)¥ —|¥|?~ 14 on the approximate
solutions l112,8; the error terms 2 are listed (and estimated) before in that section,
together with their Lipschitz dependence on the parameters.

Finally, after performing a Lyapunov-Schmidt reduction onto the set Kg (see
Proposition 6.1), we study the bifurcation equation. In doing this we crucially
use the formal computations in Section 3 and the error estimates in Section 5. In
particular, for ® and f> we find as main terms, respectively, the operator J in
(2.22) and the one in the middle of (3.24), both appearing when we perform formal
expansions. These operators are both invertible by our assumptions, and therefore
we are able to determine ® and f, without difficulty.

The operator acting on f instead is more delicate, since it is qualitatively of the
form

(1.20) —&?B"(5) + A(S)B  on |0, L],

with periodic boundary conditions, where A is a negative function. This operator is
precisely the one related to the peculiar resonances described above. In particular,
it is resonant at frequencies of order %, and this requires us to choose a norm for 8
that is weighted in the Fourier modes; see (5.6) and Subsection 6.2. For operators
like that in (1.20) there is in general a sequence of epsilons for which a nontrivial
kernel exists. Using Kato’s theorem though, as in [34, 38, 39, 40, 41], we pro-
vide estimates on the derivatives of the eigenvalues with respect to ¢, showing that
for several values of this parameter the operator acting on f is invertible. In this
operation also the value of the constant # (see (1.12)) has to be suitably modi-
fied (depending on ¢) in order to preserve the periodicity of our functions. Once
we have this, we apply the contraction mapping theorem to solve the bifurcation
equation as well.

The results in this paper were first written in two different preprints [35, 36].
Some lengthy proofs, consisting of many explicit computations, have been omitted
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here for reasons of brevity, but precise references to the preprints will be given.
Theorem 1.1 was announced in the note [37].

Notation and Conventions

e Dealing with coordinates, capital letters like A, B, ... will vary between 1
and n while indices like j,/, ... will run between 2 and n. The symbol i
will always stand for the imaginary unit.

e For summations, we use the standard convention of summing terms where
repeated indices appear.

e We will choose coordinates (xp,...,X,) near a curve y, and we will pa-
rametrize y by arc length letting x; = §. Its dilation y, := %y will be
parametrized by s = % 5. The length of y is denoted by L.

e For simplicity, a constant C is allowed to vary from one formula to another,
and also within the same line.

e For a real positive variable r and integer m, O(r') (respectively, o(r'))
will denote a complex-valued quantity for which |O(r™)/r™| remains
bounded (respectively, |o(r"™)/r™| tends to 0) when r tends to 0. We might
also write 0.(1) for a quantity that tends to O as € tends to 0.

2 Study of the Reduced Functional

In this section we consider the functional in the right-hand side of (1.14) defined
on the set I', representing the approximate energy E, of a function concentrated
near y with the profile (1.10). We first introduce a convenient set of coordinates
near an arbitrary (smooth) closed curve in M. Then, using these coordinates, we
write the Euler equation and the second variation formula at a stationary point.

2.1 Geometric Preliminaries

In this subsection we discuss some preliminary geometric facts, referring, for
example, to [20, 50]. Given an arbitrary simple closed curve y in M, we choose
coordinates x1, ..., X, near y, called Fermi coordinates, in the following way: We
let x1 parametrize the curve y by arc length. At some point ¢ in the image of y, we
consider an orthonormal (n — 1)-tuple (Y3, ..., Y,), which forms a basis for Ny,
the normal bundle of y at g. We extend the ¥;’s as vector fields along y via parallel
transport along the curve with respect to the normal connection V¥V, namely, by
the condition VJ]./VYI =0for/=2,...,n.

Next we parametrize a point near y using the following coordinates (s, y) €
R x R"1,

(5.¥2.-...¥n) > expy (V22 + - + yu¥n),

where exp, is the exponential map in M through the point g. In this way, fixing 5,

each curve t > ty, for y € R”~1\ {0} and ¢ close to 0, is mapped into a geodesic
in M passing through y(5).
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Let us now define the vector fields £; = % and E; = 8%, forl =2,...,n
We notice that on y each E; coincides with Y;, while £ on y is nothing but p.
By our choice of coordinates it follows that Vg E = 0 on y for any vector field £
that is a linear combination (with coefficients depending only on ) of the E;’s,
j = 2,...,n. In particular, for any [, j = 2,...,n and for any @ € R, we have
VE, +aE; (El + aEj) = 0 on y, which 1mphes VE, Ej + VEg; E; = 0 for every
l,j = 2,...,n. Using the fact that E4’s are coordinate vectors for A = 1,...,n
and in partlcular VE,Ep = VEzE4 forall A,B = 1,...,n, we obtam that
Vg, E; =0forevery [, j = 2,...,n. This immediately yields

Img1j = Em(Ey, Ej)
= <VEmE1,Ej) + (E,,VEmEj) =0 ony, l,jym=2,...,n
Moreover, since the E4’s are coordinate vectors for A = 1, ..., n, we obtain
O0mg1; = Em(E1, Ej)
= (VE, E1. Ej) + (E1. VE, Ej)
= (VElEm,Ej) + (El,VEmEj) =0 ony, m,j=2,...,n
Here we used the fact that V‘]EVI E; = 0 on y, namely, that Vg, Ej, has zero normal
components.

Ift H = H™E,, is the curvature vector of y (which is normal to the curve), then
we have (Vg, E;y, E1) = —H™ on y, so we easily deduce that

2.1 Img11 = Em(E1. E1) = 2(VE, Em, E1) = —2H™ ony.

We can also prove that the components Rj,1; of the curvature tensor are given by

2.2) Rimij = —% 9,811 + H™H.

Indeed, we have

—Rim1j = (R(E1, Ej)Er, Em) = (VE,VE, E1, Em) — (VE,VE, E1, Em)
= (VE,VE, E1, Em) — Ej(VE, E1, Em) — (VE, E1, VE; Em)
(VEIVE Ey E ) E, (VEl Em)
= (VE,VE, E1, Em) — E]El(ElaEm> + Ej(E1,VE, En)
= (VE,VE, E1, Em) + Ej(E1, VE, E1)
= E1(VE,E1. Em) — (VE; E1. Vg, Em) + E; Em(E1, E1)
= 13],,1811 10mg11 95811,

where here we have used the above properties and the fact that

Vg, E1 = Vg Ej = %3jg11E1.

Using (2.1) and (2.2), the above discussion can be summarized in the following
result:
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LEMMA 2.1 Inthe coordinates (S, y), for y close to O the metric coefficients satisfy

n n
1 .
g =1-23 H"ym+= 3 (H"H’ = Rimjly)ymyr + O(yP).

m=2 m,l=2

1 n
g =5 X gl ymy + 00y,
m,l=2

1 n
8kj(¥) = bkj + 5 > Om18kj |, ymyi + O(yP).

m,l=2

The second derivatives 3’211 ;&1 and 82m ;8kj can be expressed in terms of the
curvature tensor and the curvature of y through reasoning as for (2.2). However, for
our purposes it is not necessary to have such a formula, so we leave the expansion
of these coefficients in a generic form.

2.2 First and Second Variations of the Length Functional

We next recall the formulas for the variations of the length of a curve with re-
spect to normal displacements. We start with a regular closed curve y in M of
length L, which we parametrize by arc length, using a parameter § € [0, L]. Then
we consider a two-parameter family of closed curves y;, 1, : [0, L] — M fort,1,
in a neighborhood of 0 in R such that yg,0 = y. The length L(t1,t2) of yz, 1, i8
given by

L
L(ti.12) = / dl = / Gt Fer.n) 5.
0

Viy.1n
where d/ is the arc length parameter and y;, s, stands for dy;, 1, /ds. We also
define the vector fields V and W along ys, s+, as V = 0y 1,/0t1 and W =
0Yt, .1,/ 0t2. In the above coordinates, the vector fields V and ‘W along y can be
written as

n n
V=> VIHE, W= W'G)En.
Differentiating L (¢1, t2) with respect to ¢; we find
L(t1, 1) _ /L (VyVtite: Virta)
- . . T
on 0 (Pt Viiu12) 2
Using (2.1), at (¢1,t2) = (0,0) we have
(VyVi s Vi) = =V H™;

therefore we can write the variation of the length at y in the following way:

IL(t1,12) =_vamHmdg=_/L(fv H)ds.
(t1,£2)=(0,0) 0 0

ds.

(2.3)

(2.4) o,
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Using (2.3) we can evaluate the second variation of the length as
PL(t, ) _ /L [(va'n,m,vvml,tz) + (P2 Vw Vi )
011012 0 (Vt1,25 ))tl,tz)%
(V1,00 VYV, (V110 VWY1, ,t2>:| 5.

. . 3
<yt15t2’ ytlatz) 2

so at (t1,t2) = (0,0) we find

?L(11,12)
dt1 01>

(t1,2)=(0,0)
L
fo [(Vaw 7. Vi) + (7. Vg V) — (7. Vy7) (7. Vap i) 5.

By using the definition of the Riemann tensor and the fact that V and ‘W are coor-
dinate vector fields (so that [V, W] = 0), the last formula yields
I?L(t1.12)
dt1 012

(0,0)

L

= /O [(Vy W,V V) + (., ViV, V) — (3, V; VI, V; W) ] ds
L

= /0 [(V; WV, V) + (R(W, 7))V, ) — (7, V; V)(y, V; W) ] d5§

L
—/ (V7. Vy'V)ds.

0

Here, we have used the fact that
g7, VwVyV) = (R(W, )V, p) + 7 {(VwV,p) — (Vyy, Vw'V)
and fOL Y(VwV,y)ds = 0. Since Vg, E; =0ony forl, j =2,...,n, we have
) L
VV= > W'VVgE = / (V;7, VwV)ds = 0.
jm=2,...n 0

Moreover, recalling (2.1), we obtain
VyV =Y VEj+) VIVgE =) VEj—-) H/V/E,.
Jj=2 j=2 Jj=2 j=2

This implies, at y,
(ViW. Vp V) + (R(W, p)V.y) = (y. Vu V)(y, V; W) =

n n
S VIW = 3" Ry v wh
j=2 Jl=2
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In this way the second variation of the length at y becomes

L  nr "
2L (11, 12) :/ (VW = 3 Ry v w!)ds.
0

2.5)
atl 8t2 ([1’t2)=(0,0) J ]al=2

2.3 Determining the Phase Factor

In this section we formally derive the asymptotic profile of the solutions to
(NLS,) that concentrate near some curve y, and we determine some necessary
conditions satisfied by the limit curve. For doing this, using the coordinates (5, y)
introduced in Subsection 2.1, we look for approximate solutions v (s, y) of (NLS,)

making the ansatz
. G k(s
v = Eheu (C0). s yert
e

where the function U is the unique radial solution (see [12, 22, 30, 51]) of the
problem

—AU +U =UP inR"1,
(2.6) Uly)—0 as |y| — +oo,
U>0 in R? 1,

and where the functions f, &, and k are periodic on [0, L] and have to be deter-
mined. With some easy computations we obtain

Iy _ if'()

w__ s WU (k(E)y) . ; LG) +o LGy . (k(i)y)
as £ € £

| i (k(s)y) v
e () B 2
f ( ) ( (S)Y) y (S))zh( DU (k(i)Y)
+ 21 G)K'(5)VU ( ¢ )y) Y GGV, U (k(i)y) 3
+ hE) (K (3)?V2U (k(i)y) [Z.2]+w@u (k(i)y)} i
and also

2 <
Ay Y (5. y) = (k(s)) A U(k(i)y)e—i"?)h(i).

Since U decays to 0 at infinity (exponen‘ually indeed, by the results in [22]), and
since the function ¥ is scaled of order ¢ near the curve y, in a first approximation
we can assume the metric g of M to be flat in the coordinates (s, y); see the
expansions in Lemma 2.1.
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We look now at the leading terms in (NLS), which are of order 1. Since —A gy
is multiplied by €2, we have to focus on the terms of order 1/¢2 in the Laplacian
of ¥. In the above expressions of 3y /95, 021 /952, and AV, we have that the
function U and its derivatives are of order 1 when |y| = O(¢); therefore when
the variables y appear as factors in these expressions, we consider them to be of
order . For example, V2U (k(s)y )2 e S] will be regarded as a term of order 1.

With these criteria, using the above computations and assumptions, and if we
impose that the leading terms in (NLS;) vanish, we obtain

_REhE)A, U( 5y ) O [VE) + (6N U (

h(3)PU (k(z)y)

k(E)y) _
) =

From (2.6), we have the two relations
2.7 K23 =hEP™ and  [VE) + (f()] = kG)* = h(G)P

We next obtain an equation for f, which is derived looking at the next-order
expansion of (NLS;). The next coefficient arises from the terms of order % in
—Ag ¥, which are given by

; [f”(f) k(f)y) , 'S (S)
& &

h(E)U( WG )U(

f (S) h(3)k'(5)VyU (k(i)y) : X] i LS

&

k(i)y)
&

Multiplying this expression by U (@), integrating in y € R"™1, and if we im-
pose that this integral vanishes as well, we get

0= /" GhE) [ v (*)ay 20 [ 02 (CF)ay

R7—1

£ RO E) [ (K2 ) w0 (K2 24

Integrating by parts and reasoning as for the usual Pohozaev’s identity, we obtain
that f must satisfy

k'(s)
k()

This is solvable in f/(5) and gives, for an arbitrary constant +4,

" ®hE) + 2 (I S) -

(n— 1)(11 1 2

(2.8) F'(5) = AkG)" h(3) "2 = ALG)
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V+ AZhZG

V+ A2h2cs

FIGURE 2.1. The graphs of V 4 #42h%° and h?~! for p < “*2 and for

n—2
p= % with A < 1.

where we have used equation (2.7) for k. Now we can solve the equation for /(s)
depending on the potential V'(5) and the above constant «. In fact, we get that 4 (5)
should solve

(2.9) V(3) 4+ AZh(5)%° 1= V(5) + AZh(5)*~DP=D=4 = 5P~
where we have set
_m=D(p-1
s=n-Dp=1)
2

Remark 2.2. We notice that, assuming + to be small enough (depending on V' and

. . . - . +2
p), the above equation is always solvable in /(). More precisely, when p < %5
(and hence when 20 < p — 1), the solution is also unique. For p > % there
might be a second solution. In this case, we just consider the smallest one, which
stays uniformly bounded (both from above and below) when # is small enough;

see Figures 2.1 and 2.2.

(2.10) 2.

Remark 2.3. In the above expansions, considering the terms of order ¢, as already
noticed, we considered the metric g to be flat near the curve y, and we tacitly as-
sumed the potential V' to depend only on the variable 5. Indeed, expanding the
Laplace-Beltrami operator and the potential V' and taking the variables y into ac-
count, we obtain an extra term of order & that does not affect our computations
since it turns out to be odd in y, so it vanishes once multiplied by U(k(s)y/e)
and integrated over R”~L. For more details, we refer to Section 3, where precise
estimates are worked out (in a system of coordinates scaled in ¢).

2.4 The Euler Equation

Using the heuristic considerations of the previous subsection, we now compute
the energy of an approximate solution ¥ concentrated near a closed curve y, and
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V+ A2h20

h h

FIGURE 2.2. The graphs of V + A%h2° and h?~! for p = 2 with

A > 1 and for p > ’::% with # small.

then find the y’s for which this energy is stationary. We let v, 4 denote the function
constructed in Subsection 2.3. In order for the function yr,, 4 to be globally well
defined, we need to impose one more restriction, namely that v, 4 is periodic in

s with period L. This is equivalent to requiring thgt fQL f'(5)d5 be an integer
multiple of 27e, since we have the phase factor e ~(/)/8) i the expression of

Yy, 4. From (2.8), we then find that fOL h(5)? d5 is also an integer multiple of 2 ¢.
Multiplying (NLS,) by v, 4 and integrating by parts, from the fact that v, 4 is
an approximate solution we find

1 1
Eeyn) = 5 [Vl + VOOl aP)aVs = — [ 1al*!
M M

1 1
~(2- - P+ gy,
(2 p+1)/|%"’4’| &
M

Since v, 4 is highly concentrated near y, using the coordinates (5, y) introduced

in 2.1, we have that
L k(5)y
/lwy,mp“dvg :/ i / h(s)P+ U(—)
P
M 0 Rn—l

Using a change of variables, the last two formulas, and (2.7), we find that

p+1
dy.

2.11) Ee(Yry.u) ~ Coe™ ! /h(i)edi,
Y
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= 1 1
Co=(--—— Uy) Pt d
o=(3-517) [ wowrtas

Rnr—1

where

and where we have set
1
(2.12) 9=p+1—§(p—1)(n—1)=p—0—1.

Consider now a one-parameter family of closed curves y; : [0, L] — M, where ¢
belongs to a neighborhood of 0 in R and where y9 = y. We compute next the
approximate value of the derivative in ¢ of the corresponding energy defined by
(2.11).

As in Subsection 2.2 we let V; denote the vector field V;(5) = %’(E), and we
assume that 'V := Vy is normal to y. For any ¢ near 0, we let k;(5), h;(5), and
f1(5) be defined by (2.7), replacing y by y; and V(5) by V;(5) := V(y:(5)). Since
we require periodicity of each curve y; in the variable s, we also allow the constant
A given in (2.8) to depend on ¢. Denoting this by A/, by the above considerations
we choose #4; so that the following condition holds for every value of ¢:

L L
(2.13) / Arh:(5)° ds = / f/(3)d5 = const.
0 0

Below, we let A, = % A, and we will consider %;(5) to be a function of A;
while V;(5) is as implicitly defined in (2.9). From (2.4),

Vi (3)
L P
and differentiating (2.13) with respect to ¢ at = 0, we get

= (VVV(3), V(3)),

L oh L
/ th“_IW(VNV,V)ﬁ—A/ he(V,H)d5
0

+o‘\nf‘w/6/ h"l—d +A’/ h°ds =0,
0

where we have set A" = A and where VNV stands for the component of VV
normal to y. From this formula we obtain the following expression for +A':

AfOL (ho =1 2(VN Y, V) — b (V,H))d5
Ji (Acho=1 2L o poyas '

Similarly, computing the derivative of the (approximate) energy with respect to ¢,
we find

dEé‘(u)/[,A[)
dt

(2.14) A = —

t=0

oh o
6—1 N 6 6—1
(eh o (VYY) = (V. H) 4 04RO )ds
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Using (2.14), we deduce that the variation is given by

dES(u)/[,eA[)
dt =0
L g Acho=1 [Egpb-100 45
= | (V¥ [eh"—l— - Jo A |5
o IV Jo (Acho=1L% + ho)d5

L (Aoho—1 2 4 po)ds

Differentiating (2.9) with respect to #4 and V', we get

2 20
o _ A e
dA  (p—1)hP=2 —20A2h%0-1 av

so it follows that

L ARO[ on=1 2 g5
- / (V. H) [ho— Jo 40| gs.
0 J

(2.15)

_1 0h (p— HhP~1
2.16 Ach®™ — 4 h% = .
(2.16) oAt (p — Dh? — 20 A2ho

Similarly, since 8 = p — o — 1 (see (2.10) and (2.12)), we deduce that
g—1 0h 2AKhPTO2
A (p—1)hP=2 — 20 A2h20-1"

Therefore we also find
L N PN
Aoho—1 & 4 po p—1

Hence from the last formulas the variation of the energy becomes

2.17)

AE Uy h0) :/L(VNVv)%[Qhe—l_wha—l] ds
2.18) “ e b ) e
. L g 2A%0
_[ (V. H) [h _ —h"} ds.
0 P !

Also, from the second equality in (2.15), dividing by 4°, multiplying by %, and
using the identity p — o — 2 = 6 — 1, we obtain

0 oh 0 oh oh
h™0 —— 420470 — —— = 0nP02 — =g
e W p—1 v v
Using (2.18) and the last formula, we get the following simplified expression:
dEs(wyt,eA,)
dt =0

Lo N r—1, ,4 2.2 -
/ ——h (VI V, V) = (V.H) | —— WP —2A°h"° ) | d5.
o p—1 0
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Therefore the stationarity condition for the energy (under the constraint (2.13))
becomes (VN V, V) = (V, H)(‘!’T_lhp_1 — 242h29) for every normal section V,
namely,

—1
(2.19) vy = H(”T pp=1 2A2h2").

We will see that this formula will be crucial to finding approximate solutions.
Remark 2.4. By (2.16), we have that

(p — P!
(p—1Dh? —20A2H°"

9
(Ah) =

If A is sufficiently small (depending on V' and p), then %(Ah") > 0. This will
be used in the last section where, for a fixed ¢, we will adjust the value of the
constant # for obtaining periodicity of the function f.

2.5 Second Variation and Nondegeneracy Condition

We next evaluate the second variation of the Euler functional. As in Subsec-
tion 2.2 we consider a two-parameter family of closed curves yy, ;,, wWhere 1
and 7, are two real numbers belonging to a small neighborhood of 0 in R, and
where yp,0 = y. As before, we require the constraint (2.13) along the whole two-
dimensional family of curves, and we assume that the functions f; &, and k and the
constant /4 depend on 71 and 7, and we will use the notation #A;, ;,, etc. Keeping
this in mind, we define the two vector fields

_ 3)/;1,;2 W _ 8Vt1,12
ti,l2 — 3—11’ t1,t2 — W’
and we can assume that V := Vo and W := Wy are normal to the initial

curve y.
With some computations, which are worked out in [36, sec. 5.2], we find that, at

(Zl s t2) = (Ov 0)’

2
J EG(”WZI J1p by ,t2)
dt1 0ty

- fL [h9 _24%0 h"} [Z VI =3 RijimV "Wm]ds
0

p—1 Jjm

(2.20)

0 L
el R AR AT BT AICRT
r—1Jo

—(VNV, WY(H, V)}h 7 d5 —
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L
_ 9 / ot I ON vy v Y wyds
0

p—1 av
26 L oh
vy ho—l - ho \ds.
Here
A;:M C i = e i =
o (#1,£2)=(0,0) ds ds

where the 'V/ and W/ are the components of 'V and ‘W with respect to the basis
(Ej); introduced in Subsection 2.1.

Integrating by parts and using (2.14), from the last formula we derive that the
nondegeneracy condition is equivalent to the invertibility of the linear operator
J: x(Ny) = x(Ny) (from the family of smooth sections of the normal bundle to
y into itself) whose components are defined by

2
v == (10 = 22047 ) [+ 3 R
J

p —
— 0 h0—1 _ 2A%0 ho—1) j/pm
p—1
0
oo T IO, E) — H™V V. V)
~ 9 e Ny 9Ny By
p—1 v
20 / o—1 oh N
_ = —(V Em)—h°H™
p_lAAl(ah Sy (VY V. Em) —h :
where i/ = %

Using (2.19) and some other elementary computations (see subsection 2.5 in
[36]), we also find

2 2
AW)™ = —(h9 AT f h")iﬁm - 9(h9—1 A% ‘l’ho—l)h/vm
p- p-

0 o uN\2 1(.0 2420 o 2 j
4OV, Bl 4 5 (10 - 22 )(]Z_(a,-mguw)

2.22
(2:22) (6 —o)hP1

[(p — Dh® —20A2h0]
—(p— )G+ Gh2 — 1690A% 120 4 2 2(56 4 36)h0F0
(p — h? —2420h°

m

— 2AA)

+ H™(H, V)[

| E— |
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The latter expression of 'V is going to be useful later on. We summarize the results
of this section in the following proposition.

PROPOSITION 2.5 Consider the functional on curves fy ho(E)di restricted to the
set I' in (1.13). Then the stationarity condition is (2.19), and the nondegeneracy of
a critical point is equivalent to the invertibility of the operator J in (2.22).

3 Some Preliminary Expansions

In this section we find a family of approximate solutions to the scaled equation
(1.16). We consider a simple closed curve y that is stationary within the class I',
namely satisfying (2.19). First, we introduce some convenient coordinates near the
scaled curve y, = %y, expanding the Laplace-Beltrami operator with respect to
the scaled metric in powers of €. Then, using these expansions, we construct the
approximate solutions formally solving (1.16) up to order «.

3.1 Choice of Coordinates in M, and Expansion of the Metric Coefficients

Using the coordinates (5, y) of Section 2 defined near y, for some smooth nor-
mal section ®(5) in Ny, we define the following new coordinates (s, z) (here and

below we use the notation § = &s) near %y

(3.1) z=y—®es), zeR"L

In this choice we are motivated by the fact that in general we allow the approximate
solutions to be tilted normally to y,, where the tilting ® depends (slowly) on the
variable s; this allows some extra flexibility in the construction, as in [19, 34,
39]. As we will see, the choice of ® is irrelevant for solving (1.16) up to order
&; on the other hand, the nondegeneracy assumption will be necessary to guarantee
solvability of the equation up to higher orders.

We denote by g4p the metric coefficients in the new coordinates (s, 7). Since
y = z + D(es), it follows that

- 3yA)(3YB)
e =Y aun(20)(22)
w 0z¢ zZp

Explicitly, we then find

g1 =gl 0 t26) P81l g T ) V()P (E)gjm] 1o
J Jsm

21 =8l pe T Y PnE)giml, o &im = gimlzra
m
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At this point, it is convenient to introduce some notation. For a positive inte-
ger ¢, we denote by R;(z), Ry(z, ®), and R, (z, P, ®’) error terms that satisfy,
respectively, the following bounds, for some positive constants C and d:

|Rg(2)] < Ce?(1 +|z|%),

|Rg(z, @) < Ce¥(1 + |z]9),
|Rg(z, ®) — Ry(z, ®)| < Ced(1 + |z|)[|® — B,

and

IRy (z. ®, )| < Ce?(1 + |z|9),
|Ry(z, ®, ®) — Ry(z, d, )| < Ce9(1 + |z|D)[|® — ®| + | — '|].

We also introduce error terms involving second derivatives of ®, R, (z, ®,
@', ®”), which satisfy

|Rg(z, @, @, @")| < Cel(1 + |z|9) + Ce2T1(1 + |2])|d"|
and
|Ry(z, ®, &, ") — Ry(z, D, @', D)
< Cel(1 + 2D — D] + [ — '[J(1 + &(| 2| + |@"]))
+ qu-{-l(l + |Z|d)|q>// _ &)//|'

Using the expansion of the metric coefficients g4 p in Lemma 2.1 and this notation,
we then obtain

n
g =1-2¢ Z Hm(Zm + ®,)

m=2

1 n
(3.2) + 562 D dugnl, @m + Pm)(zr + 1)
m,l=2

+ &2|®'|? + R3(z, @, @),

3 1, <
g =e®j+ e 3 1], @m + Pm)@r + @) + Ra(z, @, @),
7l=
(3.3) =2

i 1, v
8kj = 8kj + 582 Z alznlgkj‘y(Zm + Om) (2 + 1) + R3(2, D, QD/),
m,l=2
Next we compute the inverse metric coefficients. Recall that, given a formal
expansion of a matrix as M = 1 4+ A + &2 B, we have

M1 =1—¢cA+&24% — ¢?B.
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In our specific case the matrix A is the following:

n
-2 H™ d ol

(3.4) A = m2=:2 (zm + Pm) i,
(D;. 0

and the elements of its square are given by

(1= 4( X H" G+ Om) + 2 (@)
J

m=2

m=2

Therefore, using the above formula, the inverse coefficients are

n
gl =1+2) H"Zm+ Pm)

m=2
1 n
2 2
-3¢ ;2 Imi811], (@m + Pm) (21 + Pp)
m,l=

n
2
+422(Y H™(zm + @)+ Ra(z. @, ).

m=2

We also get
. 1, <
gl = - — 582 > 0rigul, @m + Oz + @)
m,l=2
n
—262(Y° H™(am + ©m)) @) + Ra(z, @, @),
m=2

Moreover,

n
0;(g") =&Y 87,81j] (21 + ©1) — 267 H/ @) + R3(z, @, @),
=2

Similarly, with some simple calculations we also find
n
018" =26 Y (H™) @m + Pm)
m=2

n
+ 262 Z H™®! + R3(z, ®, @, d").

m=2
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Differentiating now g/ with respect to the first variable, we obtain

n
01(3Y) = =620 =26 ( D H™(zm + B)) @) + R3(z, D, @', @),

m=2

Analogously, we get

ki 1, v
m,l=2
+ &2 D) + R3(z, D, D),

n
0k (8%) = =€ )" y8kj|, (21 + @) + Ra(z, @, ).
=2

Finally, using the formal expansion gcp = 8cp + sAcp + €2 Bcp + o(g?)
and carefully analyzing the error terms, we obtain

Vdetg =1+ %str(A) + 82(%(tr(A))2 — }ltr(Az))
+ %82 tr(B) + O(&%).

From the above expressions in (3.2) and (3.3) we deduce that

Vdetg =1-¢) H"(Zm + Pm)
m
1
+ 52[1 > 02 g11Em + Pm) (2 + )
m,l
1/~ o 2 /
— E(Z H™(zm + CIJm)) + R3(z, 9, ),
m=2
_ 1
Om+/detg = —eH™ + 82|:§ Za,znlgll(zl + @)
/

—H" (Y H (2 + @1))} + Ra(z. ©, 9.
l

Moreover,
01y/detg = —£2 Y (H™) (zm + Om) — > Y _H™ @),
m m

+ R3(z, ®, ', ).
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The Laplacian of a smooth function u in coordinates (s, z) has the following
expression:

—Agu=—Y " g% pu—> 0p(&**)0au
A,B A,B

~AB 33 det )aAu

We are going to expand next each of these terms. First, we consider the determinant
of g. Recall that for a matrix of the form 1 4+ A4 + &2 B, the square root of the
determinant admits the formal expansion

(3.5 detg=1+ = trA + & (é(trA)2 —tr(4%) + - ! tr B) + 0(£?).

LEMMA 3.1 Let u be a smooth function. Then in the above coordinates (s, 2), we
have that

Agu = 02u+ A u—sZHJB u—2sZCI>/82u+28H Z+ ®)0%u

—e*(H.z+ @)Y H/du-— —8 202,,811(Zm + Pm) (21 + ©7)0Fu

m,j

+ 482 (H, z + ®)202,u — £292 181 (Zm + Pm)(z1 + cI31)3

— 42 (H.z + ®) Y ®0%u + 822:@/ @ 07U
j

1
= 567 D 081 (@m + Pm) (2 + @)U + (W, 2 + @) dsu

m,l
— &2 07,81 (2 + Pdsu — &>y Poju
L,j J
—? Z 8flg,j(zl + ®;)d;u —2&°(H, 7 + D) Z@}’Bju
t,7,1 J

+ R3(z, @, ®')d%u + R3(z, @, q>)a

+ R3(z, @, cb)a U+ R3(z, D, D, ") (dsu + dju).

Moreover, given two smooth normal sections ® and ® and defining the corre-
sponding coordinates

(s,y—D(es)) and (s,y — CiD(ss)),
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we setug(s,y) = u(s,y — ®(es)), ug(s,y) :=u(s, y — ®(es)). We then have

Ag —ANM&,
= —2¢ Z(@’ — @)0Zu +26(H, & — @)% + 822@’ @ — &, D)7 u

-5 Y 2 [2em (1 — B1) + D1y — D) + Br(Dyy — D) |7

m,l

- Z 07,1817 [22m(®1 — @1) + (P — D) + Dy (P — D) |03
- 82 Z 92 ,811[22m (@1 — @) + @ (P — D) + Py (P — D) |03 u
—2¢? Z H[2(®) — ) + &y(®) — D)) + D) (P — D) ]0Fu

+ 47 Z H™H' [22m(®1 — ®1) + By (P — D) + By (P — ) |03,

—822@” ®)dju— >y 0781 (s — Pp)dju — e (H.© — @) Y " H'0ju

J t,j,l J

+2(H, ® — ®)d,u — &2 Z Bljglj (®; — D;)d5u
1.j
—26> Y " H™[(@m + Pm) (D] — @) + & (D — )]0 u

mj
+ 001 + |z [e* (@ — D] + | — &'|)]8%ul
+ (|0 — D] + | — |)(|0F,u| + |37,)]]
+0(1+ 21D [2(® — @] + |@ — |
+e* (|| @ — B + |0 — &"])](|d5ul + [3;ul).

PROOF: The proof is based on the Taylor expansion of the metric coefficients
given above. We recall that the Laplace-Beltrami operator is given by

aA (Vdetg(ge)*Bp).

=2 g

where indices A and B run between 1 and n. We can also write

INEDD (gABajB + (04848)3p +
A,B

1 4B = )
dp+/detg)dg ).
\/thg (0B /det g)da
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Using the expansion of the metric coefficients determined above and (3.5), we can
easily prove that

> #5R
AB

= Agu+ 0%u 2SZ®/82u+28HZ+¢‘)82

+6% ) )07 u + 46”(H, 2 + P)202,u
l,j

1

m,l

1
— 582 E 8,2nlg1j(2.m + Om)(zr + q)l)a?j”
m,l

/a2
—482(H, 7 + )P 0 u

1
— 582 Z 8,2,11g11(Zm + q)m)(zl + (Dl)agsu

m,l

+ R3(z, <D<I>)(82u+82u+8 u),

> 04848 0pu
A,B

= —SZZCD” iu—e¢ Zaklgkj(zl + @;)0,u
J i,7,l
—263(H. 2 + @) Y ®0ju + 26> (H, 2 + ©)du
J
— &> 0781 (21 + Pp)0su + Ra(z, &, @, @) (05u + 0ju),
l’j

! ngB 0p+/det )BAu

AB detg
=—eY H/Qju—e*H.z+®) Y H/ju—e*H. z+ 0)ou
J J

1
+ E Zalzjgll(zl + ch)aju + R3(Z3 CD’ CD/)(asu + a]“)
J

The result then follows by collecting these three terms. O
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3.2 Expansion at First Order in ¢

In this subsection we solve equation (1.16) up to order ¢, discarding the terms
that turn out to be of order £ and higher. Here and in the next two subsections we
will display formal expansions only: we will assume that all the data are smooth
and write O(¢¥) for terms that appear at the k'"-order in a formal expansion. Since
all the functions we are dealing with decay exponentially in z, the error terms do
also: precise statements are given in Lemma 3.2 and Proposition 3.3 below.

For the approximate solution as in (1.10), we make a more precise ansatz of the
following form:

. fol(es)
Yie(s.2) = e % {h(es)Uk(es)2) + elwy + iw;]},
sel0,2n], y e R* 1,

(3.6)

where ]”B(es) = f(es) + ef1(es). By direct computation, the first and second
derivatives of ¥ ¢ satisfy

dvrne = e [=i Tl(es)h(es)Uk(e5)2) + b (es) Uk (65)2)
+ eh(es)k' (es)VU(k(es)z) - z]

. fo(es)
+e! o [—ief'w, + ef 'wi] + O(£?),

Divne = = h(es)k (es)0 Uk (e5)2) + ediwy + 1edswi),
2 e = —(fg2hU G2y
e P U2y + 2f W UKz + 2.0 K'Y UGZ) - 2]
P w4 ] + O,
(Jotes

312].1“’8 =e" [h(es)kZ(gs)a U(k(es)z) + 881] wy + 188” wi ],

.fo(ss)
2 _ -
8Sj 1//'1,5 = e €

. Jo(es)

[—i fo(es)h(es) + e (es) ]k (es)d; U(kz)

fo(m)
—ief'(es)djwy(es,z)e" e

(as
+ef'(es)dwi(es, 2)e ™ e + O(2).
Similarly, the potential V' satisfies
V(ex) = V(es) + e(VVNV,z + ®) + O(&?).
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Expanding (1.16) in powers of &, we obtain

. foles) _ .
e (—Ag Ve + V(EX)Wie — [W1elP T Wie) = eRy +isR;: + O(?),

Ry = E,wy +2f fIRU +2f?hU(kz)(H, z + ®) + hk(H, VU(kz))
+(VVNV, 72 + ®)hU(kz),
Ri = Liw; + [f"hUkz) +2f'WU(kz) +2f hk’'VU(kz) - Z]

(3.8) _2Z[q>}f/hk8jU(kz)],
J

and where we have defined the two operators &£, and £; as

Erw =—Agw+ (V + 2w — ph? 1 U(kz)? w,
Liw=—-Aw~+ V+ fPw—-h? Ukz)P w.

It is well-known (see, e.g., [48]) that the kernel of &£, is generated by the (n — 1)-
tuple of functions d,U(k-), ..., d,U(k-), while that of £; is one-dimensional and
generated by U(k-).

We choose the functions w, and w; in such a way that R, and JR; vanish. Since
&£ is Fredholm, the solvability condition for w, is that the right-hand side of this
equation is orthogonal in L2(R"~1) to d,U(k-),...,d,U(k-). Therefore, to get
solvability, we should multiply the right-hand side by each of these functions and
get 0. The same holds true for w;, but by replacing the functions d; U(k-) by
U(k-).

We discuss the solvability in w; first. Writing this equation as £;w; = f, we
can multiply it by U(k-) and use the self-adjointness of £; to get

0= [ wrvtr= [ vt = [ Ui,
o e s

Following the computations of Subsection 2.3, this condition yields
f//hk—(n—l) + 2f/h/k—(n—1) — (I’l _ l)hk/k_nf/,

which implies
kn—l
h2
This equation is nothing but (2.8), and hence the solvability is guaranteed. Since

&£; clearly preserves the parity in z, we can decompose w; in its even and odd
parts as

= = AR,

Wi = Wje + Wi,
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with w; . and w; , solving, respectively, the equations
Liwje =—[f"hU(kz) +2f'WU(kz) +2f hk'VU(kz) - 2],
Liwio =2 [ f'hkd;Ukz)),
J

where the right-hand sides are, respectively, the even and odd parts of the datum
in (3.8). We notice that, since the kernel of £; consists of even functions, only the
even part of the equation plays a role in the solvability, since the product with the
odd part vanishes by oddness.

Indeed, (3.7) and (3.8) can be solved explicitly, and the solutions are given by

s

-1
(9 wie=Tom fWIPUKD. wio ==Y ¥ f'hz;UGK3).
J

In fact, as we can easily check, we have the following relations:
Li(zjU(kz)) = =2k0;U(kz),
Zi(1z|?U(kz)) = —=2(n — YU(kz) — 4kVU(kz) - z,

which imply the above claim (here we also used (2.7) and some manipulations).
Turning to wy, if we multiply by d; U, integrate by parts, and use some scaling,

we find that the following condition holds true, for j = 2,...,n:
. k2
2H' ((f/)2 / U?dz — : / VU |? dz)
n —
Rr—1 R2—1

+(VVV, E}) / U%dz = 0.
Rn—1
Using (2.7), we get equivalently, for j = 2,...,n,

: hp—1
2H’(A2h2“ / U?dz — ; / |VU|2dz)
n_
1

Rr—1 Rn—

+(VNV, E;) / U%dz =0.
Rn—1

From a Pohozaev-type identity (playing with (2.6) and integrating by parts) we find
(n—D(p—-1)

2 _ 2
cio [ 1vUEPd: - oo T ey | Ve
Rn—1 R7—1
_(=Dp-1
=y / U(z)? dz.
Rr—1
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By using this formula, the solvability condition then becomes
p—1
0

: h
Hf((p—l) —2A2h2")=<va,E,->, j=2....n,

which is nothing but the stationary condition (2.19). Therefore, since we are indeed
assuming this condition, the solvability for w, is also guaranteed. As for w;, we
can decompose w; in its even and odd parts as

Wr = Wre + Wr,o,
where w; . and w;, solve, respectively,
@A) ELrwre = =2f U —2(f)?hU(kz)(H, ®) — (VN V, ®)hU(kz),
412 Lrwro = —2(f)?hU(kz)(H, z) — hk Z H/3;U(kz)
—(VNV, 2)hU(kz). /

Using the Euler equation, we get

. ~1
irU)r,():—hZHJ(kajU‘th_lpe Z]U)
J

It is also convenient to have the explicit expression of w,. We notice first that
£ ! Ukz) ! VU(kz) =U(kz)
r (p—l)hp_l < % Z) 2] = Z).

Hence it follows

wre = [A(VVV +2(f)°H, ®) + 21" f{h]

G19 : Uk L vk
X(m (Z)‘i‘ﬁ (Z)'Z).

Using (2.19) we finally find

Wre = [” 9_ ! hP (H, ®) + 2f’f{h]( ! Ukz) + 2i VU(kz) .z).

(p— kP! k
By the above computations (and the comments at the beginning of this subsection)
we obtain the following result:

LEMMA 3.2 Suppose h(s) and f(5) satisfy (1.11) and (1.12) for some A > 0;
assume also that the curve y satisfies (1.15). Then there exist two smooth functions
wr (5, z) and w; (8, z) for which the terms R, and R; in (3.7)—(3.8) vanish iden-
tically. Therefore, the function 1 ¢ in (3.6) satisfies (1.16) up to an error of the
form Ry (z)e kEs)lzl,
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3.3 Expansions at Second Order in &

Next we compute the terms of order &2 in the above expression. Adding a cor-
rection £2[v, + iv;] to the function in (3.6), we define an approximate solution of
the form

(G14) Yae(s,2) = e 2 hes)Ulk(es)2) + elwy + fwi] + 2[or + iui])

with s € [0,27] and y € R"™!, where fo = f(es)+&f1(es). The first and second
derivatives of ¥ . are given by

; foes)
el e 0 lﬂ2,<9

= [~i fo(es)h(es)U(k(es5)z) + el (es)U(k(es)z)
+ eh(es)k' (es)VU(k(es)z) - z]
+ [—iefo’wr + sfolwi] + [—iezfo/vr + szj;o/vi]
+ 205wy + iw;) + 0(3),
. fo(es)
el e 0V,
= [h(es)k(es)d;U(k(es)z) + edjw, + icd;w; + 20 v, + iszajvi],

ifo(SS) 82w27£
0s2
= —(f)*hU(kz) —ie[fy hU(kz) + 2 fgh'U(kz) + 2 fghk'VU(kz) - Z]
— efo’z[wr +iw;] — 82f0’2[vr + iv;]
+ &2[2 fgdswi + h"U(kz) +20'k'VU -z + hk"VU - z
+ hk"?V2U(k2)[z, 2] + fo'wi] —ie?[2 fgdswr + fg'we] + O(e),

e

. fo(es)
1———=92
e € 8]]w1,€

= [h(ss)kz(es)alzj U(k(es)z) + 88,2]. wy + isalzj w; + 82812]. vy + iszalzjvi],
; Joe)
e & sj 2,e
= [—ifo'(ss)h(ss)k(es) + eh'(es)k(es) + eh(es)k' (es]0;U(kz)
+ eh(es)k(es)k'(es) Y 07, U(kz)zy + 0;U(kz) — i fydjw,
1

+ efo/(es)ajwi — ie2fo’a,-v, + 82];0/(8.3')3]'1)1' + gZaﬁjw, + iszafjwr.
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We also have the formal expansion
o V2.6lP " Y2
= hP|U|P7'U + peh? Y U |P  w, 4+ ieh? U P w;

3 p(p = VPR U
+ %(p — 1)e2h?2|UP 30w +i(p — DE2hP2U P Uw, w;
+ p?hP U P, 4+ i?hPTHU 1P + O(E3).

Similarly, expanding V' up to order £2, we have

V(ex) = Ves) + e(VN V,z + @)

1
+ 582(VN)2V[Z + &,z + ®| + R3(z, D).

Using the expansions of Subsection 2.3, we obtain

. foles) _
e e (=AgVae + V(eX)V2e — |[V2.6|P W)

= &2(Rr +iRy)

= e*(Rre + Rro) + &%i(Rie + Rio)
+ & (Rrefy + Rro. 1) + Ei(Rie, 5y + Rio 1))
+&2L,v, + 2iEiv;i + 0(83),

where

(3.15) Ry. = —%(f/)th(kz) > 07,811GEmzr + Pm®r)
I,m
+ 2(f")? (H wre @ + Wr2)
+4(f)hU(k2)[(H, 2)* + (H, @)%] + 2/ "85wi e + Wi
—[h"U(kz) + 2h'k'VU(kz) - z + hk"VU(kz) - z
+ h(k")>V2U(k2)[z. z]] + 29 f'0jwi o
+ B > 07,81 @mzs + Pm®y) — q>;q>;}hkza,2j U(kz)
I,m

+hk Y 07,,8mizid;UKZ) + Y H™ Ity +

I,m,j m
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+hk(H,2) Y H™9,U(kz)

m

1
+kh Z[(H,Z)Hm 3 Z ayzn[gIIZl]amU(kZ)
m I

1 —_— f—
=5 P(p = DRP2UGK)P 2, + wl,)

1 _ _
— 5(p — DhP2U(k2)P > (w7, + w},)
+ (VN Vv, Wro0Z + Wre CD)

1

m,j

Rro =—(f")?hU(kz) ) 07,,8112m®1 + 8(f")?hU(kz)(H, z) (H, D)

I,m

+ Z(f/)2<Hv WreZ + wr,oq>> - 2]Naswi,o - f”wi,o
+2h'k Y @0, U(kz)

J
+ kY P [k > 93 UGkz)z + 8 U(kz)]

J l

+ 21" @0jwie + hk(H. @)Y " H™9,U(kz)
j m

1
I.m
AU + 5 H e
m
1
+ hk Z[(H OYH™ — 3 > 8,2n1g11q3l:|3mU(kZ)
m l

— p(p — DhP72U(k2)P 2wy ewy o
—(p = DhP2U(k2)P " 2wi ewi o + (VN V, Wy ez 4 Wy o ®)

+ 3OV 0hUGkz) + (Y 3, 8mi @1 )1k UK2),
j’l j,l,m
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Rie =2[f"hU(kz) +2f'W'U(kz) + 2f'hk'VU(kz) - z](H. ®)
+ 2(f,)2<H’ wi,eq) + wi,oz) + 2f,aswr,e + f//wr,e
—2f"> " ®dwre
J
—2f'hk "0 U(kz)[z(H, )]
J
1
+ ) Z 812mg1j (Zm®; + Zl':bm):|
(3.17) o
= [1hU) (Y (0811 O — 2(H, @')))
m
— f'h[2(H. @) + Y 881, @ |Uk2)
J.l
1 .
+ Ef/h(Xl: g @ )Uka) + 3 HIjwi
J
—(p— l)hp_zU(kZ)p_z(wr,ewi,e + wr,owi,o)
+ (VN Vv, Wi oZ + U)i,eq)),

(3.18)  Rio =2[f"hU(kz) +2f'WU(kz) + 2f'hk'VU(kz) - z](H, z)

+ Z Hjaj Wje + Z(f,)2<Hs Wi,eZ + wi,o(b> + 2f/aswr,o
i
+ f”wr,o - Zf/ Z cb}aj Wr,e
J
—2f'hk Y " 0;U(kz) [2(}1, )P/
J
1
t3 12: 07,81 (Zmzr + CDICDm)}
,m

— PO (3 Bgrizm) — £0( 3 02120 ) Uka)
m il

¥ %f/h(le #gna ) U(ke) -
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—2 —2
—(p— l)hp U(kz)p (wr,ewi,o + wr,owi,e)
VvV, w; i 0®
+ ( ,WieZ + Wip )

We used the notation Iér,e, fis Rr’o, fis Iéi,e, f,»and Ri,(,, #, for the terms involving
f1, namely,

Rye i = (f))?hU +2f' flwre + 4(H, ®) f/ f{hRU

—2p(p— DRP2UIP 20 2 {20

(3.19)
+2f fR(VNV, @)U + 4(H, ®)(f")? f{hU
—1)2 N
. 2p (p J 1) th_lf/fl/(H, @)UP_ZUZ,
Iér,o,fl = 2f/f1/wr,o + 4<H’Z)f/f1/hU
—2p(p =D F' fIRP~UP 20w
(3.20) r(p—1f"fi ro

+ 21" f{R(VNV,2)U + 2H f' f{hkd; U
+4(H.2)(f)* f' f{hU,

Rie f, =20 flU + 2hf{kK'VU -z + 2f' flwi e + f{'hU
(3.21) +4f 05 (hf' f1U) +2f"hf' flU
—2(p = DRPNUP2 £ flUwje.

Iéi,o,ﬁ = 2f/f1/wi,o —2(p— 1)hp_l|U|p_2JNf1,[]wi,o

(3.22) ; ~
— 4"k f{ ;0,0 — 2hk {98, U,

where we wrote for brevity

~ 1 1
U=——"Ulk —VU(kz) - z.
(= Dho-1 (z)+2k (kz) -z

Again, we collect the results of this section in one proposition.

PROPOSITION 3.3 Suppose ® and f1 are smooth functions on [0, L]. Let z be the
normal coordinates given in (3.1), and w; and w; be as in Lemma 3.2. Then, if
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Va.¢ is as in (3.14), in the coordinates (s, z) we have

—Ag V26 + V(EX)V2e — Y2617 o e
= e2(L,vr +idivi)
(3.23) + 6> (Rre + Rrp+iRie+iRip+ Rypf,
+ Rr,o,fl + iRi,e,fl + iRi,o,fl)
+ Rs(z)e ¥R,

where the above error terms are given, respectively, in (3.15)—(3.22).

It is useful next to evaluate the projections of the errors on the kernels of the
operators &£; and £, to see what the effect of ® and f; is. Concerning £;, the
kernel is spanned by i U(k(es)-). To compute this projection, for parity reasons,
we need to multiply Ri,e and Iéi,e’ #, by U(k(es)-) and to integrate over R*1
For brevity, we only display the final results, referring to [36, sec. 4] for complete
proofs.

Contribution of f(’,-,e:

Contribution of Iéi’e, fi

h - hzfl/ o
- R: = 9= 1—=2f72 -
Co e U(ke) =05 (k”‘l [ = 1)k2D

Rr—1

2 ¢/
= ag(—(p _hlflin“ [(p— P! - 20A2h2‘7]).

To annihilate this projection, we should find f; such that

/ Rie s Ulkz) + / RiU(kz) = 0.
R7—1 Rn—1

This is equivalent to
h2f/
Tf = 05| ————[(p — DhP™! — 20 A%1?]
(p — Dknt1
(3.24) )
_ P~ 1)s.
—ZA( 0 1)8S(H, D).
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Hence it is sufficient to set
= 24(p — Dk (p -1
(p — DhPTl — 20 AZh20+2\ 20
(p _ l)kn+1
(p — l)hl"H — 2o A2h20+2°

- 1) (H, )

+c

where c is a constant to be chosen so that fOL f{ ds = 0. By (2.16), we have

(p— DK™ _1 Oh
(p — DHhPtl — 20 A2p20+2 = Aoh® A + o,

and so the required condition becomes

L kn+1

20 fOL Aah"_l% + 1o ds

As we can easily check from (2.14) and (2.19), ¢ coincides with #’ and therefore
we have in conclusion

, 24(p — k"1 p—1
= —1)H, ®
(3.25) N (p— DhP*t —20A2R20+2\ 20 H. )
' A (p— Dk !

(p — DHhPt1 — 20 A2Zh20+2°
We evaluate next the projection of the R’s in (3.23) onto the kernel of £,. This
corresponds to multiplying the error terms by 0, U(k-), m = 1,...,n — 1, inte-
grating over ER”_l, and taking the real part. As before, we are left to consider only

two terms: Ry, and R, , r,. The final result (proven in section 4 of [36]) is the
following:

/ (Rro + Ry, 1) 0mU(k(e5)2)dz
1

R2—
—(h" - ith")cbii,

p—11
20 hk

Co

242 0
- 9(h9—1 - ﬁha_l)h’®§n + ﬁh—"((vf")zv)cpm

1 2420
+3(r- p—lhg)(;(afzmg“)@j)

(6 —o)hP1
[(p — Dh? — 20 A2hO]
—(p—1)(3 + §)h?0 — 169042420 1 2 A2(50 + 39)h9+"}}
(p— Dh® —24A26h0 '
We notice that the operator between brackets coincides precisely with the one in
(2.22), corresponding to the second variation of the reduced functional that we

(3.26)

m

— 2AA)

+ H™H, q>)[
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determined in Subsection 2.5. This is going to be useful in the last section to get
full solvability.

Remark 3.4. According to the considerations in Subsection 2.4, to every normal
variation of y there corresponds some variation in the phase due to both the vari-
ation of position and the variation of the constant 4. Recall that the phase of the
approximate solution is the following:

1 1 ES ,

Differentiating with respect to a variation v (see (1.12)) we obtain

&s oh oh oV
- — o o—1 ur
F,3 / Avh /0 Ach (BAAV G 81))

—— 0 AhC .
28/0 vE11

Recalling formula (2.17), we find

9 1p— 9y Oh 1/” ) 0h 3V
—F, =-£ - A h - Ach®™
T e 24 / 8A+ vV v

+——/ avguAh"

Therefore, when we take a variation v, of y, this also corresponds to a variation
of the phase of 5~ F Notice that multiplying the horizontal part by 14d,, U corre-

sponds to adding a variation of —
Hence, integrating by parts, we get

p- — 1 gy 0h o1 Oh BV
P—" ® W 2 Aok
‘A( )/(Z amg”)[ R W 7 I

— EAh"avzgu].

Remark 3.5. If we multiply the operators J and T (see (2.22) and (3.24)) by
h(5)k(5) and h(s), respectively, they become self-adjoint. This fact will become
crucial below; see in particular Subsection 4.3.

4 Lyapunov-Schmidt Reduction of the Problem

In this section we show how to reduce problem (1.16) to a system of three ordi-
nary (integro)differential equations on R /[0, L]. We first introduce a metric on the
normal bundle Ny, of y, and then study operators that mimic the properties of the
linearization of (1.16) near an approximate solution. Next, we turn to the reduction
procedure: this follows basically from a localization method, since the functions
we are dealing with have an exponential decay away from y,. We introduce a set
K consisting of approximate (resonant) eigenfunctions of the linearized operator
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Lg: calling H, the orthogonal complement of this set (which has to be multiplied
by a phase factor close to e (/(9)/€) e show in Proposition 4.14 that L is
invertible on the projection onto this set once suitable weighted norms are intro-
duced.

4.1 A Metric Structure on Ny,

In this subsection we define a metric g, on Ny, the normal bundle to y,, and
then introduce some basic tools that are useful for working in local coordinates on
this set.

First of all, we choose a local orthonormal frame (£;); in Ny and, using the
notation of [34, subsection 2.2], we set Vé\;Ej = ,BJI. 05)E;, j,l=1,...,n—1.1f
we impose that the £;’s are transported in parallel via the normal connection vV,
as in Subsection 2.1, we find that ,le (d5) = 0 for all j,l. As a consequence (see
formula (18) in [34]), we have that if (Vj)j, j =1,...,n—1,is anormal section
to ¥, then the components of the normal Laplacian AN V' are simply given by

4.1 (ANVY = A, (V))y=0%VI, j=1,....n—1

We next define a metric g on Ny as follows. Given v € Ny, a tangent vector
W € Ty Ny can be identified with the velocity of a curve w(¢) in Ny that is equal
to v at time ¢ = 0. The metric g on Ny acts on an arbitrary couple (W, W) €
(TyNy)? in the following way (see [20, p. 79])

t=0>N '

In this formula 7 denotes the natural projection from Ny onto y, DN w/dt the
(normal) covariant derivative of the vector field w(¢) along the curve ww(t), and
(1) a curve in Ny with initial value v and initial velocity equal to W

Following the notation in Subsection 2.1 we have that, if w(t) = w/ (t)E (1),
then

N DN

=0 At

w

o . ID
g(W,W>=g(n*W,n*W>+< -

DNw  dw/ (1)
= E;i().

Therefore, if we choose a system of coordinates (s, y) on Ny defined by
(5.5) e RxR" ' > 3 E; (y (),
we get that
guG.7) = gu@) + 515;(VE, Er. VE Ej)y = g116) = 1
and
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where we have set d; = 3/dy;. We also notice that the following co-area type
formula holds for any smooth compactly supported function f : Ny — R:

4.2) /deng(/ f(y-)dy-)ds.

Ny Y Ny()
This follows immediately from the fact that det ¢ = det g and by our choice of
(5. 5).
Since in the above coordinates the metric g is diagonal, the Laplacian of any
(real- or complex-valued) function ¢ defined on Ny with respect to this metric is

Agp = 050 + 8§j¢ in Ny.

We next endow Ny, with a natural metric, inherited by g through a scaling. If
T, denotes the dilation x + ex, we define a metric g on Ny, simply by

~ 1 ~
ge = 8—2[(Ts)*g]-

In particular, choosing coordinates (s, y) on Ny, via the scaling (5, y) = (s, y),
we easily check that the components of g, are given by

(8)11(s.y) =gu®) =1, (@)uls.y) =0, (8e)1j(s.y) = 8y
Therefore, if 1y is a smooth function in Ny, it follows that in the above coordinates

(s,y)
Ag. ¥ = E)?sw + a}jw in Ny,.

In the case ¥ (s,y) = e_ifAsu(s, y), for f = Ah® (see (1.9)) and for u real, we
clearly have that

Ag ¥ = e—ifsagsu — Zife_ifsasu — fze_ifsu + e—"fsaf.ju.
Similarly to (4.2), we easily find that

4.3) fde§g=/y( / f(y)dy)ds.
Nye ‘

Nye(s)

4.2 Localizing the Problem to a Subset of the Normal Bundle Ny,

We next exploit the exponential decay of solutions (or approximate solutions)
away from y; to reduce (1.16) from the whole scaled manifold M, to the normal
bundle Ny.. This step of the proof closely follows a procedure in [19]. We first
define a smooth, nonincreasing cutoff function 77 : R — R satisfying

ne) =1 fort <0,
ni)=0 fort > 1,
n(t) €10,1] foreveryt € R.
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Next, if (s, y) are the coordinates introduced above in N y,, and if ®(es) is a section
of Ny, using the notation of Subsection 3.1, we define

z=1y— D(es).
We will assume throughout the paper that ® satisfies the following bounds:
(4.4) [Pl + 1P [loo + & @"floc < Ce

for some fixed constant C > 0. Next, for a small § > 0 and for a smooth function
K(es) > 0, both to be determined below, and for 4,k : [0, L] — R as defined in
the introduction, we set

1pO,a = 7_]6 (S’ Z) WO,s

(4.5) . I P TI,
=i Keo)(121 = ) ) B ke

where f (to be defined later) is close to the function f (also defined in the intro-
duction). For 7 € (0, 1), we let S, : C>7(M;) — C(M,) be the operator

(4.6) Se(¥) = —Ag, ¥ + V(Eex)y — [¢|P 'y in M,.

If we let V¢ denote an approximate solution of (1.16) (we will later take Ve equal
to Yo, with some small correction), then setting = ¥z + ¢, we have Sg() = 0
if and only if

Le(@) = Se(Vis) + Ne(§) in M,

where L.(¢) stands for the linear correction in ¢, namely,
Le() = —Dg. ¢ + V(ex)p — [P ¢

= (p = DIVelP PN (W) in M,
and where the nonlinear operator N (¢) is defined as
Ne(@) = e + @177 (e + @) — Vel P e — || "1

— (p = DIVl PN ().
Then, in the coordinates (s, z), we can write

¢ =7:(2)¢ + ¢

where, with an abuse of notation, we assume ¢ defined on Ny, (through the expo-
nential map normal to y.) and where the correction ¢ is defined on the whole M;.
In this way we need to solve the equation

49  Le(1e(2)¢) + Ls(9) = Se(¥s) + Ne(iie(2)p + @) in M.

We will require ¢ to be supported in a cylindrically shaped region in Ny, cen-
tered around the zero section. For technical reasons, convenient for proving the

4.7

(4.8)
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results in the next subsection, we define

e +1
K(es) §’

(4.10) De=1(s.2) €Ny 1 |z| <
and then the subspace of functions in Ny, as
Hp ={ue L2(Nye; C) : u is supported in Dg}.

Using elementary computations, we see that (4.9) is satisfied if (tautologically) the
following two conditions are imposed:

Le(¢) = [Sa(‘ﬁs) + Ne(e(2)¢ + 90)] + |1}8|p_1(/)

4.11) - g -
+ (p = D|Yel P YR (Ye@) in De, ¢ € HD“S,
(4.12) $1ZE(P =(1- ﬁe(Z))[Se(lzs) + Ne(Me(2)¢ + (,0)]
' + 2V, 1e(2) - Vg ¢ + Ag, ()¢ in M,
where
Ly, 9= —Dg. o+ V(ex)p
4.13)

-(1- ﬁs(z))[l‘h‘w—l‘P +(p— 1)|&€|p_21;89‘f(¢6(ﬁ)].

We next have an existence result for equation (4.12). In order to state it, we
need to introduce some notation. For a regular periodic function p : [0, L] — R,
form € N and t € (0, 1), we define the weighted norms

@14 el = sup [P glleme g @l x = (5.2).
x€Dg

We also recall the definition of k(es) in (1.11).

PROPOSITION 4.1 Let k»(5) < k1(5) < ko(5), K(5) be smooth positive L-peri-
odic functions in 5, and t € (0,1). Then, if V(5), K*(5) > k%(i) and if
||¢€||C]€0, ||S8(¢6)||C]€0 < 1, there exists a positive constant C depending on §,
<1, problem (4.12) has a

T, k, ko, k1, and ka such that given any ¢ with ||¢|| -1.-
k1
unique solution ¢(¢) whose restriction to D satisfies

ko+kq

-5 ~
le@lcz,, = C (e " ISl

(4.15) —

ko
gl )-
1

+e7f

Moreover, if Y, UiZ satisfy | Se(W)licg, < 1 j = 1.2 if Igsllcre <17 =
1

1,2, and if 9j(¢;), j = 1,2, are the corresponding solutions, for the restrictions
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to 158, we also have

oo —e@lcr,, = (= "R S0 = S0 | o

(4.16)

=8 ekt
+es inf —%

= dalley )

Remark 4.2.

(1) The choice of the norm in (4.14) is done for considering functions that
grow at most like e @)1zl and in particular functions that decay at infinity if p is
positive. In the left-hand side of (4.15) we have a negative exponent, representing
the fact that ¢ can grow as |z| increases. However (we will later take ko, k1, k2,
and K very close), the coefficients in the right-hand side are so tiny that ¢ is every-
where small in D,, and indeed with an even smaller bound for |z| close to 0. This
reflects the fact that the support of the right-hand side in (4.12) is

RSNk
K(es) . K(es) ’

so ¢ should decay away from this set.

(2) We introduced the functions kg, k1, and k, for technical reasons, since we
want to allow some flexibility for the (exponential) decay rate in |z].

PROOF: We prove the result only when the manifold M in (NLS;) is compact.
For the modifications needed for M = R”, see Remark 4.3(2).
Consider a smooth, nondecreasing cutoff function y : [0, 1] — [0, 1] satisfying

x(@) =0 fort <
x(@) =t fort >
0<y\(t)<4 forallt,

0<y"(t) <16 forallt.

ENTRENT

Next, given a large constant B (to be specified later) depending only on V' and k»,
we define (s, |z|) as

ggx(%) for |z] < B,

Iz| y forﬁflzlf%—l,

-Egm-27 ] i
7G.1z]) = _2X(|Z|—%—%) for%—1§|2|5%_+ 1,

2k82(s) |Z| for]f;(i)+1<|2| ,f;(i)—ﬁ,

58)((28 5/k12))(§)—|z|) forzk () j;’ <lz| < 2k (S),

0 for |z| >2k (s)-
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By our choice of y, the function y satisfies the following inequalities (where, here,
the gradient and the Laplacian are taken with respect to the Euclidean metric)
16 +4(n —2)

3 .

Using the above coordinates (s, z), we next define the barrier functionu : My —
R as

IVzxl <1, Azx =<

-8

ka(es)’

and we extend u identically equal to 1 elsewhere. By our choice of y, this function
is indeed smooth and strictly positive on the whole M. We consider next the linear
equation (motivated by (4.13))

2617,890 =11 on M,,

u(s, z) = ek2(e)x(es,2)  gor lz| <2

where ¢ : M, — R is Holder-continuous (with supp(d}) € 138; see (4.18) below).
Since the operator éli]}a is uniformly elliptic, the latter equation is (uniquely) solv-
able, and we would next like to derive some pointwise estimates on its solutions.
To this aim we define
v(x) = M x € M,.
u(x)

With this notation, we have that
ufy v—vAgu—2Vgv-Veu=179 onM,.

Using the expression of the metric coefficients in the coordinates (s, z) (see Lem-
ma 2.1), (4.4), and the properties of the cutoff function jy, we easily check that

i -5
= 6 +og(D) +oe(D)u for 2] < £
-0 elsewhere,

A

8e

where 0.,(1) - 0ase — Oand og(1) — 0 as 8 — +o00. Therefore we obtain
that the function v satisfies

_ -8
(£, — k33 +08(1) + 0e(D)v] < Bl for |z] < 2.8

u

jfv;sv = % elsewhere.

Since we assumed V(5) > k»(5)?, we obtain that V — k»(5)% 4+ 0g(1) + 0.(1)
is strictly positive (provided B is sufficiently large and ¢ sufficiently small) for
|z| < 2(¢7% /k»(5)), and hence the function v satisfies a uniformly elliptic equation
with a nonnegative coefficient in the zeroth-order term with right-hand side given
by % Therefore from the maximum principle we derive the estimate

9]

max |v| < C max —,
M, M, u
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where C depends on the uniform lower bound of the above coefficient. The latter
formula clearly implies

v
lp(x)] < Cu(x)max — forevery x € M.
M, u
We next define the weighted norm

4
wi= s ] ’
l@llm,zu s 20 vl PP
which is equivalent (with constants depending on 8 only) to |- || cm.r on the set D.
—n2
Using the explicit form of the function u and standard elliptic regularity results, we

can improve the latter inequality to

4.17) lell2,eu = CllPo,zu-

The proof of the proposition now follows from this linear estimate and the contrac-
tion mapping theorem; in fact, defining

Gpe(p) = (1 —ne(s, Z))[Ss(lza) + Ne(Me(2)p + @)
+ 2V, 1e(2) - Vg, @ + Ag,7e(2)9,

equation (4.12) is equivalent to
(4.18) ¢ =L; Gpc(9).

First of all, notice that £ T is invertible since we are assuming M (and hence
M) to be compact (see the beginning of the proof). Second, to apply (4.17), we
need to estimate |Gy +(¢)|l0,r,u together with its Lipschitz dependence in ¢.

Let us consider, for instance, the term (1 — 7¢(s, 2))Se(Vs). Using the fact that
(1 — 7) is O for |z| < e7%/K(es), that Sg(,) is O for |z]| > (678 + 1)/K(es),
and that k» < K, we obtain

_ ~ S 7
(1 =7e)Se(¥e)llo,ru < C _osup ‘&
(419) %Sklssgfgt)l
_.—8 in ko+ko ~
= Ce™ MRS W)l -

C7(B1(2)

Now to estimate the remaining terms of Gy ., we notice that

C Vel P 2|7ie(2)p + @|*  if [7e(2)¢ + @] < [Vl

|N8(7_78(Z)¢ + (,0)| = |77]s(z)¢ + (p|P otherwise.
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Since p > 1, we can find a number ¢ € (0, 1) such that p —2 4+ 1 — ¢ > 0, so the
last formula implies

INe(7e(2)p + @) < C (196?72 (17:(2)1° + loI5) (17 (2)p| + lo])
+ 17:(2)17 + |g]?).

Using the fact that ||1}8||Ckg ,|l#llc1.c < 1 and reasoning as for (4.19), after some
0 k1

(4.20)

computations we deduce (assuming ||¢||co < 1, which will be verified later)

1Go.e(@)ll0,r.u
_o—8inpk2tko ~ 8 kot
= (e IR IS Wy, + e TR gl
1
(421) —§. ¢ Pk1tko 8. (p—Dko+k+ko
+e R g o + e TR ) o)
1 1

e 8(p—1—8)inf KO —
+ C (e @O Lo 27 e llo, e

Similarly, for two functions ¢ and @2 with [|¢1|oo, [¢2/lcc < 1 and with finite
[ - ||0,r,u norm, we have

(4.22) |Gp.e(01) — Gge(@2)]l0,2,u <
R _ _
(e7® P=1=00E 1 @1 127! + o2l Yller — e2llo,z,u

We now consider the map ¢ — G4 ¢(¢) in the set

B = {0 lellocu =
_o—8inf k2 tko ~ _ =8 ckotky
(e MR S (Fe)lly, + e MR gl
1

where C; is a sufficiently large positive constant. Notice that if ¢ € ‘B, then
l¢lloo = 0£(1). From (4.21) and (4.22), it then follows that this map is a contrac-
tion from ‘B into itself, endowed with the above norm, and therefore a solution ¢
exists as a fixed point of G4 . The fact that k, < K implies that the norm || - ”ka2

is equivalent to || - ||o,z,u in D, (see also the comments in Remark 4.2), so we ob-
tain (4.15). A similar reasoning, still based on regularity theory and elementary
inequalities, also yields (4.16). O

Remark 4.3.
(1) From elliptic regularity theory it follows that in (4.15)—(4.16) the norm

I-llcz, canbe replaced by the stronger || || 2.« , yielding an estimate in the norm
Tk 2

| -llger forany ' € (z,1).
(2) In the case M = R”, the above proof needs to be slightly modified: in

fact, the invertibility of &£ Je will be guaranteed provided we work in an appro-
priate class of functions Y decaying exponentially at infinity. To guarantee this
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condition, we can vary the form of the barrier function u in order that it both re-
mains a supersolution of 931/;8 = 0 and decays exponentially to O at infinity. This is
indeed possible using the uniform positive lower bound on V; see (1.1). We omit
the details of this construction.

As a consequence of Proposition 4.1, we obtain that the solvability of (NLS,) is
equivalent to that of (4.11).

PROPOSITION 4.4 Suppose the assumptions of Proposition 4.1 hold, and consider
the corresponding ¢ = @(¢). Then ¥ = Ve + 1:(2)p + @(¢p) solves (1.16) if and

only if § € H5_satisfies

(4.23) Le(p) = Se(p) in D,

with

(4.24) Se(¢9) = Se(We) + Ne(iie(2)¢ + ¢(9)) + |Ve P~ 0()
+(p = DIel” PR (ep(d))  in De,

where ijg, Sg, and Ny are given in (4.5), (4.6), and (4.8), respectively.

4.3 Construction of an Approximate Kernel for L.

We perform here some preliminary analysis useful to understand the spectral
properties of L. More precisely, we consider a model case, when the domain D,
(see (4.10)) is replaced by [0, %] x R"~1 and the profile of approximate solutions
is independent of the variable s (only the phase varies, periodically in s). As in
formula (1.9), we consider positive constants V.h,and k satisfying

(4.25) h=(f2+ Mo, k=(f2+ )2

Our goal is to study the following eigenvalue problem, which models our linearized
equation:

Leu=Au in|0, %] x R,
(4.26) Leu = —Agu + Vu—h? U(ky)P'u
—(p— DRP U(ky)P~ e /5™ 50),

and in particular we would like to characterize the small eigenvalues and the cor-
responding eigenfunctions.
First of all, we can write u as

U= e_ifs(ur +iu;)
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for some real u, and u;. With this notation, we are reduced to studying the coupled

system
_Afg\sur + (17 + fz)ur
— ph?= U (ky)P~u,
Agpuz + (f} + fz)ut
— kP U(ky)? " u; + 2f B =

—2f % = ju, 0

L] xR

in [0, £] x R"~L,

Making the change of variables y +— k y and using (4.25), we are reduced to

= b — Avuy -y
— 2A3 i : -
4.27) ~ UGy = 5 = e in 0. §) xR
k12 aas“z’ Ayu; +u;
_ 2f du, ~ -
— UG i + 2% = Ly in [0, L] xR,

It is now convenient to use a Fourier decomposition in s of u, and u;, writing

2
Ur = Z(cos( nz

J

U = Z(cos(zn

gjs (2
- 2 )ui,c,j(J’)+5m(

where s € [0,
u; s, ; satisfy the following systems of equations:
47!282j2
_Ayurscyj + (1 + Lzl’c\z )Mracsj
an fej

- pU(y)p_lur c,j —

o A
L2 i) = e
472¢
~Ayttigy + (1+ 2 Vi

— 4 j
_U(y)p 1ui,SJ - ﬂiaj Urec,j =

Ao
,;_zul,s,J

2232
~Ayttrg + (142,
— UM turs,j + 4’3:28’ e = F5lrs.
2.2 :2
_Ayui,c’j + (1 + - 28]’6\2J )ui’c5j
1 A
—UW)P  je,j + Lizj Urs,j = Wi,
If we set
2wej 2 ~ A
Ajza, Tf=:u’ and A= —
Lk k k2

jS . [2mejs
)ur,c,j(y)+51n( I )ur,s,j(Y))’

TEJS

17 )ui,s,j(y))v

L -1 : :
<land y € R"™". In this way the functions uy¢, ;, Ur.s,j, Ui,c,;, and

in R" 1,

in R"1,

in R? 1,

in R? 1,
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then the latter two systems are equivalent to the following:

—Ayu+ (1 +a®)u— pUy)?~u + pav = Au  inR"1

4.28 -
(4.28) —Ayv + (1 +a?)v —U(y)P v + pou = Av in R”~1,

The equivalence with the second system is obvious: for the first one it is suffi-
cient to switch the sign of the second component. We characterize the spectrum of
the last system in the next proposition: the value of u is fixed, while « is allowed to
vary. We remark that it is irrelevant for our purposes to take o« positive or negative,
since we can still switch the sign of one of the two components.

PROPOSITION 4.5 Let 1y, 0y, and ty denote the first three eigenvalues of (4.28).
Then there exists Lo > O such that for . € [0, po] the following properties hold:

(1) There exists g > 0 such that ny is simple, increasing, and differentiable

ina for a € [0, a0, Y= > 0 for a € (0, a0, 110 < 0, and Ny > 0.

(i1) The eigenvalue oy is 0 for o = 0 with multiplicity n, it satisfies % >0
for a small and positive, and stays uniformly bounded away from 0 if o
stays bounded away from 0.

(iii) tq is strictly positive and stays uniformly bounded away from O for all o’s.

(iv) The eigenfunction uy corresponding to 1y is simple, radial in y, and radi-
ally decreasing and depends smoothly on «; for ¢« = 0 the eigenfunction
of (4.28) corresponding to 19 < 0 is of the form (Z,0) with Z radial
and radially decreasing, while those corresponding to o9 = 0 are linear
combinations of (Vy,U,0), j =1,...,n—1, and (0,U).

(v) Let & be the unique o for which ng = 0 (see (1)); then the corresponding
eigenfunction is of the form (Z, W) for some radial functions Z and W
satisfying the decay | Z|+|W| < Ce~ DY for some constants C, 5 > 0.

PROOF: This result is known for u = 0; see, for example, [34, prop. 4.2] and
[39, prop. 2.9].

For i # 0 sufficiently small, the functions & — 71y, @ +— 0y, and @ — T4
will be C!-close to those corresponding to ;= 0; therefore, to prove (i)—(iv), it
is sufficient to show that n, and oy are twice-differentiable in o for o small, that
g /0a = 00y /da = 0, and that 021, /02, %04 /da? > 0.

We prove this statement only heuristically, but a rigorous proof can easily be
derived. Differentiating

—Ayug + (1 + a®ug — pUY)P Uy + pavy = noug  in R,

(4‘29) 2 p—1 ; n—1
—Ayvg + (1 +a)vg —U()P™ vy + potig = ng in R"7%,



1208 F. MAHMOUDI, A. MALCHIODI, AND M. MONTENEGRO

with respect to o, we find
—Ay G+ (1+ o?) G — pU(y)P~" e
+ po aav"‘ + 20Uy + Vg = Ny 85‘;‘ + %‘;‘ua inR* 1L,

(4.30)
—Ay B 4 (14 o) B — Uy e
+paSe a"“ + 2004 + Mg = 1o G a”"‘ + aa'z)‘l" Vo  inR"TL
To compute < at o = 0 it is sufficient to multiply the first equation by u, and

the second by Vg to take the sum and integrate; if we choose ag‘—a“ and %’—a“ so that

Jrn—1 L s 4 Vg 3”& = 0 (choosing, e.g., [(u2 4+ v2) = 1 for all @’s), then with
an integration by parts we find that

an
- / ui—l—vi:ZM / UpVg.
a=0

do
Rnr—1 Rnr—1

Using the fact that v9 = 0 (see (iv)), we then obtain %‘flazo = 0. The same

argument applies for evaluating %M:o, since the eigenfunctions corresponding
to op = 0 always have one component vanishing.

To compute the second derivative with respect to «, we differentiate (4.30) once
more at @ = 0, obtaining

2u %u
_Ay 3a2a+ o

da2
2
— pU(y)P~ 13 o5+ Z,ua”"‘ +2up = 33 Te o in R?1,
92 vy 0
Ay G+ 352

- U(y)?P~ 18 U"‘ + Z/La“"‘ + 2vg = 32"2“ Vo inR*L,

dor
azo)
s0, using the smallness of u, the claim follows.

For the second derivative of o, the procedure is similar, but notice that in this
case we might obtain a multivalued function, due to the multiplicity (n) of oy
(see (i1)). However, if in the last formula we plug in the corresponding eigen-
functions (see (iv)), we still obtain a sign condition for each of the two branches
of oy (one of them will have multiplicity n — 1 by the rotation invariance of the
equations). 0

As for the previous case we get

/ ( Vg
=2—|—2/,L ug —
a=0 dor

R7—1

02 ad
Na + Vo %

a2

a=0

Remark 4.6. Using the same argument in the previous proof, we can show that
dn

— =20 +2u /ﬁ ZaWs.
da o=a

Rnr—1
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Remark 4.7. Proposition 4.5 is the only result where the smallness of the constant
A is used; see Theorem 1.1. We remark that V = V implies f = Ah°, and
that u = 2( f / k) so the smallness of A is equivalent to that of p. Notice that by
(1.1) and (1.9), when A — 0, h and k stay uniformly bounded and bounded away
from O.

We believe that dropping this smallness condition might lead to further reso-
nance phenomena in addition to those encountered here (see the introduction and
the last section).

Remark 4.8. Considering (4.30) with oy, replacing 7, and for ¢ = 0, we find that
£ % l=0 = —pvo and :60 8va |Ol —0 = —MUp, Where

r
L% = —Ayv +v— pU(y)?~ v,
L0 = —Ayv +v—Uy)? .
Since for @ = 0 we have (1o, vo) = (9;U, 0) or (1o, vo) = (0,U) (see (iv)) and

1 1
@3 2 U = IV ) = U £V = 20,0

see Subsection 3.2, we find that

dv ou
ol ZByuy), 2@

1 1
=pul——U+=VU©Y) -y ).
0o |y—g 2 o |y—o M(p —1 + 2 ) y)

These expressions, together with (3.26) and some integration by parts, allow us
to compute explicitly 020, /da?, whose values along the two branches are

azaa 2 A~

— -1 —2%29}120_‘”4—1 ,
w2 = (@D )
820a 2 o

= — 1) — 2A%gh?7 7P T,
dor2 (p—1) ((p ) ? )

Therefore, we find that the second derivatives of the eigenfunctions satisfy, respec-
tively, the equations

0Pe _ 2 (1) _au2gire-rtyv,u
4.32) ez~ po 1P Vi

— 2V, U — 4A2R20~PT1y U,

0 0%,
(4.33) ' a2

2 -
= ﬁ((p — 1) —24A%ch* " PTHU

—2U — 8AZR2PHIY
These formulas will be crucial later on. Below, we will denote for brevity

182Ma . o L 182va

4.34 @':= -, =1,...,n—1, = ——.
(4.34) I 2 da? J " 2 du?
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The factor % arises in the Taylor expansion of the eigenfunctions in «, and j is the
index in (4.32).

We next consider the case of variable coefficients, which can be reduced to the
previous one through a localization argument in s. To have a more accurate model
for L., the constants k and f in (4.27) have to be substituted with the functions
k(es) and f(es) satisfying (1.11). Specifically, in Ny, we define

Liu = —Agu+ V(es)u —h(es)? ' U(k(es)y)? 'u

(4.35) o -
—(p— l)h(gs)p_lU(k(es)y)p_le_’ At ).‘R(e_’ L )ﬁ)

(recall the definition of g, in Subsection 4.1; in particular, working with the coor-
dinates (s, y) integrals will be computed using the co-area formula (4.3)).

Before proving rigorous results, we first discuss heuristically what the approx-
imate kernel of L] should look like. Using Fourier expansions as above (freezing
the coefficients at some 5), the profile of the functions that lie in an approximate
kernel of L ; will be given by the solution of (recall (4.28))

—Ayu + (1 +a®)u— pU(y)?P~tu + 2]]:((;))0{1) =Au inR"1,

Ay + (1 +a®)v—U(y)P v + 2’;(/((5))(111 =Jv  inR"1

(4.36)

where 1 is close to 0. For o small (low Fourier modes), Proposition 4.5(iv) gives
the profile V,U(k(5)y) or iU(k(5)y) (recall also the scaling in y before (4.27)).
The remaining part of the approximate kernel is the counterpart of that given in
Proposition 4.5(v); for variable coefficients it is a uniquely defined function «(s)
such that

4.37) NaG) = 0,

where 14 here stands for the first eigenvalue of (4.36). We denote by

(Za() (k(35)). W) (k(5)))

the components of the relative eigenfunction.
We next consider two bases of eigenfunctions for the weighted eigenvalue prob-
lems (the operators JJ and 7" are defined in (2.22) and (6.18) and are self-adjoint)

(4.38) 30;() = h(5)0%j9; (),  Tw; = h(3) ™ pjw;.

Because of the weights on the right-hand sides, we can choose these eigenfunctions
to be normalized so that fOL W@ = §;; and fOL h=%wjw; = 8 this choice will
be useful in Subsection 6.2.
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These heuristic arguments suggest that the following subspaces K; s and K3 5,

where § is a small positive constant, once multiplied by e %/ ()/¢_consist of ap-
proximate eigenfunctions for L! with eigenvalues close to 0 (this will be verified
below, in the proof of Proposition 4.9; see also Remark 4.11):

/

K = spanfi(es) “F ({690, G0k + el 9. ) 7 Uiky)
(4.39)

82
- Gl e, 2o )|
Ky s = span%h(ss)i (w,- (es)iU(ky) + w 0 (e)U (y)
(4.40) 2
- e ).
j :0,...,%,where
J = ! k Lo
= (WP—)U( )+ Y Ulky) - y)

Here U = (Uj)j=1,...,n—1 is the counterpart of 9 in (4.34) substituting & with
h(5) (the same holds for 20). The choice of the weights (as powers of /) in (4.38)
and in K; s and K 5 are again done for technical reasons, and will be convenient
below; see, in particular, Subsection 6.2.

We also need to construct an approximate kernel with the profile (Z, W); see
Proposition 4.5(v). To this aim we introduce the functions (recall (4.37))

01a6) = [ Zi  0246) = / 20

Rnr—1

034(5) = / ZaG) Wa )

Rr—1

4.41)

and consider the following eigenvalue problem (with periodic boundary condi-
tions)

v

260 2.2
Q“a
l—i—2f’—k2

& on|0,L].

By Weyl’s asymptotic formula we have that the eigenvalues v; (counted with mul-
tiplicity) have the qualitative behavior V; >~ —1+ e2j%as j — +oo. Hence, there
is a first index j, (of order %) for which v;, > 0. Setting v; = V;_4; and denoting
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by &; the eigenfunctions corresponding to v;, we then have

201 2 2&. Vj .
—& Ej —k*a fj = 1+2f/_Q3,a§]’
(4.42) ko R

. §
vj = Cogj + 0(%j%) 4+ 0(e) if|j| < =

where § > 0 is any given positive (small) constant. Notice that the family (§;),
can be chosen normalized in L? with the weight

1
1 + 2f/ Q3 o
(this follows from (4.42) and the Courant—Flscher formula). Next we set
1 Ql o /
4.43 i =——)1- : i -
4 Pi="ta ( K2a? + 2/ ka0 0 ”1)851

By our choices, the functions B; and &; satisfy (this system will be useful in Sub-
section 6.3) for | j| < §2/s
—82,31/./ _ kzazﬁj _ 2f/Q3 a (8§’ + kapBj) =
viBj +(0(7) + 0(e)B;,

—e2E] — k22 +2f' G2 (eB) — kat)) =
v& + (02 + 0(e)E.
Our next goal is to introduce a family of approximate eigenfunctions of L that

have the profile (from now on, we might denote (Z5). We(s)), see (4.37), simply
by (Za. Wa))

(4.44)

Zo . .0
(4.45) v3,j = (:3] +q]')Za+)/ja—:+l§jWa+lKj 80{“;

the functions B; and §; are as in (4.42)—(4.43), while ¢, y;, and k; are small cor-
rections to be chosen properly so that L] (e_i[f(ss)/a]v3,j) = vje™ [f(”)/s]v3,j,
up to an error o(v;) + O(e).

With simple computations, using (4.29), (4.30), Remark 4.6, and (4.44), we find
that

- f(es) _: f(es) _; f(es)
P (Lg(eT T g ) —vjeT e us )
/Q3a
=Zy2f 0 [2Q1ayjk+(8§ + kap;)]
15

+ Wa2 f'(—yjk — (£§; + Bjka) —kag;)

oW,
o ey — a?ky;) + a_a"‘zf/(—s/cj’- —kayj) +
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+iZo2f (—kjk — kakj + ef + eq))

+ W2 f’ Q3. (202,akij + kak; —ep})
2,0
. 0Z oW,
+i = 2f (—kak; +ey; ™ 21{]/-/ — a?k?k;)

+ Zo(—£%q] — &®k?qj) + (0(v]) + O(e)§; + (0(v]) + O(e))B; .

To make the coefficients of the terms Z,,, Wy, and i W, in the second and fourth
lines vanish, we choose

1 , 1
= A kat; — of)).
Vi Zle,a(ggj + kap;) Kj 2kQ2,a( afj 8/3])
1
qj = =7 (65 + Bika + kyj).
Using (4.43) we get
;= —SS/L ! v
YT Tk ke £ 2 f ka0
(4.406) 1 v
kj = & + O(V )6j -

2k1+2f/Q3a

These equations and (4.42) imply the relations —82)/” — oezkzyj = O(v )Bj,

—ek; — kay; = OW)Bj, —kak; + ey} = O(VZ)SJ, and —&?k — 2k2 =
O(vjz)é . Similarly, we find

1 1
U= Sk ka 4217 0na
This also yields —yjk — (eé/ +Bjka) —kaqg; = O(sz)ﬂj, —Kjk —kag; —i—s,BJ’. +
eq; = 0(v2)$j and szq” —aszQj = O(v]z)ﬁj, so we obtain

L (e_’ f(;"s) v3’j) _ Uje_i f(;S) v3j n (0(1)]2)
(4.48) , 52
+ 0@))gj + (00)) + 0()p;  for|j = —.

which was our claim. We next define

(4.47)

Zo . 0
Ka = span (B +qj) Za + vj == + & Wy +iKj ==
(4.49) . 52 52
J=—— .., — .
& &

In the K; s’s we added some corrections to the approximate eigenfunctions that
take into account the variation of the profile with the frequency; see the derivation
of (4.28) and Remark 4.8. In K; s and K, s the corrections are up to the second
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order (in &j ), while in K3 5 only up to the first; the reason is that the corresponding
eigenvalues have a quadratic dependence in ¢j for Ky s and K 5 (they correspond
to n¢ in Proposition 4.5), and an affine dependence in ¢j for K3 s (corresponding
to iy in Proposition 4.5). Since the former dependence is more delicate in the
indices, we need a more accurate expansion of the eigenfunctions. We finally set

(4.50) Kg = Spal’l{Klyg, Kz’g, K3,3}.

4.4 Invertibility of L. in the Orthogonal Complement of K

Since Ks (multiplied by e ?(/(€))/#) j5 a good candidate for the span of the
eigenfunctions of L} with small eigenvalues, it seems plausible to invert L on the
orthogonal complement to e 2 (/(#s))/€ K¢ - this is the content of the next result. We
recall the definition of the constant +4 in the introduction.

PROPOSITION 4.9 There exists g sufficiently small such that for any A € [0, o]
the following property holds: For § > 0 small enough there exists C > 0 (indepen-
dent of 8) such that if

(4.51) 9" [ e vgdVs, =0 forallv € Kg,
Nye

we have || TT;L} DlL2ny.) = C_182||¢||L2(Ny£). Here Tl denotes the projec-

tion in L*(Ny,) onto the orthogonal complement of the set {e !/ EN/ey + y ¢
Ks}.

Before starting the proof, which relies on a localization argument and the spec-
tral analysis of Proposition 4.5, we introduce some notation and a preliminary

lemma. We fix § € [0, L] and denote by f , h, k, and @ the values of 1),
h(s), k(5), and «a(5), respectively, so that the counterpart of (1.11) holds true. For
a large constant Cy to be fixed later, we also define

K5 = Span%(@(w),VyU(lgy))

~

N S r & " (T
+15]65).) £ URY) = 1 (), B .

I?Z,(g = span{(@j (es)iU(l’c\y)

/ 2 2 ~ ~
+ L,\(SS) @} (e)U(y) — % d)}/(es)ﬁn(ky))},
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j=0,...,8/(Coe), and
Rsus = Span%cos(&jS)Zaj (ky) — i sin(@;5) Wy, (ky) :

82 §2
- |

C()S C()8

123,2’5 = span{sin(&js)Zaj (ky)+i cos(ajs)Wg; ky):

52 52
j == —~—,...,~—},
C()S C08
where
= 1 ~ 1 ~
V= (mU(ky) + 2—]€VU(ky) : y),
(4.52) P

aj = 7

~ akL  2ne
[Zns }

(again, the latter square bracket stands for the integer part, and this choice makes
the functions %—periodic). In the above formulas (¢;); are the eigenfunctions of
the normal Laplacian with the flat metric on y, and &; those of 8?5 on [0, L]; the
symbols Z5, and W, stand for the components of the eigenfunctions of (4.28)

corresponding to 7g; .
In analogy with (4.50), we also define

(453) Eg = Span {El’g,fz’g,fg&l’g,[23’2,5}.

Given a small constant n > 0 to be chosen later (of order /¢), we consider then
a smooth cutoff function y, (depending only on s) with support near £ and with

length of order g For example, we can take y,(s) = X(%(s — g)) for a fixed,
compactly supported cutoff y thatis 1 in a neighborhood of 0. The next result uses
Fourier cancellation and is related to lemma 2.7 in [39].

LEMMA 4.10 There exists Co sufficiently large (depending only on V', L, and 4Ag)
with the following property: for any given integer number m there exists Cpy > 0
depending on m and y, such that for | j| < §*/(Coe) and for |l| > §2 /e we have

<

+ '[ Xn($)&(s) sin(@js)ds

1 C Pk
——’"[n<1+|vz|)+5] .

e v |™

‘f)(n(s)él(s) cos(djs)ds
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PROOF: We clearly have that (cos(@;s))” = —&JZ cos(&; s); therefore, integrat-
ing by parts, after some manipulation we obtain that
/X,,El(s) cos(d;s)ds
_ 1
@k —
J 142234
(4.54) ka
~ 2.2 7252 Vi Vi
X Xn&i(s)cos(@js)| k™ —k=a” + 01 0
142ffe 1 4op 8

— [ cos@slzzercs) + 2x;,s;(s)]}.

By (4.52) the nuinbers o satisfy a; ~ k& + Z’TTEJ for || < 62/(Coe), while by
(4.42) |v| > %COSZ for |I| > §2/e. Notice also that 1 + 2f/% is uniformly
bounded above and below by positive constants when g tends to O (see, for ex-

ample, the comments in Remark 4.7). By these facts and the properties of y, we
find

‘/ Xn&1(s) cos(djs)ds

1C e
< ——|n(+|v) + |,
& vy n

which yields the statement for m = 1 (similar computations can be performed to
deal with the sine function). The factor % inside the brackets arises from the fact

that we are integrating over the interval [0, %] and from the normalization of §; (see
the comments before (4.42)). To obtain the statement for general m, it is sufficient
to iterate the procedure for (4.54) m times and integrate by parts. O

PROOF OF PROPOSITION 4.9: The proof relies mainly on a localization argu-
ment and Lemma 4.10. If n = /¢ and ,, is as in Lemma 4.10, we show next that
the function y,¢ is almost orthogonal to e ifs I?g if ¢ is sufficiently small. We

consider, for example, a function ¥ € K3 1 s of the form

82/(Coe)
D= Y bj[cos(@s)Zg, (ky) —isin(@;s) Wy, (ky)].
j=—82/(Co¢)

for some arbitrary coefficients (b;);, and we also set

82/(Coe)
7= Z bj [cos(&js)Za(gs)(k(E)y) —1i sin(&js)Wa(gs)(k(§)y)].
j=—82/(Coe)
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We are going to evaluate the real part of the integral
/ e 5% And-
Nye

First of all, since |k(5) — l€| < Cnand |&@ — a(5)| < C(n + §2) on the support of
Xn, we have that

1 Zaes) (k3)y) = Za, (ky) | L2@a-1y = O+ %) in supp(xy),

so, clearly

455) % / e TS5y =
Ny,

o / TG 10d + 01+ 5 10820y 17122 0000)-

Nye
Next we write
82/(Coe)
D(s) = xy(s) Y bysin@s),
ji=—82/(Cos)
and notice that
82/(Coe) 82/(Coe)
W'(s) = xp(s) Z bj sin(@;s) + xy(s) Z bjdj cos(d;s)
j=—82/(Cos) j=—82/(Cos)
82/(Coe) 82/(Coe)
(4.56) = kayy(s) Z bj cos(@;s) + xy(s) Z b; sin(&;s)
j=—82/(Coe) j=—82/(Coe)
82/(Coe)
— xn(s) Z bj (ko —aj) sin(@;s).
j==82/(Coe)

Using this formula and the same argument as for (4.55), we get (recall our notation
before (4.45))

- 1 .~ ~
@457 nd = 0 () Za = 1D () We + O + )| tnDl 2y
Notice that, by the explicit form of @ and @;, for any integer m we have

A2 ~112 .
10 go,se1) = CmllWN720,1. /61y
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therefore, if we write W with respect to the basis & as (notice the shift of index
before (4.42))

o0
(4.58) D(s) = ) biki(es),
l:_ja

we also find that

o0

D 4+ ill)™bf < Cull®lFpmo. 11y < Cmll D7 200,16
(4.59) 1=,

= Cm”6”1242(Ny5)'

Differentiating (4.58) with respect to s and using the definition of £; together with
(4.43), we find that

o0 oo
D'(s) = Y bekj(es) = Y by(—ka + O(v)))B;(es).
l=_jg l=_]8
The last formula and (4.57) imply

o0
An ==Y bi(B1Za +i&Wa)

I=—je
oo v
+ > biOW)BIZa + O + 8 xnllz2(vye)
I=—je
(4.60) ) -
=— Y b+ Y, bi(vsg—BiZa —i5Wa)
l=_js l=_js
w v
+ Y biOWDBIZa + O+ ) xndl 2wy
I=—je

In the support of y there exists 6 € R such that (f(es))/e = fs +06+ o(n),
which yields

- f(es)

/ 575 g = [ 517 106 + OB L2umpte 1P 2y
Nye Nye

Now, recalling that 7 = /¢ and that ¢ and e~*/(#5)/¢ K¢ are orthogonal, from the
last two formulas we obtain

/ ﬁe_ifs)(,,q_ﬁ = A; + A + A3
“4.61) Nye
+ 0(77 + 82)”¢”L2(supp(xn))”6||L2(Ny5)
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where

Ay =— / €_ifs¢_> Z byvs,.

supp(xn) =82
.A w v
Ay = / e SG N" bi(vsy — BiZa — iE Wa).
supp(Xn) I==Je
.A w v
t= [ TGy howpiz.
supp(Xn) I==Je

To estimate these terms we first notice that, by the normalization of &; before
(4.43), the coefficients b; in (4.58) can be computed as

. L/e ~
by =e¢ / LS)Q £1(es)ds
0 142fr52e
82/Coe)  LJe
=¢€ Z bj Xn(s)
j=—82/(Coe)

sin(@; s)

—— % £(es)ds.
Q3.4
142 f752

Using this formula, Lemma 4.10, and the Holder inequality, we find that for any
integer m

82/(Coe)
l;lz < Cm82m+2( Z |3j|)
j=—82/(Cos)
82/Coe)
< Cm82m+l Z b};
j==82/(Coe)

(4.62)

82

2m—+2 |l|>—
)

~112
< Cne®™ 25220y,
From the explicit expression for the functions v3 s the above term Ay can be esti-

mated as
1

1 o\ 2
A < C(g Z 1+ |vl|2)2b12) ||¢||L2(supp(Xn))'

|11=82/e

As before, the factor % inside the brackets arises from the fact that we are integrat-
ing over [0, %]

Using the fact that C~1|el| < |v;| < C(lel| + €21?) for |I| > §?/e (which
follows from Weyl’s asymptotic formula for the eigenvalue problem in (4.42)),
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(4.59), and (4.62), we find that for any large integer m and any d € (1, 7§

Yoo A+ PPE] < Cue D)2,
82 <|i|<e—4
Y (4 [ P)?h7 < eIV 92,
[|=e=4

By the arbitrariness of m it follows that for any m’ € N

|41] < Crre™ ||6||L2(Ny8)”¢||L2(supp(xn))'

Dividing the set of indices / into {|/| < §2/e} and {|I/| > 82/} and using similar
arguments (also taking into account (4.46) and (4.47)), we get

1
s 5\ 2
|A2| + |A3| = C||¢||L2(supp(xr,)) (g Z (Vlz + v]4)b]2)
I=—je
= C82||¢“L2(supp(x,,))”ﬁ”LZ(Nyg)'

Therefore, using (4.55) and (4.61) we find

0 / 55106 = 00 + Dl L2ummte 1P lL2vyy 0 € Rans.
Nyg

Similar estimates hold for v € span{l? 1.8 1?2,3, 1/53,2’5}, so0 we obtain

(4.63) /e_ifsﬁ)(ncf_):
NVS
0% + Wl L2cuppoe 1Bl L2y, for every § € K.

NAext we let Ijg denote the operator in (4.26) with coefficients frozen at §. Since
e iS5 125 consist of all the eigenfunctions of L, (up to an error 0(8?)) with eigen-
values smaller in absolute value than §2 (see Proposition 4.5 and Remark 4.8), from
(4.63) we then deduce

@.64) Lo S xy®)llL2vye) =
§2 4 2
< lndllzzavy + OG* + 820191 2 uppe

for some fixed constant C independent of §.

It is now possible to choose the cutoff function y (see the comments before
Lemma 4.10) so that it is even and compactly supported in [-2,2], x = 1 in
[—1,1], and (2 —¢t) + y(¢) = 1 for ¢t € [1,2]. With this choice, we can find a
partition of unity (y,;); of [0, %] consisting of translates of y, (plus a negligible
scaling), with j running between 1 and a number of order L/+/s. For each index
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J we choose a point §; in the support of y,, ;, and we denote by L j the operator
corresponding to (4.26) with coefficients frozen at §;. Then, using (4.64), with
easy computations we find

1L201Z 2y = L2 2 2052
J

= | Y LGP 2wy + OVDID 220y
J
84 5 5
=C > lxni ¢l 2y, + OWOISIZ2)
J

84
= E”(Ib”iz(Nl’s) + O(ﬁ)||¢||22(Ny5)

for some C independent of §. To complete the proof, we need to bound from below
the norm of [T, L} ¢, showing that

82
142 2
||H8L8¢”L2(Ny8) = C ”¢”L2(Ny6)'
To see this, by the last formula it is sufficient to have

S(es)
© VL2(Ny) =

o(PllL2wye IVIlL2(wy,)  forany v € Ks.

We prove this claim for v € K s only; for the other K s’s the arguments are
similar (see Remark 4.11 below for more details). Setting v = v, + iv; we find
(see (1.17))

(4.65) (Llg.e™

if(es)
Lie "%

e

_if(es) . _if(es) 821),- . 82v,~
v)=e £ (irvr‘i‘l;ﬁivi)—e € (85_2 IW

L., _ifes (dv, . dv;
2 e | — — .
+2if'e ( P +i as)

When differentiating v with respect to s, we either hit the functions ¢;’s (and their
derivatives) or other functions like k(es) or f’(es) (see the definition of K s
above). The latter ones have a slow dependence in s, and therefore these terms
can be collected within an error of the form O(e)[|v||z2(ny,)-

However, by our choices of the second and third parts of the elements in K s
(see Remark 4.8, in particular formulas (4.31), (4.32), and (4.33)), terms containing
zeroth- or first-order derivatives of ¢; will have coefficients bounded by ¢, while the
only term containing second derivatives of ¢; will be a linear combination (in ;)
of the expressions
p1 ( 2420

—&2h(es) & 1——h(§)°—9)<¢]’.’(ss),va(k(g)y)), j=0,...,

)
p—1 e
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The remaining terms will contain third and the fourth derivatives of ¢; only (mul-
tiplied, respectively, by &3 and &*). Therefore, if we set

vi; = hies)" T (<<o,- (e5). VyU(ky))

. , f & "
il e5). )4 Ulky) = o es). 006) )

by the above comments and the fact that Jp; = h(es)? A j@; (see (4.38)) we have

ren 8 ren 8
L} (e_" e Zajl)l,j) =e e Z)Ljajvl,j + R(v),
j=0 j=0
(4.66) 8/

v = E ajvy,j,
J=0

where R(v) contains terms of order & or linear combinations of third and fourth
derivatives of ¢; (es). Thus, using Fourier analysis, we can derive the estimate

§/e 1

1 2
R(v <C|- a28+83'32)
e IR0y (8;) 2ete)?)

< C(e+ &) vllL2vye
for some constant C > 0. Therefore, using (4.66) and (4.67), we obtain
(Lip.e”*
which yields (4.65) and concludes the proof. O

Ses)
V) L2y = O€ + D2y, W2y,

Remark 4.11. The last step in the proof of Proposition 4.9 is nearly identical for
v € K 5 except that, still by the computations in Remark 4.8, in the counterpart of
(4.66) we will obtain p; instead of A; (see (4.38)). When considering K3 s, setting

_ 82/¢
V=7 52/ A V3,J (see (4.48)), we find

j=—
f(es) f(es) 52/8
Li(e777e v)=e""e Z via;jvs,j + R(v),
j=—b2/e
@68) RN :
’ IRW)L» SC(; 3 a}<e+82j2>2)
=82/

< C(e+ 8YvlL2(vy)-
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4.5 Invertibility of L. in Weighed Spaces

Our goal is to show that the linearized operator L, (see (4.7)) at approximate
solutions is invertible on spaces of functions satisfying suitable constraints. We
begin with some preliminary notation and lemmas; we first collect decay properties
of Green’s kernels in Euclidean space. Let us consider the equation

(4.69) —Au+u=f inR"!

where f decays to O at infinity. The solution of the above equation can be repre-
sented as

uw = [ Gollx = ¥ f0)dy.
Rn—1
where Go : R4y — R is a function singular at 0 that decays exponentially to O at
infinity. Using the notation of Subsection 4.2 and standard elliptic regularity theory,
we can prove the following result (the choice o > % for the Holder exponent is
technical and is used in the proof of Lemma 4.13).

LEMMA 4.12 Let Q > 0, 0 > 3,0 <7 < 1,0 <¢ < 1, and f € CZ
Then equation (4.69) has a (unique) solution u of class ngr’a that vanishes on
BBQ- (0). Moreover, there exist co > 0 sufficiently close to 1 and Cy sufficiently
large (depending only on n, o, min{Q, 1}, and ¢) such that for co < ¢ < 1

lull g2 = Coll flice-

Let now 7,6 € (0, 1) (to be fixed later). For any integer m we let (:’g’ ’" denote
the weighted Holder space

(4.70) C_;”” ={u:R"' > C: sup 1e5|y|||u||cm,r(31(y)) < +oo0}.
yeR?—

We also consider the following set of functions %—periodic in s:
471 L>(CIY) = {u : [0, LIxr"! > C: )

s u(s,-) € Lz([O, %]; C;”’T)},
and for / € N, we similarly define the functional space

@7 FIZ(C_’gm”) ={u:[0. L] xR > C:

s> u(s,-) € H'([0. £; ¢mm)).

The weights here are suited for studying functions that decay in y like e Pl as
the fundamental solution of —Ags—1u + u = 0. The parameter ¢ < 1 has been
introduced to allow some flexibility in the decay rate. When dealing with functions
belonging to the above three spaces, the symbols

| - ||Cg”’ | - ||L2(C£”)’ and | - ”I_'I[(C;ﬂ,t)
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will denote norms induced by formulas (4.70), (4.71), and (4.72). Also, we keep
the same notation for the norms when considering functions defined on subsets of
[0 L] x R?*—1.
We next con51der some positive constants v, f h and k that satisfy the relations
in (1.9). If § and K5 are as in the previous subsection and § as in Section 4, letting
DL,8 = [Oa ?] X B8—1§+1(O) g [0’ ;] X Rn_la

we define the space of functions

H, = {(ﬁ:fﬁ / qg(s,y)e_ifsv(s,y/ﬁ)zo forall v € K.

This condition represents, basically, orthogonality with respect to KAS (multiplied
by the phase factor), when the function ¢ is scaled in y by +/V. This is a choice
made for technical reasons, which will be helpful in Proposition 4.14. We next
have the following result, related to Proposition 4.9 once we scale y.

LEMMA 4.13 Ler 1 5 <1 < landg € (0,1). Then, for 8 small there exists
a positive constant C dependzng onlyon p, t, ¢, L, V., and f such that the
following property holds: for f small, for ¢ — 0, and for any function b € LZ(C’)
there exist u € Hs andv € K,g such that, in D, ¢,

182u—A u—i—u—hp U(y k/\/_)p 1
@73 1 (-2 UGy k/\/_)P te=iFsi(e=1/5i1) = b + =1 /5,

u=0 ondDp,

(notice that v above is intended to be scaled in y) and such that we have the
estimates

lullz2c2ey + el gr oy + Tl goery <

(4.74) ¢ . i f.
inf |6+ e /50| 72500,
52 veﬁs LZ(CS-)
(4.75) 2l z2czy = Clbll 26y

PROOF: First of all we observe that a solution to (4.73) of class L? exists. In
fact, by replacing Dy, . with [0, %] x R~ this would simply follow from Propo-
sition 4.9 with V' = V. However, since the functions in I?g decay exponentially
to 0 as |y| — 400, the Dirichlet boundary conditions do not affect the solvability
property; for more details, see, for example, [40, lemma 5.5]. Notice that indeed,
by (1.18) and Proposition 4.5(v), the elements of Kg decay at the rate e_l2 ¥l and
by (1.9), k> V7. I particular, ||v ||L2(Cr) is finite and (4.75) holds. We also



SOLUTIONS TO NLS CARRYING MOMENTUM ALONG A CURVE 1225

have (4.74) replacing the left-hand side by the L2 norm of u. We divide the rest of

the proof into two steps.

~

Step 1. u € L*(C}) AND lullz26r) = 5%”[’”1:2(6;)- We setu = e /5y

and ¢ = e7/5(b + v), so v satisfies

—Av+ (1+ £ +2i La,w - ﬁ’;l UGk /V7)P~ 1
NSl |
~ (p = DEUGR/V D)) = ¢ in B, (0).
v=20 on 8Bg_g+1(0).

We now use a Fourier decomposition in the variable s; setting

€(5.,3) = D (DT visy) = Y v ()el
J J

(here we are assuming for simplicity that L = 2), we see that each ¢; belongs to
C? ., that
sV

1
NZ = Zlel?. -
Do lleilgs = Sl sy
(4.76) / | c
2 2
2o Iilige = SI0IFa sy = gzlbl2ery
J

and that each v; solves

£20:2:2 5 Fai
—Ayv; + (14 Lﬁﬂmv}.
hr—1 ~ ~ o
— LYk VTP

4.77) v L
—(p = VEL UG/ DPTING) = ¢ in B, (0).

v;j =0 on 8Be_g+1(0).

From elliptic regularity theory, we find that for any R > 0 there exists a constant
C depending only on R, p, and t such that

lvjllez(Br) = Clicjllgr + Cllvjlia-
Now we choose R (depending on p and ¢) so large that

hr! yr-1 (y_lg

P—= =
vV

1(1 ) f ||>R
< —=(1- r —
vV 4 s © y_2,
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and a smooth radial cutoff function y such that y(y) = 1 for |y| < %, and
Y(y) = 0for|y| > R. Next, we write equation (4.77) as

—Ayvj + (1 + LFEE22L (- ) p B Uk V)P =
&+ 20 B UGk,
v;i =0 ondB, 5 ,(0).
We notice that the first linear coefficient of v; is bounded below (uniformly in j)

by 1. Therefore, using Green’s representation formula, the maximum principle,
and our choice of R (see Lemma 4.12) for any ¢’ < ¢, we have the estimate

lilles, = Cliilles + lIvillz2)

for some fixed constant C depending only on p, ¢, and 7. Taking the square and
summing over j, we get

||u||2p@) — ||v||§2(@;,) < C||b||2£2(c—§) +Clvl3, < IIBIIEZ(Q,).

We next want to replace in the last formula ¢’ with ¢. Rewrite (4.73) as

_%3?&, —Aju+u="=2:= % U(ylg/ﬁ)l’_lu

+(p— 1)}7';7_1 U(yl’c\/\/?)p_le_ifsﬂt(e_ifsﬁ) + b+ e_ifsg,

u=0 ondDp .

Using the same procedure as above, write ¢(s, y) = ), ¢; (y)e/®S and u(s, y) =
>, uj(y)ees.

We now consider the function UP 1y j: by (1.18), if we choose
SUEN;

— >,
Vv

it follows from the above estimates that ||<|| i2¢n is finite and that

S

C
T 6|2, -
I IS [T
J

Moreover, u; satisfies

82j2 ~ .
—Auj + (1+ 7 Juj =¢; in B, 5,00,
uj =0 on BBg_g_H(O).
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Also, it is easy to show

2 2 2
”u”ZZ(C'g-’) + ||u||gl(@;,r) + ”u”g2(c_’;)

1 2 2 -2 2
= = D [l + @+ 21

4.78) -
J

+ (4622 4+ ey .

and therefore we are reduced to finding the estimates

done in the next step.

Step 2. CONCLUSION OF PROOF. We now set a; = 1 + 821'2/17 and
vi(y) =uj(y/a ;7). Then, from a change of variables we have the equation

—Avi () + v () = Fj0) = 2G(5) i B i) O0),

v;j =0 on 33\/(7,-@78“)(0)-
Notice that a; > 0 stays bounded from below independently of j, and therefore
by a scaling argument (and some elementary inequalities), we find

sup  |Fj(y) — F;(2)]

¥,2€B1(x)
5(7m)-(5))
Gl—) -5 —=
aj aj

1
= sup

aj y,zeBl/J‘Tj(x)

4.79) R y R z
£ bl ()
aj y,zeB)(x) aj aj
Cljll: _ s
=< ng sup |y — Z|T€ v
a; 2 y,z€B1(x)

where C depends only on 7, and hence we get
C

A' ~T < — |5 ~T.
(480) ||FJ ”Cg/ Tj — a}+t/2 ”cj ”Cg
Now Lemma 4.12 implies that
o | << Ijll ¢

J
From this estimate, we will obtain some control on u; by scaling back the variables.



1228 F. MAHMOUDI, A. MALCHIODI, AND M. MONTENEGRO

We consider an arbitrary x € R”~!. As before, we have

wp WO W@ @) — i@,

yzeBi(x) |y —zl* y,2€B (x) ly —z|*

Since a; can be arbitrarily large, we cannot evaluate the difference v; (\/a;y) —
vj (/a;z) directly using the weighted norm in the definition (4.70) (as we did for
the first inequality in (4.79)), since the two points ,/a;y and ,/a;z might not be-
long to the same unit ball. We avoid this problem by choosing [,/a;] (the integer
part of ,/aj) points '), lying on the segment [,/a;y, ,/a;z] at equal distance
from each other and using the triangle inequality. Now the distance of two consec-
utive points y’ and y/ 1 will stay uniformly bounded from above, and the minimal
norm of the y!’s is bounded from below by C ! J@j(|x| = 1). Therefore, adding
[\/@;j] times the inequality and using (4.80), we obtain

Iuj(y)—uj(z)l < Cvaj C y—Zz re_ﬁs‘(lf/l(;jl) ”/c\”_
J— T
yzeB (x) |y —zI* Iy—ZITaW/2 Jaj Ihee
C B c C
< e € MGl = — e MRlle <= — e MG g
a J

J

since we chose 7 > 5 and since a; is uniformly bounded from below.

Similarly, taking first and second derivatives, we find that

[Vu;(v) = Vu; ()| _ €

g

Sup < “ _—
¥,2€B) (x) ly —zI* Ja; C?
VZy: —V2y.
sup V7 (9) tu] @) < Ce_§|x|||Ej||C-r,
y,2€B(x) ly =z <

where, again, C depends only on 7. Recalling that a; = V + &2 j2, we have in
this way proved that

C
=12 - 2
||“J||C2r Clle; | Sa [ ”le = 1162 2” Gz e
e 1% << 1511
uj f—(1+ 22)2 ¢ o
Now the conclusion follows from (4.76), (4.78), the last formula, and the fact that

||C||L2(C‘[) < C lnf ||b + U”Lz(c‘[),

veKsg
see the beginning of Step 1. U

We next consider the operator L. in D, (see (4.7)), acting on a suitable subset
of H b, (verifying an orthogonality condition similar to (4.51)). We want to allow
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some flexibility in the choice of approximate solutions: to do this we consider a
normal section @ to y that satisfies the following two conditions:

)
(4.81) ® € span hpTHgoj cj = 0; and || @[ g2(,1) < 18

Here (¢j); are as in (4.38), while ¢ is a large constant to be determined later.
Notice that by (4.81) @ has, naively, only Fourier modes with index bounded by
1. This yields estimates of the type [|[@* V|2 < Cps1[|@®)||,o. We have
therefore ||®"||12(9,z] < C, which implies ||®"||L~ < C, so also (4.4) holds
true. This will allow us, in the next section, to apply Proposition 4.1.

Next, consider the variables z defined in (3.1). In the coordinates (s, z), we will
consider the approximate solution

~ . f(es) - ~

(4.82) Ve =e"' e ne(h(es)U(k(es)2) + Ui(s,2)) := Vo,e + Ve,
where &5 = §, and where f and U satisfy, for some fixed C > O and 7 € (0, 1),
@83) NS~ flazqo.ry = €% |Uil(s.2) < Ce(1 + [z]©)e ™ O,

(4.84) I|hU(k-) + Uy [P~ = |hU k)P~ ¢ < Ce in Ds.

With this choice of 1/, we are going to study the analogue of Lemma 4.13 for L,
(see (4.7)), using a perturbation method.

To state our final result, we need to introduce some more notation. Recalling the
definition in (4.70) and still using the coordinates (s, z) for t € (0,1) and ¢ > 0,
we define the function space

(4.85) L2(C;"'ff) =

{u : 158 —-C: 5 u(s, \/ﬁ) € LZ([O, %];C;’f{f)}.

Also, for m € N, we similarly define

LiemTy _
(4.86) H(C;’fV’)_

{u:ﬁ8—>(C:S|—>u(s,

: e H' ([0, L}, 7 }
m) ([ s] s, 1 )

We next let Kg be the counterpart of Ky (see (4.50)), when we replace the
coordinates y by z. Finally, we denote by H, the following subspace of functions:

(4.87) Hg = {d) €Hp N / e ﬂf”vé =0forallv e 155}.
D

Defining

@89 - loy =1 lpazgy + 1 Iy + 1l

we then have the following result (recall the definition of 138 in (4.10)):



1230 F. MAHMOUDI, A. MALCHIODI, AND M. MONTENEGRO

PROPOSITION 4.14 Suppose 0 < ¢ < 1 and% < t < 1. Suppose 1/76 is as in
(4.82), with f and Uy satisfying (4.83). Then, if K*(ss) = V(es) and if A and
8 are sufficiently small, in the limit ¢ — 0 the following property holds: for any
function b € LZ(C;,V) there exist i € Hy and § € Kg such that

—Ag, 1 4 V(ex)ii — |We|P7Lil
(4.89) —(p = Dl P PR Wetd) = b + e 5 in Dy,
=0 on 8138,

is solvable, and such that for every ¢’ < ¢ there exists some C > 0 for which we
have the estimates

fles) _
= OllLaery)

- C . i
lillgr,y < =5 inf |Ib+e™
(4.90) 7eKs

Bl2cs, ) < Clbllzaes ).
PROOF: We divide the proof into two steps.

Step 1. SOLVABILITY OF (4.89). First of all, we notice that, from Proposi-
tion 4.9 and from elliptic regularity results, if H, denotes the subspace of function
in H2(Nye) satisfying (4.51), then the operator L} is invertible from
(He, || - l2(wy,)) onto (TT.L2(Nye). || - l22(ny,)); moreover, the norm of the
inverse operator is bounded by C/§2.

From the comments at the beginning of the proof of Lemma 4.13, we also de-
duce the following property: Given b € L2({|y] < (7% + 1)/ K(es)}) there exist

ue H2({|y| < (7% +1)/K(es)}) and v € K such that

Leu = —Ag.u+ V(es)u — h(es)P Uk (es)y)P u

4.91) — (p = Dh(es)? MUk (s5)y)P e e R e T )

=b+e iy in{ly| < (70 + 1)/K.

N / e Y vdVg, =0 forevery v € K.

{lyl=(e5+1)/K}
Again, we have the estimates

C
4.92) bl i</ = @2 1PM2cimises0/x
1olz2qy1<e-3 47k = CIPL2cyi<e341/K0)

Using a perturbative argument, we show that we can recover the same invertibility
result for (4.89) where, compared to (4.91), we need to substitute y with z, Ag

with Ag,, f with f, and e " CI/2hU with .



SOLUTIONS TO NLS CARRYING MOMENTUM ALONG A CURVE 1231

In fact, let us denote by ITy, and IT; the orthogonal projections in L? onto the
orthogonal complements of the sets {e'(/(EN/ey =y e Kj), {e_if/(”)sv
v € Kg} with respect to the scalar products induced by the metrics g, and g,
respectively. By (4.81), Lemma 3.1, and (4.83) for every u € H2(D,) and every
b € L%(D,), we have

ITlyb = Tzbll; 25,y < Clen)elblip2 5,y

where C(cy) is a positive constant which depends on y, V, and the constant ¢ in
(4.81).

From (4.92) and the last formula we deduce the solvability of (4.89), together
with the estimates ||l7||H2(5£) < (C/82)||b||L2(5€) and ”ﬁ”LZ(ﬁs) < C||b||L2(58)'

Step 2. PROOF OF (4.90). Recall that the coordinates y (see the beginning of
this section) are not global, since they are defined locally in s by normal parallel
transport; the same holds, of course, for the coordinates z. Therefore, if we prolong
the z’s along y,, there will be a discontinuity between 0 and %

To reduce ourselves to the periodic case, as in Lemma 4.13, we apply a rotation
R: = Rg(es) to the z-axes that makes the coordinates Z := R(es)z periodic in s.
To compute the Laplace-Beltrami operator in the new coordinates Z, we should
apply the chain rule in this way:

dz,;u = (Re)jidzu.  35;,u = ed; (Re),laz,u + (Re);103;

;2]

SZ] u,

ZZt

In particular, since R is orthogonal,

82, u = ijRtjaz Zt (Rg)m](R l)jt Zmztu
2

ZmZm

namely, the main term in the Laplacian stays invariant. Taking into account Lem-
ma 3.1 and the last formulas, for ¢’ € (¢, ¢) we find

(4.93) 1agu = A ull2cz, ) = Clenelullgr,y.
We next use a localization argument as in the proof of Proposition 49 1If §] and

)(,, j are as in that proof, by (4.83) we can find 9 € R such that f(es)/e — f]s —
0; = O(4/¢) in the support of y,, ;. If we set A(s 2 Azn . + 92, and if we
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scale the Z-variables by K(es) = /V(es), the function yy,; (s)u(s,Z) (which is
now periodic in s) satisfies the equation

_%a?s)(n ju = Rn (g Zk /\/ Xn,j“
p 1 .
(p _ 1) (Zk/ .)P_ e—z(fs—i-Gj)m(e—l(fs-i—ej)xn’ju)

=%, in {|Z| <£ BH}

-8
£ K+1}’

xnju=0 on{|Z|=

where
Fr= — oy (AZ A(“)) u
J V()XTIJ V() Ge An.j
1 Z
+-;(3rwa J“‘+‘VES(P'-1N¢bw_2¢ém(¢éijﬁ)
hl’ ! .
- (Zk/ ) Xn,ju
J
—(p= D= U ki 7)) e TNy b,
J

In the last formula, the functions b, v, V, and 1/78 are intended to be scaled in Z
by +/V(es). Reasoning as for (4.63), from (4.87) we find that

[ 750,18 = 0@ + VN2 otrn P25,

D,

for every v € 125. Moreover, as for (4.93) we can show that

(A% — AR Z))Xm””LZ(cr ) <

Clene(lnull 2@z + Wnitl giens + lniulgaes, )-
< <



SOLUTIONS TO NLS CARRYING MOMENTUM ALONG A CURVE 1233

Therefore, using Lemma 4.13, (4.83), and (4.84) we obtain the estimate

C
= 52 1%l z2ez,)
C C
(4.94) < 8—2||Xn,jb||i2(c_§f,,) + 8—2||Xn,j2||iz(ég,/)
+ C«/E(Ilull L2(C2F suppan ) T “””Fﬂ(é;;f,supp(xﬂ,j))

+ fJull H2(C‘;,,,SUPP(Xn.j))) ’

where the last symbols denote the restrictions of the weighted norms to supp(xy,;)-

Recall that the functions in the previous formula have been scaled in Z by /V(gs);
therefore, from the uniform continuity of V(s), for some C > 0 we have (recall

that¢” € (¢', <))
1 _ ~
cllamiullsry = . ju. VVE) ')Ilp(c-sg,-;) + ., juC-, VV() ')”[-_Il(égl;/f)
+ . uC VVE I g2,

A similar inequality holds for the restriction of u to the support of y,, ;, together
with

X, b(-. VV(5) ')”Lz(é;//) + llxn. ol VV() ')||L2(é§f/,) =
Clxniblrzecs ) + xmjvlrzcs ,))-

Using the last two inequalities, taking the square of (4.94), and summing over j,
we can bring the last term in the right-hand side to the left, so we get (4.90). O

S Approximate Solutions

In this section we construct some approximate solutions to (1.16) that depend
on suitable parameters and find estimates on the error terms. As in the previous
subsection, we let y be a system of Fermi coordinates in Ny,, and for a normal
section ® of Ny, of class H? we define the coordinates (see (3.1))

z=y—®s), zeR"L
By the results in Subsection 4.2, we will restrict our attention to the set Dy.

Remark 5.1. In the spirit of Proposition 4.4, we will work with approximate solu-
tions V¢ supported in D. Therefore, using the above coordinates, V¢ (s, z) has to
vanish for |z| sufficiently large. This can be achieved by formally defining /¢ (s, 2)
on Ny, and multiplying it by a cutoff function 7, as in Subsection 4.2. However,
since the functions we are dealing with decay exponentially to 0 as |z| — oo, the
effect of this cutoff on the expansions below is exponentially small in €, and it will
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turn out to be negligible for our purposes. Therefore, for reasons of brevity and
clarity, we will tacitly assume that ¥¢(s, z) is multiplied by such a cutoff without
writing it explicitly.

Recall that in (4.6) we defined
Se(¥) = —Ag¥ + V(ex)y — Y|P~y
We set fo(5) = f(5) + f1(5), where f is given in (1.12) and f; in (3.25) (we
refer to Subsection 2.4 for the definition of #'). If w, and w; are smooth functions
of §, we saw in Subsection 3.2 that

. foles)
Se(e™ 7 (hU(kz) + e(w, + iwy))) =

. foles)
e (e(Ry + i Ri)) + Ry(z)e *ELE]

for some quantities R, and R;. We choose W, = Wy e+ Wy and w; = Wi e+Wi,
(see (3.13), (3.9), and (3.12)) to make R, and R; vanish, using the stationarity
condition (1.15) (see Lemma 3.2).

From Proposition 3.3 we also have that

l-f'()(ss)
e ¢ Sa(‘pl,a)

(5'1) = 82(§r,e + Iér,o) + 82(Iér,e,f1 + Iér,o,fl)
+&%i(Rie + Rip) + €% (Rio.f, + Rio p,) + R3(z)e *Ekl,

Here we want to prove error estimates when ® and the phase satisfy some precise
conditions in terms of Fourier analysis and Sobolev norms, and we add further
correction terms.

To allow more flexibility in the choice of approximate solutions, we substitute
the phase fo with the function f = f + ef1 + €2 f>, where f5 is some function
of class H?. On ® and f> we assume the following conditions for some constants
c1 and c; to be determined later:

(52) I®llg> < cie. | f2llg2 = ca.

Moreover, letting § be as in Subsection 4.3 and ¢; and w; as in (4.38), we also
assume that

)
d e span%hpjlgoj 1 J =0,...,—},

(5.3)

)
fr € span%hiwj 1 J =0,...,—}.
2

Notice that for f> we have similar observations to those made for ® after (4.81).
Since, again, the Fourier modes of f, have index bounded by %, we get estimates
of the type ||f2(k+1) 2 < Ck,3%||f2(k)||L2. This allows us to control terms in-

mo p(4)
> J2

volving f. , etc. To deal with the resonance phenomenon mentioned in the
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introduction, related to the components in K3 5 of the approximate kernel, we add
to the approximate solutions a function vg like

(5.4 Vs = ,B(gs)za(ss) + ig(gs)Wa(ss)
(see (4.37) and the lines after), with § and & given by

82/¢ 82/
(5.5) Bles)= > biBj(es). &= Y bj&(es),
j==82/¢ j==82/¢

where, we recall, §; solves (4.42) and is related to B; by (4.43). Below we will
regard B as an independent variable, and £ as a function of 8. Introducing the
norm

82/ 1
(5.6) 1Bls:= (D B2 +17?)
j=-82%/¢
we will assume later on that
(.7 1By < c3e”

for some constant c3 > 0 to be specified below.
We will look for approximate solutions of the form

fes)
£

Wse(s,2) :=e T {h(es)U(k(es)z)

+ e[wr + iw;] + 2T + e2vg + vs}.

(5.8)

In this formula f is as above, while ¥ and v are corrections whose choice is given
below in order to improve the accuracy of the approximate solutions.

Our goal is to estimate with some accuracy the quantity S, (\112,8): for simplicity,
to treat separately some terms in this expression, we will write ‘ifz,s as

(5.9 Wa,6(5.2) = W1,e(5.2) + E(s5.2) + F(s.2) + G(s,2),
where @1,8, E, F, and G are, respectively, defined by

- : f(es)
Wy e(s,2) i=e " e {h(es)U(k(es)z) + elwy + iw;]}
_j ) -
=e € w1,87

_Ses) i fes)
E(s,z) = g%e”" e, F(s,z) = g%e" e Vg,

_; [es)
G(s,z):=e™" . vg.

To expand S, (W5 ) conveniently, we can write

Se(Wae) = Se(Wye) + As + Ag + As + e,
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where 23, ..., g are, respectively, the linear terms in the equation that involve E,
F,and G (see (5.9)):

Uy = —AgE + V(ex)E — |0y [P 'E

(5.10) 3 s o
—(p— D)W e|P77W RV E),
5.10) Ag = —AgF + V(ex)F — |Uy .|P7'F
‘ - (P - l)l\ijl,s|p_31/71,em(\ijl,sﬁ),
As = —A,G + V(ex)G — |V .|P71G
(5.12) 5 g ( ) | 1,e|

= (p = D172V R(P1,66),
and where 2(g contains the contribution of the nonlinear part

U = —|Wp o|P 10y, + [Ty [P Y (E + F + G)

(5.13) I ETma TR
+ (P = DW1e[P 7V R(W1e(E + F +G)).

Next we write (tautologically)

g (\i; ) — szfz(es)S (& !
e(W1e) = ¢€ € eWi,e 1,
(5.14) ) 2 /oo y
A1 = Sa(\pl,s) —e € SE(‘/fl,S)’
and set
. Fes) , ; foles) ~
Ay =e e (e’ e Se(V1e)
(5.15) - gz(ér,o + ér,e) - Sz(ﬁr,a,fl + Iér,e,fl)

—&%i (iéi,e + iéi,o) - Szi(iéi,e,f] + Iéi,o,fl)),

so that %A, represents the terms that are formally of order ¢3 and higher in S, (1}1, )
(multiplied by a phase factor). Therefore, from definitions (5.10)—(5.15), we find
that

~ i Fes) - - ~ ~
Sa(qu,a) =e ¢ (SZ(Rr,o + Rr,e) + 52(Rr,o,f1 + Rr,e,fl)

(5.16) + Ezi(Ri,e + Ri,o) + &2 (Ri,e,fl + Ri,o,fl))
4+ A + Ay 4+ Az + Ag + A5 + As.
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To estimate rigorously the 2;’s, we display the first- and second-order deriva-
tives of W5 ¢:

OsWo o = —i f/ (ss)e_’ [h(es)U(k(ss)z) + elwy + iw;]
+ &2 + &2 vo + v(g]

+ e T [eh U kz) + ehk'VU - 2 + 620w, + 1620w,

£ [hkd; Ulk(es)z) + 0w, + i0,w;] + £29;D
+ 823'1)0 + a'vgg]

020, = (- ]2 —ief")(es)e ¢

- 7
ajlljzge =e !

[h(es)U(k(es)z) + e[w, + iw;] + €7
+ 2vy + a(es)Z(kZ)]

4 omi T [21"U(kz) + 26 k'VU - z 4+ 2hk"VU - 7
+ &2 hk"*V?U|z,z] + 202w, +ie39% w; + *92 v
+ 8432 vo + 0%,
—2i fles)e™ € [eh Ukz) + ehk'VU - 2 + 205w,
+ig205w; + 30,7 + 30500 + asvg],

i, = o Fies) [h(es)k?0% Uk (e5)2) + e[02 wy + 0% wi] + £20% ¥
+ 828211)0 + 0% vs],
82 l112 e = —lf (ss)e_’ [h(es)ka Uk(es)z) + e[djw, +id;w;] + ¢ 8]1)
+ e20jvo + a(es)kd; Z(kz)]
+ e P [e ki Ulhz) + hK'0;U + ehkk'z 9%, U + 6202w,

+ie 82 w; +8382 v +8382 vo + asjv(;]

To simplify the expressions of the error terms, we introduce some convenient no-
tation. For any positive integer ¢, the two symbols R, (P, @) and R, (D, P, D)
will denote error terms satisfying the following bounds for some fixed constants C
and d (which depend on ¢, c1, ¢2, and ¢3 but not on ¢, s, or §)

[Rg (@, )| < Ce?(1 + |z|9)e kI,
9 (@, D) — Ry (D, &)| < Ce?(1 + |2|)[|D — B| + | — 'l 2,
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while the term R, (P, @, @) (which also involves second derivatives of ®) stands
for a quantity for which

94 (@, &', d")| < Ce(1 + |z|D)e ™ 12l 4 Ce?t1(1 4 |z|%)e k2l 0",

1Ry (D, D, D) — Ry (D, D', )]
< Cel(1 + |z|D)[|® — | + |@ — &' [Je FI!
+ CefTH 1+ 2] (19 + ”|(|® — @ + @ — @)
+ |CI)” _ &)//De—klzl.
Similarly, we will let 23, (5) denote a quantity (depending only on § and z) such
that
5 q dy,—k|z|

[Rg ()] = Ce? (1 + |z]T)e ™=,
and which depends smoothly on s.

In the estimates below, assumptions (5.2)—(5.3) will be used. On one hand, by
(5.2) we have L° estimates on @, f>, and their first derivatives; on the other, by
(5.3) we have LZ estimates on the higher-order derivatives, of the type || 10 12 <
C; (8 /)| ®@|| 2, for I € N.

We will also use notation like @R, (P, D), f,'Ry (P, '), etc., to denote error
terms that are products of functions of s, like ® or fz/ , and the above R,’s. Having

defined this notation, we can compute (and estimate) S, (‘ifz,g) term by term.

5.1 Estimate of 214

From the expression of the Laplace-Beltrami operator (see Subsection 3.1) it
follows that

. szfz(as)

et Se(Uie) — Se(Prn,e)
=g [ (D Ve + i€ Ve + 206 f30591.6]

. . i _ .
+ 2i Zl:gllszfz'al%,a + \/?tgaA(gAl Vdetg)e? f3 916

Using the expressions of w,, w; and the expansions of the metric coefficients in
Subsection 3.1 and multiplying the last equation by e!(/o))/¢ e obtain

- [(es) Jotes) . e2./2(e5) ~ ¥
e e A =e' e (¢ F Se(Wie) — Se(Vie))
. Fes) ~ .fo(é‘s) ~
= S (1) — e S ()

(5.17)
=A1,0 + 21

=10+ A1 e + Ao +Arjie +A1io + A1,
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where
Ay 0 =262 f fhU,
At re =& f2f{hU + 4(H, @) f'hU + 21 wy.],
At ro =& f[4H, 2) f'hU + 2 wy,),
(5.18) Wje =i fy'hU +2ie3 f5[f wie +h'U + hk'VU - 2],
iio =208 f' frwio0
A1 = (/3)*Ra(P, D) + [ Rs(D, D) + f30"Ra (P, D)
+ foR4(D, D).

5.2 Estimate of 2,

Reasoning as for the previous estimate and collecting the terms of order &3 and
higher in S¢(¥1,¢), we obtain

- f(es) ~
(5.19) e =0 +A:=An e+ Ao+ Anie +Azio+ Az 1,

where 25 o = 0 and where the remaining terms are given by

le,r,e = 53¢,/Fe(§)’

pro = 26>hk(H, @) Y " @[0;U + & f'hf] Y z;®]U
J J
+26% fPh(H,®) Y @ z,U.
J
p e =—2ie> f'hY ®j979;(z;U) + 2ie* f'h(H,2) Yy @ 7;U,
il J
Unio =iy Wi (f"hU + f'H'U + f'hK'VU - 2) + i3 @ Fo(3)
J
+2ie* f/h(H, @) Y @ 7;U,
J
Az,1 = R3(5) + (O + D)R3(D, D', D) + Ry (D, @, D),
where F,.(5) and F,(5) are, respectively, an even real function and an odd real
function in the variables z, with smooth coefficients in § = ¢s, and satisfying the
decay property | F.(5)| + |F»(5)] < C(1 + |z|9)e~ k12,
5.3 Choice of v and Estimate of 23

We choose the function v in such a way to annihilate (roughly) one of the main
terms in (5.17), namely 2&2 f/ f>hU(kz). Hence we define ¥ so that it solves

(5.20) £,5 = -2 fIhU(kz).
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Reasoning as for the definition of w, (see Subsection 3.2), we can explicitly deter-

min U as

T =2f"fjhU(kz).

With this definition, using the above estimates on the metric coefficients and the
expressions of error terms, the linear terms involving E in Sg (W3 ¢) can be written

as

(5.21)

where

(5.22)

; L(es) ~
el e As =Ql3,0 + A5

=A30+ A3 e + A3 r0 +A3ie + A3 0 + Az 1,

A0 = 2L, 7,
As e = 28 f0fy(2(f)*(H, @) + (VVV, @)
— p(p — DRP2UP 2w, )U
+ 48> (f) fihfyU (kz) —26* ' f3"h T,
Usro =267 f'hf5(2(f)?(H.2) + (VVV.2)
— p(p — DhP2UP 2w, ) U

+26> f f3hk Y " HY9;U (kz)

J
—26* f'hkfy Y @70, T,
J

As ;e = 4if'ed5(hf' £,0)
+ 203 f 3 (f"h = (p— DRP T UP ;) O,
Asio=—2(p — Died f/ P UP  w; , U

—4ie>(f")? f3hk Y @;0;U,
J
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913,1 = fz’[im(d), @', CD”)] + fz”[i)f{4(<I>, <I>’) + Re (D, @', <I>”)]
+ &t £ [R1(D, )] + R (D, D) S5 (1 + &2 f3) + efy]
+ Rs(D, ) f5' f5 + Re(P, ¥, D) (f5)*.

5.4 Choice of vy and Estimate of 24

In order to make the approximate solution as accurate as possible, we add a
correction £2vq in such a way to compensate (most of) the terms g2 (Rre +iRip);
see Subsection 3.3. We notice that these terms contain parts that are independent

of ®, which we denote by Rf,e and ﬁ? o> and parts that are quadratic in ® or
[

its derivatives R, ,

and R? > respectively. Since we will take @ of order ¢, we

regard the latter ones as higher-order terms, and we add corrections to cancel Ié(r)’ e
and Iélp o

Specifically, we define vﬁ” . and v? o by

1
(523)  —Zrvp, =—(f)?hUK2) Y 07, g112mzr + 20 ) (H. +1r,2)

I,m

+ 4(f)?hU(kz)(H, 2)? + 21 0swie + ["Wie

—[h"U(kz) + 2h'k'VU(kz) - z + hk"VU(kz) - z

+ h(k")?V2U(k2)[z, 2]]

1
+3 IZ 07,,81j2mzihk?97;U(kz) + kh[(H,z)H™
m

1
=5 2 ugz)dmU k) +
l

+ hk Z 37, gm;jz10;U(kz) + Z H'9wr,
1 )

+ hk(H, 2)H'3;U(kz) + (VN V, w,02)

- %(p — DhP2U(k2)P w7,

2P — DIV,

1
+ E mz 8,2,,] VzmzjhU(kz),
3.]
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~£iv?, = 2[ f"hU(kz) + 2f'W'U(kz) + 2 hk'VU(kz) - z]{H. z)
+ ZHja'wi et z(f/)z(H wj ez) + 2f/8 Wr,o0

f”wm f tha U(kz)Za,mgljzmzz
(5.24)
~f hU(kz)(Z 31mg11zm) / h(Z 09121 ) U(k2)

4 Ef’h(z 3%1811Z1)U(/€Z)
I
—(p— l)hp_zU(kZ)p_zwr,owi,e + (VN V. Wiez).

We notice that the right-hand side of (5.23) is even in z, and hence orthogonal to

the kernel of £,. As a consequence, the equation is indeed solvable in v2 ¢ see the

comments after (1.17). The same comment applies to (5.24), where the right-hand
side is odd in z. Furthermore, the right-hand sides decay at infinity at most like
(I+|z |d)e_kIZI for some integer d, so the same holds true for U?,e and v?o.

In conclusion, after some computations we find ’

f(m)
Ay =Ag0+Ag :=Ag0 + A re + Aa o+ Asje + Aaio + Ag 1,

where

g0 =¢ 2%, v,e—i-zezéli vlo,
(5.25) Asre =€ F4,r,e(s), Aaro0 =€ F4,r,0(§),
Wsie = Faie(3), Waio =& Faio(3),

a1 = Ra(P, @) + (P + D) (1 + f)R3(D. ) + f,"Rs(P, D)

(5.26) R /
+ (/2)"R6(5) + R4 (P, D).

As for Fp(5) and F,(5) in 2y, the F4’s depend only on V,y, and M and are
bounded above by C(1 + |z|4)e Izl

5.5 Estimate of 215
The term involving v in SS(\Bz,S) is given by

(527) As=Aso+As :=Aso+ As e + Asro 4+ Asje + Asio + As



where

(5.28)
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Us,0 = BLr Zy(kz) — *B" Zo(kz) — 266 W f' + i6Li Wa
— 28" Wy + 2ieB [ Zq,
Us,re = —f"EWy — 267/ ( 2o+ k'VZy(kz) - z)
— 28f/§(%06/ + k'VWy(kz) - Z)
—(p = DehP2UP 26w o Wa,
As o = &P Z HI3;Zy
+26(H, 2)[(f")?BZa + 6" Zo — 26 ' Wa]

+&(VVV.2)BZo — p(p — Deh? > UP Wy o fZa.
/i WOl /
Usie =ef"BZo — 267 ( o +k'VWy(kz) - z)
+2¢ef ,3( Yo + k'VZy(kz) - z)
—(p— l)shp_zUp_z,Bwi,eZa,
Usio =65y HI0jWa
J
+ 26(H, 2)[(f")2EWo + 2" Wy + 26B' [ Z4]

+ e(VNV, 2)EWy — (p — DehP"2UP 2w, o Wy

The error term As 1 = A5 1 (B, P, f2) satisfies the following estimates:

25,1(B, @, )| < C(e2 + 2| f5| + 3| '] + 3| @"|)(1 + |z|*)e F I

x (1Bl +elB| + €2|B"| + 218" ).

1243
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2s.1(B. ®. f2) — Us 1 (B, ®. fo)|
<C(e|®— D] + |® — &'| + &3|D" — |
+ e fs = B+l - A)
X (1+ [z e ™ EB) + el + €2 ] + £°1B" ) +
+CE + 1 5]+ 14| + €207
x (1+ [z De ™ FI(1B — Bl + elB' — B + €IB" — B + £* 18" — B").

By the form of the function 8 (see (4.42), (4.43), and (5.5)), its Fourier modes are
mainly concentrated around indices of order % As a consequence, L2 norms of

functions like eB, e2B”, €3 B, etc., can be controlled with the L2 norm of B; see
also the comments before (4.58).

5.6 Estimate of 21¢

First of all, we notice that we are taking ® and f; in H1([0, L]), and hence
they belong to L°°([0, L]). As a consequence, since we have the bound

IBllzo o,z + €llB oo qo.L1y + & 18" I L>(to,L)
+&3|18” | Lo (o, < Ce*
(which follows from (5.7) and the above comments), we have the estimate
(5.29) |E|+ |F| + |G| < Ce*(1 + |z|%)e ¥,

If we then choose § sufficiently small (also recall the expressions of w, and w; and
(5.9)), we deduce that

|U2e — 1| < [P, in Ds.

This estimate implies that 2¢ admits a uniform quadratic Taylor expansion in
|Ws 1 — W ¢| and is bounded by |Wy ¢|P72|W; o — Wy |2
Specifically, we can write
(5.30) s = As,0 + A6 := A6,0 + Ao, re + W6,r0 + Wssire + s io + A6 1
where
QlG,O = Ql6,r,e = 22[6,r,o = %6,i,e = Ql6,i,o =0,

5.31
(-3 No1 = Ra(f}. O, . B).

where R4(f,, @, @', B) is a quantity satisfying the estimates

|Rs(f5. ®. @, B)| <
Cle* + (2 + 1BllLee + el B o) (IB] + el B'N] (A + |z|¥)eFI2,
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|Ra(f3, ®, @, ) — Ra(f3, D, ¥, B)|
< CE*+ (Bl +elB| + 1Bl + el DA + |z|F)e ]
x (e|® — ®| + &|® — | + €| f; — f51 + |B— Bl + e’ — B).

5.7 Final Estimate of S¢ (¥ ¢)
By (5.16), in the above notation we have

. f(es) ~ ~ ~ ~ ~
el e Se(W2,6) = 82(Rr,o + Rre) + Sz(Rr,o,fl + Rr,e,fl)

+ 82i(1§i,e + Iéi,o) + 82i(§i,e,f1 + éi,o,fl)

6 6
—f—ZQli,o—i-Zgli.

i=1 i=1

Recalling the choices of v, v? ., and v?o in (5.20), (5.23), and (5.24) (and recalling

r.e’

the notation for the R’s after (5.1)), we finally obtain the following result:

PROPOSITION 5.2 Suppose ®, f>, and B satisfy (5.2), (5.3), and (5.7) for some
c1,¢2,¢3 > 0. Let f = f +¢efi + &2 fo, where f is given in (1.12) and f in
(3.25). Let also wy = Wy e 4+ Wr o, With Wy and Wy, given, respectively, in (3.13)
and (3.12), and w; = w; ¢ + w; o, where w; o and w; , are given in (3.9). Let @2,6
be defined in (5.8). Then, as ¢ tends to 0, we have

Fo . . . -
e'e Se(Wae) = 82(R;I,>e + Rro+ Ry, i + Rrpo,11)

—+ 82i(§i,e + R‘g)o + ﬁi,e,fl + R'i,O,fl)

(5.32)
+ BEr Zo(kz) + 2B Zo(kz) — 26E Wy f'

. 6
FIELi Wy + 1826 Wy + 2isP [ Zo + ¢ Y 4,
j=1

where the R’s are as in (5.1), where Ié;{) . and ﬁ? ,, are the terms quadratic in ®

and ®' within Iér,e and Ri,o, and where the latter error terms are given in (5.17),
(5.19), (5.21), (5.26), (5.27), and (5.30).

Remark 5.3. In some of the error terms listed above, we sometimes see derivatives
of order higher than 2 appearing on ®, f,, and 8. However, we are not only
assuming H 2 bounds on these functions, but also that they are linear combinations
of eigenfunctions corresponding to suitable eigenvalues. This fact then allows us
to derive bounds on higher-order norms; see the comments after (4.81) and (5.3)
and the last comments in the part concerning 2.
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6 Proof of Theorem 1.1

In this section we prove our main theorem. First we solve the equation in the
H, components (see (4.87)), using a Lyapunov-Schmidt reduction. Then we turn
to the components in K and solve the bifurcation equation as well; this last step
crucially depends on the nondegeneracy assumption on y and an accurate choice
for the values of the parameter &.

6.1 Solvability in the Component of H,

In Proposition 4.4 we showed that problem (1.16) is reduced to finding a solution
of Lg(¢) = Ss(¢) in Dy (see (4.7), (4.23), and (4.24)) if we take K2(es) = V(es).
Choosing 1}6 = \112,8 (the function constructed in the previous subsection) as an
approximation to the solution of Proposition 4.14, we have the following result
where, as usual, § is sufficiently small. We recall Proposition 4.4, formulas (4.85)—
(4.88), and the definition of Izg after (4.86). Also, we denote by l:[,9 the orthogonal

projection onto the set {e_i(f(ss)/g)ﬁ 3 € Kgl.
PROPOSITION 6.1 Let \112,8 be as in Proposition 5.2. Then there exists Ug € 155,

depending on the parameters ®, f>, and B, such that the following problem admits
a solution:

—Agod + V(EX)d — [Wne|P71h — (p = DIV P 3T R (W2,00)
(6.1) = Se(@) + eI T,

$ e H, UseKs.

Furthermore, if m € N and if \112,3 is an approximate solution corresponding to

different ®, f>, and B, for a fixed constant C independent of ¢ and §, for t = %

and 0 < ¢’ < ¢ < 1 sufficiently small, we have

. cC - .
62) [pller,v < 5—2||HsSs(‘1’2,s)||L2(c;V) + Ce™,

Ioll2cz ) < C||Ss(‘i’2,a)||L2(c;V),

~ = C ., ~ ~ z
(6-3) ||¢ - ¢||§’,V = 5_2 “HS(S&‘("IJZ,S) - Ss(lpz,s))HLz(C;V)-

PROOF: The proof relies on Proposition 4.1, Proposition 4.14, and the contrac-
tion mapping theorem. By Proposition 4.14, the operator L (see (4.7)) is invert-
ible from (Hy, || - ||¢,v) into LZ(CSf v)» and the norm of the inverse is uniformly

bounded by C /2. By this invertibility, (6.1) is satisfied if and only if qAS is a fixed
point of the operator Fy : (Hg, || - ||c’,v) = (Hg, || - ||¢7,v) defined by

Fe(¢) = L' [MTe(Se(9))]
i= L7 e (Se(Pa,6) + Ne(neg + 0(d)) + P21 L 0(9)
+(p— 1)|\i'2,8|p_3\i2,sm(\ij2,s§0(’;@))]-
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We recall that, in the last formula, <p($) is given by Proposition 4.1, while N, is
defined in (4.8).

Our next goal is to show that F, is a contraction on a metric ball (in the I lle v
norm) of radius 5%||l:ISS8(\i/2,8)||L2(C§r’v) + Ce&™ for C large enough and m an
arbitrary integer. Setting for simplicity

Ge(@) = Ne(:$ + ¢(9) + [V2.6/7 " 0(9)
+ (p = DI P02 R (D2,00( 9.
by the above invertibility we clearly find

IE@lsv < g (IMeSe(P2.0)lL2cr ) + 1G@)l2(cr )

(6.4) ST T o B Cen)
[Fe(p1) = Fe(@2)lle'v = 521Ge(d1) — Ge(@2) | 2(cr )

We next evaluate ||G () lz2¢c* ) and show that it is superlinear in ||$||L2(Cr/ )
S <.

up to negligible terms. We first make the following claim:

Claim. In the notation of (4.14), letting k1 (5) = (¢’)?/V(5) we have

l¢lcri2 = Cligllsry
1

for some C > 0. Assuming the claim true and choosing ¢” < (¢’)%, we can
apply Proposition 4.1 with t = %, ko(5) = ¢/V(5), k1(5) = (¢")?/V(5), and
k2 (5) = ¢”+/V(5) to find

~ _ . ckotko 5§ ~
le@lere < C(e R [Se(W2,6)ll o172
(6.5) e ) ko
|y p—inf*2F L™

Il cr.1r2).-
k1

From the expressions for w;, w;, ¥, and vg and formula (5.29), we can deduce that
|@2,8| < Ce~kolzl; moreover, from the estimates in the proof of Proposition 5.2
we also find that ||Sg(\112,8)||L2(C;V) — 0 as ¢ — 0. By (4.20) (recall that ¢ > 0),
the latter bounds on W5 ¢, the previous claim, and (6.5), if m is an arbitrary integer

and if ¢” is sufficiently close to 1 after some elementary computations, we deduce
A ~ 1t ~ ~
1G@llzacr,y = CUNSr ) + 19102cr )+ (1 + 1Bll2cz, ).
Similarly, if ||<;A51 ”LZ(C;V) and ||$2||L2(C§7.V) are finite, we also find

1Ge(@1) = Ge@2)llL2(cr ) <

o188 (p—1) m\a, — &
Clmax A IAE: "))+ ldr = Paliaces, )
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where the symbol ~ stands for the minimum. The last inequality and (6.4) show
that Fy is a contraction, and we obtain (6.2); (6.3) follows similarly.

To prove the claim, we note that according to our previous notation, the norm
| - l¢,v is evaluated using the variables (s, z), where the z’s are defined in (3.1).
If we want to estimate the || - [| -1.1/2 norm instead, we should use Lipschitz with
respect to s and y. 1

Given 51,52 € R and y1,y2 € R”~1, we want to consider the difference
V(ﬁ(sl , V1) — Vc}ﬁ\(sz, ¥2). Recalling (3.1), we can write that

dsp(s1. y1) — DsP (52, y2) = DsP(s1.21 + P(es1)) — DsP(s2. 21 + D(es1))
+ 35p(52,21 + D(es1)) — s (52, 22 + P(es2)).

By the definition of || - ||,y ds6 € H'(CJ, ) € C3(CF, ). This fact, the
smoothness of V(5), and || ®|loo + |®[lcc < C(c1)e (which follows from (5.2))

imply that if (s1, y1). (s2, y2) € Bi(s, ), then

n2 = ~ -~
eV B(sy. y1) — ds(s2. y2)| <
~ 1 1
Cle)olle v (s1 =212 + |21 — 222 + &ls1 — 52|).

A similar estimate holds for the derivatives of $ with respect to y, so from (4.14)
we get the conclusion. 0

To apply Proposition 6.1, we establish explicit estimates on f[eSe(\ilz,g) and

l:[,g(Ss(lilzﬁg) — Sg(‘ilz,g)). Specifically, assuming from now on 7 = L we have

2
the following result:

PROPOSITION 6.2 Assume @, fo, B, P, fz and ,BN satisfy conditions (5.2), (5.3),
and (5.7). Then, if ¢ is defined as in Proposition 6.1, we have the estimates
(6.6) VeB|$(B. @, f)lgrv < Cler.ca.c3)e,
VeS|$(B. D, /) —$(B.®. fo)lgy <
Cler, 2,03)[e% @ = Dl g2 + &3 f2 = Lallgz + €llB — Bllg),

where C(c1, c3, ¢3) is a positive constant depending on c1, ¢, and c3 but indepen-
dent of € and §.

6.7)

PROOF: We prove (6.6) only; (6.7) will follow from similar considerations. To
show (6.6) we use Proposition 6.1, so we are reduced to estimating

[T Se(P2,) lz2ccz )

for which we can employ (5.32).
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By our assumptions on ®, f>, and 8 and by the estimates of the previous sub-
section, it is easy to see that

| (REe + Rro + Rre sy + Rro.fi)
s - - ~ C(c1,c2,c3)3
+ 821 (Ri,e + RSO + Ri,e,fl + Rlso9f])HL2(C;

<
v) = Je ’
LN
!
i=1

- C(61,02,03)83
il 12T0e 30 SV

Recall that, by the above choices of v2 . and vio’ o 10 (5.23) and (5.24), we have
corrected all the terms in the equation of order up to &2, so we are left with terms of
order £3 and higher. The factor /¢ in the denominator arises from the fact that the
length of y, is %; this gives a factor % when computing the L2 norm squared, and

we then need to take the square root. For the estimates in 2, which also require
the L°° norm of 8, we can use the interpolation inequalities

1 1 3
||13||L°°([0,L]) = C”’3||22([0,L])||ﬂ/||22([0,L]) = CSZ,

(Sl

1 1
/ 12 "2
18 t0.L) < CIB'I 20011”12017 = CE2-

It now remains to consider the other terms in the right-hand side of (5.32) in-
volving the functions Z, and W,. Let us call L L the operator obtained from L
(see (4.35)) by replacing the variables y with z and f with f . Let us first notice
that the terms under interest, with this notation, are nothing but I, L Lus.

Let us now recall the expression of B in (5.5) and vg in (5.4); if v3,; stands for
the functions in K3 5 (see (4.49)) replacing y with z, we define the function

82/¢

b= Y b;is.

j==82/¢
From the expression of 03 ; (see (4.45)), we find that

82/¢

_ c 20\
(6:8) s =dsloy = (30 pfea+7)"
j=—682/¢
Lie " vs) = Lie™ 55
82/¢ 1
6.9 1 2.2 27 2
(6.9) +o(2)( X piRas)
j=—682/¢

(in the || - ||L2(C;V)norm).
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Similarly to (4.68), recalling the asymptotic of v; (see (4.42) and the lines before)
we find that

_ _ 82/
(6.10) LH e 5 = e N uibyia 4 Ry,
j=—82/¢
where
C 82/8 %
IR1llz2¢cz ) = %( Z bre*(1+ jz)) < Cel|Bly.
j==82/¢
This implies the conclusion, by (5.7). Il

6.2 Projections onto 123

In this section we estimate the projections of the equation onto the components
of Ks. We first estimate their size and their Lipschitz dependence in the data ®,
2, and B. Then we use the contraction mapping theorem to annihilate the function
v in Proposition 6.1, which implies the solvability of (1.16).

Projection onto K 1,8

We want to evaluate the K 1,6 component of the function v in (6.1). To do this
we consider a normal section P to y that satisfies the first relation in (5.3), and the
function

ve = h(es) “F (@(es>, V. U(k2))
(D S Utezy — £ (e5). Bk
+ie(® (ss),Z)? (kz) — k—z(_ (e5),U( Z»)-

We then multiply both the left-hand side of (6.1) and 58 ($) (see (4.24)) by the

conjugate of e—i(f /e Vg, integrate over Dy, and take the real part. When mul-
tiplying the left-hand side, we can integrate by parts and let the operator L act

on e~i(fes)/e vg. Using the arguments in the proofs of Proposition 4.9 (see in
particular (4.66) and (4.67)) and of Proposition 6.2, we find that

. f(es)
e Vo =+ R(vg),

L (e_i'f(TsS)vQ) =e

where Ug € K 1,5 and where

IRWa)llL2cr ) < Cle +8)velocr )
C
&

=

(e + 81l 2210, L)

S
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Therefore, since ¢ is orthogonal to K, from (6.6) we deduce that

() o~
‘%/e’ ¢ UpLgh

D,

v)

C ~
dVs, < ﬁ(g + 53)||Q||L2([0,L])||¢||L2(c;
6.11)

< C(c1.¢2.¢3)882 @l L2 q0.1)-

We next have to consider S, (qg), whose main term is S, (@2,8). For this we use
formula (5.32). Here we have three kinds of terms: the R’s, those involving Zy
and Wy (which coincide with s o, with our notation in (5.28)), and the As.

For the Ié’s, since vg is odd in z, the products with the even terms will vanish.
The products of the odd terms (notice that the two phases cancel and we use the
change of variables s — ¢s) instead give us

2R /(Iér’o + Rr,o,fl YoadVz, + 2N / i(ié;l’)o + Ri,o,fl )oed Vs,
D, D

p—1 L _ o=
Co / (3(®), B) d5 + Ro,
20 ),

= —¢

where Co = [pa-1 U(y)%dy and |Ry| < Cde|®@|12(0,11)- To explain why this
estimate holds, we notice first that _p2_—01C0 (J(®), D) is exactly the first term of
v multiplied by ﬁr,o + I?r,o, f1»as shown in Subsection 3.3 (the factor hP+D/4 4

(4.39) is needed precisely to cancel the factor ﬁ in (3.26)). The remaining terms
in the last equation are given either by products of the imaginary part of ve and the

imaginary R’s or that of ﬁr,g + Iér,o, #, and the last term in vg. In the latter case,
for example (see the comments after (4.81)), we obtain a quantity bounded by

L/e
ce? /0 (9] + @] + |20 ds < Ce28 |l 20,1

The last inequality follows from (5.2) and the fact that  satisfies the first condition
in (5.3). On the other hand, the terms involving @’ once integrated will be bounded
by CSZ(S”QHLZ([O’L]), still by (5.3).

Concerning 25 o, we next claim that for any m € N we have

(6.12) ‘ER[%Q[M dVgg = Csm”Q”LZ([(),L]) ase — 0.

D,

To see this, notice that ® satisfies (5.3), while 25 ¢ arises from functions involving
vs (in particular B, see (5.5)); since j ranges between —§2 /¢ and 62 /¢, the main
modes of B are much higher than those for ®. Hence, using Fourier cancellation
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as in Lemma 4.10, we can deduce (6.12). It is also easy to see that

< C(Cl,Cz,C3)82||9||L2([0,L])-

D,

6
(6.13) ‘m[EZﬂjdVgg
j=1

Finally, it remains to consider the product of ve and the last three terms in

(4.24). Indeed, since these are either superlinear in $ (see (4.20)) or contain <p($)
(see (4.15)), they are of lower order compared to (6.11).

Using (6.11)—(6.13) and the above arguments, we finally obtain that, if ¥ is as in
Proposition 6.1, then

p—1_ (F
[ivmave, = -2 2o [ @@ @5+ R,
0

D,

|R1| < C(c1.c2,¢3)e2 | @l L2(fo.1))-

Similarly, using the estimates in Section 5, we find that if v corresponds to the
triple (®, f>, B), then

p—1

~ L ~ ~
(6.14) /(5 —V)iedV;, = —¢ CO/ (3(® — d), ®)d5 + Ry,
0

D,
where R; satisfies

|R1| < Cler, c2.¢3)(8el| @ — Dl 20,1

(6.15) ) - .
+&%lLf2 = falm2qo,Ly) + 818 = Bllg) 121 2.

Projection onto K 2.8

For this projection we will be sketchier since most of the arguments of the pre-
vious projection can be applied. If f° ) satisfies the second condition in (5.3), we
consider the function

£ 1 es) L /1)
k

vf, = h(ss)% (iiz(ss)U(kz) + 2¢ Ukz)—ie 3 QU(kz)).

As for the previous case, the main contribution to the projection is given by the
product of the first term in v /s and the imaginary parts of S¢(W2 ¢) listed in (5.32),
which are even in z. N
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We denote by ﬁi,e’ #, the sum of all imaginary even terms of order &3 appearing
in the equation, namely 20y ; ¢, A3, ¢, and A4 ;o = Faie(5) (see (5.18), (5.22),
and (5.29))

Rie f, =20 f3U + 2hf5k'VU -2 4+ 2f' fywie + f5'hU
+4f 05 (hf' [,0) +2f"hf" 1,0
=2(p = DIPTHUIP2 [ [;0wie + Fajie(S)
= Ri,e,fz + F4,i,e(§)-

(6.16)

Notice that Iéi,e, #, coincides with the function ﬁi,e, #, In (5.1) (see Subsection 3.3
for the precise expression) if we replace f; with f,. Therefore, from estimates
similar to the previous ones (which mainly use the computations in subsection 4.1
in [36]), we find

L
/5@511@8 = gzcof T(f2)f,ds
- 0

L
+ &2 / ( [ F4,,-,eU(k(§))) f,d5+ Rz,
0

6.17) D=
R7—1

where Co = [ga—1 U(y)*dy,

h* f3 —1 2,2
619 70 =0 (- DR = 2042,
and R, satisfies
(6.19) |R>| < C(CLCz,03)582||12||L2([0,L])-

Moreover, if ¥ corresponds to the triple (P, f;, ,3 ), then
~ L ~ ~
(6.20) /(f)—f))degg =£2C0/ T(fz—fz)izdi—i-Rz,
= 0
D

with

|Rz| < C (8211 /2 — allmzqo.Ly)
+ 8el|® — D gr2g0,27) + 818 — Bllg) 1./, 2qt0,)

with C = C(c1, ¢2, ¢3).

(6.21)
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Projection onto K 3,8
To compute the last components of the projection, we recall our notation in
Subsection 4.3 and define

82/¢ 82/
Bles)= > biBiles). vg= > b;ls;.
j=—82/¢ j=—-82/¢

As for the previous cases, the main contribution to the projection here still comes
from S¢ (‘Ifz ¢). In particular, following the arguments for K 1,§» When testing on
vg, by Fourier cancellation and parity the major terms are indeed s o, %5, r.e, and
2s ;... With straightforward computations, we find that

L
(6.22) fﬁ@dvgg = é/o A(B.&.B.E)dS + Rs,

D,

where

A& B.§) = BBQaa—&B"BO1a — 268 fBQ3a + EEQ5 4
— %" 000 —6f"(Ef —EB) Q3.0 + 268 ['E Q30
— 260" (B'B Q6.0 + EE'Q7.0) — 267k (B'B Q10,0 + £E' O11,0)
—2ef'k'(EB Q12,0 — BEQ13,0) — 26f '@ (EB Q3.0 — EBQV0.a)
—(p = DehP2(EB + EB) Q4 e

04a(3) = f ZorEr Zag). 05.4(5) = / Wiycsr £ Wiats.
Rn—1 Rn—1
~ 07 W,
06.0(5) = f ZaG) aa(s) 07.4(5) = / s oc(s)
Rr—1 R2—
_ W, B 07 (s
050 (5) = [ Zo(s) 2 054 (5) = [ Wiygs) 2226,
o oo
Rnr—1 Rr—1
0104 () = / ZowViZaw -2 O11a() = / Wiy Ve Was) - 2
Rn—l ]R"_l

012,2(5) = / Za@) Ve Wa) - 2 01345 = f Wa)VzZaG) - 2
Rn—l Rn—l
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and
Q14,0(5) = / Ukz)? Wi e Wo3) Za(G)»
Rn—l
(6.23) |R3| < Cler.ca,3)86% |1 Bll 2o,

After some manipulation using the fact that (Z, W) solves (4.29) with n, = 0,
the normalization fRﬂ*l (Z2 + W2) = 1, and some integration by parts in z, we
find that

1 L
(6.24) E[o AB.E, B.E)d5 =

L L
S neepods+ [Caees o

where
6.25) Ao(B. € B.§) = Q1a(eB'B' —kP®B) + Q2,4(e*E'E — a®k>EE)
+2f'03,0(ep'E — e’ B — kaPp — katt)
and
A= (BE+§P)a@S)
with

95) = [f" 030 +2f'K' Qi3.a +2f'd' Qo0 — (p — DIP > Q14.0].
Now we notice that, by (4.43), we have
e 82/¢
etep=—| X b+
jl=—82/¢
82/e
—Fi Y bk + i) .
jl=—82%/¢

where

— Q 1,a
K202 1 2fkaQ3q
Integrating by parts in § and using (4.42), we find that

F

L
(6.26) /()Al(ﬂ,g,g,g)dgz

L g / o
[ e6(i%) 615+ 06NBlLa o IBl20.n
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Finally, combining (6.22), (6.23), (6.24), and (6.26), we deduce

- 1k _
627) [ ave, = [ rob.p.00a5 + Ra
B . p.s
De
where
(6.28) |R3| < C(c1.¢2.¢3)Be% + (£ + D) 1Bl L2qo.L) 1Bl L2 (0.L))-
Analogously we obtain
v T 1 L ~ - -
62 [@-Sgdve = [ AoB-f.-Ep0+ R
= 0

D,
where Rj satisfies
|R3| < C8(e]|® — Dl|g2
630 ( > Plazoy )
+ &2 f2 = fallm2qo,yy + 1B = Bl 1B L2o,))
with C = C(cy, c2,¢3).

Remark 6.3. Let us consider the eigenvalue problem in (8, §)

L L
/0 Ao(B.E.B.6) = V/O (Q1,aBB + 02,0k8) forall (B.£)

where Q1 and Q, are defined in (4.41). Then the eigenvalue equation is the fol-
lowing:
—82 (Qétlxﬂ/)/ —kZOtz,B . 2f/ g?,zx (85, + kOlﬂ) — le’
(631) . .a
QZ.a

By (4.44), the couple of functions (B;, §;) constructed in Subsection 4.3 represents
a family of approximate eigenfunctions corresponding to v = v;.

—82 (92.4¢8) _ k2a2£_- + 2]{/ 8%:(:(613/ —kO(S) — VE.

6.3 The Contraction Argument

The usual procedure in performing a fixed-point argument is to apply to the
equation an invertible linear operator first. In the expansions in the last subsection,
we showed that the main terms in the projections onto Kj are the operators J, T,
and Ag (the last is identified by duality with the associated quadratic form); see
(6.2), (6.17), and (6.27). By our nondegeneracy assumption on y, J is invertible
and the same holds also for 7', since it is coercive (and in divergence form). It
remains then to invert Ao, which is the content of the next result. Before stating it
we introduce some notation. Using the symbology of Subsection 4.3 we define the
spaces

Xy s =spanjgp; : j =0,...,—, Xy 5 =spanyw; : j =0,...,—,
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X35 =spanyf; : j 2—?,...,? ,

with X 5 and X, 5 endowed with the H2 norm on [0, L], and X3 s with the | - P
norm.

We also call Yy 5, Y, 5, and Y3 s the same spaces of functions, but endowed
with weighted L? norms: by the normalization after (4.38), it is natural to put
the weights h? and h=° on Y15 and Y, g, respectively. Concerning Y35, by
Remark 6.3, we will endow it with the product (B, B)y,; = fOL(Ql,a,B,B +
02 4&5)ds where, as above, £ is related to 8 by (4.4_3) and (5.5). Notice that
by (4.3_8) Jand T are exactly diagonal from X; 5 to ¥} s and from X5 s to Y5 s,
respectively, while A g is nearly diagonal (see also (4.44)).

LEMMA 6.4 Letting Iy, ; denote the orthogonal projection onto Y3 g, there exists
a sequence gy — 0 such that Ag is invertible from X3 5 into Y3 5 and such that its

inverse satisfies ||(Tly; (,;Ao)_1 I < % for some fixed constant C.

PROOF: First of all, we show that there exists e — 0 such that ITy; ;Ao
cannot have eigenvalues in Y3 s smaller in absolute value than C ~lgg; after this,
we estimate the (stronger) X3 s norm of its inverse.

To prove the claim, we apply Kato’s theorem (see [29, p. 445]), which allows
us to compute the derivative of an eigenvalue v(e) of Ty, ;A with respect to .
The (possibly multiple) value of this derivative is given by the eigenvalues of
My, dg A g restricted to the v(g)-eigenspace of Iy, 4 Ao.

Suppose that 8 satisfies the eigenvalue equation Iy, ;AoB = vfB, which is
equivalent to

L L
6.32) /O Ao(B.£.B.§) = v /0 (Q1.aBB + 02.4t8)
for all (8, §)with g € Y3 5.

Looking at the powers of ¢ in Ag (see (6.25)), we write Ag = Ag,0 + eAo,1 +
82[\0,2; notice that Ag o is negative definite and Ag > positive definite. We also
point out that, since f’ satisfies (1.12), for f(es)/e to be L/e-periodic, when we
vary &, + also needs to be adjusted. Specifically, since the total variation of phase
in (1.10) is

L/e A L
A/ h(es)ds = —/ h(3)ds = const,
0 € Jo

when differentiating with respect to ¢ we find that %—": = 24 Hence, applying

&
Kato’s theorem, we find

av
6.33 — € min (B4, , max O(f, ,
(6.33) 5% [,31,;‘32750 (B1.B2) 5T, (B1.B2)]
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where
O, o) = J0 Bo +20002) Brobu. . )
Jo (Q1,aP1B2 + 02.48162)
1 fo 2f"Q3,a(epib2 — 851,32—/60!/31/32—/60!5152)
8 fo (Q1,aB1B2 + 02.46152)

and where (81, £1), (B2, &2) are functions satisfying (6.32). By using this, we can
write (B, B2) as

! foL(Ao — No,0)(B1,861,B2,62) + SfoL Ao2(B1.61. B2.62)

foL(Ql,a,Bl,Bz + 02.06182)
n 1 Jo 2f' Q3 a(eBiE2 — e€1 B2 — ka1 Bo — kat1£2)
€ JE(Q1aB1B2 + 02.05182)

_ 8/0 (91, Olﬂ ﬂz + 0> 055152)
e fo (01,0P1B2 + 02.46162)
L1 JEK2a?(Q1,aB1B2 + 02.0E162) + 2/ 'ka Q3.4 (P12 + £162)]

e Jy (Q1.aB1B2 + 02.4t182)
1 fo (2f'03,a(eBi62 — &} ﬁz—kaﬁlﬁz—kaéléz)
8 fo (O1,aB1B2 + 02,06162)

Applying (4.42), (4.43), and Q1,4 + Q2. = 1 (see (4.41) and the lines after
(4.30)), the last expression simplifies to

v 1y QoK + 40k 03 )it
& € f()L 5152

Since the numerator is symmetric in £ and &, the infimum of the above ratio is
realized by some &g, so by (6.33) and the latter formula we find

1 [ a2k + 4f akQ3,4)82
- L

¢ Jo &

[v + uﬁ(Qazkz—F4j"akQ3a)——C8ﬂ

1
+ 0(8%)-
&

av

% +

1
+ 0(8%)-
£

=z

V
(6.34) &
1
£

Notice that for v and § sufficiently small, the coefficient of 1 < in the above for-
mula is positive and uniformly bounded away from 0. From (4.44) and the asymp-
totics in (4.42) (which follows from Weyl’s formula), we can show that ITy; ;Ao
has a number of negative eigenvalues of order §2/e. This fact and (6.34) yield
the desired claim, which can be obtained as in [41, prop. 4.5]; since the argument
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is quite similar, we omit the details. The above claim provides invertibility of
Iy, ;Ao in Y3 5 and gives

_ C
635 |(Ty; 3 A0) " Bllyss < —lBllys; forany p e Yss.

We next want to estimate the X3 5 norm of (ITy, ;Ag) ™' . Let
82/
B= > bip;

j=—82/e

~ 2 ~ ~
and suppose 8 = Zf:/ip/s bjB; is such that ITy, ;Aof = B in the sense that

L L
[ M0BELE = [ (b + Qaubt) forall (6.6 with p € iy

If g = Zfi/s b;B;, then by (4.44), we find by integrating

—82/e=J
82/¢ 82/¢ 1 82/ 1
3 vibib; + 0(( 3 (v}+s)2b})2( 3 Q,z)z) <
j=—82/¢ j=—62/¢ 1=—682/¢
82/8 1 82/8 1
~\ 2 2\ 2
c( X B X )"
j=—82%/¢ 1=—682/¢
Choosing b; = l;j for j >0andb; = —gj for j < 0, from the asymptotics of

v; in (4.42), we obtain for C1 > 0 sufficiently large that

82/e

e Y. ljlr=C Y B}=<ClpI3,,

Ci<j<82/e j=—82/¢

IA

By (6.35) we have ||,8A||)/3!‘8 %”,BHYM, so recalling (5.6), we get

~ ~ ~ Cc?
I1BI, , = 181G = CIBIZ,, < 113, ,-
which yields the conclusion. 0

PROOF OF THEOREM 1.1: Let us introduce the operators

Gl:Xl,(S'XXz,(SXX::,,(S—)Yl,S’ 121,2,3,
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defined by duality as
(G1(@. fo. ). D)y, , = / S dVy,.
b,
(6@, f2.B). £ ey = [ VT, AV,
b,
(Ga(®. f2.B). BIrs, = [ 575V,
5.

where v = U(®, f3, B) is the function appearing in Proposition 6.1.

By Proposition 4.4, equation (1.16) (or (NLS,)) is solved if and only if v = 0.
In the above notation, this is equivalent to finding (®, f>, 8) such that G;(®, 13, B)
= 0 forevery [ = 1,2,3. If g is the sequence given in Lemma 6.4, then Ay is
invertible, and the condition v = 0 is equivalent to the system (we set & = &x)

P =06.(P f2.p) = —137G1(@. fo. B) — £J(D)].
fa=fo = 6.:(Q 12, P) i

= 5T GoD, f2.B) — T fo — € [gu1 FaieUk(5)2)dz],
B =&5(D, fo.B) :=—e(Ily, ;A0) ' [G3(D, f2. B) — LTy, ;AoB].

(6.36)

where

pP— ~ ~
= — C . T:CT,
J 20 0J 0

with (Co = [gn—1 U(y)*dy) and where

v

fo=-T71 ( / F4,,-,eU(k(§)z)dz).
Rr—1
By (6.2)—(6.21), (6.27)—(6.29), and (6.30) we find

16:(0,0,0)[lx, s < Ce. [|6,(0,0,0)[x, 5 < CS, [|65(0,0,0)]x,, < CSe>;
moreover, if ®, f>, and B satisfy the bounds (5.2) and (5.7), then

16.(D, f2,8) — 6.(D, f2,B)llx, 5 <

. 3 § 3
C(cy, 62,03)(5”@ —®@|x, 5 +ellfa— fallx, s + g||/3 - :3||X3,5)’

16.(D, f2,8) — &.(D, f2, B)llx, 5 <

5 ~ ~ $ -
C(cy, 02,03)(g||<b —®@|x, 5 + 8l f2— fallx, s + 8—2“/3 - ﬂ||X3,s)»

1&5(D, f2.8) — &5(D, f2.B)llxs5 <
C(c1.¢2.¢3)(8e|® — @llx, 5 + 821 /2 — fallxos + 8118 — Bllxss)-
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We now consider the scaled norms
1
el g, =1 lxis 820 0g,, =1 lxase €Nz, = I lxss
'With this new notation the last formulas become
”@l(ov O’O)”fls S Cv ”62(0’0’0)”)’(\28 S C8 ’
“63(0’ 0, 0)||f38 = 3,

D=

(6.37)

16.(®, 2. 8) — 6:(®, /2. B)llg, , <
Cler,e2,c3) (810 = Bllg, , +821 o= follg,, +81B—Blg,,)-

16:2(®. f2.8) — 6.(. 2. Bl g, , <
1 ~ ~ 1 ~
Cler.c2.c3)(82 19— Dllg,  +81 /2= fallg,, +6218~Blg, ).

165(2, f2.8) = &5(®. f2.B)lg, , <
~ 3 ~ ~
Cler,c2,c3)(BIl0 - Bllg,  +821fa— fallg,, +51B—Blig,,).

If C is the constant appearing in (6.37), from the last four formulas we deduce that
if § is sufficiently small then (&,, &,, &) has a fixed point in

x 1
-llg,, <2030l =g, , <2C833 01N, , <2C8).

This, by the comments before (6.36), leads to a solution of (NLS;) with the desired
asymptotics. U
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