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Abstract

We consider the equation —2Au+u=uPinR - RN , where £2 is open, smooth and bounded, and we
prove concentration of solutions along k-dimensional minimal submanifolds of 92, for N > 3 and for k €
{1,..., N —2}. We impose Neumann boundary conditions, assuming 1 < p < (N —k+2)/(N —k —2)
and & — 0. This result settles in full generality a phenomenon previously considered only in the particular
case N=3and k =1.
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1. Introduction

In this paper we study concentration phenomena for the problem

—2Au+u=uP in$2,
%:0 on 952, (Pe)
u=>0 in £2,
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where §2 is a smooth bounded domain of RY , p > 1, and where v denotes the unit normal
to d£2. Given a smooth embedded non-degenerate minimal submanifold K of 952, of dimension
ke{l,..., N —2}, we prove existence of solutions of (P;) concentrating along K . Since the so-
Iutions we find have a specific asymptotic profile, which is described below, a natural restriction
on p is imposed, depending on the dimension N and k, namely p < (N —k +2)/(N —k —2).

Problem (P;) or some of its variants (including the presence of non-homogeneous terms, dif-
ferent boundary conditions, etc.) arise in several contexts, as the nonlinear Schrodinger equation
or from modeling reaction—diffusion systems, see for example [1,17,41] and references therein.
A typical phenomenon one observes is the existence of solutions which are sharply concentrated
near some subsets of their domain.

Concerning reaction—diffusion systems, this phenomenon is related to the so-called Turing’s
instability, [50]. According to this principle, reaction—diffusion systems whose reactants have
very different diffusivities might generate stable non-trivial patterns. This is indeed more likely
to happen when more reactants are present since, as shown in [9,37], scalar reaction—diffusion
equations in a convex domain admit only constant stable equilibria.

A well-known system is the following one

U =di AU—-U+Y in 2 x (0, +00),

Vi
V,=dAV -V +§ in 2 x (0, 400), (GM)
%—ﬁ’:%—‘jzo on 982 x (0, +00),

introduced in [20] to describe some biological experiment. The functions ¢/ and V' represent
the densities of some chemical substances, the numbers p, g, r, s are non-negative and such that
0<(p—1)/q <r/(s+1),anditis assumed that the diffusivities d; and d; satisfy d] < 1 < d3.
In the stationary case of (GM), as explained in [41,44], when dy — 400 the function V is close to
a constant (being nearly harmonic and with zero normal derivative at the boundary), and therefore
the equation satisfied by ¢/ is similar to (P), with g2 =d.

The typical concentration behavior of solutions u. to (P.) is via a scaling of the variables in
the form u,(x) ~ uo((x — Q)/e), where Q is some point of £2, and where u( is a solution of the
problem

—Au0+u0=ug in RN (orinRﬁz{(xl,...,xN)eRN: XN >0}), (D

the domain depending on whether Q lies in the interior of £2 or at the boundary; in the latter case
Neumann conditions are imposed.

When p < (N +2)/(N — 2) (and indeed only if this inequality is satisfied), problem (1) ad-
mits positive radial solutions which decay to zero at infinity. Solutions of (P;) with this profile
are called spike-layers, since they are highly concentrated near some point of £2. There is an ex-
tensive literature regarding this type of solutions, beginning from the papers [30,42,43]. Indeed
their structure is very rich, and there are also solutions with multiple peaks, both at the boundary
and at the interior of £2. We refer for example to the papers [11,14,21-24,28,29,51-53].

In recent years, some new types of solutions have been constructed: they indeed concentrate at
sets of positive dimension and their profile consists of solutions of (1) which do not decay to zero
at infinity. In [34,35] it has been shown that given any smooth bounded domain §2 € RN N >2,
and any p > 1, there exists a sequence &; — 0 such that (P;;) possesses solutions concentrating
at 052 along this sequence. Their profile is a solution of (1) (for N = 1) on the half real line
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which tends to zero at infinity and which satisfies the condition u6(0) = 0. This function can also
be trivially extended as a cylindrical solution to (1) on the whole Rﬁ .

Later in [33] it has been proved that, if £2 is a smooth bounded set of R3, if p > 1and if
h is a closed, simple non-degenerate geodesic on 952, then there exists again a sequence (&)
converging to zero such that (P,;) admits solutions u,; concentrating along h as j tends to
infinity. In this case the profile of u,; is a decaying solution of (1) in R2 , again extended to a
cylindrical solution in higher dimension.

These are examples of a phenomenon which has been conjectured to hold in more general
cases: in fact it is expected that, under generic assumptions, if £2 € RY and if k is an integer
between 1 and N — 1, there exist solutions of (P.) concentrating along k-dimensional sets when
¢ tends to zero. While the case k = N — 1 has been tackled in [35], the goal of the present paper
is to consider k < N — 2, and to prove this conjecture under rather mild assumptions on the limit
set. Before stating our main theorem we introduce some preliminary notation.

Given a smooth k-dimensional submanifold K of 9£2, and given any g € K we can choose a
system of coordinates (y, ¢) in £2 orthonormal at g and such that (y, 0) are coordinates on K,
and with the property that

0 0
elyK, a=1,...k —| €T,002, i=1,...,n; =v(q), (2

ay 9%, nt1 g

alq
where we have set n = N — k — 1. Our main theorem is the following: we refer to Section 2 for
the geometric terminology.

Theorem 1.1. Ler 2 C RN, N > 3, be a smooth and bounded domain, and let K C 952 be a com-
pact embedded non-degenerate minimal submanifold of dimension k € {1,..., N — 2}. Then, if
p €1, (N—k+2)/(N —k—2)), there exists a sequence €; — 0 such that (st) admits posi-
tive solutions ug; concentrating along K as j — oo. Precisely there exists a positive constant C,
depending on $2, K and p such that for any x € §2

_ dist(x,K)
e, (x) <Ce i

moreover for any q € K, in a system of coordinates (y, {) satisfying (2), for any integer m one

m n+l1
loc R+

has ug; (0, ¢;-) wo(+), where wy : RT‘I — R is the unique radial solution of

—Au+u=uP in R’f‘l,
u=0 on AR, 3)
u>0, ue H' (R,

Remarks 1.2. (a) Differently from the previous papers concerning the case N =3 and k = 1, or
concentration at the whole 952, we require an upper bound on p depending on N and k. This
condition is rather natural, since (3) is solvable if and only if p < (N —k +2)/(N — k — 2), see
[8,46,49] and in this case the solution is radial and unique (up to a translation), see [18,26]. In
any case, our assumptions allow supercritical exponents as well.

(b) As for the results in [33-35], existence is proved only along a sequence ¢; — 0 (actually
with our proof it can be obtained for ¢ in a sequence of intervals (a;, b;) approaching zero, but
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not for any small ). This is caused by a resonance phenomenon we are going to discuss below,
explaining the ideas of the proof. This resonance is peculiar of multidimensional spike-layers,
see also [15], and other geometric problems, see [32,38]. In some cases, when some symmetry
is present, it is possible to get rid of this resonance phenomenon working in spaces of invariant
functions. We refer for example to the papers [2,3,5-7,12,13,36,40,47].

We can describe the resonance phenomenon, which causes the main difficulty in proving The-
orem 1.1, in the following way. By the change of variables x — ex, we are reduced to consider
the problem

—Au+u=uP in 2,

u=0 on 32, (P:)
u=>0 in 2,

where 2, = %.Q As for (2), given g € K, := éK, we can choose scaled coordinates (y, ¢)
on §2; such that dy, |5 € T5 K, 9|5 € T;082¢ and 9, |5 = v(q). Then, letting i, denote the
scaling of u, to £2,, we have that, in a plane through ¢ normal to K., ii, behaves like it (0, ¢) =
ug(0, e2) >~ wp(¢). This amounts to the fact that i, (x) >~ wo(dist(x, K;)), x € §2., and therefore
e has a fixed profile in the directions perpendicular to the expanding domain K,. Since the
function wo(dist(x, K¢)) can be considered as an approximate solution to (135), it is natural to
use local inversion arguments near this function in order to find true solutions. For this purpose
it is necessary to understand the spectrum of the linearization of (P, ) at approximate solutions.

For simplicity, let us assume for the moment that K is (N — 2)-dimensional, namely that its
codimension in 342 is equal to 1, as in [33]. Then, letting ¥ denote the normal to K in 052, we
can parameterize naturally a neighborhood of K. as a product of the form K. x (—§/¢,8/¢),
where § is a small positive number, via the exponential map in 02,

32 (o § 9
(y,8) = exp) e (sv);  (y,s) € K¢ X o) “4)

Similarly, if v(y, s) is the inner unit normal to 32, at the image of (y, s) under the above map,
we can parameterize a neighborhood of K, in £2, with a product K, x (—8/¢,65/¢) x (0, 8/¢) by

0o 58 8
(y,8,0) > expie(sv) +1v(y,s);  (y,s,0) € Ke x | ——, = | x |0, - ).
& & &

When ¢ tends to zero, the standard Euclidean metric of §2, becomes closer and closer (on the
above set) to the product of the metric of K, and that of R? (parameterized by the variables s
and t as Cartesian coordinates). Therefore, since the set (—§/¢,8/¢) x (0,8/¢) converges to
Rﬁ ={(s,t) € R?: t > 0}, in a first approximation we get that the linearization of (P,) at ii, is

—Ag,u— 8szsu — Blztu +u—pwo(u=0 1in K, x Ri,
du — () on KgxaRi.

=

®)

The spectrum of this linear operator can be evaluated almost explicitly. Referring to Section 4
for details (see also [33, Proposition 2.9] for the case N = 3), here we just give some qualitative
description of its properties.
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Given an arbitrary function u € H N(K, x R%_), and letting ¢ = (s, t), we can decompose it in
Fourier modes in the variables y as

u(y.0) =y (Ey)u;().

J

Here ¢; are the eigenfunctions of the Laplace—Beltrami operator on K, namely —Ax¢; = p;¢;,
j=0,1,2,..., where the eigenvalues (p;) ; are counted with their multiplicities.

If u is an eigenfunction (with respect to the duality induced by the space H' (K, x Ri)) of
the linear operator in (5) with corresponding eigenvalue A, then it can be shown (see Section 4
for details) that the functions u ; satisfy the equation

(=) [—Auj+ (1 +ou;]— pwl'u;=0 inRZ,

duj 2
£ =0 on dRZ,

(6)

where o« = £2p ;. It is known that when a = 0 the latter problem admits a negative eigenvalue
no (with eigenfunction wy), a zero eigenvalue o( (with eigenfunction d;wyq), while all the other
eigenvalues are positive. This structure is due to the fact that wg is a mountain-pass solution
of (3) (so its Morse index is at most 1), and the presence of a kernel derives from the fact that
this equation is invariant by translation in the s variable. When « is positive instead, it turns out
that the first eigenvalue n, of (6) and the second one o, are strictly increasing functions of «
with positive derivative, and tend to 1 as « — +00; moreover, the eigenfunctions corresponding
to ny (respectively oy,) are radial (respectively odd in s) for every value of «. In particular, there
exists & > 0 such that nz = 0, so when g2 pj is close to & we obtain some small eigenvalues of
the original linearized problem (5).

From the monotonicity in o and from the Weyl’s asymptotic formula for p;, it follows that
the eigenvalues of the operator in (5) are, roughly, either of the form 79 + £2%/ V=2 for some
j €N, or of the form e212/(N=2) for some [ € N, or have a uniform positive bound from below.

In the case of general codimension it is not possible to decompose a neighborhood of K
(in 0£2) as for (4), but instead one has to model it on the normal bundle of K. in §2, see
Section 4.2 for details. Considering the corresponding approximate linearized operator, one can
prove that its eigenvalues are now, roughly either of the form 7,2 p; =10+ e2j2/* or of the
form o,2 , g2k J»1 € N, or, again, have a uniform positive bound from below. Here (p;);
still represent the eigenvalues of the Laplace—Beltrami operator on K, while the numbers (wy);
stand for the eigenvalues of the normal Laplacian of K (considered as a submanifold of 92), see
Section 2 for its definition and the corresponding Weyl’s asymptotic formula. We are interested
in particular in the following two features of the spectrum:

(1) Resonances: There are two kinds of eigenvalues which can approach zero. First of all, those

of the form 7, when « is close to &@. This happens when &2 j2/% ~ &, namely when j ~ ¢ *;
furthermore, the average distance between two consecutive such eigenvalues is of order
g2j2/k=1 ~ j=1 ~ ¢k The other resonant eigenvalues are of the form o, ~ « for « close
to zero, namely when o = ¢2/*/k and [ is sufficiently small (compared to, say, some neg-
ative power of ¢). Hence the distance from zero of the smallest eigenvalues of this type is
of order ¢2. Indeed, an accurate expansion in &, see Section 5.2, yields that this distance is

bounded from below by a multiple of > when K is a non-degenerate minimal submanifold.
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(2) Eigenfunctions: As for the case of codimension 1, it turns out that the eigenfunctions cor-
responding to the 7,’s are of the form ¢;(sy)u;(¢), where u; is radial in the variable ¢
(¢ represent here some orthonormal coordinates in the normal bundle of K;). The func-
tion ¢; instead oscillates faster and faster as ¢ tends to zero, since j is of order 7%, On the
other hand it is possible to show, see Section 4.2, that the eigenfunctions corresponding to
the o ’s are products v; (| ])(¢, ¢1) N, Where (-,-) n is the scalar product in N K, and where
¢ is a section of the normal bundle N K, and precisely an eigenfunction (scaled in ¢) of the
normal Laplacian of K. Since the resonant modes correspond to low indices /, ¢; does not
oscillate as fast as the resonant ¢;’s.

So far we considered an approximate operator, because in (5) we assumed a splitting of the
metric into a block form in the variables (y, ¢). Since we expect to deal with small eigenvalues,
a careful analysis of the approximate solutions is needed (to apply local inversion arguments),
and also a refined understanding of the small eigenvalues with the corresponding eigenfunctions.

Therefore we first try to obtain approximate solutions as accurate as possible. For doing this,
as in [33-35], one can introduce suitable coordinates on £2, near K., expand formally (135) in
powers of &, and solve it term by term using functions of the form

ure(y, ) =[wo+ewi +--+e&'w](ey, &’ + @oley) + -+ + &' PP a(ey), Lur);
&= bnrn) (7

Here @y, ..., ®@;_; represent smooth sections of the normal bundle N K, and the functions (w;);
are determined implicitly via equations of the type

{ —Aw; +w; — pwo(O)w; = Fi(ey, wo, ..., wi—1, P, ..., Pi—z) in R ®)

Wi — on JR7H!.
Notice that the operator acting on w; is nothing but the linearization of (3) at wq (shifted in ¢’ by
®o+ - +e!72®;_5), which has an n-dimensional kernel due to the invariance by translation
in ¢’. The functions ®; are chosen in order to obtain orthogonality of F; to the kernel, and
to guarantee solvability in w;. In doing this, the non-degeneracy condition on K comes into
play, since the @;’s solve equations of the form J®; = G;(y). J denotes the Jacobi operator
of K, related to the second variation of the volume functional, which is invertible by the non-
degeneracy assumption on the minimal submanifold. Notice also that we wrote the variable y
with a factor ¢ on the front. This is in order to emphasize the slow dependence in y of these
functions. In fact, recalling that (in the model problem described above) resonance occurs mostly
when dealing with highly oscillating eigenfunctions, if we require slow dependence in y then
there is no obstruction in solving ( P.) up to an arbitrary order &’ .

Next one linearizes (P,) near the approximate solutions just found. Compared to the above
model problem, the eigenvalues will be perturbed by some amount, due to the presence of the
corrections (w;); and to the geometry of the problem. In fact the amount will be in general
of order ¢, since this is the size of the corrections (from the w;’s and the expansions of the
metric coefficients, see Lemma 3.2). This prevents a direct control of the small eigenvalues of
the linearized operator (at uy ) since, as discussed above, the characteristic size of the spectral

gaps at resonance are of order 82 or Ek.
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To overcome this problem, we look at the eigenvalues as functions of . The counterparts of
the numbers o2, can be again obtained via a Taylor’s expansion in &, and they turn out to be
constant multiples of £ times the eigenvalues of J (up to an error of order o(g?)), so they are
never zero. On the other hand, the counterparts of the 1,2 pj ’s could vanish for some values of ¢
but, recalling the expansion 7,2 p; =10+ g2 j*/k one can hope that generically in & none of these
eigenvalues will be zero.

This is indeed shown using a classical theorem due to T. Kato, see [25, p. 445], which allows
us to estimate the derivatives of the eigenvalues with respect to . To apply this result one needs
some control not only on the initial eigenvalues but also on the corresponding eigenfunctions,
and this is what basically the last sections are devoted to. There we prove that if A = o(g?)
is an eigenvalue of the linearized operator, the eigenfunctions (up to a small error) are linear
combinations of products like ¢;(ey)u;(¢), for j =~ ¢~* and for suitable functions u ;j radial
in ¢. Then we deduce that d1/d¢ is close to a number depending on &, N, p and K only. As
a consequence, the spectral gaps near zero will shift, as ¢ varies, almost without squeezing,
yielding invertibility for suitable values of the parameter. This method also provides estimates on
the norm of the inverse operator, which blows-up with rate max{e ¥, ¢~2} when ¢ tends to zero,
see Remark 6.8.

Finally, a straightforward application of the implicit function theorem gives the desired result.
To fix the ideas, when p < (N + 2)/(N — 2), solutions of ( f’g) can be found as critical points of
the following functional

Js(u)=%/(|w|2+u2)—ﬁ/mlf’“, ueH' (). )
2 2

One proves that || J;(ure)ll g1(o,) < Cyxe!t17%/2 for & small. Even if the norm of the inverse

linear operator blows-up when ¢ tends to zero, choosing [ sufficiently large (depending only on k

and p), one can find a solution using the contraction mapping theorem near uj ;.

The general strategy of this proof, and especially Kato’s theorem, has been used in [33-35],
so throughout the paper we will be sketchy in the parts where simple adaptations apply. However
the present setting requires some new ingredients: we are going to explain next what are the
differences with respect to these and to some other related papers. First of all, compared to
[34,35], where the case k = N — 1 was treated, here we need to characterize the limit set among
all the possible ones, since the codimension is higher, and this reflects in the fact that the limit
problem (3) is degenerate. This requires to introduce the normal sections @, ..., @;_> in (7),
and to use the non-degeneracy condition on K.

The localization of the limit set has been indeed also faced in [33]. Here, apart from including
that result as a particular case, allowing higher dimensions and codimensions, we need a more
geometric approach. The main issue, as we already remarked, is that we cannot use parameteri-
zations with product sets as in (4), since the normal bundle of K is not trivial in general. At this
point some interplay between the analytic and geometric features of the problem is needed. In
particular the first and second eigenfunctions of the linearization of (3) (the profile of i, at every
point g of K) can be viewed of scalar or vectorial nature. More precisely, the eigenfunction cor-
responding to the first eigenvalue is radial and unique up to a scalar multiple. On the other hand
the eigenfunctions corresponding to the second eigenvalue have the symmetry of the first spher-
ical harmonics in the unit sphere of N, K, and they are in one-to-one correspondence with the
vectors of N, K. The same holds true for the eigenfunctions of problem (6) when « > 0. When ¢
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varies over the limit set, these eigenfunctions (which are the resonant ones), depending on their
symmetry determine respectively a scalar function on K or a section of the normal bundle N K,
on which the Laplace—Beltrami operator or the normal Laplacian act naturally, see in particular
Section 4. Apart from these considerations some other difficulties arise, more technical in nature,
due to the more general character of the present result compared to that in [33]. Heavier com-
putations are involved, especially since the curvature tensors have more components, and some
extra terms appear. Anyway, some of the arguments have been simplified.

Finally, we should point out the differences with respect to the papers [15,32,38], where also
special solutions of the nonlinear Schrodinger equation or constant mean curvature surfaces are
found. In [15,38] the spectral gaps are relatively big, and the eigenvalues can be located using
direct comparison arguments, so there is no need to invoke Kato’s theorem. In [32] arbitrarily
small spectral gaps are allowed, but while there one has to study a partial differential equation
on a surface only, here we need to analyze the equation on the whole space, which takes some
extra work. Also, the Riemannian manifold we consider here, 02, has an extrinsic curvature
as a subset of RY, and therefore some error terms turn out to be of order &, and not &2, see
Remark 3.4 (a). Nevertheless, we take great advantage of the geometric construction in [32],
especially in their choice of coordinates near the limit set. We believe that our method could
adapt to study concentration at general manifolds for the nonlinear Schrodinger equation as well,
as conjectured in [2].

The paper is organized in the following way. We first introduce some notations and conven-
tions. In Section 2 we collect some notions in differential geometry, like the Fermi coordinates
near a minimal submanifold, the normal Laplacian, the Laplace-Beltrami and the Jacobi opera-
tors as well as the asymptotics of their eigenvalues. In Section 3 we construct the approximate
solution u .. In Section 4 we study some spectral properties for the limit problem (3) (with some
extension) and we then derive a model for the linearized operator at u; . In Section 5 we turn
then to the real linearized operator: we construct some approximate eigenfunctions which allow
us to split our functional space as direct sum of subspaces for which the linearized operator is
almost diagonal. In Section 6, using this splitting we characterize the eigenfunctions correspond-
ing to resonant eigenvalues. From these estimates we can obtain invertibility, via Kato’s theorem,
and prove our main result Theorem 1.1.

Notation and conventions

— Dealing with coordinates, Greek letters like «, 8, ..., will denote indices varying between 1
and N — 1, while capital letters like A, B, ... will vary between 1 and N; Roman letters like
a or b will run from 1 to k, while indices like i, j, ... will run between 1 andn := N —k — 1.

- &1, -5 &n, Eny1 Will denote coordinates in Rt = RN—k and they will also be written as
g/ = (§1 LIEICICN) é‘n)’ C = (C’v gn‘l’l)'
— The manifold K will be parameterized with coordinates y = (¥1, ..., yx). Its dilation K, :=

%K will be parameterized by coordinates (yi, ..., yr) related to the y’s simply by y = ¢y.

— Derivatives with respect to the variables y, y or ¢ will be denoted by 95, dy, 9, and for
brevity sometimes we might use the symbols 9 and 0; for 95, and 9, respectively.

— In alocal system of coordinates, (gqp)qp are the components of the metric on d£2 naturally
induced by RV, Similarly, (gap)ap are the entries of the metric on §2 in a neighborhood
of the boundary. (Hyg)qps Will denote the components of the mean curvature operator of 952
into RV
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Below, for simplicity, the constant C is allowed to vary from one formula to another, also within
the same line, and will assume larger and lager values. It is always understood that C depends
on £2, the dimension N and the exponent p. It will be explicitly written Cy, Cs, .. ., if the constant
C depends also on other quantities, like an integer /, a parameter §, etc. Similarly, the positive
constant y will assume smaller and smaller values.

For a real positive variable r and an integer m, O (™) (respectively o(r™)) will denote a
function for which |O (+")/r"™| remains bounded (respectively |o(r")/r™| tends to zero) when r
tends to zero. We might also write o, (1) for a quantity which tends to zero as ¢ tends to zero. With
O(r™) we denote functions which depend on the above variables (y, ¢), which are of order r™,
and whose partial derivatives of any order, with respect to the vector fields 9, r 9;, are bounded
by a constant times r"".

L; will stand in general for a differential operator of order at most i in both the variables y
and ¢ (unless differently specified), whose coefficients are assumed to be smooth in y.

For summations, we might use the notation Z? to indicate that the sum is taken over an
integer index varying from [c] to [d] (the integer parts of ¢ and d respectively). We might use the
same convention when we make an integer index vary between c and d. We also use the standard
convention of summing terms where repeated indices appear.

We will assume throughout the paper that the exponent p is at most critical, namely that
p < (N +2)/(N — 2), so that problem (P;) is variational in H 1(£2). We will indicate at the end
what are the arguments necessary to deal with the general case.

The results of this paper are illustrated in the preliminary note [31].

2. Geometric background

In this section we list some preliminary notions in differential geometry. First of all we intro-
duce Fermi coordinates near a submanifold of 952, recall the definition of minimal submanifold,
and introduce the Laplace—Beltrami and the Jacobi operators, together with some of their spectral
properties. We refer for example to [4,48] as basic references in differential geometry.

2.1. Fermi coordinates on 052 near K

Let K be a k-dimensional submanifold of (362, g) (1 <k < N—1)andsetn =N —k—1 (see
our notation). We choose along K a local orthonormal frame field ((E;)q=1...k, (Ei)i=1,..n)
which is oriented. At points of K, T2 splits naturally as TK @& NK, where T K is the tangent
space to K and NK represents the normal bundle, which are spanned respectively by (E;),
and (E;);.

Denote by V the connection induced by the metric g and by V" the corresponding normal
connection on the normal bundle. Given g € K, we use some geodesic coordinates y centered

at g. We also assume that at g the normal vectors (E;);, i =1, ..., n, are transported parallely
(with respect to V) through geodesics from ¢, so in particular
g(Vg,Ej  E)=0 atq, i,j=1,...,n,a=1,... k. (10)

In a neighborhood of ¢, we choose Fermi coordinates (¥, {) on 952 defined by

(¥, £) = expl® ( Y E,->; (3.0 = (Fadas @)i), (11)

i=1

where exp2¥ is the exponential map at y in 8£2.
P3 p paty
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By our choice of coordinates, on K the metric g splits in the following way
8(q) =8ar(q)dya ®dyp + 8ij(q)dsi ®dEj; g€ K. 12)
We denote by I, ab () the 1-forms defined on the normal bundle of K by
I}(Ei) =§(V,Ep, Ep). (13)

We will also denote by Rug,s the components of the curvature tensor with lowered indices,
which are obtained by means of the usual ones ng s by

Raﬂyé = 8ac ng5~

When we consider the metric coefficients in a neighborhood of K, we obtain a deviation from
formula (12), which is expressed by the next lemma, see Proposition 2.1 in [32] for the proof.
Denote by r the distance function from K.

Lemma 2.1. In the above coordinates (y,¢), foranya=1,...,k andanyi,j=1,...,n, we
have

1
8ij(0,0) =4 + §Riszj§sé'z + C’)(r3);
84j(0,0) = O(r?);
8ab(0,8) = 8ap — 2L (ENG; + [Ryant + TE(EDTP(ED S5t + O(r?).

Here R;yj are computed at the point q of K parameterized by (0, 0).
2.2. Laplace—Beltrami, normal Laplacian and Jacobi operators

In this subsection we recall some basic definitions and spectral properties of differential
operators associated to minimal submanifolds. We first recall some notions about the Laplace—
Beltrami operator, the normal connection and the normal Laplacian.

If (M, g) is an m-dimensional Riemannian manifold, the Laplace-Beltrami operator on M is
defined in local coordinates by

1
Ay = da(y/detg g4803p), 14
= s a(v/detg g*®9p) (14)
where the indices A and Brunin 1, ..., m, and where gAB denote the components of the inverse

of the matrix gap.

Let K € M be a k-dimensional submanifold, kK < m — 1. The normal connection V¥ on a
normal vector field V is defined as the projection of the connection VV onto N K. Moreover,
one has the following formula regarding the horizontal derivative of the product (-,-) 5 in the
normal bundle (see [48, vol. 4, Chapter 7.C] for further details)

X(V, W)y = VRV, W)+(V,V¥W),
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for any smooth sections V and W in NK. If we choose an orthonormal frame (E;); for NK
along K, we can write

Vi Ej = B}(3a)Er,
for some differential forms ﬁ} (we recall our notation d; = 9/9Yy,). Since the normal fields

(E;); are chosen to be orthonormal, it follows that for any horizontal vector field X there holds
X(E;, Ej)n =0, and hence one has

Bl =—B/ @) Yl.j=1,....n. (15)

This holds true, in particular, if we choose Fermi coordinates. Since indeed the normal fields are

extended via (normal) parallel transport from ¢ to some neighborhood through the exponential
map, it follows that ,B} (07)(0,0,...,54,0,...,0) =0, and hence

Bi(0a)=0 atq Ya=1,... .k andVl j=1,....n; (16)

8,;(,35(85)) =0 atg Va=1,...,k, andVl,j=1,...,n. 17

Recalling these facts, we can derive the expression of the normal Laplacian in Fermi coordi-
nates in the following way: given a normal vector field V = V/ E, there holds

VAV =0VIE; + VI Bl (02 Er.
For any two normal vector fields V and W we have, by the definition of A%
/(VNV, VW), dVg =— /(A% V. W), dVg.
K K
We compute now the expression of A% evaluating the left-hand side and integrating by parts

f(va, VW), dVg = /(aavaj + VI B (0a)Er, W' Ei + W' B[ () y 8" V/det g
K K

- /[aavia,;wf +0aVIW B (85) + VI Bl (0 o5 W'
K

+ VIW! B} (0a) B (95)]3" V/det 3.

This quantity, for any V and W, has to coincide with — [}, (A¥ V)" W' /detg, so we deduce that

i ; 1 . _ —
(ARV) = Ak (V) + ﬁag(vw;(aa)g“’a/detg)

— 5 (92 B! (35) + W B (32) Bl (95))/det 3. (18)
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In Fermi coordinates at g, which is parameterized by (0, 0), we have that
8ab =08ab, 0:8ap =0 and 9zy/detg =0, (19)
and we also have (16)—(17). Hence (18) simplifies in the following way
(ARV)' = Ak (V') atq. (20)

Let C®°(NK) be the space of smooth normal vector fields on K. For @ € C*°(NK), we can
define the one-parameter family of submanifolds ¢ — K; ¢ by

K¢ := {expgi,‘? (to(»): yeK}. (1)

The first variation formula of the volume is the equation

t t=0

Vol(K;,¢) =/(¢,H)NdVK, (22)
K

where H is the mean curvature (vector) of K in 952, (-,-) y denotes the restriction of g to NK,
and d Vi the volume element of K.

The submanifold K is said to be minimal if it is a critical point for the volume functional,
namely if

d
o Vol(K; ¢) =0 forany @ € C*(NK) 23)
t=0

or equivalently, by (22), if the mean curvature H is identically zero on K. It is possible to prove
that, if '’ (E;) is as in (13), then

K isminimal <« [IJ/(E;))=0 foranyi=1,...,n. 24)
We point out that in the last formula we are summing over the index a, which is repeated.

The Jacobi operator J appears in the expression of the second variation of the volume func-
tional for a minimal submanifold K

2

prs) Vol(K;,0) = —/(505, P)ndVk; @ eC(NK), (25)
=0

and is given by
30 =-Afo + 7o — BV o, (26)
where RN, BN . NK — NK are defined as

RV = (R(Eq. ®)Ea)": (B ®.nk) = [(@)I) (ng),
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for any unit normal vector ng to K. The operator A% is the normal Laplacian on K defined
in (20).

A submanifold K is said to be non-degenerate if the Jacobi operator Jj is invertible, or equiv-
alently if the equation J@ = 0 has only the trivial solution among the sections in NK.

We recall now some Weyl asymptotic formulas, referring for example to [10], or to [27,39]
for further details. Let (M, g) be a compact closed Riemannian manifold of dimension m, and let
Ay be the Laplace—Beltrami operator. Letting (p;);,i =0, 1, ..., denote the eigenvalues of — A,
(ordered to be non-decreasing in i and counted with their multiplicity), we have that

i ~C,,,(V01’(M)) as i — 00, @7
where Vol(M) is the volume of (M, g) and C,, is a constant depending only on the dimension m
(the Weyl constant). A similar estimate, which can be proved using (18) and (27), holds for
the normal Laplacian A% on a k-dimensional submanifold K € M. In fact, letting (w;);, j =
0,1,..., denote the eigenvalues of —AII}’ (still chosen to be non-decreasing in j and counted
with multiplicity), one has

I \F .
wj~ Cm,k<m> as j — oQ, (28)

where C,,  depends on the dimensions m and k only.

Considering the Jacobi operator Jj for a minimal submanifold K, it is easy to see from (26)
that, since J differs from —A% only by a bounded quantity, we have the same asymptotic formula
for its eigenvalues (u;);, and thereby

2
i %
~ e l . 2
27 Cm,k<V01(K)> asl — oo (29)

In the following, we let (¢;); (respectively (¢;) j, (¥1);) denote a base of eigenfunctions of —Ag
(respectively of —A%, 3), normalized in L2(K) (respectively in L%*(K; NK)), namely the set of
functions (respectively normal sections of K) satisfying

—Ax¢i =pidi; —ARoi=wio;; Jyi=wn, i,j,0=1,2,....

Finally, using the eigenvalues (po;); and (u;);, one can express the L? norms, or the Sobolev
norms of linear combinations of the ¢;’s and the v;’s. In particular, if f =" P and if

g =), Biy; are an L? function and an L? normal section of K, and if L| = > o Ca (y)ag,

Ly=3",Ca (y)(V;V )¢ are differential operators of order d with smooth coefficients acting on
functions and normal sections respectively, then one has

L1 f G2y < Cry (L4 0)ads  ILaglyagvgy < Cro Y (1+1ml))B7. (30)
J I

An estimate similar to the latter one in (30) holds by replacing the w;’s by the w;’s, namely if
8'=2; Bjpj. then IL2g' 175 .y, < CLo 25 (1 + 1w 1) (B))*.
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3. Approximate solutions to (ﬁs)

In this section, given any positive integer I, we construct functions u; . which solve (138) up
to an error of order /1. We will find approximate solutions of (P;) in the following form

xe(121) (wo (¢ + P (y), Snt1) +ewi(ey, &+ P(ey), Sng1) + -+
+&lwr(ey, &'+ @(ey), Luy1)), 31)

where @ (ey) = @g(ey) + --- + e/ "2®;_5(ey) and where the cutoff function x, satisfies the
properties

xe () =1 fort € [0, 1e77],
() =0 fort e [%8’}’, 7], (32)
X 0I<Ce, 1eN.

Here @y, ..., ®;_, are smooth vector fields from K into NK, while wy, ..., w; are suitable
functions determined recursively by an iteration procedure. For doing this we choose a system
of coordinates in a neighborhood of 32, for which the new metric coefficients can be expanded
in powers of &, see Lemma 3.2. In this way we can also expand ( P,) formally in powers of & and
solve it term by term. The functions (w;); will be obtained as solutions of an equation arising
from the linearization of (3) at wg, while the normal sections (®;); will be determined using the
invertibility of the Jacobi operator. Notice that, by the translation invariance of (3), the linearized
operator possesses a non-trivial kernel, which turns out to be spanned by {9, wo, ..., 9, wo}.
The role of @, ..., P;_5 is to obtain at every step orthogonality to this kernel and to solve the
equation using Fredholm’s alternative.

The method here is similar in spirit to the one used in [33] except for the fact that, working
in higher dimensions and codimensions, more geometric tools are needed. Therefore, we will
mainly focus on the new and geometric aspects of the construction, omitting some details about
the rigorous estimates on the error terms, which can be handled as in [33].

3.1. Choice of coordinates near 052, and properties of approximate solutions

Let Yo:U — 982, where U = Uy x Ur € RF x R” is a neighborhood of 0 in R¥~!, be a
parameterization of 02 near some point ¢ € K through the Fermi coordinates (¥, ¢) described
before.

Let y € (0, 1) be a small number which, we recall, is allowed to assume smaller and smaller
values throughout the paper. Then for ¢ > 0 we set

Be, = {x € RT‘I: x| < 6‘77/}.

Next we introduce a parameterization of a neighborhood (in §2,) of ¢ /& € 952, though the map
T; given by

1 1
Yoy, ¢ Gng1) = gTo(eyﬁ(/) + Lupiv(ey, el), x=.¢" tt1) € EU1 X Bey, (33)
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where ¢y = y and where v(gy, ££’) is the inner unit normal to 952 at Ty(ey, £¢’). We have

e 0 ey et tetmmi ey ety ot = 0y o0y gt o (e, )
= £y, € lnt1—(ey,€C'); = £y, € elnt1—(ey, €¢').
0va v "o oG g "oy
Using the equation
dvx[v] =H(x)[v], (34
we find
97, 97
£ =[Id + ety 1 H(ey, e¢)] ey, e¢');
Va4 3Ya
07, 070
== [ld + ety Hiey, 0] = (ev, ). (35)
Gle; ilq;
Differentiating 7, with respect to ¢, 41 we also get
T: ,
=v(ey, ). (36)
3§‘n+1

Hence, letting g4 p be the coefficients of the flat metric g = g, (we are emphasizing the role of
the parameter ¢ in the entries, which is due to the dependence in & of the map 7;) of RY in the
coordinates (y, ¢’, £,41), with easy computations we deduce that

8ap (Vs Cnt1) = 8ap(ey) + 6lnt1(Hysgsp + Hps8se) (£Y)
+ &0y Has HopBso (€5), 5= (3.8 37)
gan =0; gnn =1 (38)

Using the parameterization in (33), a solution u of (158) satisfies the equation

1 1
— 3p (g4 /det g )]au — g4 5> —uP=0 in-U xB 39
M[ B(g etg)]dau — gP o5 pu+u—u in —U1 x Bey (39)

with Neumann boundary conditions on {¢,;1 = 0}. Looking at the term of order &' in this
equation, we will determine recursively the functions (w;); and (®;_3); (defined in (31)) for
i =1,...,1. The specific choice of the integer /, which will be determined later, will depend
on the dimension N of 2, the dimension k of K, and the exponent p. For the moment we let it
denote just an arbitrary integer. The main result of this section is the following one.

Proposition 3.1. Consider the Euler functional J; defined in (9) and associated to problem (P;)
(for p < %). Then for any I € N there exists a function uy.:$2, — R with the following
properties

8141’8
av

_k .
||J;(u,,g)y|H](Qg)<c,s’+‘ 2 ure =0 in Q2 =0 ondf2, (40
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where C depends only on S2, K, p and I. Moreover in the above coordinates there holds

V5" g6 (p, )1 < C,1€™ e ¥ P (E),
IV Veur o (v, Ol < Core™e EIPH©E), yelth, teBy ., m=0,1,..., (@)
VY V2up 6 (v, Ol < Cre™e 1P (2):

where V)(,m) (respectively Véi)) is any derivative of order m with respect to the y variables (re-
spectively of order i with respect to the ¢ variables), where Cy, | is a constant depending only
on 82, K, p, I and m, and where P;(C) are suitable polynomials in ¢.

In the next subsection we show how to construct the approximate solution u#; . and we give
some general ideas for the derivation of the estimates in (41). We refer to [33] for rigorous and
detailed proofs.

3.2. Proof of Proposition 3.1

This subsection is devoted to the explicit construction of u; .. First of all we expand the
Laplace—Beltrami operator (applied to an arbitrary function «) in Fermi coordinates, and then by
means of this expansion we define implicity and recursively the functions (w;); and the normal
sections (®;);.

3.2.1. Expansion of Ag u in Fermi coordinates
We first provide a Taylor expansion of the coefficients of the metric g = g.. From Lemma 2.1
and formula (37) we have immediately the following result.

Lemma 3.2. For the (Euclidean) metric g. in the above coordinates we have the expansions

8ij = 8ij +26u 1 Hij + %SZRistjfsCt +e20 (H?), + 016 P);

8aj =28¢u11Haj + O(Szlilz);

8ab = 8ab — 26 TP (EN&; + 288y41 Hap + €[ Ryapt + TS (E) TP (ED] st
+e%0 (H?),, + O(71¢1);

gaN =0; gnn =1.

Using these formulas, we are interested in expanding A, u in powers of ¢ for a function u of
the form

u(i, é-) = “(gy’ C)

Such a function represents indeed an ansatz for each term of the sum in (31).

We recall that, when differentiating functions with respect to the variables y, ¢, we will mean
that d, = 9y, and 9; = d;,. When dealing with the scaled variables y we will write explicitly d5,,
so that, if u is as above, we have d,u(ey, ) = €d5,u(¥, ¢).
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Lemma 3.3. Given any positive integer I and a function u : %Ul X Be , — Rofthe formu(ey, ¢),

we have
Ag =05u+ 07, u+e[Hy g, u — 20041 Hijoju]
1
+ & [Logu+ Logu+ Lysul + Y &' Liu+e" " Ly, (42)
i=3
where

_ a2 _ Y .
Lz’lu - 8yayau 4§n+1Hla8§i.§au’

Loou=3¢7 1 (H?);;07 ¢ u+28n 1 Hap T (ED it = 2108 (H?) 3,y

1 1 1
L 3u= <Riaal + §Rihh1>§13iu — ngiﬂ{mCza?igju - §Rmiji§m3;_,~u

— ¢ TP (E)TE(E )3 u + 28 Hap T (Ei)o,

and where the L;’s are linear operators of order 1 and 2 acting on the variables y and { whose
coefficients are polynomials (of order at most i) in ¢ uniformly bounded (and smooth) in y.
The operator L 1+1 is still linear and satisfies the same properties of the L;’s, except that its
coefficients are not polynomials in ¢, although they are bounded by polynomials in .

Proof. The proof is simply based on a Taylor expansion of the metric coefficients in terms of the
geometric properties of 0§2 and K, as in Lemma 3.2. Recall that the Laplace—Beltrami operator
is given by

_ 1 AB
Ay, = _detggaAWdetgagg dg),

where indices A and B run between 1 and N. We can write
1
Ay =g 8035 + (9ag:2%) 05 + EaA(1ogdetge)g;”‘ag.

Using the expansions of Lemma 3.3, we easily see that

2
Cnt18n41

ngaiBu:E)g_;iu—i-a u—28§n+1Hij8§,_§ju

1
+82{3y2aya + <3§3+1(H2),~j - ngiﬂCm{l)aégiu _4§n+1Hia8?l.yau}
+0(e121%).

We can also prove
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/ o 1 2 1 2 c a
detgs =1+ 8§n+1Ha + 68 Rmiilé‘mgl + 58 (Rmaal + Fa (Em)FL (El))gmé‘l

2
+0(e121%),

1
+ sz{ ~¢2 (HY) = Cuprtr(H?) + 28016 Hap T (Ei) — G Ff(E»F;’(E,;)}

which gives
log y/detge = e&u 1 HY + {26016 Hap T (Ei) — ¢y tr(H?) = &g T (EDTEH(E )
1 1
+ 682Rmiil§m§l + Egz(Rmaal + FaC(Em)FCa(El))gmé‘l + 0(83|§|3)

Hence, we obtain

1
da(logy/detg, )g*Bop = 82{2§n+1Habea(Ei) — TP (ENTA(E)) + nghhlfl + Riaalil}aiu

+eHg 0, u + (26 Hap T (Ep) = 26n410r(H?) } 0, u
+0(31¢P).
Collecting these formulas together, we obtain the desired result. O

Remarks 3.4. (a) The term of order ¢ in the expansion of Agu in (42) depends on the fact that
852 has an extrinsic curvature in R". Such a term does not appear in the analogous expansion
for the mean curvature of tubes condensing on minimal subvarieties of an abstract manifold, see
Proposition 4.1 in [32] (where the small parameter p is the counterpart of our parameter ¢).

(b) For later purposes, see for example Lemma 6.1, it is convenient to analyze in further
detail the operator L3 in (42), and in particular the coefficients of the second derivatives in the y
variables. It follows from the above expansions that the coefficient of 8}_2,0 5 in L3 is given by

2(&TP(ED) — ¢us1 Hap).

3.2.2. Construction of the approximate solution

We show now how to construct the approximate solutions of (P;) via an iterative method.
Given I — 2 smooth vector fields @y, ..., @;_» we define first the following function i; . on
K x R*t1 see (31)

163, 0) =wo(¢"+ @), tay1) +ewt (3.8 + @G5, Gng1) +- -
+elwi (5.8 + (). tat1),

where @ = &g+ @) + --- + &' "2®;_,. In the following, with an abuse of notation, we will
consider iy, (and wy, ..., w;) as functions of the variables y and ¢ through the change of
coordinates y = ¢y.

To define the functions (w;); and (®;); we expand Eq. (39) formally in powers of ¢ for
u = iy (using mostly Lemma 3.3) and we analyze each term separately. Looking at the coeffi-
cient of ¢ in the expansion we will determine w1, while looking at the coefficient of &/ we will
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determine w; and ®;_», for j =2,..., 1. In this procedure we use crucially the invertibility
of the Jacobi operator (recall that we are assuming K to be non-degenerate) and the spectral
properties of the linearization of (3) at wo.

e Step 1: Construction of wi

We begin by taking / = 1 and @ = 0. From Lemma 3.3 we get formally

N N A —1
—Aggul,g +upe — uf’s = —ARnHwo + wo — wg + 8(—AR»1+1w1 +wp — pw([)7 wl)
— g[Hgagn+lw0 — 2§n+1Hijai2jw0] + 0(82).

The term of order 1 (in the power expansion in ¢) vanishes trivially since wg solves (3), and in
order to make the coefficient of ¢ vanish, w; must satisfy the following equation

Lowy = HY 3, wo — 28,11 Hij0wo, (43)

where L is the linearization of (3) at wg, namely

p-1 2 : +1
—Awy +wi — pwy  wy = HS g, wo — 2§n+1Hij3,~jw0 in R,

P =0 on {¢y41 = 0}.

Since Ly is self-adjoint and Fredholm on H 1(RT‘I), the equation is solvable if and only if
the right-hand side is orthogonal to the kernel of Lo, namely if and only if the L? product of the
right-hand side with dwg/d¢; vanishes fori =1, ..., n, see Proposition 4.1 below. This is clearly
satisfied in our case since both 9, wo and a}} wo are even in ¢, while the dwy/d¢;’s are odd
in ¢’ for every i. Besides the existence of wy, from elliptic regularity estimates we can prove its
exponential decay in ¢ and its smoothness in y (see for example Lemma 3.4 in [33]). Precisely,
there exists a positive constant C; (depending only on 2, K and p) such that for any integer £
there holds

— C; — —
Vo @ ol < +1g) e 3,0 e K xR (44)

where C; depends only on /, p, K and £2.

e Step 2: Expansion at an arbitrary order

We consider next the coefficient of &/ for an integer I between 2 and I , and we assume that the
funNCtions wi, ..., wj_; and the vector fields @y, ..., P;_; have been determined by induction
in 1. The couple (wj, @;_,) will be found reasoning as for wy: in particular an equation for @;_,
(solvable by the invertibility of ) is obtained by imposing orthogonality of some expression to
the kernel of Ly, and then w i is found again with Fredholm’s alternative.
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Expanding (39) with u = ii; ., we easily see that (formally), in the coefficient of si , the
function wj appears as solution of the equation

£¢Wi: Fi(yv {, wo, Wiy ..., w1”71,®(), N ¢I~72) in Ri‘i'l’
Bwi =0 { _O} (45)
8§71+l - on §n+l — ,

where L¢ is defined by

Ed)u =—Au +u— pwgil(é‘/_'_ q)(y)ﬂ §ﬂ+1)u7

and where Fj is some smooth function of its arguments (which we are assuming determined by
induction). Our next goal is to understand the role of @;_, in the orthogonality condition on Fj
(to the kernel of Lg). In order to do this, we notice that, using Lemma 3.3 for u = iij ¢, the
function @ (precisely its derivatives in y) appears through the chain rule when we differentiate
u with respect to the y variables. Moreover, for testing the orthogonahty of the right-hand side
in (45) to the kernel of Lg, we have to multiply it by the functions % 4,0 &+ D0), tnr1), i =
1,...,n, so this condition will yield an equation for @ (and in particular for @;_,) through a
change of variables of the form ¢’ + &' + @ ().

Therefore, in the expansion of A gﬁ 1.e,» we focus only on the terms (of order eh) containing
either derivatives with respect to the y variables, which we collected in L, 1, or containing ex-
plicitly the variables ¢’, which are listed in Ly 3. In particular, none of these terms appear in the
first line of (42).

Denoting the components of @ by (®)) j (in the basis (E;); of N K), there holds

AP’ du

754 3¢, — 3.+ 20, tnt1):

35, (7, ¢/ + D), ¢at1)) = 05,u(F. &' + D, Gui1) + ——

_ _ _ dp/ _
05 5. (3. ¢+ D), Car1)) =05 5,u(3, ¢+ P, Cur1) + 2Ea§a§ju(y, ¢+ D Cur)

L el 2d du
394054 3¢;
ap’ ad! 9%y
dYa 0¥q 9508

(y é- +@(y), §n+1)

(3. + @), Gur1);

82
595, (¥.¢' + D). tns1)) = g5, u(F. ¢+ D, ny1)
L0 B s o), ).
95, 8{]({); Vs Y), Cn+1

Therefore, recalling the definition of it ., since 35, wo = 0 we find that

2P 8w0+8¢>j Al 92wy 4 aqbf' 9%wo
— - — . 1 =
05405a 0L 0Va 034 950G 95, 9500

Logiire =
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! dp azqw dw;, b ad! 3w,
Z ) 3, Wi +25— 33{ oo
e “ 0yq a}’aa)’a 3{1 0Ya 0yq agjaé‘l

A ad) 32w;
e Vs g ) |

o Step 3: Determining wj and ®;_, for 1>2

When we look at the coefficient of ¢/ in 82L2, 1i1.¢, the terms containing @ j_o are given by

2PpJ dwy ad 92wy ( ads 9! 32wy . 7 2)
1141] — — — 1 =
054054 02, 85, 9z;00 T 054 034 9250

When we project Ag ity o — il ¢ + ﬁf . onto the kernel of L¢, namely when we multiply this

expression by = aw" (; + @), tn+1), s = 1,..., n, considering the terms of order el involving
D;_,, we have no contribution from the ﬁrst line and from L, in (42) (with u = i), as

explained in Step 2. Also, in (42), the factors of &' for i > 3, multiplied by el~29 7o will give
higher order terms. In conclusion, we only need to pay attention to L2 1 and L5 3.
When we multiply 2Ly 3wo (¢’ + @, ¢uy1) by %%({/ +®,%,41),s =1,...,n, we can obtain

the coefficient of &/ QDI@_ 5 in the following way.

Looking for example at the first term in 2L, 3 we get

1 / !/
&’ / (Riaa1+§Rihhz>§13iwo(§ + @, 8n11)0swo (8" + P, L1 de

R”+l

"
1
=g’ / (Riaaz+gRihhl)(é“l—‘Pl)aiwo({/’§n+1)3swo(§/a§n+1)d§
RZ_+1

1
=g’ / (Riaal+§Rihhl>§laiw0(§/7§n+1)3sw0(§/s§n+l)d§
. 1
-2y el / <Riaul+gRihhl>aiw0(§/’§n+])asw0(§/»§n+l)d§-

Since wy is even in ¢’, it follows by symmetry that the term of order &/ containing ® j_p in the
last expression is given by

1
—Co(le + gRshhz)a#z, (46)
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where we have set
Co= / (B1wo)”. 7)
R{T—l

From similar arguments, the third and the fourth terms in L 3wq give respectively

1
3 Riisi Co®;_, (48)

and
Coly (E)T{(EN®;_,.

The last term in L3 3wq gives no contribution since the coefficient of @;_, vanishes by oddness,
so it remains to consider the second term. Integrating by parts we find

2 l 2 2 2 1 2 e 7
ngijlq§1~_2 / Cmagxwoaggjwodf (+8wa ?—284“;%@1"—2 / 3§i§jw08§SU)0d§ ifI=2).

n+l1 n+1
R R"

In case I = 2 the quantity within round brackets cancels by oddness, therefore in any case we
only need to estimate the first one. Still by oddness in ¢’, the first integral is non-zero only if,
eitheri=jandm=s,ori=sand j =m,ori =m and j =s.

In the latter case we have vanishing by the antisymmetry of the curvature tensor in the first
two indices. Therefore the only terms left to consider are

2 I 2 2 ) 2
Z §Rsiil(pi72 Csaé‘x woagigi wod¢ + Z §Risilq§i72 &i a{S woam,. wod¢.
i R1+1 i R1+1

Observe that, integrating by parts, when s # i there holds

/ L5, wod ; wodg = — f £i 9, w0y, wo dy.

n+l1 n+l1
R R";

Hence, still by the antisymmetry of the curvature tensor we are left with

4
_ZgRsiil(pé_z / {jagSU)oai{ind{.
i

n+1
R+

The last integral can be computed with a further integration by parts and is equal to —%Co, NY)
we get

2 !
§RsmC0€DI~_2~
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This quantity cancels exactly with the second term in (46) and with (48).
When we multiply e?Ls jwo(¢’ + @, ¢u11) by %%(C/ + @, u11), s =1,...,n, the terms

containing &’ @?_2 are given by

82d>; 2 845; 2.2
—= 07, W, wods — 4 Hy,——=0; , wpdr, wod
/ 85,97, 0% wo ¢ /§n+1 a5, Oyt Wodwo ¢

n+1 n+1
R R}

<+ / Y4 Waqgwoagwodé‘ if I =2>’

R1+1
which give by oddness

25/
9 gzj112

0Y40Yq
Collecting the above computations, we conclude that Fi(y, ¢, wo, wis .., wi_y, Do, ..., Pj_y),

the right-hand side of (45), is L>-orthogonal to the kernel of L¢ if and only if & j_, satisfies an
equation of the form

GRS
Co( % i — — Reaat®}_, + rf(Es)Fb“(Enab}_z)

:Gi,z(yv é"w07w17"'7wi7]a®05 "‘5®i73)5

for some expression G;_,. This equation can indeed be solved in @;_,. In fact, observe that
the operator acting on @;_, in the left-hand side is nothing but the Jacobi operator, which is
invertible by the non-degeneracy condition on K.

Having defined @;_, in this way, we turn to the construction of w; which, we recall, satisfies
Eq. (45). Having imposed the orthogonality condition, we get again solvability and, as for wy,
one can prove the following estimates

Vw3 0| < Cra(t+1)Te ¥ 3.0 e K xR (49)

where C; depends only on /, p, K and £2.

As already mentioned, we limit ourselves to the formal construction of the functions uj .,
omitting the details about the rigorous estimates of the error terms, which can be obtained rea-
soning as in [33]. We only mention that the number y has to be chosen sufficiently small to
obtain the positivity of u ., after we multiply i , by the cutoff function x., see (31) and (32).

4. A model linear problem
In this section we consider a model for the linearized equation at approximate solutions which,

for p < (N +2)/(N —2) (as we are assuming until the last subsection), corresponds to J. (i ¢).
We first study a one-parameter family of eigenvalue problems, which include the linearization
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at wo of (3). Then we turn to the model for JS” (ur,¢), which can be studied, roughly, using
separation of variables.

s ot
4.1. Some spectral analysis in R’

In this subsection we consider a class of eigenvalue problems, being mainly interested in the
symmetries of the corresponding eigenfunctions. We denote points of R**! by (n 4 1)-tuples

{1’ ;21 e {n’ é‘VH-l = (c/, é‘n-}-l), and we let
R ={(@1. 80 Gns Gag) € R 44 > 0},

Forpe (1,(n+3)/(n — 1)) ((n + 3)/(n — 1) is the critical exponent in R"*1y we consider prob-
lem (3) which, we recall, is

—Au+u=uP in R’fl,

g—“j =0 on 8R’fl,
u>0, ue H' (R,

It is well known, see e.g. [26], that this problem possesses a radial solution wq(r), rt= Z;’;rll ;“l.z,

which satisfies the properties

wy(r) <0 for every r > 0,
. Fon . w( (r) (50)
lim, e r2wo(r) =ay,p, >0, lim, D) = -1,

where a, ,, is a positive constant depending only on n and p. Moreover, it turns out that all the
solutions of (3) coincide with wg up to a translation in the ¢’ variables, see [18,19].
Solutions of (3) can be found as critical points of the functional J defined by

T ! 2 2 1 1 1 +1
Jw =3 / (IVul +u)—ﬁ / Pt we HY(RYT. (51)
RZ_+1 RZ—+1
‘We have the following non-degeneracy result, see e.g. [45].

Proposition 4.1. The kernel of J"(wo) is generated by the functions dwo/d<1, ..., dwo/dEn.
More precisely, there holds

I (wo)lwo, wol == (p = DlIwollyy g,
and
7 -1 2 1 +1
J" (wo)[v, v] > C o1 ey Yo e H (RY), v L wo, 3, wo, . ..., 0, wo,

Jor some positive constant C. In particular, we have n <0, 0 =0 and t > 0, where 1, o and
T are respectively the first, the second and the third eigenvalue of J"(wg). Furthermore the
eigenvalue 1 is simple while o has multiplicity n.
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Notice that, writing the eigenvalue equation J"(wo)[u] = Au in H' (R’f‘]), taking the scalar
product with an arbitrary test function and integrating by parts one finds that u satisfies

{ —Au+u— pu)g_lu =AM—Au+u) in R’fl,

u n+1
ETo =0 on dR. .

The goal of this subsection (the motivation will become clear in the next one) is to study a more
general version of this eigenvalue problem, namely

{ —Au+ (1 +a)u — pwg_lu =A—-Au+ (1 +a)u) in Ri+1, (52)

Ju __ n+1
H=0 on dR. ",

where o > 0. It is convenient to introduce the Hilbert space (which coincides with H l(R:’_‘H),
but endowed with an equivalent norm)

Hy = {u e H'(RYM): u)? = / (IVu* + +a)u2)},
R1+1

with corresponding scalar product (-,-),. We also let 7,, : H, — H, be defined by duality in the
following way

(Tqu,v) g, = /((Vu.vv)—l—(l—i—a)uv)—p / wg_luv; u,veH,. (53)
Rf’:’l Ril:—l

When o = 0, the operator Ty is nothing but J"(wy). For a > 0, the eigenfunctions of Ty sat-
isfy (52). We want to study the first three eigenvalues of T, depending on the parameter «.

Proposition 4.2. Let 1y, 0, and t, denote the first three eigenvalues of T,. Then ny, 04 and T,
are non-decreasing in o. For every value of a, 1y is simple and there holds

Ny .

e 70 =t
The eigenvalue o, has multiplicity n and for a small it satisfies 90, /0 > 0. The eigenfunc-
tion u, corresponding to ny is radial in ¢ and radially decreasing, while the eigenfunctions
corresponding to oy are spanned by functions of the form vy ; (£) = 0o (ICGi/1C], i=1,...,n,
Sfor some radial function vy (|¢|). If uy and vy are normalized so that ||uy|lq = ||Va,ille = 1, then
they depend smoothly on a. Moreover we have

_
[VOug )| + [V (v ()] < Cre™
provided « stays in a fixed bounded set of R.

Before proving the proposition we state a preliminary lemma.
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Lemma 4.3. Let t denote the third eigenvalue of J'" (wo). Then, for a > 0, every eigenfunction
corresponding to an eigenvalue ) < t/2 of (52) is either radial and corresponds to the least
eigenvalue, or is a radial function times a first-order spherical harmonic (in the angular variable
0 = /|¢|) with zero coefficient in ¢, and correspond to the second eigenvalue.

Proof. First of all we notice that, extending evenly across aR’ﬁl any function u € H' (Rf’ﬁl)
which is a solution of (52), we obtain a smooth entire solution of

1

—Au+ 14+ o)u — pwg_ u =A(—Au +( +ot)u).

Next, we decompose u in spherical harmonics in the angular variable 8 (we are using only spher-
ical harmonics which are even in &,41)

e¢]

=Y u(e) ¥y feR 0= s
i=0

Here Y; . is the jth eigenfunction of —Ag» (which is even in &,41), namely it satisfies Ag»Y; , =
Af o Yi,e, where we have denoted by AiS . the ith eigenvalue of —Agn on the space of even functions

in £, +1. In particular, the function Yg . is constant on S” and correspond to )LIS”G =0, while Agne =
n has multiplicity n. The eigenfunctions corresponding to Agne are (up to a constant multiple) the

restrictions, from R"*! to S”, of the linear functions in 7.
The Laplace equation in polar coordinates writes as

1
Agntit = Aru + —2Asnu,
r

where A, = ;—:2 + %dd—r. Therefore, if u =Y coqui (I])Yi..(0) is a solution of (52), then every

radial component u; satisfies the equation

A - .
{(1—)»)(—v’/—§v’+(1+a+ L )v) — pwg "W=0 inR, (54)
v'(0) =0.

We also notice that, since the space of functions {v(r)Y; .(0)} (for a fixed i) is sent into itself by
the Laplace operator, every Fourier component (in the angular variables) of an eigenfunction of
(52) is still an eigenfunction.

We call Ay; ; the jth eigenvalue of (54). From Proposition 4.1 it follows that Ag 11 =
—(p — 1) <0 and that Agj,; > T for j > 2. In fact, a radial eigenfunction of J”(wg) which
is not (a multiple of) wy itself must correspond to an eigenvalue greater or equal than t, which
is positive. On the other hand, it follows from Proposition 4.1 that Ag2 1 = 0, and also that
A0,2,j = T > 0 for j > 2. Finally, since A¢ ;1 = T > 0 for i > 3, we have in addition Ag; j > T
for every i > 3 and for every j > 1.
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After these considerations, we turn to the case « > 0, for which similar arguments will apply.
Solutions of (54) can be found as extrema (minima, for example) of the Rayleigh quotient

}lel _
S, D2+ ( N2 = p fy, w2

Sn
Jo, T2 4 (1o + 25 )02]

(55)

from a standard min—max procedure. Using elementary inequalities it is easy to see that the above
quotient is non-decreasing in c. Therefore it follows that A 1,; > Ofor j > 2, that A2 j 2 7 >0
for j > 2 and that A, ; ; > T for every i > 3 and for every j > 1. This concludes the proof. O

Proof of Proposition 4.2. The simplicity of 1, can be proved as in [34, Section 3], using spher-
ical rearrangements and the maximum principle. The weak monotonicity in « of the eigenvalues
can be easily shown using the Rayleigh quotient in the space Hy, as for (55).

The smoothness of o — 1, and of @ — u, can be deduced in the following way. Since the two
spaces H (]R"“) and H, coincide, and since the eigenvalues of an operator do not depend on
the choice of the (equivalent) norms, we can consider 7,, acting on H (R”H) endowed with its
standard norm (independent of «). Having fixed the space, we notice that the explicit expression
of Ty is given by

Tau:[—A—|—1]_1(—Au+(l+a)u —pwg_lu). (56)

In fact, letting Tyu =g € H' (RTI), taking the scalar product with any v € H' (RTI) and using
(53) we find

/ [(Vg-Vv)+qv]= / [(Vu-Vv)+ (1 +a)uv]—p / w(’;_luv,
Rrrrl R'rrl Rrrrl

which leads to (56) by the arbitrarity of v. It is clear that the operator in (56) depends smoothly
on « and therefore, being n, simple, the smooth dependence on « of 1, and u, follows.
We now compute the derivative of 1, with respect to «. The function u, satisfies

(1= 1) (— Aug + (1 + @)tg) = pwl g in R, 57
Ya — 0 on dR7 1.
Differentiating with respect to « the equation | uy ||§ =1, we find
d 2 du 2
T R L
Ri+l
On the other hand, differentiating (57), we obtain
— Ll (— Aug + (1 + 0)ug) + (1 — na) (—A(G)
(14 a)da 4y, = pwl ™" dia in R+ (59)

ditg 1
(“)— on R/,
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Multiplying (59) by u,, integrating by parts and using (58), one gets

d
%:(1—%) / u > 0. (60)

Rz_—%—l
Indeed, since Ty < Id R+ EVery eigenvalue of Ty, is strictly less than 1, and in particular
(1 — ng) > 0. We now consider the second eigenvalue o,. For any o > 0 it is possible to make a
separation of variables, finding eigenfunctions of (52) of the form Y; .0y, ;, where Y; . = & /¢,
i=1,...,n, correspond to Ag:. Also, from Lemma 4.3 we know that for « close to O (indeed, as
long as 0, < T) every eigenfunction corresponding to oy, is of this form, for some i € {1, ..., n}.
Therefore, if we restrict ourselves to the space of functions of the form v(|¢])¢;/|z| for a fixed
i €{l,...,n}, the first eigenvalue for (52) becomes simple, so we can reason as before, obtaining
smoothness in « and the strict monotonicity of oy .

We prove next that the eigenvalue 1, converges to 1 as &« — +00. There holds

Jer UV + (1 +a)u® — pwl~'u?]
Ne = inf —=
ueH, St VU2 + (1 4+ a)u?]
+

Fixing any § > 0, it is sufficient to notice that
IVul? + (1 +a) — pwl ™ > (1 - H[IVul* + (1 +a)u?] forevery u,
provided « is sufficiently large. This concludes the proof of the claim.
The decay on ug, vy,; and their derivatives is standard and can be shown as in [34], so we do

not give details here. 0O

Remark 4.4. Proposition 4.2 implies in particular that there is a unique & > 0 such that nz = 0.
Moreover, we have also

ug = Cowo; vt = Codpwo,
for some positive constants C‘o and Cy.

We also need to introduce a variant of the eigenvalue problem (52), for which we impose
vanishing of the eigenfunctions outside a certain set. For ¢ > 0 and for y € (0, 1) we define

Bey ={x e R x| <77}, 61)
and let
H!={ueH"(B,y): u(x)=0for|x|=¢""}.
We let H, . denote the space Hs1 endowed with the norm

||M||§,g= /[lVM|2+(l+a)u2]; ueH),
B.,
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and the corresponding scalar product (-,-)q,¢. Similarly, we define Ty . by

(To,ett, Vg e = / [(Vu -Vu)+ (1 +a)uv — pw([)’_1

Be,y

uv]; u,ve Hy,.

The operator Ty, . satisfies properties analogous to 7,,. We list them in the next proposition, which
also gives a comparison between the first eigenvalues and eigenfunctions of 7, and Ty ¢.

Proposition 4.5. There exists gy > 0 such that for ¢ € (0, gg) the following properties hold
true. Let 0y ¢, 04, and 14 . denote the first three eigenvalues of T, .. Then 1y ¢, Oy and To e
are non-decreasing in a. For every value of o, 1y is simple and 91y ¢/0a > 0. For o suffi-
ciently small, oy ¢ has multiplicity n and 90y /0o > 0. The eigenfunction u ¢ corresponding
to Ng.¢ IS radial in ¢ and radially decreasing, while the eigenfunctions corresponding to oy ¢ are
spanned by functions vy ¢ ; of the form vy ¢ i ($) = Vo e (1C)Ci/IC), i = 1, ..., n, for some radial
Sfunction Oy ¢ (|¢]). The eigenvector uy . (respectively vy i), normalized with lugelln,, =1
(respectively ||vg,e,illH,,; = 1) corresponding to ny e (respectively oy for a small) depend
smoothly on a. Moreover for some fixed C; > 0 there holds

_lal
(VOug o (O + |V (O| < Cre” G, fori=0,....n; (62)

_e v
M — Nael + llug — “a,s”Hl(Rﬁjl) + |og — Oael + [[Vai — U(x,s,i”HI(Rr:rl) L<Ce T, (63)

provided o stays in a fixed bounded set of R. The functions u, e and vy ; in this formula have
been set identically 0 outside B . Furthermore, 1y ¢ > Tq 2> T for every value of o and €.

The proof is very similar that of Proposition 2.3 in [35], and hence we omit it here. It is still
based on some elementary inequalities and on the Rayleigh quotient. The quantitative estimates
in (63) can be deduced using cutoff functions and the Green’s representation formula for the
operator —A + (1 + ) in RT’].

As a consequence of this proposition (taking o = 0) we obtain that, if (for ¢ small) u € HE1
has no Fourier components (in ) with indices less or equal to n, then (Tp cu, u)g,c > %(u, u)o.e-
Equivalently, there holds

» / w? (121w’ < (1 - %) /(—Au+u)ud{

Be,y Be,y
o0
forany u= > u;(|£])Yi(0), ueH}. (64)
i=n+1

4.2. A model for J/'(uy¢)

In this subsection, using the analysis of the previous one, we construct a model operator
which, up to some extent, mimics the properties of J/ (us ), and for which we can give an
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explicit description of the spectrum. Although the related construction in [33] is a particular case
of the one made here, the general spirit is quite different, and is more geometric in nature.

First of all, we choose an orthonormal frame (E;); as before, and we define a metric g on N K
as follows. For v € NK, a tangent vector V € T, NK can be identified with the velocity of a
curve v(t) in NK which is equal to v at time ¢t = 0. The same holds true for another tangent
vector W € T, N K. Then the metric § on NK is defined on the couple (V, W) in the following
way (see [16, p. 79])

t—O>N

. . . N
In this formula 77 denotes the natural projection from N K onto K, and 2 ~ denotes the (normal)

covariant derivative of th¢ vector field v(¢) along the curve 7 v(¢). In the notation of Section 2.2
we have that, if v(t) = v/ (¢)E;(t), then

DNw

t=0 dt

DNy
dt

gV, W) =g(mV, ﬂ*W)+<

DVv  dvl(r) gl (- dv@®)
s _TEJ(I)_l_v (f)ﬂj<77*7>El-

Therefore, if we choose a system of coordinates y on K and then a system of coordinates on N K
defined by

3.0 eRE xR > TVE;(3),
we get that
855 ) =855 + UV Eis VI Ej)y = 855D + R ACOHC Y
and
8. D=0 &;(5.0) =6

where we have set 9; = 9/ d¢;. We notice also that the following co-area type formula holds, for
any smooth compactly supported function f : NK — R

/deg=/( f f(E)dZ)dVg@)- (65)
NK K NyK

This follows immediately from the fact that det g = det g, which in turn can be verified by ex-
pressing ¢ as a product of three matrices like

(o )6 m)(c )
0o 1d)\o 1d)\¢p 1d)

the first and the third having determinant equal to 1.
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Having defined the metric g, we express the Laplacian of a function u defined on N K with re-
spect to this metric. In Fermi coordinates centered at some point g € K, using (16), (17) and (19),
it turns out that (for y = 0)

Aju= agﬁu + aflu (66)

Next we define the set S, as

1
Se={. tar1) e NKe x Ry (02 +¢7,1)2 <7} Ry ={Cut1: Gug1 >0},

where N K, stands for the normal bundle of K, (in £2,.). We next endow S, with a natural metric,
inherited by g through a scaling. If R, denotes the dilation x — ex in RV (extended naturally to
its subsets), we define a metric g, on S; by

1 N
8 = ;[(Re)*g] ®d§n2+1'

In particular, choosing coordinates (y, ¢') on NK, via the scaling (¥, ¢) = &(y, ¢’), one easily
checks that the components of g, are given by

(8e)ab (v, v) = (3)35(ey) + £7v'v/ B} (9a) (e3) B (3) (ey),
(8e)ai (v, v) =607 BE (D) (ey);  (8e)ij (3, v) = 6ij,
and also

GINN =15 (8e)Ne =0.

Therefore, if u is a smooth function in S, it follows that in the above coordinates (y, ', {y+1)
(at y=0)

Agu=82,u+ d%u + 3} u (67)

Cnr18n+17 "

In the following, to emphasize a slow dependence of a function u in the variables y, we will
often write u(y, ¢) = u(ey, ¢) (where, we recall, £ = (¢, ¢y+1)), identifying with an abuse of
notation the variable y parameterizing K, with y, parameterizing K. In this case we have that
(at the origin of the Fermi coordinates)

242 2
Azgu=¢ 3aa”+3ii”+8§,,+1§,1+1“~ (68)

For later purposes, we evaluate Az on functions with a special structure. In particular, if we
deal with a function u of the form u(y, ¢) = ¢ (y)v(|¢]), we have that

Agu=e>(Axp(M)v(1¢]) + ¢(F) Arv, (69)

and if instead u(y, ¢) = v(|¢ |)1ﬂh(y)§h/|§| for some smooth normal section ¢ = 1//hEh, then we
find

Agu= 82(A%w)h(y)%v(|c|) +y" A, (v(m)%). (70)
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Now we introduce the function space Hg, defined as the family of functions in H 1(S,) which

vanish on {|v|? + an = £727}, endowed with the scalar product

(u, V) gy, = /(Vg,gu Vg v+uv)dVs,. an
Se

We consider next the operator T, : Hs, — Hyg, defined by duality as
-1
(Ts,u.v) 5, = / (Ve Vg +uv—pug (I¢])uv)dVg,, (72)
Se
for arbitrary u, v € Hg,. Our goal is to characterize some of the eigenvalues of Ts,, with the
corresponding eigenfunctions.

For simplicity, if #g ¢, Va.c.i»> Na,e and oy ¢ are given by Proposition 4.5, recalling our notation
from Section 2.2, we also set

Uje= ”szpj,s; Ul,e,i = Vg2 6> Nje= nazpj,a; Olie = O0g2¢ ¢+ (73)
‘We also assume that these functions are normalized so that

lujellZz,, =[5, Vel + (A +e2ppuj ) =1;
lvreilZ, =z (Vueil*+ 1 +2o)vf, ) =1.
V.€ 2Cy

2wy,

(74)

After these preliminaries, we can state our result.

Proposition 4.6. Let ¢y, € be as in Proposition 4.5. Let . < t/4 be an eigenvalue of Ts,. Then
either A =n;j . for some j, or . = oy ¢ for some index I. The corresponding eigenfunctions u are
of the form

u(y.0)= Y ajpiEnui )+ Y Bl Evei?), (75)

{j: 77/',9:)»} {: O'I,s:)v}

where (y, ¢) denote the above coordinates on S;, and where (o) j, (B1); are arbitrary constants.
Vice versa, every function of the form (75) is an eigenfunction of Ts, with eigenvalue M. In par-
ticular the eigenvalues of Ts, which are smaller than t /4 coincide with the numbers (1) or
(01,¢)1 which are smaller than t /4.

Proof. The proof is based on separation of variables and the spectral analysis of Proposition 4.5.
Integrating by parts, one can check that the eigenfunction u of Ty, satisfies the following equation

(1= (=Agu+u)—pwl ™ (Ou=0 inS,

f= =0 on {Zui1=0}.

(76)
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As before, we can extend u evenly in £, 1, to obtain a smooth solution of the differential equation
in (76) in the set {(v, {+1) € NK: x R: (|v|2 + C,%H)l/z < ¢77}. Hence, fixing y € K., we can
use Fourier decomposition in the angular variable of ¢, and we can write

[e.¢]

u(y.0)=> w(y.1¢1)¥1.0©).

=0

where 6 = ¢ /|¢| € S”, and where Y} . is the /th spherical harmonic function which is even in
Zn+1- We now decompose u further in a convenient way as

M:ﬂo"‘ﬂl"‘ﬂz, 77
where
1
= , ; = , Y .(0);
ug muo(y [ z:;,nw(y 1£1)Y1,6(0)
uy= > (. 121)Y1.(0).
1Z2n+1

Integrating by parts, the last formula, together with (65), (69) and (70) (recall that ¥; , for [ =
1, ..., n arelinear combinations of §, /|| on S, h =1, ..., n) easily implies that (u;, Ej)Hsg =0
for i # j and that (Ts,u;, u;)ns, =0 for i # j, namely that T, diagonalizes with respect to the
above decomposition (77).

We begin by considering the action of T, on u,. Using a Fourier decomposition of u,(y, [£])
through the eigenfunctions (¢;); of the Laplace—Beltrami operator on K we set

ug(y, 1£1) Z«p,(sy)u, 1)

By (69) we get immediately that for any j
Ag (¢ i (121) = (2 Az + Ac) (8 et (I¢1)) = (Ac — pj)b (e3)itj (£1)-

As a consequence we find that u, € Hg1 satisfies the following partial differential equation in
B, ,,, with Neumann boundary conditions on {¢,4+1 = 0}

—Agug+uy— ng_l(|§|)£o

= > e - Ay e1) + (14 20,)is(€1) - puf ™ (2D 1),

From this formula it follows that if Ts,u = Au for some A, then by the orthogonality to u;, u,
we have also Ts,u, = Aug, and each of the components i ; (which are radial in ¢) satisfies the
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eigenvalue equation 7> pj. gllj =Alijin Hp 2p; . with the same value of A, where we are using the

notation of Section 4.1. Using the same terminology, we can further decompose i ; as
ﬁj(|§‘|) =ajuje+ ﬁj,g with aj € R and with (Ltj,e, ﬁjyg)azpj’s =0.

From the spectral analysis carried out in the previous subsection it follows that if A < t/4 (and ¢
is sufficiently small), then i ; . = O for every j, and A =n; . for some set of indices j.

We now turn to the evaluation of T, on u,. Similarly as before, expanding with respect to the
eigenfunctions of the normal Laplacian we can decompose u; in the following way

0 0= 3 (e qoz,(sy)fl

120 i=1

and from (70) we deduce that

Ag(ivz(lél)wzl(sy)';') i( AR )mw Iq +Zwl<sym;(vz(|:|)|§|)

i=1 i=1
= (4; —82601)(Zv1(|§|)§01 i(e Y)m)
i=1

As a consequence we find that also

~Aguy +uy — pwd ' (1¢])u,

=Zi¢u<ey>[ ac (w060 2 )+ (-4 e & - pug e)te &

1>0i=1

Hence, by the spectral analysis of the previous subsection, reasoning as for u, we deduce that
if u, satisfies Ts,u; = Au; with A < t/4, then v;(|¢1)¢;/|¢| = vi¢,i, and hence it follows that
A =0y, ¢ for some set of indices /.

Finally, we turn to u,. Proceeding as for the definition of the metric ¢ (and using the same
notation), we can introduce a bilinear form g (semi-positive definite) on 7N K defined by

I:0>N

Using again a scaling in &, we can also introduce the following bilinear form on S,

DNw
t=0 dt

DNy
dt

a(V, W) =<

1
Je = 8_2(Rs)*9 by d§3+1~
The components of this form in the above coordinates (y, {) are given by

(9e)ab (v, v) = 20" 0! B (0a) (e9) B5(0p) (63);  (8e)ai (3, v) = 807 B1(3a) (e);
(8e)ij (y, v) = 4ij; (ge)ny =1; (ge)Na =0.
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We then define by duality the operator ¥, through the formula
-1
(Teu, u) gy, == /[gg(Vggu, Viu)+ u* — pwé7 (|§|)u2] dVs,.
Se

Moreover, computing the pointwise action of T, integrating by parts, reasoning as for the deriva-
tion of (68), and using (65), one finds that

(Tet, 1) s, =/[ /(—uAgu—i—uz —pu)o(|§|)pl)d§:|dVg8(y), ueHs, (78

Ke Sye

where we have set g, = 2(R )«g and Sy . ={(v, {ny1) € Ny K x Ry (Jv|? +§n+1)

Hence, using (65) (W1th the scaled metric g¢), (64) with u = u, and (78) we find

o= ([ )i

Se Ke Sy,s

< (1 - %)/[ /(—ZzAgﬂz +z§)}dVgs(y)-

Ke Sye

&),

Since t < 1 (being an eigenvalue of J" (wg) < ld, Rnﬂ)) we deduce that

(Ts,u, ) mg, = (Zeu, u) gy, + /[(é’s — 9:)(Vg,u, Vg, u) +u*]dV,
Se

T A
>3 /[ge(vgreu’ V) +u?]dVg, + /[<ge = 80)(Vgu, V) +u?]d Vg,
Se Se

2
> Sl -

If follows that there are no eigenvectors of the form u, corresponding to eigenvalues smaller
than t/2. This concludes the proof. O

Remark 4.7. For later purposes, it is convenient to consider a splitting of the functions in Hg,
which is slightly different from the one in (77). If u,, u; and u, are as above, with

ug=> ;i (1); ZZ m@Aml

>0 1>0i=1

for some real sequences (c;) j, (8;);, we can write
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wj(lc)) =ajuje(lgl) +ije(lg]),  with (uj,, Ujede2p;e =05

(|c|)

= Bivrei(§) + U1, g(|§|) =Bivre,i(§) + Viei(§),  With (Vi ei, Vi e,i)p24, 6 =0.

<1 il

Now we set u = ug + uj + up, where

wo=Y ajuj:(|z])p;(ey): w =Y Bvei(0)e](ey):

Jj=0 =0
Z |c|¢,(sy>+2vm<;)<p,(ey>+u2

j=0 =0

Then by (74) one can check that (u;, u;) Hs, = 0 for i # j, and that

1 o 1 o
2 2 2 2 2 2 2 .
lullg, = ol + g + 2l = ¢ D + 5 D A7 +lhwallfyg s (79)
i= =

o o0
2 2
(Ts,u. u)mg, = Y _njecs+ Y 01687 + (Ts,12. 1) g,
j=0 1=0

(Ts,u2,w2) s, > Cllzll 7y (80)
for some fixed positive constant C.
From the last proposition we deduce the following corollary, regarding the Morse index of T, .

Corollary 4.8. Let y € (0, 1), and let Ts, : Hs, — Hs, be defined as before. Then, as € tends to
zero, the Morse index of Ts, satisfies the estimate

M.I.(ng)’:(C—k) Vol(K)e*,

where ® is the unique real number for which ng = 0 (see Remark 4.4).

Proof. From Proposition 4.6 we have that the Morse index of T, is equal to the number of
negative n; .’s. By the estimate in (63), this number is asymptotic to the number of j’s for which
Me2p; is negative. Therefore it is sufficient to count the number of eigenvalues p; for which &2p i

is less than a. By the Weyl’s asymptotic formula, see [27], we have that p; >~ Cy (j/Vol(K))k/2
so the conclusion follows immediately. O
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5. Accurate analysis of the linearized operator

In this section we first compare J. (i) to the model operator introduced in the previous
one. A naive direct comparison will give errors of order ¢, see Lemma 5.1 and Corollary 5.3,
but sometimes we will need estimates of order 2. Therefore we will expand at a higher order
the eigenvalues (of the linearized operator at u; ) close to zero with the corresponding eigen-
functions, to get sufficient control on the errors. Finally, using these expansions, we will define a
suitable decomposition of the functional space for which the linearized operator is almost diag-
onal.

5.1. Comparison of J]'(uy¢) and Ts,

We define first a bijection 7, from S, into a neighborhood of K in £2; in the following way.
Given the section @ = &y + ey + --- + e'=2®;_, in NK constructed in Section 3, for any
(v, &nt1) € Se, v € Ny K, 81 € Ry, we set

Vo (v, Gae1) = exp) % (v + B (e)) + Lur1v (exp) ™ (v + P (e))).
Then we define the set X, C £2, to be
T =Te(Se),

endowed with the standard Euclidean metric induced from RY . Foru € H 5., we define the func-
tionu: X, — R by

i) =u(T,'(2)), zeZ,
and letting A, to be the map u +— i, we define
H)_',‘e = As(HSE)-

Hyx, has a natural structure of Hilbert (Sobolev) space inherited by H 1(£2,), and we denote by
() Hs, > | - |5, the corresponding scalar product and norm. More precisely, we can identify the
space Hy, with the family of functions in H 1(£2,) which vanish identically in £2, \ 2.

We introduce next the operator Ts;, : Hy, — Hy, defined as the restriction to Hy, of J. (u; )
which, using the duality in Hx,, has the following expression

(Tx,u,v)gys, = /(Vu - Vv +uv) — p/uf’gluv = (U, V) g, — p/uf’zluv. (81)
>, X, Xe

Fixing these notations and definitions, following the arguments at the beginning of Section 4
in [33] one can easily prove the following result.

Lemma 5.1. Identifying the functions in Hg, with the corresponding ones in Hy, via the map Ag,
for ¢ sufficiently small one has
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1- .
(ua v)H):s Z(M,U)HSS +0(8 y)”u”Hsg ”v”HSS’

(Tx,u,v) iy, = (Ts,u, V) g, + O (" 7)) lull g, 0]l s,
with error O(s'=7) independent of u,v € Hy, .

We introduced the operator Tx, because it represents an accurate model for J/ (u; ). In fact,
since most of the functions we consider have an exponential decay away from K, it is reasonable
to expect that the spectrum of J/ (uy ) will be affected only by negligible quantities if we work
in Hy, instead of H 1(£2,). More precisely, one has the following result (we recall the definition
of T from the previous section).

Lemma 5.2. There exists a fixed constant C, depending on $2, K, I and p such that the eigen-
values of J!'(ur,) and Tx, satisfy

|Aj (I (ure)) —2j(Ts,)| < Ce‘cﬁ, provided A j(J] (u¢)) <

|

Here we are indexing the eigenvalues in non-decreasing order, counted with multiplicity.

We omit the proof of this result because it is very similar in spirit to that of Lemma 5.5 in [34].
This is based on the fact that the number of the eigenvalues of T's, which are less or equal than
%r is bounded by £~ for some D > 0 (see Proposition 4.6 and the Weyl’s asymptotic formulas
in Section 2.2), together with the exponential decay of the eigenfunctions of J. (i ), which can
be shown as in [34, Lemma 5.1].

As a consequence of Lemmas 5.1 and 5.2 we obtain the following result.
Corollary 5.3. In the above notation, for & small one has that

|2 (I ure)) = 2j(Ts)| < Ce'™,  provided »;(J] (ur)) < =. (82)

N

Using Proposition 4.6 and Corollary 5.3, it is possible to obtain some qualitative information
about the spectrum of the linearized operator J/ (u; ). However, this kind of estimate is not
sufficiently precise by the following considerations. First of all, since the eigenvalues of T, can
approach zero at a rate min{g?, ¥}, the estimate (82) need to be improved if we want to guarantee
the invertibility of J/ (u; ). Furthermore, it would be natural to expect that the Jacobi operator
(and its invertibility) plays some role in the expansion of the eigenvalues, and this is not apparent
here.

On the other hand, Lemma 5.2 gives an accurate estimate on the eigenvalues of J. (i ) in
terms of those of T';,, so it will be convenient to analyze T, directly.

5.2. Approximate eigenfunctions of Ty,

In this subsection we construct approximate eigenfunctions to the linearized operator at the
approximate solutions uj .. By the reasons explained at the end of the previous subsection, we
need a refined expansion of the small eigenvalues of Ts,, and in particular here we want to
understand how the oy .’s change when we pass from T, to T, .
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It is sufficient here to take I = 2, because the terms of order higher than &2 do not affect
the expansions below. As for the construction of the approximate solutions uy ., we proceed by
expanding the eigenvalue equation formally in powers of €. By the construction of u3 ., formally
the following equation holds

—Ag Uz e+ U2 — u;g = 0(83).
Using Fermi coordinates as in Section 3 and differentiating with respect to ¢;, we get

— 00 (Ag,u2.6) + Intn,e — pubyy Opue = O (%) (83)

From the general expression of the Laplace—Beltrami operator, see formula (14), we can easily
see that

O (Ag,u) = Ag, () + 9ng B oapu + 04 (04827)dpu
1 1
+ Eg;‘B 374 (log(det g0))dpu + EaA (log(detg,)) (3ng %) dpu. (84)

Let us now consider the second term on the right-hand side of (84): dividing the indices this is
equivalent to

Ongl 07u + 2048l 07 u + 9n 82" dapu + 2048 /N DAy, u.

From Lemma 3.2, and using the fact that we get an ¢ factor each time we differentiate # with
respect to g4, Yp, - - ., we find that

angBo% pu = —%ele-h,j;,a?ju + 0(83).
Similarly we get
8h8Ag;4383u = %athanju + 0(83);
2 g2, (log(det g.)) dpu = ez(éRmh + Rigah — Ff(Ei)r;(Eh))aiu

2
+2Hu TP (ER)dy,, ,u+ O(e%),

and
%aA (log(det ge)) (g B)dgu = O(e?).
Putting together all these terms we deduce that
O (Ag.u) = Ag, (Bpu) — %ezRimj;fai,-u + 82(§Rillh + Riaah — Fj’(E»Fﬁ(Eh))aiu

+0(&?). (85)
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To construct the approximate eigenfunctions v, and the approximate eigenvalues i, we make an
ansatz of the type

= (V" D2 (3,8 + @3, Gar1) +8°22(3,0) + 0(s7); n=e"m+0(),
where the normal section ¥ = (), the function z and the real number jz have to be deter-
mined.
We notice that the eigenvalue equation J;/ (12 .)v = Av in H 1(82,), with an integration by
parts becomes

—Ag v+ v — pluz )’ v =r(—Ag v+ ),

see also the derivation of (57).
For v = v, and A = i, we have the following expansion

—Ag, (V" D Ohure + 222(5.0))
Y Pz + 67225, 0) — pluae)” (W (F)dpuze + £722(5.0))
=1~ A (V' DOtz + 2223, O)) + (¥ PMdnuze + 2223, 0)) ]
= A" () (= Ag. dpwo + dpwo)] + O (&)
=2 py" ywd ™ dwo + O(e?).
From (85) we can expand the Laplacian in the last formula as
— A, (W () onure) = =202 5 Y dwo — 270,983, wod5, D — Y Ag, (nun,e)
-|-48 §,,+1Haj8ya1p Z)jhwo + 0(8 )
= _828§aiawhahw0 - zgzaawhajz‘hU)ana qs({ — Y 9 (Ag une)
+ 4641 Hyj 05, llfhajthO + %82thihtj§taiij
—&*y ( Riiih + Rigah — Fab(Ei)Fba(Eh))aiw0+ o(s%).

Using (83) jointly with the last equality, and recalling our previous notation (from Section 3)

Lou=—Au+u—pwl (&' + DY), Cur1),

we obtain the following condition on z;
2 h ho2 i 2 2
Lozr = a)—,ﬂyal/f opwo + 205, ¥ ajhu)oaya¢>0 — glﬂ Rih;jg',aijwo

+w< Rith + Riaan — TP(ENTE (Eh>)awo+pwh P~ dhwo

— 2Hap I (Ep)dg, ., wo — 411 Hajd5, " 07, w0 + O (). (86)
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In order to get solvability of this equation (in z7), we need to impose that the right-hand side
is orthogonal to the kernel of L4 namely that, multiplying it by d;wo and integrating in ¢,
s=1,...,n, we must get zero. If we do this, reasoning as at the end of Section 3.2.1, we obtain
the following condition on ¥

CoJ¥ = C1jiyy, where Ci = p f wh ™ (@1wp)? d¢,

Rfl:—l
and where Cy is given in (47). With the choices
i=un v=v
H/ - C] I’Lls - 1y

where w; is an eigenvalue of J with eigenfunction 1, the right-hand side of (86) is perpendicular
to the kernel of L, and we get solvability in z2. Using the eigenvalue equation for v, (86) can
be simplified as

Co p-1 j
Lozz = w) dpwo (pc—lwé) - 1) + 205, ¥/ (35, Pg — 28n11 Haj) 33, wo

% hip. . 1. P 2 _ b
+ 3wl (lejhal wo thl‘] gtaijwo 3Hahra (Eh)af,,_H w0)~

Next, we set
hy= _ -1 Co p-1 .
803, 0) =Ly | dpwo pc—lwo 1)

813, ¢) = 2L [ (95,94 — 26us1 Haj) 33wo):

_ 2
gé’(y, )= gﬁq;l[(Rmhaiwo - Rihtj{zaizjwo - 3HabFab(Eh)3{n+1 wo)]
+ w2 (3. &'+ @ (3). Cut1)

and

8GO =awi (5,8 + PG, Cnt1)-

We notice that, by the definitions of Cyp, C1, the computations in Section 3.2.2 and by oddness,
the arguments of E;l in the definitions of gé‘, g{‘ and gé‘ are all perpendicular to the kernel of L,
and therefore go, g1 and g, are well defined.

Finally, with this notation, we define the approximate eigenfunction ¥; as v, times a suitable
cutoff function of ¢, namely

(5, 0) = xe (1E) [ ) [dnwo + egh (3, 0) + e (3, O] + ey gl (3, ¢)
+e205, ¥ (Mgl 3, 0}, (87)

where x. is as in (32), and, as usual, y = ¢y.
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A more accurate analysis, which we omit, shows that the above error terms are not only of
order &3, but they decay exponentially to zero as |¢| tends to infinity. Moreover, as we already
remarked, in the above estimates one can replace us . with u; .. Precisely, one can prove the
following result.

Lemma 5.4. If ¥, is given in (87), then there exist a polynomial P (¢) and a sequence of positive
constants (Cy);, depending on §2, K, p and I such that

-1 Co _
—Ag W+ ¥ — pu Wi — szc—lw—AgyI +W)| < Ce? Pg)e bl

5.3. A splitting of the functional space

In the previous subsection we expanded in ¢ some of the eigenvalues of Tx,, precisely those
which are the counterparts of the oy s for T, . Actually, Ts, possesses another type of resonant
eigenvalues, namely the 7; .’s for suitable values of j, which in principle could approach zero
even faster. One of the differences between these two families of eigenvalues is that the eigen-
functions corresponding to the resonant oy .’s oscillate slowly along 9$2,, and this allowed us
to perform the above expansion. On the contrary, the eigenfunctions related to the 7; .’s possess
only high Fourier modes, and therefore such an expansion is not possible anymore. Nevertheless,
we can deal with the counterparts of these eigenvalues applying Kato’s theorem, which on the
other hand requires to characterize the corresponding eigenfunctions up to some extent.

The purpose of the present subsection is to identify appropriate subspaces of Hy, with respect
to which Tx, is approximately in block form. Recalling the definitions in Proposition 4.5, in
(73) and in (87) (and also our convention about the range of an integer index), for § € (0, k),
Ce (0, 1), we define the following subspaces

Hy = span{@i (ey)u; ¢ (£), i =0, ..., 00}; (88)
ﬁzzspan{wl, 120,...,8_5};
. X on . _ _
Hz=Span{W;n(SY)vj,s(|C|)|§—m|, j=¢"+1,...,Ce "}; (89)
Hy=H, ® Ha; Hy=(H) ® Hy)*, (90)

where X1 denotes the orthogonal complement to the subspace X with respect to the scalar
product in Hx, . We have the following result, which is the counterpart of Proposition 4.2 in [33].
The proof follows the same arguments, but for the reader’s convenience we prefer to give details
since the notation and the estimates are affected by the different dimensions and codimensions
we are dealing with.

Proposition 5.5. There exists a small value of the constant C > 0 in (89), depending on 2, K
and p, such that the following property holds. For ¢ sufficiently small and choosing § € (k/2,k)

in (89), every function u € Hy, decomposes uniquely as

u=uy+uy—+usy, withuy € Hy, up e Hy, uz € Hs.
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Moreover there exists a positive constant C, also depending on §2, K and p such that

1
(Ts,u3,uz) > — llusl3;, -
CCrk ¢

The proof requires some preliminary lemmas. Before stating them, we recall our convention
about the symbol Zf, for two positive real values ¢ and d.

. Ce—t . ~
Lemma 5.6. Let ity = Y 5% s . By (ey)D; e (1£)¢m/ 12| € Ho. Then

li2l, = (14 0('7)) = 3 7. o1

Proof. By Lemma 5.1, it is sufficient to estimate || ”%15 . We notice that by (26) there holds

— ARV =39+ (B =Ry = wy; + (B -R)Y),.

Integrating by parts, using (70) and the last formula one finds that ||i; ”%15 becomes

Z %(Zﬁ]w ()96 (1¢1) |z|> (Zﬁm (EY)U18(|§|)|§|>

S, Jl=e704+1 h=1
Ce*
) Zﬂ, "oy (Iel) 2 Zﬂz% () e (11) 22
= 1] <]
S. JiJd=e70+1
=A1+ Ay, (92)
where
Ce*
A1=/ > [(—A;+(1+82u, (Zﬁﬂ/f (sy)v]s(|§|)| |)}
5 Jd=e1 m=1 ‘
(Zﬁllﬁz (8)’)11]8(|§|)|§|>
h=1
Ce* n
A2:82/ Z (Zﬂj((%_%)W) (EY)U/S(KD' |)
Se jl=e=%+1 \ m=1 ¢

(Zﬂzwl ()9;.6(121) |;|>

h=1
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Looking at A1, the integral over any fiber Ny K, is non-zero if and only if m = h (and by sym-
metry, when computing the integral we can assume both the indices to be 1). Then, from (65)
and from the orthogonality among different v;’s (which now are scaled in ¢), recalling that
0je(1ED&m /18]l =vj,e,m» A1 becomes

Ce* Ce*
2
- 2 Blvieal?,, €= Y. B [/ Vvjeal? + (1+&%u;) ,81)}
Jj=e—%41 Jj=e—841 R+
"

Recalling the normalization (74) and the fact that n; = w; + O(1) (independently of j), see
Section 2.2, we obtain that

CeF
1
Ar=— > (1+0(2)B7. (93)
j=e=0+1

We turn now to the estimate of A,. By the orthogonality of the y;’s, using again (65) and (74)
one finds

Ce* Cek
~2 _
/“2dV§s— > Bilvietl e < D0 B
Se j=e0+1 j=ed+1

Working in a local system of coordinates (y, z) as in Section 4.2, it is also convenient to write ii»
as

Ea’k
B0 0 =3 fu(u e where fulylc) = 3 Blee >””T§'f').
m=1 j=e0+1

If U is a neighborhood of some point g in K, where the coordinates y are defined, letting

U, = éu, one has
/u%dV = /( / f2 (v |§|)§1 d;)dVgg(y)

NU, m=1ry R
so it follows that
m 1 Ce*
Z/( / f,ﬁ(y,|¢|)¢%dc>dvgs(y)</a§dvgg<8—k > B (94)
m=1 us Rn++1 Se j=€_5+1

Now, we can write

Ce*k
Ary=¢ /uzude, whereli = Y B;((B - R)y,)" (8y)v]g(|§|)

Se j=e0+1

I4h
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~ . ~ Co—k
As for iy, we can write Tl = Y fm (¥, [ &m, Where f,, = fi,aJrl(% = R)mj fi (v, 12D,

and compute
/agw Z /( / im0 161)¢} d:)dvgg(w

NU. m=1ry R+

In conclusion, from the Holder inequality, from (94), covering K, with finitely-many U,’s we
derive

1 1
2
|A2|§52<fﬂ%dV§£> (/ dV~> < Cé? —||zB R|| Lo Z B (95)
Se S, j=e—%+1
Then the conclusion follows from (93) and (95). O

In order to estimate the norm ||i> || Hy, > it is convenient to introduce an abstract result.

Lemma 5.7. For j € {0, ..., 7%}, and for a sequence (Bj)j, let us consider a functionu : S¢ — R
of the form

g8 n
u(.0=>" Bi(Lay¥™)em ().
Jj=0 m=1

where y = gy, where Lg 5 is a linear differential operator of order d with smooth coefficients
in'y, and where the functions g, () are also smooth and have an exponential decay at infinity.
Then there exists a positive constant C, independent of €, § and (B;) j such that

1 &
lelZas,) < C o 21+ 1;1) 7.
j=0

Proof. The proof is similar in spirit to that of Lemma 5.6, but here we take advantage of the fact
that the profile g,,(¢) is independent of the index j (this lemma applies in particular to each of
the summands in the definition of ¥;, see (87)).

Using local coordinates, (65) and the exponential decay of the g,,’s, after integration in { we
find

sy, = Z S B e [ @asv ) Lasvl) v

J,I1=0 m,h=1 .

for some bounded coefficients (c;up). As for (95) then we find [lull;2(s,) < ClIlY || ga(k, Nk,) and
the last quantity, with a change of variables and by (30), can be estimated with

-3

C &

872(1 +& ;1) B3
j=0

This concludes the proof. O
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Lemma 5.8. Let up = iip + iip = ZJ O,BJlI/ (ey,0) + *5+1 ﬁjlﬂm(sy)v] (2 sz S H,.
Then, choosing § € (k/2, k) in (89), one has

Cek
1 _ _
||u2||%128=8—k(1+0(8] Y 462 % [Zﬁ l81woll 1 st + > /3} (96)

j=e70+1
Proof. We first claim that the following formula holds
&b
iy, = Sik .20’312'(1 O 4278 Iwolly, oo 97)
j=
Proof of (97). We write
ed gt
fig=fig1 +iig2 =Y BT e)dmwo@)xe(I21) + D Bi¥ j(ey. ),
j=0 j=0

where ¥ j 1s the term of order ¢ (and higher) in ¥;. Reasoning as in the proof of Lemma 5.6 we
get

g9

. 1
itz Wy, = - 287 (1+ &%)+ O(e2)) 10mwoxe I3, e
j=0

g0

1
=72 B+ 0@ ) 1orwol?, @y (98)

j=0

where the last equality follows from the Weyl’s asymptotic formula (29).
On the other hand, using Lemma 5.7, the Weyl’s formula and some computations, one also
finds

-8 -8
e lla2 211, < Ce2Zﬁ (1+&%u;l) +C84Z,B (14 %111)
Jj=0 j=0
gd gd
_4s _ 68
+Ce* Y B (1+ il + &2l PP) S C(e> + 67 F +6571) Y 7.
j=0 j=0

By our choice of §, the last formula reads

-5
C 5 &
A2 4% 2
227, < e kZﬂj. (99)
iz
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Finally, from (98) and (99) we also obtain
c
~ ~ _2
(U2,1,u22)Hy, < Zﬂ?@ +0(e77 %)),
& o
which concludes the proof of (97). O

Proof of (96). We write again iy = i1y, + 17 2. Then, by the orthogonality relations among the
¥ ;’s, reasoning as in the proof of Lemma 5.6, we get that (i12, i2.1) H,, becomes

Ce* gd n n
=Y Zf( > B (B - m)w,»)'"<sy>ﬁj,g(|c|)f§—’”|> : (xs(ICI) Zﬁzvfﬁ(sy)ahwo).

jmeh41 1=05  \m=1 h=1

As above, with some computations we find

Ce*
. - . 1
(@2, 2, )5, = O (%) @2l g, a1, = O (%) = 3 87

From Lemma 5.6 and (99) we also find
1 Cey 3 2 ey 2
(7, 122,1)[-[56 < Cg_k( Z (1 + 0(81—7),3]2‘)) 82_7 ( Z ﬂjz) .
j=0
The result follows from the last two formulas. O

Remark 5.9. From the proof of (96) it also follows that every function u» € H> can be written
uniquely as uy = i1y + iip, with i1, € Hp and i1, € Hj.

Proof of Proposition 5.5. In order to prove the uniqueness of the decomposition it is sufficient
to show that, for £ small

(ur,u2) by, = 0s(Dllurllay, luzllay,, wr € Hy, uz € Hy, (100)
where 0,(1) — 0 as ¢ — 0. Indeed, by Lemma 5.1 we have
Wi, u2) by, = (1, u2) g, + O (') uill s, lluall s, .
and since the functions 9, wyq, gg, gé’ and vy . ; are odd in ¢’ (and so also iy and iy 1), we get
(1, u2) ug, = (U1, 42.2) g, »

where we have used the notation in the proof of Lemma 5.8. Hence from the last three formulas,
(99) and form (96) we deduce

_ _n8
i, u2) gy, <C(e"7 + &> 20) lurll gy, luzll iy, . (101)

which implies (100), since § € (k/2, k).
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To prove the second statement, it is sufficient to show that

1
(u3, V)5, < 5 N3, Mo, as e — 0. (102)

for all uz € H3 and for all the functions v of the form
7 6
Z B (€y) V1,6 (£).

=0

In fact, if we write u3 = u3 0+ u3 1 +u3 2 as in Remark 4.7 (with an obvious change of notation),

wo= Y ajuj(lZ))pjEy); w1 =Y Buei (el (ey),
>

j=0 =0

by (79) we find
1 o0
llu3”i=8—kZ of +B7) + llus 2l 7, - (103)
[=0

From (79), from Lemma 5.1 and from the fact that u3 is perpendicular in Hyx, to uz o € Hj, we
deduce

o0
iZaz—m u3,0)Hs, = (3,0 u3) 5, = O ("7 ) luzll g, luz.oll g, < Ce' 7 llusl|3
ok ;= U3,0,U3,0)Hs, = (U3,0, U3)Hg, = 31l Hg, U301l Hs, & 31, -
=0

17—k
Moreover from (102), choosing v = Zf:cos Big" (ey)vi,e.m (), and using (103) we get

Z B = (3, v) g, < || usll3,

l< 3Ce*

The last two formulas and (103) then imply

||u3||%,S£<C< > ﬂ12+||u3,2||§15£), (104)

I>3Ce*

for some fixed constant C.
On the other hand, by (80) we also have

1 1
2 2
(Tsus,us)s, > 3, B+ Zlwaally,
I1>}5Ce*+1
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Using the fact that o;  ~ O2ye ™~ € 2;2/k by Proposition 4.5, from (104) and the last formula it
follows that

1 1 1 1
2 2 2
(Ts,u3,u3)s, > i E B + E”uS'ZHHSS z — llusli,, -
k. 1= 4 CCrk
i>5Ce +1

This yields our conclusion, hence we are reduced to prove (102).

Proof of (102). By the form of v and by (79), we have

—k

=
Ql

&

1 ~
IvliE, = . (105)

N
Il
=)

Using the L? basis (;); of eigenfunctions of J, we define the function ¢ and the coefficients
{Bi}i=1,....00 as

lcs—k

o(y) = Z ﬂlwl(y)—Z,Bllﬂl(y) —Zm () En ().

so we have

1Ce™

1013250 = Z =Y B (106)

=0 =

[l

Using these new coefficients 8;, we set (see (73))

P Ce*k
0(y, ) = coZﬁ]w €, O+ Y Bl ey, NDES o €
j=0 j=e7041
where C is given in Remark 4.4. Hence we can write
Vv—UV=A1+Ar+ A3+ A4+ As,
with
3Ce 00
-y - . T—
10 (e [Vem (@) —voem (@] A= D BY(EN)v0.en ()
1=0 I=Ce*+1

gd afk
Az = —502,3]"1_’]'(8% $); Ay = Z Biv (ey)(Wo.e.n — Vien);

Jj=0 I=e—%41
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g0

As = Zﬂll/’zh(vo,e,h — Coxe(121)dnwo),

=0

and where ¥ j is defined in the proof of Lemma 5.8. Since u3 is orthogonal to H,, we get
(uy, 17)Hzg =0, and so

(w3, V)Hs, = W3, ADHs, + (W3, A2)Hy, + W3, A3)Hy, + (U3, Ad)Hs, + (U3, As)Hj, -

107)
We prove now that [|A; || g, is small for every i =1,...,5. From (65), the proofs of Proposi-
tions 4.5, 4.6 and (105) there holds
e 1
IA,, = % D Billvier —voenllf <CCH(1+CP) vl < e 0,
=0
provided C is sufficiently small.
To estimate A; we can use Lemma 5.7 and some computations to find
1 [e e
Al <C— 2 2 _
A2l <C Z B (1+ &%) (108)
[=Ce=k+1
We now set ¢ = 2266_k+1 Biy;. Since J = —A% + O (1), for any integer m one finds
(3m‘»‘~’» ¢)L2(K;NK) (3 g")LZ(K)
AN
(( K) ¥, (p)LZ(K NK)
Cul ((—2%)"" ‘o, (p)LZ(K;NK) +(@.0)2knk) |-
. L1Ce=k ~
Sincep =)/, Bis, from (106) we deduce that
E 2m
~ =~ g2 —2(m—1
(dm<pv (p)LZ(K;NK) g (5) m”QDHLZ(K NK)+0(8 (m ))”(p”LZ(K NK)
E ZTm %Ee’k
< [(—) g7 4 0(8_2(’”_1)):| Z 67 ). (109)
2 =0

On tlle other hand, since in the basis (y;);, the function ¢ has non-zero components only when
[ > Ce™*, by the Weyl’s asymptotic formula we have also that

ekt MBS
(3’"¢,¢)L2(K.NK)>{ s o (110)
CC* mzl ka+1ﬂl
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Using (109) and the first inequality in (110) with m = 1 we get

1Ce*
o0 ) 2 5
e Y B <(CCF +o:(1)) 2.
1=Ce—k+1 =0

Moreover, using (109) and the second inequality in (110) with m arbitrary one also finds

1 ZTm %68*"
> ﬂl\<<§) +og(1)) > B
I=Ce~ k41 =0

Using (105), (108) and the last two inequalities (for the second one we take m large enough),
for sufficiently small C we find || Azl gy, < % vl ag, -
Now we estimate || A3 iy, - Reasoning as for (99), from (105) and (106) we get

-5
1 5 s
2 4-42 2 4-42 2
1Aslh, < Cpet™0 ) BT < Ce il .
0

Next, similarly to the estimate of Ay, for small C we find
e 1
lAally,, < € Y Bilboer —veal;, <CCH(1+C?)lvliz,, < T 0,

I=e—54+1
Finally, from Proposition 4.5 and reasoning as for A,, we obtain also
Y
1As I3, < —c e Zﬁz +e2an)Ce M™% < Cehe € il

Taking (107) into account, this concludes the proof of (102), provided we choose C and ¢ suffi-
ciently small. O
6. Diagonalization of T, and applications

In this section we study how the operator Ts, behaves with respect to the above splitting
of Hy, in the three subspaces Hy, H» and H3. We prove that its form is almost diagonal and we
apply this analysis to study its invertibility for suitable values of €.

6.1. Diagonalization

Integrating by parts, we can evaluate the operator T's, multiplying a test function by the fol-
lowing quantity

68(u)=,/detg(—Agu+u puf‘gl ) (111)
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and integrating in the variables y and ¢ (using (65)). In Lemma 5.4 we studied G, acting on the
functions ¥, for any [/ fixed. In that lemma, our estimates depend on the value of the index [,
and in general one can expect that they become worse and worse as [ increases. The goal of this
subsection is to derive estimates in terms of both ¢ and / and, evaluating S, («) on the functions
iy € ﬁg, we will keep track also of the terms of order 3 and higher.

In the following, we will sometimes omit the factor x. appearing in (87) since this will only
produce error terms exponentially small in &, which are negligible for our purposes.

Lemma 6.1. There exist linear differential operators L1, Ly, L3 (acting on the variables y) of
order 1, 2 and 3 respectively, whose coefficients (independent of 1) are smooth and satisfy the
bounds

ca(Li) < C(1+1¢(C)e ¢, (112)

and such that in local coordinates we have the following expression for S, (¥;)

Co -1
G.(¥) = 82C—1M1w5 3hw01/f1h

— 26 (¢ T2 (Ei) — Cugt Hap + §n+1H35ab)(3§ayb Wyl dpwo — 83(35,% Wyl dpwi
-1 -2
+ & G H il gl (1 — pwl ™) — & p(p — Dwl " wiwy) g

— et (92 5 vl 8l + e Lo + e Loy + e* Ly + € i Loy, (113)
where Cy, C1 are as in Section 5.2.

Proof. As for the construction of the approximate solutions u; ., we can expand formally
G (¥)) in powers of ¢ and check carefully all the error terms, paying particular attention to
the ones involving derivatives in the variables y,, which produce larger and larger terms (as [
increases) in the Fourier modes. When we differentiate with respect to the variables ¢, the quan-
tities appearing will be considered as coefficients (depending smoothly on ¢, with exponential
decay) of the functions y; or their derivatives in y.

We recall that the functions wg and (g;); in (87) are shifted in the ¢’ variable by the (smooth)
normal section @ (y). Hence, when differentiating with respect to y, the derivatives of @ might
appear through the chain rule, see also Section 3.2. This fact will be assumed understood, and it
will not be mentioned anymore since it does not create any serious difficulty, or any difference
in the estimates.

By our construction of ¥;, all the terms multiplying powers of ¢ less or equal than 2 reduce to

Co

Co _
e == (= A (V] dnwo) + W[ dpwo) = &p Clmwg lahwol/flh,

Cy

so we are left to consider the powers (of ¢) of order 3 and higher. In the remainder of the proof,
we use the symbol A () to denote terms of order 1, & or &2: since they all generate a single
term, we do not need to compute them separately.
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We begin by considering the terms where derivatives in y appear. Since S, is linear in u,
we can deal with each summand in ¥; separately. Looking at —./detgA, (wlh (y)0nwo), sec-

ond derivatives in ¥ appear only in the expression —/detgg®uyp, so from Lemma 3.3 and
Remark 3.4(b) we find that

detg Ag (] (1) nwo) = Az(e) — 26 (&) (Ei) = Gut1 Hab + Gur 1 HE) (93, 5, ¥1') dnwo
+ &3 Liyr + e Loy,

where L, L are as in the statement of the lemma.
Similarly one finds

—Vdetg Ag (v (g4 (3. 0)) = Ax(e) — 07 & W' opw1 + & L1y + &* Loy
detg Ag(e2Y) (7823, 0)) = Ax(e) + e* Loy + &’ Lyyn;
—detg Ag (2] (3gg (5. 0)) = Aa(e) — e* (05 5, ¥ g0 + e i L1 + & Lo

detg Ag(e%(35, Y7 (M)81 (3, ©)) = Aa(e) +* L3y,
At this point we are left with the terms (of order &> and higher) which do not involve deriv-
atives of y; in y: these will appear as multiplicators of the summands in the expression of ¥;.
The ones involving opwo, g1, g2 and g3 are included in the expression 3L, Yy, so it remains to

consider &2 A ‘pl go Recalhng that \/detg =14¢e¢, HY + 0(&2) (see the proof of Lemma 3.3),
and expanding — puf . as

—P[wg_l+8(p—l)wé’_2w1+82(p—l)w wa + g 2(p—D(p — z)wp 3 2}_'_0( )
we obtain

—1 1
Videtg(1 = puy e gy = As(e) + & Gurt HY ' g5 (1 — pwf )
-2
— &’ p(p— Dw) “wiw ) gl +&*wiLovn,

where L is a multiplication operator with coefficients also satisfy (112). This concludes the
proof of the lemma. 0O

Next, using the above characterization, if i1, is a suitable linear combination of the ¥;’s, we
can estimate the scalar products of Tx, 4> (in Hyx,) with some other elements belonging to the
subspaces Hi, Hy, Hp and H3, see (88)—(90).

Lemma 6.2. For some arbitrary real coefficients («;); and (B;);, we consider functions u; € Hj,
ity € Hy and iy € Hy of the form

00 £ Ce*k
wi =Y ajpienu () A=) B 2= Y BV ENDem(@).

Jj=0 =0 e 041
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We also let uz € H3. Then, for § € (% +y, %k —v) and y sufficiently small, we have the following
relations

-5 =
R 1 & 2
(Tx, iz, u1) g, =0(82)(8—kZ|m|/312) ot Nl s, (114)
=0
(T, 2, 12) iy, = Co(1 + 06 (1)) Ze 1B (115)

-3

£ % Ce™* %
1
(T, s, IZQ)H}:g = 0(83)8_]( ( Z(Mz + &2 /'Ll ) < Z IBZ>

=0 [=e=0+1
4
= o(e3) lla2l| s, itz |l s, ; (116)
i 2
(T, fig, u3) pry, = O(D)|lu3 |l s, (8—k > (eui + ssui‘)ﬁ12> : (117)
=0

Proof. We recall that, by Lemma 5.1, (79), (91) and (97) there holds

-5

1+ 0:(1) o X ( )
larlg, = ——— D o5 lially, = Y WOl e Zﬂl,
j=0
1+0 (1)
2l g, = —— Z B (118)
I=e=041

We show first (114). Since u; is even in ¢’, when we use the expression of G, (%) in (113)
we have to consider only —2834“,- Fab(Ei)aygayb w,’laj wy = 83L2¢1 and the errors &° L, since
the products of all the others terms with #; will vanish by oddness. Therefore we leave this term
as it is, and we estimate the error terms only. So we get

1
(T, iz, ur) gy, =8—kzajﬂ1/ f uje(121)9; ()
il

KR1+1
3L 4L ‘L SLayy)dyd
x (&7 Loy + €* L3y + e i L1y + € i Loy) dy di.

Reasoning as in Lemma 5.7 (avoiding the scaling in &, which has been already taken care of) one
can show that, for any integer m

g0

876 2
/f(Zﬂszwz) < (14l D). (119)

1=0 =0
+1
K Ri
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From the Holder inequality and the last three formulas we deduce that

1

2
(Txgﬁz,ulng<C||u1||Hz{ kZ (1+ Il +88|m|3+810|m|4)ﬂf} :

Now, from the Weyl’s asymptotic formula and from the fact that § € (% +y, %k — ), one finds
that for [ < &% there holds &%|u;|? = 0s(1)| ], that £*||®> = 0, (1) and that £®|u;|* = 0.(1),
so (114) follows.

We turn now to (115). It is convenient first to evaluate some L2 norms. Writing G, (¥)) =

e2p gomw{)’ 8hw01ﬁlh + & (W), and ¥ = x. (1Y) dpwo + Py, from (119) we find (/ runs

between 0 and %)

C C
> b, P, < o (14 + e wl)g < YpE (120)
I 1
HZWZ\ < st + et l?) 22 (1+%u7) B (121)
HZﬂ > (el + el + ¥t + &0l ) —s“Zulﬂz,

(122)

Ich ok Hi Ml )P S Zx M mil”) by

I 1
(123)

Using the orthogonality of the ;’s, (65) and recalling the definition of C; in Section 5.2, we find
(Ts, (¥, 'Ijj)st =e?Comdyj + (ée(wl)» Ilfflah wo) ;2 + (Se(¥1), &) 2. (124)
Multiplying by the coefficients §’s, using the Holder inequality and (120)—-(123) we get

1
(T, i, 12) iy, =C02l:82m/612+8—kO(83)[<Z(u, +&2u})B ) <Z,3,>

l

n (Xl:ufﬂfY(Xl:(l et )i |

Recalling the Weyl’s asymptotic formula and the fact that § € (g +v, %k —y), we obtain &2 Mlz =
o(uy), 84M? =o(u;) for I < &7, so the last formula implies (115).
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To prove (116) we notice that, by the orthogonality of the ¥;’s, the term of order €2 in &, (¥),
once multiplied by i, and integrated, vanishes identically. Therefore, from the Holder inequality,
(118) and (123) we find

1

-5 1 —k
1 € 2 Ce
(T):gftz,llz)H;g=0(83)8—k<2(m+€Mz ) ( > ﬁl> :

=0 I=e=9+1
which is precisely (116).

It remains to prove (117). Using (42), the formulas in the proof of Lemma 3.3 and the fact
that (linearizing (3) at wg) — A, (dpwo) + dpwo = pw(‘;’_1 0p wo, one finds

Vdetge (— Ag, W + ) = pwh Yl dwo + eLowi + &2 (Lavy + i Lown) + &3 Lavy
+ e (i Loy + L3yn). (125)

Hence from (113) it follows that

Co i
G (W) =¢ ch p\/dt 8o (—Ag W + ) + &2 Loy + * (Lo + i Loyn)
+ &3 Loy + 8 (i Loy + Lavy) + G (¥).

Since u3 is orthogonal to H> in H 5., integrating by parts we have |’ 5, U3(—=Ag ¥ + W) x
Jdetge.dyds =0forl=0,..., &7%. Hence from (119) and (123) we get

1

: & :
(Ts uz,u3)ny, = O(D)|u3llHs, (872 i + el + e uf) B ) :

As shown before, £ 2 =o0.(1) for I < , so we have ¢ M16 =o(e? ,u?), and the conclusion
holds. O

We have now the counterpart of Lemma 6.2 with i, replacing ii;.

Lemma 6.3. For some arbitrary real coefficients («;); and (B;);, we consider functions u € Hj,
iy € Hy and iy € Hy of the form

g8 Ce*

w =Y ajpienuje(iCl); A=Y B da= Y B EN)em(©).
=0 1=0 I=¢=3+1

Suppose also that uz € H3. Then, for § € (% +y, %k — y) and y sufficiently small, we have the
following relations



516 F. Mahmoudi, A. Malchiodi / Advances in Mathematics 209 (2007) 460-525

1

Ce*k 2
(Txgﬁz,m)HES=0(81‘V)||u1||HES( > ﬁ,) ; (126)
I=e=0+1
C,l Ce ¥
(Ts,iio, @)z, > —= ) &b (127)
I=e=041
l
(Tzsﬁz,us)H&:O(«?ly)||u3||H;£< Z ﬁz) : (128)
I=e=041

Proof. We show first (126). Since u| and iy, for any fixed y are linear combinations of spherical
harmonics (in ¢ /|¢|) of different type, from the arguments of Section 4.2 it follows that

~ —1 ~
(u1,u2) g, =0; fw{)’ (IZ))uriizd Vg, =0,
Se

so we clearly have that (Ts,u1, u2) s, = 0. Then (126) follows immediately from Lemma 5.1.
To prove (127), we reason as for the proof of Lemma 5.6 to find

(Ts,iiz, w) s, = A1 + Ay + A3, (129)

where w € Hy, is arbitrary, and where

Cek
Aj(w) = / Z[ —Ap + (1+ %) — pwl ™) <Zﬂu/f, (ey>v18(|;|)|i|>},
s, 1= g0 41 m=1

Ce*
Az(w>=82/ > <Zﬁ1 (B — R)yyn)" (sy)v18(|;|)|§|>

S, == %4+1 \m=1

Ce*k
Ag(u)):ez/ > <Zﬂ1(uz—wz)lﬁl (EY)vzs(lfl);n)

Se [=e=041 \m=1 |§|
As for (95), since |; — wy| is uniformly bounded one finds
|A2(w)| + |As(w)| < Ce?lliiz ]l g, lwll o, (130)

for a fixed positive constant C. Taking w = ii2, by the orthogonality of the v;’s, by the fact that

To20,Vi,6,m = 024, ¢Vl,e,m (se€ Proposition 4.5) and by (74), with an integration by parts we have

1 Cek Cek
A (n 2
Al(u2) = S_k Z Uszwl,sﬂ] ”U[,&,l ”5250[,5 = Z (o 2(1)[ sﬂl

I=e—%4+1 l =041
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From (28), Propositions 4.2 and 4.5, which provide estimates on 0,2, ., we obtain

_ _1 Ce™*k
Al > — Y bt (131)

I=e=0+1

for some fixed C > 0. Then (127) follows from (130), (131), Lemmas 5.6 and 5.1 (since £2u; >>
e!=7 for [ > £~ and for y sufficiently small). ~ ~
We turn now to (128). By (130), taking w = u3, it is sufficient to estimate Aj(u3) + Az(u3).

From T;2,, vi,e.m = 0,24, ¢Vl,e,m i Hy2,, o, With an integration by parts we find

Ce*k

A](M3)~|-A3(u3)—/ Z szl|:( A;—l—(l-}-& /M) ng 1)

I=e—%41

( Z B ey (1¢1) mﬂ

m=1

From (67) and from the fact that —A%l//l = WY + (R — B) Yy, one finds

ey vm(m) —e? ARy ﬁls(l(l) +e2(R—B)y)" vlg(|;|)

ol I 48

Therefore, integrating by parts we obtain
Ay (u3) + A3(u3) = (U, u3) uy, + Aa(usz), (132)

where

Ce*k
A4<u3>=s2/ > (Zagzwlgﬂz ((B —Ryyn)" (EY)vle(|C|)|§|)

Se [=¢—84+1 \m=1

~ Cek ~ ~ .. .
and where U, = foaH 082501,5131 wl’" (e¥)01.6,m(¢) € Ha. Now, as for i it is possible to prove
that there exists a fixed C > 0 such that

Cek Ce*
1020 < 5 Y 0B B X B
I=e—541 I=e—%4+1

where we used the fact that o,2,, . is uniformly bounded for / < Ce~k. Since uj3 is orthogonal in
Hx, to Hy, from Lemma 5.1, these observations and the last two formulas it follows that

1

Ce*
(U2, u3) g, = O (") Uall g, w3l s, < ( > ﬁl) Nl s, -

I=e—%41



518 F. Mahmoudi, A. Malchiodi / Advances in Mathematics 209 (2007) 460-525

The arguments of the proof of Lemma 5.6 yield Ag(uz) < C54(Zl§;{5+1 ,8[2)1/2 llusll g, - Hence
from (129), (132) and Lemma 5.1 we find that

1

Ce*k 2
(szﬁz,u?a)Hxs=(U25M3)HSE+0(51_)/)< > ﬁf) a3l 1,

I=e—8+1
which concludes the proof. 0O
6.2. Applications

In this subsection we apply the results in Lemmas 5.1, 6.2 and 6.3 to estimate the Morse index
of T’s,, as ¢ tends to zero, and to characterize the eigenfunctions of T's;,, corresponding to resonant
eigenvalues.

From Proposition 4.2 we know that there exists a unique positive number & such that nz = 0.
If C is the constant given in (27), we also let

o : (K 133
o—(c—k) Vol (K). (133)

Then we have the following result.

Proposition 6.4. Let © be the constant given in (133), and let Ts, be the operator given in (81).
Then, as ¢ tends to zero, the Morse index of T, is asymptotic to Oc k.

Proof. For any m € N, the mth eigenvalue 1, of T, , and the mth eigenvalue Xm of Ts, can be
evaluated via the classical Rayleigh quotients

. (Ts,u,u)gy - ) (Ts,u, u) g,
lp= inf sup ———— e A= inf sup ————% - (134)
dim M,,=m ueM,, (u, 14)1-1);9 dim M,,=m ueM,, (M, M)Hsg

where M,, is a vector subspace of Hy,. Choosing M,, = M,, to be the span of the first m eigen-
functions of T, , from the above formula for A,, and from Lemma 5.1 we get

ey Tm s, (Ts,u, 1) g, + O(e' ™), u) pg,
" e W, lp o (U OET) kg

<oom + 0(81_)/).
Reasoning in the same way we also find Xm < Am + O(e177), and hence it follows that

[Am — Am| < Ce'™" forall m € N and for & small, (135)
where C > 0 is a fixed constant.

Now we let Ni(¢) denote the numlzer of eigenvalues Xm less or equal than —e=1)/2 and
by Na(e) the number of eigenvalues A, less or equal than £(!=%)/2, From Proposition 4.6 it
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follows that Nj(g) is the number of the 7; .’s which are smaller than —s(l_y)z. Reasoning as in
Corollary 4.8 one finds that, as ¢ tends to zero

N1(8)2<C—k> Vol(K)e™".

On the other hand, still by Proposition 4.6 we have that Na(¢) = N2 1(g) + N2 2(g), where
N3, 1(¢) is the number of 7, ’s which are smaller than e1=1/2 and N3 ¢ the number of o7 ;s
which are smaller than ¢1=%)/2, From (27), (28) and Proposition 4.5 we obtain, for & small

2 k(1—
) Vol(K )e 4”"‘:0(5_1‘).

@\? » 1
Ny 1(e) =~ C_k Vol(K)e™™; Nyo(e) c

N—1k
From the last formula we deduce that also

N> (e) =~ <—> Vol(K)e™".
Cy
Since by (135) the Morse index of T'x, is between Nj(e) and Na(¢), the conclusion follows. O

We can now characterize the eigenfunctions of T's, corresponding to eigenvalues close to
Zero.

Proposition 6.5. For ¢ sufficiently small, let A be an eigenvalue of Tx, such that |A| < €°,
for some ¢ > 2, and let u € Hs, be an eigenfunction of Tx, corresponding to A with
||”||Hzg = 1. In the above notation, let u = uy + uy + us, with u; € H;, i = 1,2,3. Then, if
uy = 52oajpj(ey)uj (1), one has

u— Z aj¢juj’g

{J: Injel<e1=1/2)

—0 ase—0. (136)

Hy,

€

Proof. We show that u, u3 tend to zero as ¢ tends to zero. This clearly implies ||u — uy || gy, — 0.
Once this verified, (136) can be proved as in [35, Proposition 4.1].

To prove that u3 tends to zero as ¢ — 0, we take the scalar product of the eigenvalue equa-
tion T, u = Au with u3. Using the above arguments (in particular Lemma 5.1) we easily find

1
2 1- 2
. luslzry, + O ™ Mullms, luslms, < (Tx,u,u3)ng, =r@,uz)my, =rusly,, -
k

This implies
luslly,. = O(e" ) lullas, llusll
Hs, Hy, 3l Hg, »
and hence

- -
lusllpy, < Ce Vullus, <Ce 7.
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Next we take the scalar product of the eigenvalue equation with uy. From Lemmas 6.2 and
6.3 we find

-4 3 Ce*k l
Co(1 +0,(1) o(1) :
(Ts,uz, u2) gy, 2 ng ,31 +— € Z( l+5 Ml Z ﬂl
1=0 1=0 I=e=8+1
F ok
C_l Ce
+8—k Z 8211«113[2-

I=e—0+1

Since e3u? +&”uf = 0, (1)| | forl < &% and & = o(e?p) for I > £ 79 (recall that § € (k/2+y,
k — y)), it follows that

Cek
1
(Ts,uz,w)ny, > C™' 2 3 e upf (137)

=0

for a fixed positive constant C. Finally, still from Lemmas 6.2, 6.3, from the fact that £4| il +
%P = 0.(1) for I < &% and €272 = o(e2p;) > 1 for | > &7° (taking y sufficiently small)
we have also that

1 Ce* 2
(Ts,uz,ut +u3) gy, = 0e(V)(llurllay, + ||M3||H);€)(8—k Z 82|,ul|,3[2) - (138)

1=0
From (137) and (138) and the fact that Ty, is self-adjoint we deduce that

1

_1 Ce7k Ce* 2
— > 82M1ﬂ12+os(1)( > szlmlﬂf) (Nt llars, + sy, )
=0 =0

< (Tx,u, u2) gy, =M, u2) gy, < Cesllull gy, luzllpy, -

Also, from Lemma 5.4, testing the eigenvalue equation on Zl< 1, B1¥1, where [p is the biggest
integer such that p;, < 0, one finds

1
&2 Bl = 0 (&%) lullns,

1<l

The last two formulas imply that 4 3 Z ,31 = 0¢(1), namely that |uz ||y, tends to zero as ¢
tends to zero. This concludes the proof D

6.3. Proof of Theorem 1.1

Once Propositions 6.4 and 6.5 have been established, the proof goes as in [34, Section §]
(see also [33, Section 5]) and therefore we will limit ourselves to sketch the main ideas.
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First of all, using Kato’s theorem, see [25, p. 445], one can prove that the eigenvalues of Ts,
are differentiable with respect to €, and if A is such an eigenvalue, then there holds

oA
ryde {eigenvalues of 0, }, (139)
e

where Q, : H) x H, — R is the quadratic form given by

2 p—2( 0l
Q)L(u,v)z(l—A)E/Vu~Vv—p(p—1)'/uvu1£ < " )(8~). (140)
X, e

Here H, C Hy, stands for the eigenspace of Tx, corresponding to A and the function iy ¢:
£2 — R is defined by the scaling i . (x) = us ¢ (ex), where uy . is as in Section 3. Notice that,
since A might have multiplicity bigger than 1, when we vary ¢ this eigenvalue can split into a
multiplet, which is allowed by formula (139).

Taking A as in Proposition 6.5, we can apply (139), and evaluate the quadratic form in (140)
on the couples of eigenfunctions in H,, which are characterized by (136). Reasoning as in [33],
Proposition 5.1 one can prove the following result.

Proposition 6.6. Let A be as in Proposition 6.5. Then for ¢ small one has

a1, =
3% = E(F-FOs(l))s

where F is a positive constant depending on N, k and p.

Now we are in position to prove the following proposition, which states the invertibility of T’s,
for suitable values of ¢.

Proposition 6.7. For a suitable sequence ¢ j — 0, the operator J' (uy ) : H'(2,) > HY(2,) is
invertible and the inverse operator satisfies

H J”( )71 ” < C
& Lej HI(QSJ') = 111111{8]]('7 85} ’
for allj eN.

Proof. From Proposition 6.4 we have that, letting N, denote the Morse index of T’s,, there holds
N >~ (@/Cr)*/?> Vol(K)e*. For I € N, let &, = 2~'. Then we have

k k
o 2 o 2
Nep,, — Nep <C%> Vol (K) (2K0+D — 2H) ~ (Cik) Vol(K) (25— 1)g; %, (141)

By Proposition 6.6, the eigenvalues A of T's;, with |A| < & are strictly monotone functions of ¢
so by the last equation the number of eigenvalues which cross 0, when ¢ decreases from ¢; to
&1+1, is of order el_k. Now we define

A;={e € (e141, &1): ker Ty, # 0} By = (e1+1, 1) \ Ay.
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By Proposition 6.6 and (141) we deduce that card(A;) < Ce; k , and hence there exists an interval
(a1, by) such that

! meas(B;)

(a1, b)) € B |b; — a card(A))

>Clef (142)
From Proposition 6.6, then it follows that every eigenvalue of Tx, ., ), in absolute value is

bigger than C~! min{e¥, £} for some C > 0. By Lemma 5.2 then the same is true for the eigen-
values of J/'(uj ) so the conclusion follows taking ¢; = (a; + b;)/2. O

Remark 6.8. The arguments in the proof of Proposition 6.5 can be easily adapted to the case in
which |x| < C~1e? with C is sufficiently large. Therefore the result of Proposition 6.7 can be
improved to ||J£/;_ (u],gj)_1 I, ) < C/min{sf., 8]2}, for all j € N.

J

Below, || - || denotes the standard norm of H!(§2,). For the values of & such that J/(ure) is
invertible, it is sufficient to apply the contraction mapping theorem. Writing ¢ = ¢, we find a
solution i of (135) in the form i, = u; . + w, with w € H'(£2,) small in norm. Since J!(ure)
is invertible we have that J/(u) = 0 if and only if w = —(J/ (u; ) "' [J.(ur.e) + G(w)], where

G(w) = J(upe +w) — Jp(upe) — I (ur )w].

Note that

Gw)[v] = _/[(ul,g +w)? — u?a — puiglw]v; ve H (2,).
2

Reasoning as in the last section of [35], we find the following estimates, which are based on
elementary inequalities

Cllwl||? for p <2,

“G(w)”<{6||wu2 for p > 2;

lwll <1 (143)

CUwillP~" + w2~ Hllwi —wall, p<2,
Clwill + llwz2Dlfwr — w2l p>2
lwill, w2l < 1. (144)

|G - Gw)| <{

Defining F,: H'(£2,) — H'(82;) as
Fow)=—(J/ ()" [Hure) + Gw)].  we H' (),

we will show that F is a contraction in some closed ball of H!(£2,). From (40), Proposition 6.7
(with Remark 6.8) and (143)—(144) we get

CeU+D (IH1=5 4 |lw|1?)  for p <2,

Fe(w)| <
” & ” Cg_(k+1)(8l+l—§ + ||w||2) for p > 2;

lwl <1 (145)
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Ce™ ® D (lwy |77 + lwa P~ D lwy — wall, p<2,
Ce™ D (lwill + llwalD llwi — wall, p>2
lwill, w2l < 1. (146)

| Fe(wi) = Fe(wo) | <{

Now we choose integers d and k such that
k£l for p<2 3
d>{1’—1 T I>d—-1+4 =k, (147)
k+1 forp>2; 2

and we set
B={weH'(£2,): |wll <&}

From (145)—(146) we deduce that F} is a contraction in B for & small, so the existence of a critical
point it of J; near u; . follows. All the properties listed in Theorem 1.1, including the positivity
of the solutions, follow from the construction of u; . and standard arguments. As in [35], when
p is supercritical one can use truncations and L* estimates to apply the above argument working
in the function space H'(£2,) N L™ (£2;).

Remark 6.9. With the arguments given in Section 5 we could obtain sharp estimates on the Morse
index of T'x;, and on the eigenfunctions corresponding to resonant eigenvalues. In particular about
the latter we showed that the components in Hj, H3 are small, and that in H; the Fourier modes
are localized near some precise frequencies. This allowed us to prove Proposition 6.7 using
Kato’s theorem.

Even if we did not work the computations out, it seems it should be possible to give a more
rough characterization of these eigenfunctions (in particular on the H> component) and to prove a
(non-sharp) estimate on the derivatives of the eigenvalues, still obtaining invertibility. This might
slightly simplify the proof of existence, although most of the delicate estimates will be shifted
from the analysis of Ty, to that of the quadratic form Q, defined in (140).
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