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CONSTANT MEAN CURVATURE HYPERSURFACES
CONDENSING ON A SUBMANIFOLD

F. Mahmoudi, R. Mazzeo and F. Pacard

1 Introduction

Let S be an oriented embedded (or possibly immersed) hypersurface in a
Riemannian manifold (Mm+1, g). The shape operator AS is the symmet-
ric endomorphism of the tangent bundle TS associated with the second
fundamental form of S, bS , by

bS(X,Y ) = gS(ASX,Y ) , ∀X,Y ∈ TS; here gS = g|TS .

The eigenvalues κi of the shape operator AS are the principal curvatures
of the hypersurface S. The mean curvature HS is defined to be the average
of these principal curvatures:

H(S) := 1
m(κ1 + . . . + κm) .

Constant mean curvature (CMC) hypersurfaces in a compact Rieman-
nian manifold (Mm+1, g) constitute an important class of submanifolds
and have been studied extensively. In this paper we are interested in de-
generating families of such submanifolds which ‘condense’ to a submanifold
Kk ⊂ Mm+1 of codimension greater than 1. It is not hard to see that
the closer a CMC hypersurface is (e.g. in the Hausdorff metric) to such a
submanifold, the larger its mean curvature must be; in other words, the
mean curvatures of the elements of a condensing family of CMC hypersur-
faces must tend to infinity. Less obvious is the fact that under fairly mild
geometric assumptions, cf. [MaP2], the existence of such a family implies
that K is minimal. Two cases have been studied previously: Ye [Y1,2],
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proved the existence of a local foliation by constant mean curvature hy-
persurfaces condensing to a point (which is required to be a nondegenerate
critical point of the scalar curvature function); more recently, the second
and third authors [MaP2] proved the existence of a ‘partial foliation’ by
constant mean curvature hypersurfaces in a neighborhood of a nondegen-
erate closed geodesic. In this paper we extend the result and methods of
[MaP2] to handle the general case, when K is an arbitrary nondegenerate
minimal submanifold (no extra curvature hypotheses are required). As we
explain below, this more general problem has a number of new analytic
and geometric features, and despite the apparent similarities with the case
when K is one-dimensional, is considerably more subtle to analyze.

We now describe our result in more detail. Let Kk be a closed (embed-
ded or immersed) submanifold in Mm+1, 1 ≤ k ≤ m− 1; the geodesic tube
of radius ρ about K is the set

S̄ρ :=
{
q ∈ Mm+1 : distg(q,K) = ρ

}
.

This is a smooth (immersed) hypersurface provided ρ is smaller than the
radius of curvature of K, and henceforth we always tacitly assume that this
is the case. An elementary computation shows that the mean curvature at
any point of this tube satisfies

H(S̄ρ) =
n − 1

m
ρ−1 + O(1) as ρ ↘ 0 , n = m + 1 − k .

At first glance, it seems plausible that we should be able to perturb this
tube slightly to obtain a constant mean curvature hypersurface with H ≡
n−1
m ρ−1. The standard method to do this is to consider all nearby hyper-

surfaces which can be written as normal graphs over S̄ρ and to consider
the constant mean curvature equation as a nonlinear elliptic equation, to
which one can apply familiar PDE methods. More specifically, one expects
to be able to find the solution by a contraction mapping argument using
the inverse of the linearized mean curvature operator (also known as the
Jacobi operator). The complication is that as the mean curvatures of S̄ρ

become more nearly constant, the geometry is degenerating, so this must
be treated as a singular perturbation problem.

There are two potential obstacles to carrying this out. First, for general
submanifolds K, the difference H(S̄ρ)− ((n − 1)/m)ρ−1 does not decay as
ρ → 0, but is only bounded, and it turns out that this error term is too
large to solve away. When K is minimal, however, one obtains (cf. §4) the
finer estimate

H(S̄ρ) =
n − 1

m
ρ−1 + O(ρ) ,
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and one can then proceed. Second, however, it is necessary that the Jacobi
operator on S̄ρ be invertible. This is not true at all radii; indeed, there
is a spectral flow of eigenvalues of this operator across zero as ρ → 0.
Fortunately, so long as one assumes that K itself is nondegenerate as a
minimal submanifold (i.e. its Jacobi operator is invertible), one can control
the rate of this spectral flow as a function of ρ, and hence deduce the
existence of infinitely many disjoint intervals in the ρ axis converging to
zero and which are disjoint from these ‘resonant’ values. It is necessary
to deduce that these nonresonant intervals are large, so as to control the
norm of the inverse of the Jacobi operator. Unfortunately, even then the
error term may be too large, so to combat this, we need to obtain much
better approximate solutions. These are constructed using a preliminary
finite iteration based on the invertibility of the Jacobi operator of K as well
as another very crude approximation to the Jacobi operator for S̄ρ.

In the end, we prove the following:

Theorem 1.1. Let Kk ⊂ Mm+1 be a closed (embedded or immersed)
minimal submanifold, 1 ≤ k ≤ m − 1, which is nondegenerate in the
sense that its Jacobi operator is invertible. There exists an open subset
I ⊂ (0, ρ0), which is a countable union of disjoint open intervals, such that
for all ρ ∈ I, the geodesic tube S̄ρ may be perturbed to a constant mean
curvature hypersurface Sρ with H = n−1

m ρ−1. This set I is quite large in
the sense that for any q ≥ 2, there exists a constant cq > 0 such that

∣
∣H1((0, ρ) ∩ I) − ρ

∣
∣ ≤ cqρ

q ,

where H1 denotes 1-dimensional Hausdorff measure. Furthermore, the in-
dex of the hypersurface Sρ (for the quadratic form associated to its Jacobi
operators) tends to +∞ as ρ → 0, ρ ∈ I.

The nondegeneracy condition on K imposed here is a mild restriction
which holds for generic metrics on M [W]. Also, for arbitrary metrics on M
it is definitely not possible to obtain a smooth family of hypersurfaces Sρ

for every single radius ρ > 0. Indeed, for generic metrics, the moduli space
of all CMC hypersurfaces (with mean curvatures assuming any value in R)
is a smooth one-dimensional manifold, and the fact that the Morse index
attains infinitely many values shows that this moduli space has infinitely
many components. For special (nongeneric) metrics, the moduli space may
be connected, but singular, and the phenomenon of resonant radii should
correspond to other families of CMC hypersurfaces bifurcating from this
main ‘tubular’ family. Explicit examples of this are known when k = 1,
cf. [MaP2], and in more general cases (also when k > 1) can be obtained
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by general bifurcation-theoretic techniques as in [MaP1]. When k = 1
the elements of these bifurcating families have undulations modelled on
Delaunay surfaces, but the geometric picture when k > 1 is unknown. (A
similar bifurcation phenomenon appears in [MM1], and of course in many
other settings too.) Finally, we note that an immediate corollary of this
theorem is the existence of CMC hypersurfaces with nontrivial topology in
any compact Riemannian manifold.

As already noted, our earlier proof of this theorem for the case k = 1
[MaP2] follows the same general pattern, but is substantially easier in all
the main technical points. Perhaps the biggest difference is that in this one-
dimensional case, the spectral gaps are automatically large and so there is
no need to estimate these or to find a sequence of improved approximate
solutions. Several new ideas are needed in order to extend the result to the
general case. These ideas were inspired by recent work of Malchiodi and
Montenegro in a somewhat different context [MM2], [M], cf. also related
work by Shatah and Zeng concerning existence of periodic solutions for a
penalized Hamiltonian system [ShZ].

Before continuing with a more detailed explanation of the contents of
this paper, we make some further remarks about the geometric problem.
One interesting question is to determine the extent to which our result
has a converse; in other words, one would like to study possible limits
of ‘condensing families of CMC hypersurfaces. This requires, however, a
more general definition of this geometric condensation. One possibility is to
consider weak limits of rescaled area and curvature densities. For example,
for the family Sρ constructed in Theorem 1.1, we have

ρk−mHm�Sρ ⇀ ωm−kHk�K , (1.1)
and, for all q ≥ 1,

ρk−m+q|ASρ |qHm� Sρ ⇀ (m − k)q/2ωm−kHk�K , (1.2)
as ρ ↘ 0; here |AS |2 := Tr((AS)t AS) is the norm squared of the shape
operator. In fact, the behaviour of these limits is easy to deduce for the
tubes S̄ρ, and the analogues of (1.1) and (1.2) for the family of solutions Sρ

are obtained because we have good quantitative control of the deviation
of these surfaces from the S̄ρ. This leads one to think that one should be
considering more general families of CMC surfaces Σρ satisfying both (1.1)
and (1.2) for some submanifold K. The point is that, as is well known
in geometric measure theory, the limit is a submanifold K along with a
density function on K, but the limit need not be supported along a smooth
submanifold. Furthermore, it is unreasonable to expect the limit always to
be supported along a smooth submanifold.
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To give some sort of illustration of what might happen, we note that
one should be able to construct families of constant mean curvature hyper-
surfaces which condense along submanifolds with singularities, which are
still minimal in an appropriate sense. A simple example of this is when the
family Σρ is the homothetic rescaling of a fixed Delaunay triunduloid in R

3.
The geometric limit is a union of three rays meeting at a common vertex,
and the area density converges to this set with a density computable from
the Delaunay necksize on that end of the original triunduloid. Each ray is
minimal, of course, and this configuration of rays with density is ‘balanced’
in the sense that the weighted sum of the vectors along the rays vanishes.
One would hope to be able to prove some sort of structure theorem for
limiting configurations in greater generality.

As a preliminary step in this direction, Rosenberg has recently proved
[R] that if S is an embedded surface with constant mean curvature H in
a compact Riemannian 3-manifold (M,g), then if H is sufficiently large, S
separates M into two components. Furthermore, there exists a constant c
depending only on (M,g) such that the mean convex component of M \ S
does not contain any geodesic ball of radius c/H. This says intuitively that
S is contained in a cylinder of radius c/H around some 1-dimensional set,
which one expects in general can be taken as a geodesic network in M .

We now conclude this introduction with an overview of the rest of this
paper. Because of the rather technical nature of the proof of our main
result, we shall make this overview fairly detailed.

The first step, in §2, is to derive the Taylor expansion of the metric g in
Fermi coordinates about K up to second order. This is a fairly routine ge-
ometric calculation, which is quite similar to the one in [MaP2] for the case
when K is a curve, but we present it anyway since it should help prepare
the reader for what comes later. We next define the class of perturbations
of the geodesic tubes S̄ρ. It turns out to be most convenient to describe
these using a two step process: first deform the minimal submanifold K in
the normal direction to a new k-dimensional submanifold, then form the
tube of radius ρ around this new submanifold and finally take a normal
graph over this tube by some function w. The first of these deformations
corresponds to a section Φ of the normal bundle NK. For each k ∈ K, the
normal vector Φ(k) determines a linear (height) function g(Φ, ·) on NkK,
or equivalently an element of the first nonzero eigenspace of the Lapla-
cian on the fibre of the spherical normal bundle at that point. Because of
this, we can eliminate a redundancy in the parametrization by demanding
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that w be orthogonal to this eigenspace on each such fibre. We have thus
parametrized nearby surfaces by pairs (w,Φ), defined and satisfying the
restrictions as written above and so denote them as Sρ(w,Φ). We explain
the role of this normal perturbation in more detail below.

The main work in the long technical §3 is to calculate the mean curva-
ture of Sρ(w,Φ) as a nonlinear elliptic partial differential operator, depend-
ing on ρ, acting on (w,Φ). This requires first computing the metric (§3.3),
the unit normal vector (§3.4) and the second fundamental form (the very
intricate §3.5). During these calculations it is important to gather together
various different types of error terms, some of which depend linearly and
some nonlinearly on (w,Φ), and some of which are inhomogeneous terms
vanishing to some order in ρ. To obtain the best forms for these various
expressions, we replace w by ρw; more seriously, it turns out to be helpful
to rescale the local coordinates in K by ρ, and to consider Φ (but not w)
as a function of these rescaled coordinates. (The simultaneous use of ‘slow’
and ‘fast’ variables is commonplace in the study of homogenization prob-
lems.) The final expression (4.26) for the mean curvature of Sρ(w,Φ) then
involves several familiar pieces: the Jacobi operator for K, JK , the model
operator Lρ = −(ρ2∆K + ∆Sn−1 + (n − 1)) (which can be interpreted as
acting on functions on the spherical normal bundle SNK), the contrac-
tion of the Hessian of w on K with the second fundamental form, and
various error terms. The natural sizes of both w and Φ are O(ρ2). The
decomposition of functions on SNK into those which are orthogonal to the
linear functions on each fibre and the fibrewise linear functions, expressed
as v = ρw + g(Θ,Φ), is also discussed at the end of §4.

Following these preliminaries, the actual construction can now be de-
scribed. Because the inverse of the Jacobi operator is fairly large, we first
improve the approximate solution so that it vanishes to some arbitrarily
large order in ρ. This is accomplished in §5 using a finite iteration using
the inverse of the operator

−
(
∆Sn−1 + (n − 1)

)
+ ρg(JK ·,Θ)

(the two terms here act separately on (w,Φ)). Notice that we are omitting
the term ∆K from Lρ in this step; the point is that the two terms are
completely decoupled, so we are solving for the first operator acting on
the subspace of L2(SNK) orthogonal to the nullspace of this operator,
where the position on K is only a parameter, and the second acting on
sections of NK, interpreted as being the complement in L2 of the previous
subspace. Given any positive integer i, we can now arrange that the error
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term vanishes like ρi. Notice, however, that it would be impossible to use
this simpler operator for the full infinite iteration because it does not gain
regularity for w in the K directions.

Now denote the linearized mean curvature operator about this improved
approximate solution (and with all of the preceding normalizations) by Lρ,i.
As explained earlier, there is a spectral flow across 0 for this operator as
ρ → 0, and hence there exists an infinite sequence of values ρj → 0 at which
Lρ,i is not invertible. We are interested in estimating the size of the spectral
gaps, which determine the size of the norm of the inverse. This is equivalent
to understanding the rate of this spectral flow. The usual formula for the
variation of eigenvalues with respect to ρ must be interpreted carefully, to
allow for multiplicities, but there is a good formalism for this, so in §6 we
show that the eigenvalues near 0 are monotone decreasing in ρ (when ρ is
small), and hence obtain an estimate for the size of the spectral gaps, and
for the Morse index of Lρ,i.

With all of these preliminaries, the final step of solving the precise
equation to obtain a CMC perturbation of S̄ρ is straightforward, and is
carried out in §7.

To clarify the need for such an intricate construction, let us recall the
steps in Ye’s construction [Y1], corresponding to the case k = 0, and con-
trast them with the ones here. In [Y1], one is trying to perturb the geodesic
sphere of radius ρ around a point p ∈ M to have constant mean curvature.
In order to find an approximate solution to one order better than initially
expected, it is necessary to assume that p is a critical point of the scalar
curvature function; here, when k > 0, this property is guaranteed by the
minimality of K. Next, for any value of k, the linearized operator is ‘nearly
degenerate’. When k = 0, the dimension of the ‘approximate nullspace’,
i.e. the number of small (possibly vanishing) eigenvalues is equal to n and
the translations of the center of the geodesic sphere provide the correct
set of extra parameters to compensate for the corresponding ‘approximate
cokernel’. When k > 0, on the other hand, the number of small eigenvalues
tends to infinity as ρ ↘ 0, so one needs in practice an infinite number of
parameters to compensate. This is precisely the role of the normal per-
turbation Φ of K; the nondegeneracy of the Jacobi operator of K (which
is trivial when k = 0) is needed to use these parameters effectively. Note
that when k = 0 or 1 it is unnecessary to find an improved approximate
solution because one has good estimates for the inverse of the linearization,
but these fail when k > 1. At any rate, the preliminary normal translation
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of K by Φ when k ≥ 1 corresponds precisely to the translation parameter
of the center of the sphere in Ye’s construction.

We emphasize again that despite the many formal similarities of this
problem when k = 1 and k > 1, there is a much better a priori understand-
ing of the geometry and analysis when K is a curve; the turning points
of this family of CMC tubes when k > 1 remain unclear from a geometric
point of view, and as explained above, the details of the analysis needed
for the construction are substantially different too.

2 Expansion of the Metric in Fermi Coordinates Near K

2.1 Fermi coordinates. We now introduce Fermi coordinates in a
neighborhood of K. For a given p ∈ K, there is a natural splitting

TpM = TpK ⊕ NpK .

Choose orthonormal bases Ea, a = n + 1, . . . ,m + 1, for TpK, and Ei,
i = 1, . . . , n, of NpK.

Notation. We shall always use the convention that indices a, b, c, d, · · · ∈
{n+1, . . . ,m+1}, indices i, j, k, �, · · · ∈ {1, . . . , n} and indices α, β, γ, · · · ∈
{1, . . . ,m + 1}.

Consider, in a neighborhood of p in K, normal geodesic coordinates
f(y) := expK

p (yaEa) , y := (yn+1, . . . , ym+1) ,

where expK is the exponential map on K and summation over repeated in-
dices is understood. This yields the coordinate vector fields Xa := f∗(∂ya).
For any E ∈ TpK, the curve

s −→ γE(s) := expK
p (sE)

is a geodesic in K, so that
∇XaXb|p ∈ NpK .

We define the numbers Γi
ab by

∇XaXb|p = Γi
abEi .

Now extend the Ei along each γE(s) so that they are parallel with
respect to the induced connection on the normal bundle NK. This yields
an orthonormal frame field Xi for NK in a neighborhood of p in K which
satisfies

∇XaXi|p ∈ TpK ,

and hence defines coefficients Γb
ai by

∇XaXi|p = Γb
aiEb .
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A coordinate system in a neighborhood of p in M is now defined by
F (x, y) := expM

f(y)(x
iXi) , (x, y) := (x1, . . . , xn, yn+1, . . . , ym+1) ,

with corresponding coordinate vector fields
Xi := F∗(∂xi) and Xa := F∗(∂ya) .

By construction, Xα |p = Eα.

2.2 Taylor expansion of the metric. As usual, the Fermi coordinates
above are defined so that the metric coefficients

gαβ = g(Xα,Xβ) ,

equal δαβ at p; furthermore, g(Xb,Xi) = 0 in some neighborhood of p in K.
This implies that

Xag(Xb,Xi) = g(∇XaXb,Xi) + g(Xb,∇XaXi) = 0 ,

on K, which yields the identity,
Γi

ab + Γb
ai = 0 , (2.3)

at p.
Denote by Γb

a : NpK → R the linear form
Γb

a(·) := −g(∇Ea Eb, ·) = g(∇Ea ·, Eb) . (2.4)
We now compute higher terms in the Taylor expansions of the functions gαβ .
The metric coefficients at q := F (x, 0) are given in terms of geometric data
at p := F (0, 0) and |x| = distg(p, q).
Notation. The symbol O(|x|r) indicates a function such that it and its
partial derivatives of any order, with respect to the vector fields Xa and
xiXj , are bounded by c|x|r in some fixed neighborhood of 0.

We begin with the expansion of the covariant derivative.
Lemma 2.1. At the point of q = F (x, 0), the following expansions hold

∇XiXj = O(|x|)Xγ ,

∇XaXb = −Γb
a(Ei)Xi + O(|x|)Xγ ,

∇XaXi = ∇XiXa = Γb
a(Ei)Xb + O(|x|)Xγ ,

(2.5)

Proof. Observe that, because we are using coordinate vector fields, ∇XαXβ

= ∇Xβ
Xα for any α, β. We also have ∇XiXj |p = 0 since any X ∈ NpK is

tangent to the geodesic s → expM
p (sX), and hence

∇Xi+Xj(Xi + Xj)
∣
∣
p

= 0 .

Therefore
(∇XiXj + ∇XjXi)

∣
∣
p

= 0 ,

and this completes the proof of the first estimate.
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We have by construction
∇XaXb = Γi

abXi + O(|x|)Xγ ,

and
∇XaXi = ∇XiXa = Γb

aiXb + O(|x|)Xγ .

The next two estimates follow from the definition of Γb
a and (2.3). �

We now give the expansion of the metric coefficients. The expansion of
the gij , i, j = 1, . . . , n, agrees with the well-known expansion for the metric
in normal coordinates [SY], [LeP], [Wi], but we briefly recall the proof here
for completeness.
Proposition 2.1. At the point q = F (x, 0), the following expansions
hold

gij = δij + 1
3g

(
R(Ek, Ei)E�, Ej

)
xkx� + O(|x|3) ,

gai = O(|x|2) , (2.6)

gab = δab+2Γb
a(Ei)xi+

[
g(R(Ek, Ea)E�, Eb)+Γc

a(Ek)Γb
c(E�)

]
xkx�+O(|x|3) ,

where summation over repeated indices is understood.

Proof. By construction, gαβ = δαβ at p, and so
gαβ = δαβ + O(|x|) .

Now, from
Xigαβ = g(∇XiXα,Xβ) + g(Xα,∇XiXβ) ,

and Lemma 2.1, we get
Xigaj

∣∣
p

= 0 , Xigjk

∣∣
p

= 0 and Xigab

∣∣
p

= Γb
ai + Γa

ib = 2Γb
ai.

This yields the first order Taylor expansion
gaj = O

(
|x|2

)
, gij = δij + O

(
|x|2

)
and gab = δab + 2Γb

aix
i + O

(
|x|2

)
.

To compute the second order terms, it suffices to compute XkXkgαβ at
p and polarize (i.e. replace Xk by Xi + Xj , etc.). We compute
XkXkgαβ = g(∇2

Xk
Xα,Xβ)+g(Xα,∇2

Xk
Xβ)+2g(∇Xk

Xα,∇Xk
Xβ) . (2.7)

To proceed, first observe that
∇XX

∣
∣
p′ = ∇2

XX
∣
∣
p′ = 0 ,

at p′ ∈ K, for any X ∈ Np′K. Indeed, for all p′ ∈ K, X ∈ Np′K is tangent
to the geodesic s → expM

p′ (sX), and so ∇XX = ∇2
XX = 0 at the point p′.

In particular, taking X = Xk + εXj , we obtain
0 = ∇Xk+εXj∇Xk+εXj(Xk + εXj)|p ,

equating the coefficient of ε to 0 gives ∇Xj∇Xk
Xk |p = −2∇Xk

∇Xk
Xj |p,

and hence
3∇2

Xk
Xj

∣
∣
p

= R(Ek, Ej)Ek ,
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So finally, using (2.7) together with the result of Lemma 2.1, we get
XkXkgij

∣∣
p

= 2
3 g

(
R(Ek, Ei)Ek, Ej

)
.

The formula for the second order Taylor coefficient for gij now follows at
once.

Recall that, since Xγ are coordinate vector fields, we have from (2.7)
∇2

Xk
Xγ = ∇Xk

∇XγXk = ∇Xγ∇Xk
Xk + R(Xk,Xγ)Xk .

Using (2.7), this yields

XkXkgab = 2g
(
R(Xk,Xa)Xk,Xb

)
+ 2g(∇Xk

Xa,∇Xk
Xb)

+ g(∇Xa∇Xk
Xk,Xb) + g(Xa,∇Xb

∇Xk
Xk)

Using the result of Lemma 2.1 together with the fact that ∇XX = 0 at
p′ ∈ K for any X ∈ Np′K, we conclude that

XkXkgab

∣
∣
p

= 2g
(
R(Ek, Ea)Ek, Eb

)
+ 2Γc

akΓ
c
bk ,

and using the definition of Γb
a given in (2.4) this gives the formula for the

second order Taylor expansion for gab. �

Later on, we will need an expansion of some covariant derivatives which
is more accurate than the one given in Lemma 2.1. These are given in
Lemma 2.2. At the point q = F (x, 0), the following expansion holds:

∇XaXb = −Γb
a(Ej)Xj − g

(
R(Ei, Ea)Ej , Eb

)
xiXj

+ 1
2

(
g(R(Ea, Eb)Ei, Ej) − Γc

a(Ei)Γb
c(Ej) − Γc

a(Ej)Γb
c(Ei)

)
xiXj

+ O(|x|)cXc + O
(
|x|2

)j
Xj , (2.8)

where summation over repeated indices is understood.

Proof. We compute
Xig(∇XaXb,Xj) = g(∇Xi∇XaXb,Xj) + g(∇XaXb,∇XiXj)

= g
(
R(Xi,Xa)Xb,Xj

)
+ g(∇Xa∇Xb

Xi,Xj) + g(∇XaXb,∇XiXj) .
Observe that, by construction, we have arranged in such a way that

∇Xa+εXb
Xi = (Γc

ai + εΓc
bi)Xc ,

along the geodesic s → expK
p (s(Ea + εEb)). Hence, along this geodesic

∇2
Xa+εXb

Xi =
(
(Xa +εXb)(Γc

ai +εΓc
bi)

)
Xc +(Γc

ai +εΓc
bi)∇Xa+εXb

Xc . (2.9)
Evaluating this at the point p and looking for the coefficient of ε, we obtain

(∇Xa∇Xb
Xi + ∇Xb

∇XaXi)
∣∣
p
− (Γc

ai∇Xb
Xc + Γc

bi∇XaXc)
∣∣
p
∈ TpK .

Hence we get
g(∇Xa∇Xb

Xi,Xj)
∣∣
p
+ g(∇Xb

∇XaXi,Xj)
∣∣
p

= Γc
aig(∇Xb

Xc,Xj)
∣∣
p

+ Γc
big(∇XaXc,Xj)

∣∣
p

= Γc
aiΓ

j
bc + Γc

biΓ
j
ac .
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Finally, we use the fact that
g(∇Xb

∇XaXi,Xj) = g
(
R(Xb,Xa)Xi,Xj

)
+ g(∇Xa∇Xb

Xi,Xj)
to conclude that, at the point p

2g(∇Xa∇Xb
Xi,Xj)

∣∣
p

= g
(
R(Ea, Eb)Ei, Ej

)
+ Γc

aiΓ
j
bc + Γc

biΓ
j
ac .

Collecting these estimates together with the fact that ∇XiXj |p = 0 we
conclude that

2Xig(∇XaXb,Xj)
∣∣
p

= −2g
(
R(Ei, Ea)Ej , Eb

)
+ g

(
R(Ea, Eb)Ei, Ej

)
+ Γc

aiΓ
j
bc + Γc

biΓ
j
ac .

This, together with the fact that gij = δij +O(|x|)2, easily implies (2.8). �

3 Geometry of Tubes

We derive expansions as ρ tends to 0 for the metric, second fundamental
form and mean curvature of the tubes S̄ρ and their perturbations. This is
an extension of the computation in [MaP2].

3.1 Perturbed tubes. We now describe a suitable class of deforma-
tions of the geodesic tubes S̄ρ, depending on a section Φ of NK and a
scalar function w on the spherical normal bundle SNK.

Fix ρ > 0. It will be convenient to introduce the scaled variable ȳ = y/ρ;
we also use a local parametrization z → Θ(z) of Sn−1. Now define the map

G(z, ȳ) := F
(
ρ(1 + w(z, ȳ))Θ(z) + Φ(ρȳ), ρȳ

)
,

and denote its image by Sρ(w,Φ), so in particular
Sρ(0, 0) = S̄ρ .

Notation. Because of the definition of these hypersurfaces using the
exponential map, various vector fields we shall use may be regarded either
as fields along K or along Sρ(w,Φ). To help allay this confusion, we write

Φ := ΦjEj , Φa := ∂yaΦjEj , Φab := ∂ya∂ybΦjEj ,

Θ := ΘjEj , Θi := ∂ziΘjEj .

These are all vectors in the tangent space TpM at the fixed point p ∈ K.
On the other hand, the vectors

Ψ := ΦjXj , Ψa := ∂yaΦjXj ,

Υ := ΘjXj , Υi := ∂ziΘjXj ,

lie in the tangent space TqM , q = F (z, y).
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For brevity, we also write
wj := ∂zjw , wā := ∂ȳaw , wij := ∂zi∂zjw ,

wāb̄ := ∂ȳa∂ȳbw , wāj := ∂ȳa∂zjw .

In terms of all this notation, the tangent space to Sρ(w,Φ) at any point
is spanned by the vectors

Zj = G∗(∂zj ) = ρ
(
(1 + w)Υj + wjΥ

)
, j = 1, . . . , n − 1 ,

Zā = G∗(∂ȳa) = ρ(Xa + wāΥ + Ψa) , a = n + 1, . . . ,m + 1 .
(3.10)

3.2 Notation for error terms. The formulas for the various geomet-
ric quantities of Sρ(w,Φ) are potentially very complicated, and so it is
important to condense notation as much as possible. Fortunately, we do
not need to know the full structure of all of these quantities. Because it is
so fundamental, we have isolated the notational conventions we shall use
in this separate subsection.

Any expression of the form L(w,Φ) denotes a linear combination of
the functions w together with its derivatives with respect to the vector
fields ρXa and Xi up to order 2, and Φj together with their derivatives
with respect to the vector fields Xa up to order 2. The coefficients are
assumed to be smooth functions on SNK which are bounded by a constant
independent of ρ in the C∞ topology (i.e. derivatives taken with respect to
Xa and Xi).

Similarly, an expression of the form Q(w,Φ) denotes a nonlinear opera-
tor in the functions w together with its derivatives with respect to the vec-
tor fields ρXa and Xi up to order 2, and Φj together with their derivatives
with respect to the vector fields Xa up to order 2. Again, the coefficients of
the Taylor expansion of the corresponding differential operator are smooth
functions on SNK which are bounded by a constant independent of ρ in
the C∞ topology, and Q which vanishes quadratically at (w,Φ) = (0, 0).

In order to keep notation as simple as possible in the technical proofs,
we will use the condensed notation L and Q instead of L(w,Φ) and Q(w,Φ).

Finally, any term denoted O(ρd) is a smooth function on SNK which
is bounded by a constant times ρd in the C∞ topology.

3.3 The first fundamental form. The next step is the computation
of the coefficients of the first fundamental form of Sρ(w,Φ). We set

q := G(z, 0) = F
(
ρ(1 + w(z, 0))Θ(z) + Φ(0), 0

)

and p := G(0, 0). We obtain directly from (2.6) that
g(Xa,Xb) = δab + 2ρΓb

a(Θ) + O(ρ2) + 2Γb
a(Φ) + ρL(w,Φ) + Q(w,Φ) ,
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g(Xi,Xj) = δij + ρ2

3 g
(
R(Θ, Ei)Θ, Ej

)
+ O(ρ3) + ρ

3

(
g(R(Θ, Ei)Φ, Ej)

+ g(R(Φ, Ei)Θ, Ej)
)

+ ρ2L(w,Φ) + Q(w,Φ)

g(Xi,Xa) = O(ρ2) + ρL(w,Φ) + Q(w,Φ) . (3.11)
We now explain a simple argument which will be used frequently through-

out the paper. Using the previous expansions, we compute

g(Υ,Υj) = g(Θ,Θj) + ρ2

3 g
(
R(Θ,Θ)Θ,Θj

)
+ O(ρ3)

+ ρ
3

(
g(R(Θ,Θ)Φ,Θj) + g(R(Φ,Θ)Θ,Θj)

)
+ ρ2L(w,Φ) + Q(w,Φ) .

However, when w = 0 and Φ = 0, g(Υ,Υj) = 0 since Υ is normal and Υj

is tangent to Sρ(0, 0) then, so that the sum of the first three terms on the
right, which is independent of w and Φ, must also vanish. This, together
with the fact that R(Θ,Θ) = 0 implies that

g(Υ,Υj) = ρ
3 g

(
R(Φ,Θ)Θ,Θj) + ρ2L(w,Φ) + Q(w,Φ) . (3.12)

Using similar arguments, we have

g(Υ,Υ) = g(Θ,Θ) + ρ2

3 g
(
R(Θ,Θ)Θ,Θj

)
+ O(ρ3)

+ ρ
3

(
g(R(Θ,Θ)Φ,Θ) + g(R(Φ,Θ)Θ,Θ)

)
+ ρ2L(w,Φ) + Q(w,Φ) .

This, together with the fact that g(Υ,Υ) = 1 when w = 0 and Φ = 0, yields
g(Υ,Υ) = 1 + ρ2L(w,Φ) + Q(w,Φ) . (3.13)

Using these expansions is is easy to obtain the expansion of the first
fundamental form of Sρ(w,Φ).
Proposition 3.1. We have

ρ−2g(Zā, Zb̄) = δab + 2ρΓb
a(Θ) + O(ρ2) + 2Γb

a(Φ) + ρL(w,Φ) + Q(w,Φ) ,

ρ−2g(Zā, Zj) = O(ρ2) + L(w,Φ) + Q(w,Φ) ,

ρ−2g(Zi, Zj) = g(Θi,Θj) + ρ2

3 g
(
R(Θ,Θi)Θ,Θj

)
+ O(ρ3) + 2g(Θi,Θj)w

+ ρ
3

(
g(R(Θ,Θi)Φ,Θj) + g(R(Θ,Θj)Φ,Θi)

)

+ ρ2L(w,Φ) + Q(w,Φ) , (3.14)
where summation over repeated indices is understood.

3.4 The normal vector field. Our next task is to understand the
dependence on (w,Φ) of the unit normal N to Sρ(w,Φ). Define the normal
(not unitary) vector field

Ñ := −Υ + 1
ρ (αjZj + βaZā) ,

where the coefficients αj and βa are chosen so that Ñ is orthogonal to all
of the Zb̄ and Zi. The unit normal vector field Sρ(w,Φ) is defined by

N := Ñ
|Ñ | .

We have the following:
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Proposition 3.2. With the above notation, the coefficients αj are solu-
tions of the system

g(Θi,Θj)αj = wi+ρ
3g

(
R(Φ,Θ)Θ,Θi

)
+ρ2L(w,Φ)+Q(w,Φ) , i=1, . . . , n−1 ,

where summation over j is understood, and the expansion of the coefficients
βa is given by

βa = wā + g(Φa,Θ) + ρL(w,Φ) + Q(w,Φ) .

Finally
|Ñ |−1 = 1 + ρ2L(w,Φ) + Q(w,Φ) .

Proof. We look for coefficients αj and βa so that that Ñ is orthogonal to
all of the Zb̄ and Zi. This leads to a linear system for αj and βa.

We have the following expansions
g(Υ, Zā) = ρwā + ρg(Φa,Θ) + ρ2L + ρQ ,

g(Υ, Zj) = ρwj + ρ2

3 g
(
R(Φ,Θ)Θ,Θj

)
+ ρ3L + ρQ .

(3.15)

These follow from (3.11), (3.12) and (3.13), together with the fact that
g(Υ, Zā) = 0 and g(Υ, Zj) = 0 when w = 0 and Φ = 0.

Using Proposition 3.1, we get with little work the expansions for both
βa and the system αj satisfy. Collecting these, the estimate for the norm
of Ñ follows at once. �

3.5 The second fundamental form. We now compute the second
fundamental form. To simplify the computations below, we henceforth
assume that, at the point Θ(z) ∈ Sn−1,

g(Θi,Θj) = δij and ∇ΘiΘj = 0 , i, j = 1, . . . , n − 1 , (3.16)
(where ∇ is the connection on TSn−1).
Proposition 3.3. The following expansions hold:

ρ−2g(N,∇ZāZā) = Γa
a(Θ) + ρg

(
R(Θ, Ea)Θ, Ea

)
+ ρΓc

a(Θ)Γa
c (Θ) + O(ρ2)

− 1
ρ wāā − g(Φaa,Θ) + g

(
R(Φ, Ea)Θ, Ea

)
+ Γc

a(Θ)Γa
c (Φ)

− wjΓa
a(Θj) + ρL(w,Φ) + 1

ρQ(w,Φ) ,

ρ−2g(N,∇Zj Zj) = 1
ρ + 2

3ρg
(
R(Θ,Θj)Θ,Θj

)
+ O(ρ2)

− 1
ρ wjj + 1

ρ w + 2
3 g

(
R(Φ,Θj)Θ,Θj

)

+ ρL(w,Φ) + 1
ρ Q(w,Φ) , (3.17)

ρ−2g(N,∇ZāZb̄) = Γb
a(Θ) − 1

ρ wāb̄ + O(ρ) + L(w,Φ) + 1
ρ Q(w,Φ) , a
=b ,

ρ−2g(N,∇ZāZj) = O(ρ) + 1
ρ L(w,Φ) + 1

ρ Q(w,Φ) ,

ρ−2g(N,∇ZiZj) = O(ρ) + 1
ρ L(w,Φ) + 1

ρ Q(w,Φ) , i 
= j ,

where summation over repeated indices is understood.
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Proof. Some preliminary computations are needed. First note that by
Lemma 2.1, we have

∇XaXb = Γb
a(Ei)Xi +

(
O(ρ) + L + Q

)
Xγ ,

∇XiXj =
(
O(ρ) + L + Q

)
Xγ ,

∇XaXi = −Γb
a(Ei)Xb +

(
O(ρ) + L + Q

)
Xγ .

(3.18)

In particular, this, together with the expression of Zā, implies that
∇ZāXb = ρΓb

a(Ei)Xi +
(
O(ρ2) + ρL + ρQ

)
Xγ ,

∇ZāXi = −ρΓb
a(Ei)Xb +

(
O(ρ2) + ρL + ρQ

)
Xγ .

(3.19)

We will also need the following expansion which follows from the result of
Lemma 2.2:

∇XaXb = Γb
a(Ej)Xj − g

(
R(ρΘ + Φ, Ea)Ej , Eb

)
Xj

+ 1
2

(
g(R(Ea, Eb)ρΘ + Φ, Ej)− Γc

a(ρΘ + Φ)Γb
c(Ej)− Γb

c(ρΘ + Φ)Γc
a(Ej)

)
Xj

+
(
O(ρ) + L + Q

)
Xc +

(
O(ρ2) + ρL + Q

)
Xj . (3.20)

Finally, we will need the expansions
g(Υ,Xa) = ρL + Q and g(Υ,Υj) = ρL + Q , (3.21)

whose proof can be obtained as in §3.2, starting from the estimates (3.11)
and using the fact that g(Υ,Xa) = g(Υ,Υj) = 0 when w = 0 and Φ = 0.

Observe that it is enough to get these expansions when N is replaced
by Ñ and then multiply the expansion by the expansion of |Ñ |−1 which is
given in Proposition 3.2.

First estimate. We estimate g(Ñ ,∇ZāZb̄) when a = b since the corre-
sponding estimate, when a 
= b is not as important and follows from the
same proof. We must expand
ρ−2g(Ñ ,∇ZāZā) = ρ−1

(
g(Ñ ,∇ZāXa) + g(Ñ ,∇Zā(wāΥ)) + g(Ñ ,∇ZāΨa)

)
.

The proof is this estimate is broken into three steps:

Step 1: From Proposition 3.2, we get
g(Ñ ,Υ) = −g(Υ,Υ) + 1

ρ

(
αjg(Zj ,Υ) + βag(Za,Υ)

)
= −1 + ρ2L + Q .

Substituting Ñ = −Υ + (Ñ + Υ) gives
g(Ñ ,∇ZāΥ) = −1

2 ∂ȳag(Υ,Υ) + g(Ñ + Υ,∇ZāΥ) .

But it follows from (3.13) that
∂ȳag(Υ,Υ) = ρ3L + ρQ ,

and (3.19) together with the expression of Ñ implies that
g(Ñ + Υ,∇ZāΥ) = ρL + ρQ .
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Collecting these estimates we get

g(Ñ ,∇ZāΥ) = ρL + Q .

Hence we conclude that

g
(
Ñ ,∇Zā(wāΥ)

)
= wāāg(Ñ ,Υ) + wāg(Ñ ,∇ZāΥ) = −wāā + Q .

Step 2: Next,

g(Ñ ,∇ZāΨa) = ρg(Ñ ,Ψaa) + Φj
ag(Ñ ,∇ZāXj) .

From (3.19), we have

Φj
ag(Ñ ,∇ZāXj) = ρ2L + ρQ .

Also, using the decomposition of Ñ and (3.11), we have

g(Ñ ,Ψaa) = −g(Υ,Ψaa) + g(Ñ + Υ,Ψaa) = −g(Θ,Φaa) + ρ2L + Q .

Collecting these gives

g(Ñ ,∇ZāΨa) = −ρg(Φaa,Θ) + ρ2L + ρQ .

Step 3: Expanding Zā gives

g(Ñ ,∇ZāXa) = ρ
(
g(Ñ ,∇XaXa) + wāg(Ñ ,∇ΥXa) + Φj

ag(Ñ ,∇XjXb)
)
.

(3.22)
With the help of (3.18) and (3.21), we evaluate

g(Ñ ,∇ΥXa) = O(ρ) + L + Q ,

g(Ñ ,∇XjXa) = O(ρ) + L + Q ,

g(Ñ + Υ,∇XaXa) = −αjΓa
a(Θj) + ρL + Q ,

and plugging these into (3.22) already gives

g(Ñ ,∇ZāXa) = −ρg(Υ,∇XaXa) − ραjΓa
a(Θj) + ρ2L + ρQ .

Using (3.20) we get the expansion

∇XaXa = −Γa
a(Ej)Xj−g

(
R(ρΘ+Φ, Ea)Ej , Ea

)
Xj−Γc

a(ρΘ+Φ)Γa
c(Ej)Xj

+ (O(ρ) + L + Q)cXc + (O(ρ2) + ρL + Q)jXj .

Finally, using (3.11) again together with the fact that αj = wj + ρL, we
conclude that

g(Ñ ,∇ZāXa) = ρΓa
a(Θ) + ρ2g

(
R(Θ, Ea)Θ, Ea

)
+ O(ρ3)

+ ρg
(
R(Φ, Ea)Θ, Ea

)
+ ρΓc

a(ρΘ + Φ)Γa
c(Θ) − ρwjΓa

a(Θj)

+ ρ2L + ρQ ,

which, together with the results of Step 1 and Step 2, completes the proof
of the first estimate.
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Second estimate. We estimate g(Ñ ,∇ZiZj) when i = j since, just as
before, the corresponding estimate, when i 
= j is not as important and
follows similarly. This part is taken directly from [MaP2]. Recall that

Ñ = −Υ + 1
ρ(αjZj + βaZa) ,

Now write
g(Ñ ,∇ZjZj) = −g(∇Zj Ñ , Zj)

= g(∇Zj Υ, Zj) − 1
ρg

(
∇Zj(α

iZi), Zj

)

− 1
ρβag(Za,∇ZjZj) + 1

ρ∂zjg(βaZa, Zj) .

Step 1: We compute
g(Za,∇ZjZj) = ∂yj g(Zā, Zj)−g(Zj ,∇ZjZā) = ∂yjg(Zā, Zj)−1

2∂ȳag(Zj , Zj) ,

and by (3.14), we can estimate

g(Za,∇ZjZj) = O(ρ4) + ρ2L + ρ2Q .

Hence we already obtain
1
ρβag(Zā,∇ZjZj) = ρ3L + ρQ .

Step 2: Next, using the expansion given in Proposition 3.2 together
with (3.14), we find that

1
ρ∂zjg(βa, Zā, Zj) = ρ3L + ρQ .

Step 3: We now estimate
C := 2g(∇ZjΥ, Zj) .

It is convenient to define

C ′ :=
2

1 + w
g(∇Zj (1 + w)Υ, Zj) ,

It follows from (3.15) that
C = C ′ + ρQ ,

hence it is enough to focus on the estimate of C ′. To analyze this term, let
us revert for the moment and regard w and Φ as functions of the coordinates
(z, ȳ) and also consider ρ as a variable instead of just a parameter. Thus
we consider

F̃ (ρ, z, ȳ) = F
(
ρ(1 + w(z, ȳ))Υ(z) + Φ(tȳ), tȳ

)
.

The coordinate vector fields Zj are still equal to F̃∗(∂zj ), but now we also
have (1 + w)Υ = F̃∗(∂ρ), which is the identity we wish to use below. Now,
from (3.14), we write

C ′ =
1

1 + w
g
(
∇∇(1+w)Υ

Zj, Zj

)
=

1
1 + w

∂ρg(Zj , Zj) .
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Therefore, it follows from (3.14) in Proposition 3.1 that

C =
1

1 + w
∂ρ

[
ρ2g(Θj ,Θj) +

1
3

ρ4g(R(Θ,Θj)Θ,Θj) + O(ρ5)

+ 2ρ2g(Θj ,Θj)w +
2
3
ρ3g(R(Θ,Θj)Φ,Θj) + ρ4L + ρ2Q

]
+ ρQ

=
1

1 + w

[
2ρg(Θj ,Θj) +

4
3
ρ3g(R(Θ,Θj)Θ,Θj) + O(ρ4)

+ 4ρg(Θj ,Θj)w + 2ρ2g(R(Θ,Θj)Φ,Θj) + ρ3L + ρQ
]

= 2ρg(Θj ,Θj) +
4
3
ρ3g

(
R(Θ,Θj)Θ,Θj

)
+ O(ρ4)

+ 2wg(Θj ,Θj)ρ + 2ρ2g
(
R(Θ,Θj)Φ,Θj

)
+ ρ3L + ρQ .

Step 4: Finally, we must compute
D : = g

(
∇Zj(α

iZi), Zj

)

= g(Zi, Zj)∂zjαi + αig(∇ZiZj , Zj)

= g(Zi, Zj)∂zjαi + 1
2αi∂zig(Zj , Zj) .

Observe that (3.16) implies
∂zjg(Θi,Θj′) = 0

at the point p. Using this together with (3.14) and the expression for the
αi given in Proposition 3.2, we get

αi∂zig(Zj , Zj) = ρ4L + ρ2Q .

It follows from (3.14) and the definition of αi again that
g(Zi, Zj)∂zjαi = ρ2g(Θi,Θj)∂zjαi + ρ4L + ρ2Q .

Therefore, it remains to estimate g(Θi,Θj)∂zjαi. By definition, we have
g(Θi,Θj)αi = wj + ρ

3g
(
R(Φ,Θ)Θ,Θj

)
+ ρ2L + Q .

Differentiating with respect to zj we get(
g(Θi,Θj)∂zjαi +αi∂zjg(Θi,Θj)

)
= wjj + ρ

3∂zjg
(
R(Φ,Θ)Θ,Θj

)
+ρ2L+Q .

(3.23)
Again, it follows from (3.16) that ∂zjg(Θi,Θj) = 0. Moreover this also
implies that,

∇ΘjΘ = Θj and ∇ΘjΘj = ajΘ ,

for some aj ∈ R. Therefore, we have
g
(
R(Φ,Θ)∇ΘjΘ,Θj

)
= g

(
R(Φ,Θ)Θj ,Θj

)
= 0 ,

and
g
(
R(Φ,Θ)Θ,∇ΘjΘj

)
= ajg

(
R(Φ,Θ)Θ,Θ

)
= 0 .

Inserting these information into (3.23) yields
g(Θi,Θj)∂zjαi = wjj + ρ

3 g
(
R(Φ,Θj)Θ,Θj

)
+ ρ2L + Q .
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Collecting these estimates, we conclude that

D = ρ2wjj + ρ3

3 g
(
R(Φ,Θj)Θ,Θj

)
+ ρ4L + ρ2Q ,

and with the estimates of the previous steps, this finishes the proof of the
estimate.

Third estimate. Decompose
1
ρ g(Ñ ,∇ZāZj) = g(Ñ ,Υj)wā + g(Ñ ,Υ)wāj

+ (1 + w)g(Ñ ,∇ZāΥj) + wjg(Ñ ,∇ZāΥ) .

As above we use the expression of Ñ given in Proposition 3.2 to estimate

g(Ñ ,Υj) = −g(Υ,Υj) + g(Ñ + Υ,Υj) = L + Q .

Similarly
g(Ñ ,Υ) = −1 + L + Q .

But now, by (3.19), we have

g(Ñ ,∇ZāΥj) = O(ρ2) + ρL + ρQ ,

and, as already shown in the first step of the proof of the first estimate

g(Ñ ,∇ZāΥ) = ρL + Q ,

and the proof of the estimate follows directly. �

4 The Mean Curvature of Perturbed Tubes

Collecting the estimates of the last subsection we obtain the expansion of
the mean curvature of the hypersurface Sρ(w,Φ). In the coordinate system
defined in the previous sections, we get

ρmH(w,Φ) = n − 1 + ρΓa
a(Θ)

+
(
g(R(Θ, Ea)Θ, Ea) + 1

3g(R(Θ, Ei)Θ, Ei) − Γc
a(Θ)Γa

c (Θ)
)
ρ2 + O(ρ3)

−
(
wāā + ∆Sn−1w + (n − 1)w

)
+ 2ρΓb

a(Θ)wāb̄ − ρΓa
a(Θj)wj

− ρg(Φaa,Θ) + ρg
(
R(Ea,Φ)Ea,Θ

)
− ρΓc

a(Φ)Γa
c (Θ)

+ ρ2L(w,Φ) + Q(w,Φ) ,

where summation over repeated indices is understood. We can simplify this
rather complicated expression as follows. First, note that

K minimal ⇐⇒ Γa
a = 0 ,

where summation over a is understood. Next, define

Lρ := −
(
ρ2∆K + ∆Sn−1 + (n − 1)

)
, (4.24)



944 F. MAHMOUDI, R. MAZZEO AND F. PACARD GAFA

as an operator on the spherical normal bundle SNK with the expression
(4.24) in any local coordinates. Also, the Jacobi (linearized mean curvature)
operator, for K is defined by

J := −∆N −RN − BN , (4.25)
cf. [L]. To explain the terms here, recall that the Levi–Civita connection for
g induces not only the Levi–Civita connection on K, but also a connection
∇N on the normal bundle NK. The first term here is simply the rough
Laplacian for this connection, i.e.

∆N := (∇N )∗∇N = ∇N
Ea

∇N
Ea

−∇N
(∇EaEa)T .

in the coordinates we have chosen. The second term is the contraction (in
normal directions) of the curvature operator for this connection,

RN := −
(
R(Ea, ·)Ea

)N
,

where Ea is (any) orthonormal frame for TK. Finally, the second funda-
mental form

B : TpK × TpK −→ NpK , B(X,Y ) := (∇XY )N , X, Y ∈ TpK ,

defines a symmetric operator
BN := B · Bt ,

in terms of the coefficients Γb
a := −B(Ea, Eb),

g(BNX,Y ) = Γb
a(X)Γa

b (Y ) ,

where summation over repeated indices is understood. We also use the
Ricci tensor

Ric(X,Y ) = g
(
R(X,Eγ)Eγ , Y

)
, X, Y ∈ TpM .

Finally, we introduce the operator
g( · , B) ◦ ∇2

K = g
(
· , B(Ea, Eb)

)(
∇Ea∇Eb

−∇(∇EaEb)T

)

in the coordinates we have chosen and the quadratic form
Ω( · ,· ) := 2

3g(RN · , · ) + 1
3 Ric( · , · ) + g(BN · , · )

acting on NpK. In terms of all of these notations, we have
Proposition 4.1. Let K be a minimal submanifold. Then the mean
curvature of Tρ(w,Φ) can be expanded as

ρmH(w,Φ) = (n − 1) − Ω(Θ,Θ)ρ2 + O(ρ3)

+ Lρw + ρg(JΦ,Θ) − 2ρ3g(Θ, B) ◦ ∇2
Kw

+ ρ2L(w,Φ) + Q(w,Φ) . (4.26)
The equation ρmH = n − 1 can now be written as

Lρw + ρg(JΦ,Θ) = Ω(Θ,Θ)ρ2 + O(ρ3)

+ 2ρ3g(Θ, B) ◦ ∇2
Kw + ρ2L(w,Φ) + Q(w,Φ) . (4.27)
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4.1 Decomposition of functions on SNK. Before proceeding, we
now state more clearly our notation for functions on SNK.

Let (ϕj , λj) be the eigendata of ∆Sn−1, with eigenfunctions orthonormal
and counted with multiplicity. These individual eigenfunctions ϕ1, . . . , ϕn

do not make sense on all of SNK, but their span is a well-defined subspace
S ⊂ L2(SNK); thus v ∈ S if its restriction to each fibre of SNK lies
in the span of {ϕ1, . . . , ϕn}. We denote by Π and Π⊥ the L2 orthogonal
projections of L2(SNK) onto S and S⊥, respectively.

Now, given any function v ∈ L2(SNK), we write
Πv = g(Φ,Θ) , Π⊥v = ρw ,

so that
v = ρw + g(Φ,Θ) ,

here Φ is a section of the normal bundle NK, and the somewhat elaborate
notation in the second summand here reflects the fact that any element of
S can be written (locally) as the inner product of a section of NK and
the vector Θ, whose components are the linear coordinate functions on
each Sn−1. We shall often identify this summand with Φ, and thus, in the
following, w and Φ will always represent the components of v in S⊥ and S,
respectively.

Later on we shall further decompose
w = w0 + w1 , (4.28)

where w0 is a function on K, and the integral of w1 over each fibre of SNK
vanishes.

Note that the operator,
J : v −→ g(JΦ,Θ) ,

defined for v = g(Φ,Θ), preserves S and is invertible since K is a non-
degerate minimal submanifold.

5 Improvement of the Approximate Solution

The first important step in solving (4.27) is to use an iteration scheme to
find a sequence of approximate solutions (w(i),Φ(i)) for which the estimates
for the error term are increasingly small. Namely

ρmH(w(i),Φ(i)) = n − 1 + O(ρi+3) ,

for all i ≥ 1.
Letting (w(0),Φ(0)) = (0, 0), we define the sequence (w(i+1),Φ(i+1)) ∈

S⊥ ⊕ S inductively as the unique solution to
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L0w
(i+1) + ρg(JΦ(i+1),Θ) = Ω(Θ,Θ)ρ2 + O(ρ3) + ρ2∆Kw(i)

+ 2ρ3g(Θ, B) ◦ ∇2
Kw(i) + ρ2L(w(i),Φ(i)) + Q(w(i),Φ(i)) . (5.29)

here
L0 := −

(
∆Sn−1 + (n − 1)

)
.

Observe, and this is the key point, that the operator ∆K acting on functions
has been moved to the right-hand side and hence, the operator on the left-
hand side is not elliptic anymore. This equation becomes simpler when
divided into its S⊥ and S components. Thus using that L0 annihilates S
and

Ω(Θ,Θ) ∈ S⊥ ,

since it is quadratic in Θ, (5.29) can be rewritten as the two separate
equations:

L0w
(i+1) = Π⊥(

Ω(Θ,Θ)ρ2 + O(ρ3) + ρ2∆Kw(i) + 2ρ3g(Θ, B) ◦ ∇2
Kw(i)

+ ρ2L(w(i),Φ(i)) + Q(w(i),Φ(i))
)
, (5.30)

and

g(JΦ(i+1),Θ) = Π
(
O(ρ2) + 2ρ2g(Θ, B) ◦ ∇2

Kw(i)

+ ρL(w(i),Φ(i)) + ρ−1Q(w(i),Φ(i))
)
,

since Π(∆Kw) = 0 for all w ∈ S.
That there is a unique solution now follows directly from the invertibility

of the operators J on S and L0 on S⊥, so the only issue is to obtain
estimates.
Lemma 5.1. For this sequence (w(i),Φ(i)), we have the estimates

w(i) = O(ρ2) ,

w(i+1) − w(i) = O(ρi+3) ,

Φ(i) = O(ρ2) ,

Φ(i+1) − Φ(i) = O(ρi+2) ,

for all i ≥ 1.

Proof. The estimates for (w(1),Φ(1)) are immediate, and the result for
i > 1 is proved by a standard induction using the general structure of the
operators L and Q. �

As already mentioned, the operator in the right-hand side of (5.30) is not
elliptic since L0 acts on functions defined on SNK and L0 does not involve
any derivatives with respect to ya. Nevertheless, since we are working with
functions in S, the equation,

L0w = f ,

can always be solved for any f ∈ S (we have in mind that this equation is
solved on each fiber of NK with the base point as a parameter), but without
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any gain of regularity in the ya variables, and in fact there is a “loss” of two
derivatives in the ya variables at each iteration. At first glance, it would
have been more natural to work with the operator Lρ, which is elliptic, and
solve the equation

Lρw = f ,

but the operator Lρ has the disadvantage of having a nontrivial kernel in S
each time n−1

ρ2 belongs to the spectrum of −∆K . This implies that the
corresponding iteration scheme, using the operator Lρ instead of L0, does
not work for any value of ρ. In addition, even if n−1

ρ2 is chosen not to belong
to the spectrum of −∆K, the norm of the inverse of Lρ will blow up as ρ
tends to 0 and hence the estimates for wi and Φi will not be as good as the
one stated in Lemma 5.1.

To conclude, the use of the iteration scheme (5.29) allows one to im-
prove the approximate solution to any finite order. Observe that the error
Ω(Θ,Θ) ρ2+O(ρ3) in (5.29) is smooth in the ya variables and hence loosing
finitely regularity in these variables is not a real issue.

Finally, replacing (w,Φ) by (w(i) + w,Φ(i) + Φ) in (4.27), the equation
we must solve becomes
1
ρLρw+ g(JΦ,Θ)−2ρ2g(Θ, B)◦∇2

Kw+ρLi(w,Φ) = Oi(ρi+2)+ 1
ρQi(w,Φ) .

(5.31)
This is of course simply the expansion of the equation

mH
(
w(i) + w,Φ(i) + Φ

)
=

n − 1
ρ

.

The linear and nonlinear operators Li and Qi appearing in this equation are
different from the ones before, but enjoy similar properties, uniformly in i.
The indices i are here to remind the reader that these quantities depend
on i.

6 Estimating the Spectrum of the Linearized Operators

We now examine the mapping properties of the linear operator
(w,Φ) �−→ 1

ρLρw + g(JΦ,Θ) − 2ρ2g(Θ, B) ◦ ∇2
Kw + ρLi(w,Φ) (6.32)

which appears in (5.31). This is not precisely the usual Jacobi operator
(applied to the function ρw + g(Φ,Θ)), because we are parametrizing this
hypersurface as a graph over Sρ(w(i),Φ(i)) using the vector field −Υ rather
than the unit normal.

To understand the difference between (6.32) and the Jacobi operator,
recall that if N is the unit normal to a hypersurface Σ and Ñ is any other
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transverse vector field, then hypersurfaces which are C2 close to Σ can be
parameterized as either

Σ � q �→ expM
q (vN) or Σ � q �→ expM

q (ṽÑ) .

The corresponding linearized mean curvature operators LΣ,N and LΣ,Ñ are
related by

LΣ,Ñ ṽ = LΣ,N

(
g(N, Ñ )ṽ

)
+ m(ÑT HΣ)ṽ ,

here ÑT is the orthogonal projection of Ñ onto TΣ. Since LΣ,N is self-
adjoint with respect to the usual inner product, we conclude that LΣ,Ñ is
self-adjoint with respect to the inner product

〈v, v′〉 :=
∫

Σ
vv′g(N, Ñ )dvolΣ .

Now suppose that Σ = Sρ(w(i),Φ(i)) and Ñ = −Υ. From Lemma 5.1
and Proposition 3.2 we have

g(N,−Υ) = 1 + O(ρ4) .

Furthermore, from Proposition 3.1 and Lemma 5.1, and the fact that K is
minimal, the volume forms of the tubes Sρ(w(i),Φ(i)) and SNK are related
by

dvolSρ(w(i),Φ(i)) = ρ(n−1)/2
(
1 + O(ρ2)

)
dvolSNK .

We define cρ,i > 0 by

g(N,−Υ)dvolSρ(w(i),Φ(i)) = ρ(n−1)/2cρ,idvolSNK , (6.33)
and the operator

Lρ,iv := cρ,i

(
1
ρLρw + g(JΦ,Θ) − 2ρ2g(Θ, B) ◦ ∇2

Kw + ρLi(w,Φ)
)

,

where we have decomposed v = ρw + g(Φ,Θ) as usual. Thanks to (6.33),
we can write

Lρ,iv = 1
ρLρw + g(JΦ,Θ) − 2ρ2g(Θ, B) ◦ ∇2

Kw + ρL̄i(w,Φ) , (6.34)

where L̄i enjoys properties similar to the one enjoyed by Li.
Finally, multiplying (5.31) by cρ,i gives one further equivalent form of

this equation,
Lρ,iv = Oi(ρ2+i) + 1

ρQ̄i

(
1
ρΠ⊥v,Πv

)
, (6.35)

where the nonlinear operator on the right has the same properties as before.
Associated to Lρ,i is the symmetric bilinear form form

Cρ,i(v, v′) :=
∫

SNK
vLρ,iv

′dvolSNK ,

and its associated quadratic form Qρ,i(v) := Cρ,i(v, v).

We shall study these forms as perturbations of the model forms
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C0(v, v′) := −
∫

SNK
w′(ρ2∆Kw + ∆Sn−1w + (n − 1)w

)
dvolSNK

+
ωn−1

n

∫

K
g(JΦ,Φ′)dvolK ,

and associated quadratic form Q0(v) := C0(v, v), where ωn−1 = |Sn−1| is
the volume of Sn−1. Observe that∫

SNK
g(Φ,Θ)2dvolSNK =

ωn−1

n

∫

K
|Φ|2dvolK .

To make precise the sense in which Q0 and Qρ,i are close, define the
weighted norm

‖v‖2
H1

ρ
:=

∫

SNK

(
ρ2|∇Kw|2 + |∇Sn−1w|2 + |w|2

)
dvolSNK

+
∫

K

(
|∇KΦ|2 + |Φ|2

)
dvolK ,

and also
‖v‖2

L2
ρ

:=
∫

SNK
|w|2dvolSNK +

∫

K
|Φ|2dvolK .

Using (6.33) and the properties of L̄i, we have the important

Proposition 6.1. There exists a constant c > 0 (independent of i) such
that ∣

∣Cρ,i(v, v′) − C0(v, v′)
∣
∣ ≤ cρ‖v‖H1

ρ
‖v′‖H1

ρ
. (6.36)

Proof. This estimate arises from the fact that −2ρg(Θ, B)◦∇2
Kw+L̄i(w,Φ)

certainly involves terms of the form w, ρ∂yaw, ρ∂ya∂ybw, ∂zjw, ∂zj∂zj′w and
also Φj, ∂yaΦj and ∂ya∂ybΦj. Hence, after integration by parts,

∫

SNK

(
− 2ρg(Θ, B) ◦ ∇2

Kw + L̄i(w,Φ)
)(

ρw′ + g(Φ′,Θ)
)
dvolSNK ,

can be bounded by a constant times ‖v‖H1
ρ
‖v′‖H1

ρ
. �

6.1 Estimates for eigenfunctions with small eigenvalues. We
prove that eigenfunctions of Lρ,i corresponding to small eigenvalues are
localized in the sense that they are essentially functions defined on K.

Lemma 6.1. Let σ be an eigenvalue of Lρ,i and v = ρw + g(Φ,Θ) a
corresponding eigenfunction. There exist constants c, c0 > 0 such that if
|σ| ≤ c0, then

‖v − ρw0‖2
H1

ρ
≤ cρ‖v‖2

H1
ρ
,

for all ρ ∈ (0, 1), where w = w0 + w1 is the decomposition from (4.28).
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Proof. For any v′ = ρw′ + g(Φ′,Θ), we have

Cρ,i(v, v′) = σ

∫

SNK

(
ρ2ww′ + g(Φ,Θ)g(Φ′,Θ)

)
dvolSNK

= σ

∫

SNK
ρ2ww′dvolSNK + σ

ωn−1

n

∫

K
g(Φ,Φ′)dvolK .

In addition, (6.36) gives
∣
∣∣
∣

∫

SNK

(
ρ2∇Kw∇Kw′ + ∇Sn−1w∇Sn−1w′ − (n − 1 + σρ2)ww′)dvolSNK

− ωn−1

n

∫

K

(
g(JΦ,Φ′) − σg(Φ,Φ′)

)
dvolK

∣
∣
∣∣ ≤ cρ‖v‖H1

ρ
‖v′‖H1

ρ
. (6.37)

Step 1: Take w′ = 0 and Φ′ = Φ+ (resp. Φ′ = Φ−) in (6.37), where Φ+

(resp. Φ−) is the L2 projection of Φ over the space of eigenfunctions of J

associated to positive (resp. negative) eigenvalues. This yields∣
∣∣
∣

∫

K

(
g(JΦ,Φ±) − σg(Φ,Φ+)

)
dvolK

∣
∣∣
∣ ≤ cρ‖v‖H1

ρ

∥∥g(Φ±,Θ)
∥∥

H1
ρ
.

Since J is invertible, there exists c1 > 0 such that

2c1

∥
∥g(Φ±,Θ)

∥
∥2

H1
ρ
≤

∣∣
∣∣

∫

K
g(JΦ,Φ±)dvolK

∣∣
∣∣ ,

hence (
2c1 − |σ|

)∥∥g(Φ±,Θ)
∥
∥2

H1
ρ
≤ cρ‖v‖2

H1
ρ
.

Assuming c1 ≥ |σ|, we conclude that
∥
∥g(Φ±,Θ)

∥
∥2

H1
ρ
≤ cρ‖v‖2

H1
ρ
.

Step 2: Now use (6.37) with Φ′ = 0 and w′ = w1 to get
∣
∣∣
∣

∫

SNK

(
ρ2|∇Kw1|2 + |∇Sn−1w1|2 − (n − 1 − σρ2)|w1|2

)
dvolSNK

∣
∣∣
∣

≤ cρ‖v‖H1
ρ
‖ρw1‖H1

ρ
.

However, since

Πw1 = 0 and
∫

Sn−1

w1dvolSn−1 = 0 ,

we have ∫

Sn−1

∣
∣∇Sn−1w1

∣
∣2dvolSn−1 ≥ 2n

∫

Sn−1

|w1|2dvolSn−1 ,

hence∣∣
∣∣

∫

SNK

(
ρ2|∇Kw1|2 + 1

2 |∇Sn−1w1|2 +
(
1 − |σ|ρ2

)
|w1|2

)
dvolSNK

∣∣
∣∣

≤ cρ‖v‖H1
ρ
‖ρw1‖H1

ρ
.
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This implies that
‖ρw1‖2

H1
ρ
≤ cρ‖v‖2

H1
ρ
,

for all ρ ∈ (0, 1), provided |σ| ≤ 1/2. This completes the proof if c0 =
min(c1, 1/2), since v − ρw0 = ρw1 + g(Φ,Θ). �

6.2 Variation of small eigenvalues with respect to ρ. We shall
need to obtain some information about the spectral gaps of Lρ,i when ρ is
small, and to do this, it is necessary to understand the rate of variation of
the small eigenvalues of this operator.
Lemma 6.2. There exist constants c0, c > 0 such that, if σ is an eigenvalue
of Lρ,i with |σ| < c0, then

ρ∂ρσ ≥ 2(n − 1) − cρ ,

provided ρ is small enough.

Proof. There is a well-known formula for the variation of a simple eigenvalue

∂ρσ =
∫

SNK
v(∂ρLρ,i)vdvolSNK ,

where Lρ,iv = σv is normalized by ‖v‖L2 = 1. Here, by definition,

‖v‖2
L2 :=

∫

SNK
v2dvolSNK .

Complications arise in the presence of multiplicities, but a result of Kato
[K] shows that if one considers the derivative of the eigenvalue as a multi-
valued function, then an analogue of this same formula holds for self adjoint
operators:

∂ρσ ∈
{∫

SNK
v(∂ρLρ,i)vdvolSNK : Lρ,iv = σv , ‖v‖L2 = 1

}
.

Hence we must provide bounds for the set on the right. We do this by com-
paring to the model case and using the bounds for eigenfunctions obtained
in the last subsection.

Assume that Lρ,iv = σv, but rather than normalizing the function v by
‖v‖L2 = 1, assume instead that ‖v‖L2

ρ
= 1. In order to compute ∂ρLρ,i,

recall that
w = ρ−1Π⊥v and that g(JΦ,Θ) = Πv ,

so we can write

Lρ,iv = −∆K(Π⊥v) + 1
ρ2L0(Π⊥v) + Πv − 2ρg(Θ, B) ◦ ∇2

K(Π⊥v)

+ ρL̄i(ρ−1Π⊥v,Πv) .

Since Π and Π⊥ are independent of ρ, we have
∂ρLρ,iv = − 2

ρ3L0(Π⊥v) − 2g(Θ, B) ◦ ∇2
K(Π⊥v) + L̃i(ρ−1Π⊥v,Πv) ,
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where the operator L̃i varies from line to line but satisfies the usual as-
sumptions. This now gives

∣
∣
∣∣

∫

SNK
v(∂ρLρ,i)vdvolSNK − 2

ρ

∫

SNK

(
|∇Sn−1w|2 − (n − 1)|w|2

)
dvolSNK

∣
∣
∣∣

≤ c‖v‖2
H1

ρ
. (6.38)

Now, if v is an eigenfunction of Lρ,i, we have

Qρ,i(v) = σ‖v‖2
L2 = σ

∫

SNK
ρ2|w|2dvolSNK + σ

ωn−1

n

∫

K
|Φ|2dvolK ,

and hence by (6.36),
∣
∣∣
∣

∫

SNK

(
ρ2|∇Kw|2 + |∇Sn−1w|2 − (n − 1 + σρ2)|w|2

)
dvolSNK

− ωn−1

n

∫

K

(
g(JΦ,Φ) + σg(Φ,Φ)

)
dvolK

∣∣
∣∣ ≤ cρ‖v‖2

H1
ρ
, (6.39)

By Lemma 6.1, if we assume that |σ| ≤ c0 and if, as usual we decompose
v = ρw + g(Φ,Θ), we get∫

SNK
|∇Sn−1w|2dvolSNK +

∫

K

(
|∇KΦ|2 + |Φ|2

)
dvolK ≤ cρ‖v‖2

H1
ρ

, (6.40)

(observe that ∇Sn−1w = ∇Sn−1w1 if w is decomposed as w = w0 + w1 as
usual) and inserting this in (6.39) gives∣∣

∣∣

∫

SNK

(
ρ2|∇Kw|2 − (n − 1 + σ)|w|2

)
dvolSNK

∣∣
∣∣ ≤ cρ‖v‖2

H1
ρ

. (6.41)

Adding these last two estimates now implies that

‖v‖2
H1

ρ
≤ cρ‖v‖2

H1
ρ

+ c

∫

SNK
|w|2dvolSNK .

Thus, when ρ is small enough,

‖v‖2
H1

ρ
≤ c

∫

SNK
w2dvolSNK ≤ c‖v‖2

L2
ρ
≤ c ,

if we normalize v by ‖v‖L2
ρ

= 1. From (6.40) again
∫

SNK
|∇Sn−1w|2dvolSNK +

∫

K

(
|∇KΦ|2 + |Φ|2

)
dvolK ≤ cρ .

Inserting this into (6.38), and using again that ‖v‖L2
ρ

= 1, we get
∣
∣∣
∣

∫

SNK
v(∂ρLρ,i)vdvolSNK − 2

ρ
(n − 1)

∣
∣∣
∣ ≤ c (6.42)

for all eigenfunction v such that Lρ,iv = σv which is normalized by ‖v‖L2
ρ
=1.

This already implies that ∂ρσ > 0 for ρ small enough. But observing
that we always have ||v||L2 ≤ ‖v‖L2

ρ
, we conclude that
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inf
Lρv=σv
‖v‖L2=1

∫

SNK
v(∂ρLρ)vdvolSNK

≥ inf
Lρv=σv
‖v‖

L2
ρ
=1

∫

SNK
v(∂ρLρ)vdvolSNK ,

and (6.42) implies that
∂ρσ ≥ 2

ρ (n − 1) − c.

This completes the proof of the result. �

6.3 The spectral gap at 0 of Lρ,i. We can now prove a quantitative
statement about the clustering of the spectrum at 0 of Lρ,i as ρ ↘ 0. The
ultimate goal is to estimate the norm of the inverse of this operator, but by
self-adjointness, this is equivalent to an estimate on the size of the spectral
gap at 0.

Lemma 6.3. Fix any q ≥ 2. Then there exists a sequence of disjoint
nonempty open intervals I� = (ρ−� , ρ+

� ), ρ±� → 0 and a constant cq > 0 such
that when ρ ∈ Iq := ∪�I�, the operator Lρ,i is invertible and

(Lρ,i)−1 : L2(SNK) −→ L2(SNK) ,

has norm bounded by cqρ
−k−q+1, uniformly in ρ ∈ I. Furthermore, Iq :=

∪�I� satisfies ∣∣H1((0, ρ) ∩ Iq) − ρ
∣∣ ≤ cρq, ρ ↘ 0 .

Proof. An estimate for the size of the spectral gap at 0 is related to the
spectral flow of Lρ,i, and so it suffices to find an asymptotic estimate for
the number of negative eigenvalues of Lρ,i. Define the two quadratic forms

Q±(v) := Q0(v) ± γρ‖v‖2
H1

ρ
.

From (6.36), if γ > 0 is sufficiently large, then
Q− ≤ Qρ,i ≤ Q+,

and this will give a two-sided bound for the index of Qρ,i, i.e. the dimension
of the largest space where Qρ,i is negative.

Given any function w defined on SNK, we write

D±
0 (w) := (1 ± γρ)

∫

K
ρ2|∇Kw|2dvolSNK − (n − 1 ∓ γρ)

∫

K
|w|2dvolK ,

D±
1 (w) := (1 ± γρ)

∫

SNK

(
ρ2|∇Kw|2 + |∇Sn−1w|2

)
dvolSNK

− (n − 1 ∓ γρ)
∫

SNK
|w|2dvolK ,
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and finally, we define

D±(Φ) := −(1 ± γρ)
∫

K
g(JΦ,Φ)dvolK .

With these definitions in mind, we have

Q±(v) = ωn−1D
±
0 (w0) + D±

1 (w1) +
ωn−1

n
D±(Φ) ,

if we decompose v = ρw + g(Φ,Θ) and further decompose w = w0 + w1 as
usual.

If 1 − γρ > 0, then the index of D± is equal to the index of the mi-
nimal submanifold K, and hence does not depend on ρ. Next, if
2n(1 − γρ) − (n − 1 + γρ) > 0, then the index of D±

1 equals 0 since we have∫

Sn−1

|∇Sn−1w1|2dvolSn−1 ≥ 2n
∫

Sn−1

|w1|2dvolSn−1 .

So it only remains to study the index of D±
0 . We denote by

µ0 < µ1 ≤ . . . ≤ µj ≤ . . .

the eigenvalues of −∆K which are counted with multiplicity. Weyl’s asymp-
totic formula states that

#{j ∈ N : µj ≤ µ} ∼ cKµk/2 ,

where cK > 0 only depends on the dimension and the volume of K. Now,
the index of D±

0 is equal to the largest j ∈ N such that
(1 ± γρ)ρ2µj < (n − 1 ∓ cρ) .

Using Weyl’s asymptotic formula, we conclude that

IndD±
0 ∼ cK

(
n − 1

ρ2

)k/2

,

and hence we have proved that the index Qρ,i is asymptotic to cρ−k, where
c only depends on K and m.

Let ρ� ↘ 0 be the decreasing sequence corresponding to the values at
which the index of Qρ,i changes, counted according to the dimension of the
nullspace of Lρ�,i, i.e.

ρ�−1 < ρ� = . . . = ρ�′ < ρ�′+1 ,

if dim Ker Lρ�,i = �′ − � + 1. This is well defined since, by Lemma 6.2, the
small eigenvalues of Lρ,� are monotone increasing for ρ small enough and
hence, the function

ρ −→ IndQρ,i ,

is monotone decreasing for ρ small.
The asymptotic estimates for IndQ2ρ,i and IndQρ,i imply that

rρ := #
{
� : ρ� ∈ (ρ, 2ρ)

}
∼ cρ−k.
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Letting λρ denote the sum of lengths of intervals (ρ�+1, ρ�) for which
ρ�+1 ∈ (ρ, 2ρ) and (ρ� − ρ�+1) ≤ ρk+q,

then we have λρ ≤ cρq. From this we conclude that λ̃ρ, the sum of lengths
of all intervals (ρ�+1, ρ�) where

ρ�+1 < ρ and (ρ� − ρ�+1) ≤ ρk+q ,

is also bounded by cρq, where the constant c > 0 depends on q.
We set

Ĩq :=
⋃

�∈Jq

(ρ�+1, ρ�), where � ∈ Jq ⇐⇒ ρ� − ρ�+1 > ρk+q
� .

Then by the above, we have∣
∣H1((0, ρ) ∩ Ĩq) − ρ

∣
∣ ≤ cqρ

q.

Finally, consider any � ∈ Jq and ρ ∈ (ρ�+1, ρ�). We denote by
σ−(ρ) < 0 < σ+(ρ)

the eigenvalues of Lρ,i which are closest to 0. By construction,
lim

ρ↘ρ�+1

σ+(ρ) = lim
ρ↗ρ�

σ−(ρ) = 0 .

By Lemma 6.2,
σ−(ρ) ≤ 2(n − 1) log(ρ/ρ�) + c(ρ� − ρ) ,

σ+(ρ) ≥ 2(n − 1) log(ρ/ρ�+1) − c(ρ − ρ�+1) ,
(6.43)

for all ρ ∈ (ρ�+1, ρ�). Hence by the monotonicity of small eigenvalues,
σ−(ρ) ≤ σ−(ρ� − ρk+q

� /4) < 0 < σ+(ρ�+1 + ρk+q
� /4) ≤ σ+(ρ) ,

if
ρ ∈ Iq :=

⋃

�

(ρ�+1 + ρk+q
� /4, ρ� − ρk+q

� /4) ,

and, using (6.43), we conclude that the infimum of the absolute value of the
eigenvalues of Lρ,i is bounded from below by a constant (only depending on
K and m) times ρk+q−1

� , provided ρ� is small enough. Moreover, as above
we have ∣

∣H1((0, ρ) ∩ Iq) − ρ
∣
∣ ≤ cqρ

q.

The result then follows at once. �

7 Existence of Constant Mean Curvature Hypersurfaces

We now use the results of the previous sections in order to solve equation
(6.35) which reduces to finding a fixed point

v = (Lρ,i)−1
(
Oi(ρ2+i) + 1

ρQ̄i

(
1
ρΠ⊥v,Πv

))
.

We start with the following elementary observation
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Lemma 7.1. There exists a constant c > 0 such that

ρ2+α‖v‖C2,α(SNK) ≤ c ρ2‖Lρ,iv‖C0,α(SNK) + cρ−k/2‖v‖L2(SNK) .

Proof. This is a simple application of (rescaled) standard elliptic estimates.
We set f := Lρ,iv and, as in §3.1, we use local normal coordinates ȳ = y/ρ
to parameterize a ball of radius 2ρR in K, for some fixed small constant
R > 0, and local coordinates z to parameterize Sn−1. Define the functions

v̄(z, ȳ) := v(z, ρȳ) and f̄(z, ȳ) := ρ2f(z, ρȳ) .

It is easy to check that f := Lρ,iv translates into L̄ρ,iv̄ = f̄ , where L̄ρ,i is a
second order elliptic operator whose coefficients are bounded uniformly as
ρ tends to 0. Moreover, the principal part of L̄ρ,i is the Laplace operator
on SNK. Standard elliptic estimates yield

‖v̄‖C̄2,α(BR×Sn−1) ≤ c‖f̄‖C̄0,α(BR×Sn−1)+c

(∫

Sn−1

(∫

B2R

|v̄|2dȳ

)
dvolSn−1

)1
2

,

where, to evaluate the Hölder norms in C̄p,α one takes derivatives with
respect to ȳ and z. Going back to the functions v and f we have

ρ2+α‖v‖C2,α(BρR×Sn−1) ≤ c‖v̄‖C̄2,α(BR×Sn−1) ,

‖f̄‖C̄0,α(BR×Sn−1) ≤ cρ2‖f‖C0,α(BρR×Sn−1) ,

and
(∫

Sn−1

(∫

B2R

|v̄|2dȳ

)
dvolSn−1

)1
2

≤ cρ−
k
2

(∫

Sn−1

(∫

B2ρR

|v|2dy

)
dvolSn−1

)1
2

,

the result then follows at once. �

We fix q ≥ 2 and α ∈ (0, 1) and define
D := 3

2 k + q + α + 1 and i = 3k + 2q + 4 > 2D + 1 .

Collecting the result of Lemma 6.3 and the result of the previous lemma,
we conclude that, if ρ ∈ Iq, then

‖v‖C2,α(SNK) ≤ cρ−D‖Lρ,iv‖C0,α(SNK) , (7.44)
where the constant c > 0 does not depend on ρ (but depends on i, hence
on q).

We define the nonlinear mapping

Nρ(v) := (Lρ,i)−1
(
Oi(ρ2+i) + 1

ρQ̄i

(
1
ρΠ⊥v,Πv

))
.

It follows from (7.44) that we have∥∥Nρ(0)
∥∥
C2,α ≤ cq

2 ρ2+i−D,

for some constant cq > 0 depending on q but independent of ρ ∈ Iq.
Given ρ > 0, we set

Bρ :=
{
v ∈ C2,α(SNK) : ‖v‖C2,α ≤ cqρ

2+i−D
}

.
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Using the properties of the operator Q̄i, it is easy to check that there exists
ρq > 0, only depending on q, such that, for all ρ ∈ (0, ρq) ∩ Iq,

∥
∥Nρ(v)

∥
∥
C2,α(SNK)

≤ c0ρ
2+i−D,

and ∥∥Nρ(v) −Nρ(v′)
∥∥
C2,α ≤ cρi−1−2D‖v − v′‖C2,α ,

for all v, v′ ∈ Bρ. In particular, the mapping Nρ admits a (unique) fixed
point

vρ = ρwρ + g(Φρ,Θ) ,

in Bρ. This yields the existence of Sρ(w(i) +wρ,Φ(i) +Φρ), a constant mean
curvature perturbation of the tube Sρ(w(i),Φ(i)) for all ρ ∈ (0, ρq)∩Iq. The
proof of the theorem is therefore complete with

I := ∪q≥2((0, ρq) ∩ Iq) .
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