
STATIONARY SOLUTIONS TO A KELLER-SEGEL
CHEMOTAXIS SYSTEM

MONICA MUSSO AND JUNCHENG WEI

Abstract. We consider the following stationary Keller-Segel system
from chemotaxis

∆u− au + up = 0, u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω,

where Ω ⊂ R2 is a smooth and bounded domain. We show that given any
two positive integers K, L, for p sufficiently large, there exists a solution
concentrating in K interior points and L boundary points. The location
of the blow-up points is related to the Green’s function. The solutions
are obtained as critical points of some finite dimensional reduced energy
functional. No assumption on the symmetry, geometry nor topology of
the domain is needed.

1. Introduction and statement of main results

Chemotaxis is the influence of chemical substances in the environment on
the movement of mobile species (amoebae). This can lead to strictly ori-
ented movement or to partially oriented and partially tumbling movement.
A positive chemotaxis is a movement towards a higher concentration of the
chemical substance while the movement towards regions of lower chemical
concentration is called negative chemotactical movement. Chemotaxis is
an important means for cellular communication. Communication by chem-
ical signals determines how cells arrange and organize themselves, like for
instance in development or in living tissues.

A basic model in chemotaxis was introduced by Keller and Segel [29].
They considered an advection-diffusion system consisting of two coupled
parabolic equations for the concentration of the considered species and that
of the chemical released, represented, respectively, by positive quantities
v(x, t) and u(x, t) defined on a bounded, smooth domain in RN under no-
flux boundary conditions. The system reads as follows:





vt = D1∆v − χ∇(v∇φ(u)), in Ω× (0, T )
ut = D2∆u + k(u, v), in Ω× (0, T )

u, v > 0 in Ω, ∂u
∂ν = ∂v

∂ν = 0 on ∂Ω,

(1.1)

where D1, D2, and χ are positive constants; φ is a smooth function such
that φ

′
(r) > 0 for r > 0; k is a smooth function with kv ≥ 0 and ku ≤ 0; Ω
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is a smooth and bounded domain in RN ; ν denotes the outer unit normal
to ∂Ω. A commonly used k(u, v) is k(u, v) = −au + bv with a, b > 0. The
function φ(u) is the so-called sensitivity function.

When φ(u) = u, system (1.1) equals the most common formulation of the
Keller-Segel model. One interesting question in connection with this version
of the model is the possibility of “Chemotactic Collapse”, i.e., solutions may
become unbounded in finite or infinite time for n ≥ 2. We refer the reader
for instance to [4, 7, 8], [21]-[28], [34]-[37], [44]-[45].

The functional forms in the most common version of the Keller-Segel
model are based on simplifying assumptions made by Nanjundiah in [33].
The original paper by Keller-Segel [29] allows more general functional forms.
There have been several attempts to introduce certain reasonable effects
in the Keller-Segel equations that might prevent blow-up. See [26] and
[27]. The boundedness and blow-up of solutions for Keller-Segel system
with general sensitivity functions are studied in [25].

In this paper, we are concerned with stationary solutions to Keller-Segel
system with logarithmic sensitivity function

φ(u) = log u. (1.2)

This point of view was first taken by Lin, Ni and Takagi [31].
Since

∫
Ω v(x, t)dx =

∫
Ω v0(x)dx for all t > 0 by virtue of the Neumann

boundary condition, the steady-state problem (1.1) for positive functions v
and u is reduced to a single equation for u:

ε2∆u− au + up = 0 in Ω, u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω (1.3)

for some constant ε = ε(D2, v̄), where v̄ stands for the average of v, i.e.,
v̄ = 1

|Ω|
∫
Ω vdx, and

p =
χ

D1
. (1.4)

In the last decade, a lot of works have been done to (1.3) in the case of
small diffusion coefficient, i.e., ε << 1, after the fundamental works of Ni
and Takagi [38] and [39], in which they showed that the least energy solution
has a boundary spike at the most curved part of ∂Ω. See [3], [9], [17], [18],
[30], [32], [40], [47] and the references therein. In particular, we mention the
result of [17], in which they showed that for any two nonnegative integers
K, L ≥ 0, K + L > 0, (1.3) has a solution with K interior spikes and L
boundary spikes, provided that ε is small and p is subcritical.

In this paper, we assume that N = 2 and ε is finite. (Without loss of
generality, we let ε = 1.) We consider another limit p → +∞. In particular,
we show that for any two nonnegative integers K,L, K + L > 0, (1.3) has
a solution with K interior spikes and L boundary spikes, provided that p is
large. More precisely, we consider the following nonlinear problem

∆u− au + up = 0 in Ω, u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω (1.5)
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where Ω is a smooth and bounded domain in R2.
Let y ∈ Ω̄. We define G(x, y) to be Green function solving the following

problem:

∆xG(x, y)− aG(x, y) + δy = 0 in Ω,
∂G(x, y)

∂νx
= 0 on ∂Ω.

(1.6)

Now we define the regular part of G(x, y):

H(x, y) :=





G(x, y) + 1
2π log |x− y|, if y ∈ Ω,

G(x, y) + 1
π log |x− y|, if y ∈ ∂Ω.

(1.7)

In this way, the function H(·, y) is C1,α in Ω̄.
For d > 0 sufficiently small and m = K + L, we define a configuration

space as:

Md :=
{
ξ = (ξ1, ..., ξm) ∈ ΩK × (∂Ω)L

∣∣∣ min
i=1,...,K

d(ξi, ∂Ω) ≥ d,

min
i6=j

|ξi − ξj | ≥ d
}
. (1.8)

Let ξ = (ξ1, ..., ξm) ∈Md. We set

ϕm(ξ) :=
m∑

k=1

c2
kH(ξk, ξk) +

∑

i6=j

cicjG(ξi, ξj). (1.9)

Here the constants ci are defined as follows

ci :=





8π, if i = 1, . . . ,K,

4π, if i = K + 1, . . . ,m.
(1.10)

Our result is

Theorem 1. Let Ω be a smooth and bounded domain in R2, and K,L ∈
IN∗ = IN ∪ {0} be such that m = K + L ≥ 1. There exists pK,L > 0
such that for p > pK,L, problem (1.5) has a positive solution up with the
following property: up has K + L local maximum points ξp

i , i = 1, ..., K + L
such that ξp

i ∈ Ω, i = 1, ..., K and ξp
i ∈ ∂Ω, i = K + 1, ..., K + L. The m-

tuple ξp = (ξp
1 , . . . , ξp

m) converges (up to subsequence) to ξ̄ = (ξ̄1, . . . , ξ̄m) ∈
ΩK × (∂Ω)L, so that

ϕm(ξp
1 , ..., ξp

m) → ϕm(ξ̄) ≡ min
ξ∈Md

ϕm(ξ) as p →∞.

Furthermore, for any δ > 0

up → 0 uniformly in Ω \ ∪m
j=1Bδ(ξ

p
j )

and
sup

x∈Bδ(ξp
j )

up(x) → √
e

as p →∞.
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Remark 1.1. The existence of a global minimum for the function ϕm(ξ)
in Md follows from the properties of the Green function - see the proof of
Lemma 6.1.

Remark 1.2. A biological interpretation of Theorem 1 is as follows: The
Keller-Segel model with logarithmic sensitivity function suggests that it is
possible for amoebae to form stationary aggregates if p = χ

D1
is large. An

interesting question is the stability of such solutions. We believe that the
one with K + L = 1 is stable. (The stability of spike solutions when ε is
small has been studied in [43].)

It is important to remark the analogy existing between our results and
those known for the Dirichlet problem

∆u + up = 0 in Ω, u = 0 on ∂Ω. (1.11)

Asymptotic behavior of least energy solutions of (1.11) is well understood
after the works [1, 19, 41, 42]: pup approaches a Dirac delta at the harmonic
center of Ω. Construction of solutions when p is large has been achieved in
[16], in which it is shown that problem (1.11) has solutions with K interior
spikes if Ω is not simple connected. Note that our results here do not require
any properties of Ω.

Our basic strategy is to connect problem (1.5) when p is large with the
following nonlinear Neumann problem

∆u− au + ε2eu = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω. (1.12)

It has been shown in [14] that problem (1.12) admits solutions with K
interior spikes and L boundary spikes when ε is small. A main difficulty in
(1.5) is that the error term is only O( 1

p2 ) = O( 1
| log ε|2 ). On the other hand,

the spectrum gap is of the order O( 1
| log ε|) which makes this problem more

difficult than (1.12). (For (1.12) the error is of the order O(ε).) A further
expansion of the approximate solution and the errors up to the order O( 1

p4 ) is
needed. Finally, we remark that related constructions for problems involving
exponential nonlinearity have been performed in [2], [10], [11], [13] and [15].

The proof of our result is based on a Liapunov-Schmidt reduction. The
scheme of the proof is the following: we introduce a first approximation for
the solution (ansatz) and we reduce problem (1.5) to a fixed point problem.
This is contained in Section 2. We solve the fixed point problem first in
the orthogonal of a finite dimensional space. In order to do so we first need
to study the invertibility of a certain linear operator, subject to suitable
orthogonality conditions. This is done in Section 3. Section 4 is devoted to
the resolution of the complete fixed point problem. In Section 5 we prove
that finding a solution to (1.5) becomes at this point equivalent to finding a
critical point of the function ϕm introduced in (1.9). The proof of Theorem
1 is contained in Section 6.
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Throughout the paper, without loss of generality, we will assume that the
constant a which appears in Problem (1.5) is equal to 1. The letter C will
always denote various generic constants which are independent of p ≥ 1.

2. Ansatz

In this section we introduce the basic elements to build a solution to
problem (1.5). The basic idea is to build a solution (see (2.13)) with error
in the order of O( 1

p4 ) (see estimate (2.24)–this estimate is needed to control
the spectrum gap, see Lemma 3.2).

Let us first introduce the standard single bubble solution. Given ξj ∈ Ω̄,
µj > 0 we call

ω0j(y) := ωj(|y − ξ′j |),
where ωj(r) is the radial solution to ∆u+ eu = 0 in R2 with

∫
eu < ∞ given

by

ωj(r) = log
8µ2

j

(µ2
j + r2)2

,

and
ξ′j = e

p
4 ξj .

In order to construct a first approximation for a solution to (1.5), we intro-
duce the following functions

u0j(x) := p + ω0j(e
p
4 x), x ∈ Ω, (2.1)

which has the explicit expression

u0j(x) = log
8µ2

j

(e−
p
2 µ2

j + |x− ξj |2)2
.

It turns out that u0j is not good enough. We have to introduce the next
two terms in the expansion. Thus, for i = 1, 2, we define

uij(x) := ωij(e
p
4 x), x ∈ Ω, (2.2)

where the functions ωij , for i = 1, 2, introduced above, are defined as follows.
Let ω1j be the solution to

∆ω1j + eω0jω1j = f1j , (2.3)

where f1j is given by

f1j(y) =
1
2
eω0jω2

0j ,

with the properties that

ω1j(y) = ω1j(|y − ξ′j |)
and that

ω1j(y) = C1j log
|y − ξ′j |

µj
+ O(

1
|y − ξ′j |

) as |y − ξ′j | → ∞,
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where the constant C1j in the above formula is explicit, namely

C1j = 8 log µj + 12− 4 log 8. (2.4)

Let us now define f2j to be given by

f2j(y) = f2j(|y − ξ′j |) = eω0j

(
ω0jω1j − 1

3
ω3

0j −
1
2
ω2

1j −
1
8
ω2

0j +
1
2
ω2

0jω1j

)

and ω2j a solution of

∆ω2j + eω0jω2j = f2j (2.5)

with the property that

ω2j(y) = ω2j(|y − ξ′j |)
and

ω2j(y) = C2j log
|y − ξ′j |

µj
+ O(

1
|y − ξ′j |

) as |y − ξ′j | → ∞ (2.6)

for some explicit constant C2j , depending on µj . It is easy to prove the
existence of ω1j and ω2j .

As we will see below, a direct computation shows that a proper multiple
of the sum of uij , for i = 0, 1, 2, defined in (2.1) and (2.2), almost solves the
equation in Problem (1.5). In order now that this first approximation fits
the boundary condition, we need to introduce a further correction.

Let Hij be the solution of




−∆Hij + Hij = −uij , in Ω,

∂Hij

∂ν = −∂uij

∂ν , on ∂Ω.

(2.7)

Using the asymptotic behaviors of the functions ωij , one can easily prove
the following

Lemma 2.1. For any 0 < α < 1,

H0j(x) = cjH(x, ξj)− log 8µ2
j + O(e−α p

4 ) (2.8)

and, for i = 1, 2

Hij(x) = −cj

4
CijH(x, ξj) + Cij log µj − Cij

4
p + O(e−α p

4 ) (2.9)

uniformly in Ω, where H is the regular part of the Green function defined
(1.7), the constants Cij are given by (2.4) and (2.6), while cj is defined in
(1.10).

We postpone the proof of this Lemma to the end of this section.

We have now all the elements to define a first approximation for a solution
to (1.5). Set

ũij(x) := uij(x) + Hij(x), x ∈ Ω. (2.10)
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A direct consequence of Lemma 2.1 is

ũ0j(x) = cjG(x, ξj) + O(e−α p
4 ) (2.11)

and, for i = 1, 2,

ũij(x) = −cj
Cij

4
G(x, ξj) + O(e−α p

4 ) (2.12)

uniformly in C1 sense over compacts of Ω̄ \ {ξj}.
We will look for solutions to (1.5) whose main part is given by the function

U(x) defined as a proper multiple of the sum of the functions ũij , namely

U(x) :=
e

p
2(p−1)

p
p

p−1

k∑

j=1


 ∑

i=0,1,2

1
pi

ũij(x)


 . (2.13)

In order to understand better the problem, it is now useful to perform the
change of variables

v(y) = e
− p

2(p−1) u(e−
p
4 y) (2.14)

for y ∈ Ωp ≡ e
p
4 Ω. Observe that u is a solution of problem (1.5) if and only

if the function v is a solution to

∆v − e−
p
2 v + vp = 0 in Ωp, u > 0 in Ωp,

∂v

∂ν
= 0 on ∂Ωp.

(2.15)

In the expanded variable y ∈ Ωp, we define V (y) = e
− p

2(p−1) U(e−
p
4 y) whose

explicit expression is given by

V (y) :=
1

p
p

p−1

k∑

j=1


 ∑

i=0,1,2

1
pi

ûij(y)


 (2.16)

where ûij are defined as follows

ûij(y) := ũij(e−
p
4 y), y ∈ Ωp. (2.17)

We will seek for solution v of (2.15) of the form

v = V + φ.

Problem (2.15) can be stated as to find φ a solution to




−∆φ + e−
p
2 φ−Wφ = R + N(φ), in Ωp,

∂φ
∂ν = 0, on ∂Ωp,

(2.18)

where the “nonlinear term” N(φ) is given by

N(φ) = (V + φ)p − V p − pV p−1φ (2.19)

and the “error term” R is given by

R = ∆V − e−
p
2 V + V p. (2.20)
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Finally,

W (y) = pV p−1(y). (2.21)

At this point it is convenient to make a choice of the parameters µj , the main
objective being to make the error term small. We assume the parameters
µj to be given by the relation

log 8µ2
j := cjH(ξj , ξj) +

∑

i6=j

ciG(ξi, ξj)− C1j

4

−1
p


C1j

4


cjH(ξj , ξj) +

∑

i6=j

ciG(ξi, ξj) + 4 log µj


 +

C2j

4




−C2j

4p2


cjH(ξj , ξj) +

∑

i6=j

ciG(ξi, ξj) + 4 log µj


 . (2.22)

Taking into account the explicit expression (2.4) of the constant C1j , one
easily sees that µj bifurcates, as p gets large, by

µ̄j = e−
3
4 e

1
4
(cjH(ξj ,ξj)+

∑
i 6=j

ciG(ξi,ξj)),

solution of equation

log 8µ2
j = cjH(ξj , ξj) +

∑

i6=j

ciG(ξi, ξj)− C1j

4
.

Observe that, with this choice of the parameters µj , we get

p
p

p−1 V (y) = p + ω0j(y) +
1
p
ω1j(y) +

1
p2

ω2j(y) + O(e−α p
4 ) + O(e−

p
4 y)
(2.23)

uniformly in the region |y − ξ′j | < δe−
p
4 , for any fixed and small δ > 0.

Indeed, using (2.8), (2.9), (2.11), (2.12) and taking into account (2.17) and
(2.10), we get

p
p

p−1 V (y)− p− ω0j(y)− 1
p
ω1j(y)− 1

p2
ω2j(y)

=
∑

l=0,1,2

1
pl

Hlj(e−
p
4 y) +

∑

i6=j


 ∑

l=0,1,2

1
pl

ûli(y)




= cjH(ξj , ξj)− log 8µ2
j +

∑

i 6=j

ciG(ξi, ξj)

+
C1j

p


−cj

4
H(ξi, ξj) + log µj − p

4
−

∑

i6=j

ci

4
G(ξj , ξi)




+
C2j

p2


−cj

4
H(ξi, ξj) + log µj − p

4
−

∑

i6=j

ci

4
G(ξj , ξi)


 + O(e−α p

4 ) + O(e−
p
4 y)
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in the considered region. From (2.22), estimate (2.23) follows.

We claim that, with the previous choice (2.22) of the parameters µj , we
achieve the following behavior for R and for W : there exists a constant
C > 0, independent of p, such that, for any y ∈ Ωp,

|R(y)| ≤ C
1
p4

∑

j

1
(1 + |y − ξ′j |3)

, (2.24)

and

W (y) =
∑

j

eω0j(y) [1 + θp(y)] (2.25)

where

|θp(y)| ≤ C
1
p

∑

j

[
1 + |y − ξ′j |

]
(2.26)

for any p large enough.

Proof of (2.24). Directly from (2.10) and (2.17) we argue that, for all j,




−∆û0j + e−
p
2 û0j = eω0j , in Ωp,

∂û0j

∂ν = 0, on ∂Ωp,

(2.27)

and, for i = 1, 2,




−∆ûij + e−
p
2 ûij = eω0jωij − fij , in Ωp,

∂ûij

∂ν = 0, on ∂Ωp.

(2.28)

Hence one gets directly that

p
p

p−1

[
∆V − e−

p
2 V

]
=

k∑

j=1


 ∑

i=0,1,2

1
pi

(∆ûij − e−
p
2 ûij)




=
k∑

j=1

[
−eω0j − 1

p
(eω0jω1j − f1j)− 1

p2
(eω0jω2j − f2j)

]
.

(2.29)

Fix δ > 0 small. From the explicit expression of ω0j and the asymptotic
behavior of ωij , i = 1, 2, we get easily that in the region |y − ξ′j | > δe

p
4 for

all j,

∑

j

(1 + |y − ξ′j |3)−1



−1

|∆V (y)− e−
p
2 V (y)| = O(p−1e−

p
4 ).
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In the same region, by using that (1 + s
p)p ≤ es, we obtain


∑

j

(1 + |y − ξ′j |3)−1



−1

|V p(y)| = O(e−
p
4 ).

Let us fix now j and the region |y − ξ′j | < δe
p
4 .

From (2.23) we get

V p(y) =
1

p
p2

p−1

[
p + ω0j(y) +

1
p
ω1j +

1
p2

ω2j + O(e−
p
4 ) + O(e−

p
4 |y|)

]p

=
1

p
p

p−1

[
1 +

1
p
ω0j(y) +

1
p2

ω1j +
1
p3

ω2j + O(p−1e−
p
4 ) + O(p−1e−

p
4 |y|)

]p

.

Let us restrict our attention to the region |y−ξ′j | < δe
p
8 . Here we use Taylor

expansion and we obtain

V p(y) =
1

p
p

p−1

[
eω0j +

1
p
(eω0jω1j − f1j) +

1
p2

(eω0jω2j − f2j)

+eω0jO

(
log6(2 + |y|)

p3
+ p−4e−

p
4 + p−4e−

p
4 |y|

)]
. (2.30)

Joining together (2.29) and (2.30), we get that in the region |y − ξ′j | < δe
p
8

the following estimate holds true

∑

j

(1 + |y − ξ′j |3)−1



−1

|∆V (y)− e−
p
2 V (y) + V p(y)|

≤ Cp−4(1 + |y − ξ′j |3)
log6(2 + |y|)

(1 + |y − ξ′j |2)2
≤ p−4.

Finally, in the region δe
p
8 < |y − ξ′j | < δe

p
4 , we have


∑

j

(1 + |y − ξ′j |3)−1



−1

|∆V (y)− e−
p
2 V (y) + V p(y)|

≤ C(p−1 + p−p)
(1 + |y − ξ′j |3)
(1 + |y − ξ′j |2)2

≤ Cp−1e
p
8 .

Thus we get estimate (2.24).

Proof of (2.25)-(2.26). Fix a δ small and positive. First observe that, if
|y − ξ′j | > δe

p
4 for all j, then

|pV p−1(y)| ≤ Ce−p.
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Fix now j and assume |y − ξ′j | < δe
p
4 . Using (2.23) and Taylor expansion,

one gets

pV p−1(y) =
[
1 +

ω0j(y)
p

+
ω1j(y)

p2
+

ω2j(y)
p3

+ O(e−α p
4 ) + O(e−

p
4 y)

]p−1

= eω0j(y)
[
1 +

1
p
O((1 + |y − ξ′j |))

]
,

from which estimates (2.25)-(2.26) follow.

Proof of Lemma 2.1. A direct computation shows that, for ξj ∈ Ω, we
have

∂H0j

∂ν
= 4

(x− ξj) · ν(x)
|x− ξj |2 + O(e−

p
2 ) on ∂Ω

and, if i = 1, 2,
∂Hij

∂ν
= −Cij

(x− ξj) · ν(x)
|x− ξj |2 + O(e−

p
2 ) on ∂Ω.

On the other hand, for ξj ∈ ∂Ω, we have, for all x ∈ ∂Ω \ {ξj}

lim
p→∞

∂H0j

∂ν
(x) = 4

(x− ξj) · ν(x)
|x− ξj |2

and, if i = 1, 2,

lim
p→∞

∂Hij

∂ν
(x) = −Cij

(x− ξj) · ν(x)
|x− ξj |2 .

Recall that the regular part of Green’s function H(x, y) satisfies the following
equations: if y ∈ Ω,





−∆xH(x, y) + H(x, y) = − 1
2π log 1

|x−y| , x ∈ Ω,

∂H
∂νx

(x, y) = 1
2π

(x−y)·ν(x)
|x−y|2 x ∈ ∂Ω;

while, if y ∈ ∂Ω,




−∆xH(x, y) + H(x, y) = − 1
π log 1

|x−y| , x ∈ Ω,

∂H
∂νx

(x, y) = 1
π

(x−y)·ν(x)
|x−y|2 x ∈ ∂Ω.

Define the following differences: z0(x) := H0j(x) + log 8µ2
j − cjH(x, ξj) and,

if i = 1, 2, zi(x) := Hij(x) + Cijp
4 −Cij log µj + Cijcj

4 H(x, ξj). Then we have




−∆zi + zi = fi in Ω

∂zi
∂ν = gi on ∂Ω,

where

f0 = − log
1

(e−
p
2 µ2

j + |x− ξj |2)2
+log

1
|x− ξj |4 , g0 =

∂H0j

∂ν
−4

(x− ξj) · ν(x)
|x− ξj |2
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while, if i = 1, 2,

fi = −uij+
Cijp

4
−Cij log µj−Cij log

1
|x− ξj | , gi =

∂Hij

∂ν
+Cij

(x− ξj) · ν(x)
|x− ξj |2 .

A direct computation shows that, for any i = 0, 1, 2, for any 1 < q < 2 there
exists C > 0 such that∥∥∥gi

∥∥∥
Lq(∂Ω)

≤ Ce−p/4q,
∥∥∥fi

∥∥∥
Lq(Ω)

≤ Ce−p/4.

By Lq theory

‖zi‖W 1+s,q(Ω) ≤ C
(
‖∂zi

∂ν
‖Lq(∂Ω) + ‖∆zi‖Lq(Ω)

)
≤ Ce−p/4q

for any 0 < s < 1
q . By the Morrey embedding we obtain

‖zi‖Cγ(Ω) ≤ Ce−p/4q

for any 0 < γ < 1
2 + 1

q . This proves the result (with α = 1
q ). ¤

3. Solvability of a linear equation

The main result of this section is the solvability of the following linear
problem: given h find φ, cij such that





−∆φ + e−
p
2 φ−Wφ = h +

∑
j=1,... ,m

∑
i=1,Jj

cijχjZij , in Ωp,

∂φ
∂ν = 0, on ∂Ωp,

∫
Ωp

χjZijφ = 0 ∀j = 1, . . . , m, i = 1, Jj

(3.31)

where m = K + L, W is defined in (2.21) and satisfies (2.25), h ∈ L∞(Ωp),
Jj = 1 if j = K + 1, ...,K + L while Jj = 2 if j = 1, ..., K and Zij , χj are
defined as follows.

Let zij be

z0j :=
1
µj
− 2

µj

µ2
j + y2

, zij :=
yi

µ2
j + y2

i = 1, 2. (3.32)

The following fact are very well known:
• any solution to

∆φ + eωj(|y|)φ = 0 in R2, |φ| ≤ C(1 + |y|)σ (3.33)

is a linear combination of zij , i = 0, 1, 2;
• any solution to

∆φ + eωj(|y|)φ = 0 in R2
+, |φ| ≤ C(1 + |y|)σ (3.34)

where R2
+ = {(y1, y2) : y2 > 0}, is a linear combination of zij , i =

0, 1 (see [6]).



STATIONARY STATES 13

Next we choose a large but fixed number R0 and nonnegative smooth
function χ : R→ R so that χ(r) = 1 for r ≤ R0 and χ(r) = 0 for r ≥ R0 +1,
0 ≤ χ ≤ 1.

For j = 1, ..., K (corresponding to interior bubble case), we define

χj(y) = χ(|y − ξ
′
j |), Zij(y) = zij(y), i = 0, 1, 2. (3.35)

For j = K + 1, ..., K + L (corresponding to boundary bubble case),
we have to strength the boundary first. More precisely, at the boundary
point ξj ∈ ∂Ω, we assume that ξj = 0 and the unit outward normal at
ξj is −e2 = (0,−1). Let G(x1) be the defining function for the boundary
∂Ω in a neighborhood Bρ(ξj) of ξj , that is, Ω ∩ Bρ(ξj) = {(x1, x2)|x2 >
G(x1), (x1, x2) ∈ Bρ(ξj)}. Then, let Fj : Bρ(ξj) ∩ Ω → R2 be defined by
Fj = (Fj,1, Fj,2) where

Fj,1 = x1 +
x2 −G(x1)

1 + |G′(x1)|2 G
′
(x1), Fj,2 = x2 −G(x1).

Then we set

F p
j (y) = e

p
4 Fj(e−

p
4 y). (3.36)

Note that Fj preserves the Neumann boundary condition. Define, for j =
K + 1, . . . , K + L

χj(y) = χ(|F p
j (y)|), Zij(y) = zij(F

p
j (y)) i = 0, 1.

The functions Zij satisfy the Neumann boundary condition (since Fj pre-
serves the Neumann boundary condition).

It is important to note that

∆Z0j + eω0jZ0j = O(e−
p
4 (1 + |y − ξ

′
j |)−3) (3.37)

since
∇z0j = O

(
(1 + |y − ξ

′
j |)−3

)
.

Equation (3.31) will be solved for h ∈ L∞(Ωp) but we will be able to
estimate the size of the solution in terms of the following norm

‖h‖∞ = sup
y∈Ωp

|h(y)|, ‖h‖∗ = sup
y∈Ωp

|h(y)|
e−

p
2 +

∑m
j=1(1 + |y − ξ′j |)−2−σ

,
(3.38)

where we fix 0 < σ < 1 although the precise choice will be made later on.

Proposition 3.1. Let d > 0 and m a positive integer. Then there exist
p0, C > 0 such that for any p > p0, any family of points (ξ1, . . . , ξm) such
that

min
i6=j

|ξi − ξj | ≥ d, min
j=1,... ,K

dist(ξj , ∂Ω) ≥ d (3.39)

and any h ∈ L∞(Ωp) there exists a unique solution φ ∈ L∞(Ωp), cij ∈ R to
(3.31). Moreover

‖φ‖∞ ≤ Cp‖h‖∗.
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We begin by stating an a-priori estimate for solutions of (3.31) satisfying
orthogonality conditions with respect to Zij , i = 0, Jj , j = 1...,m.

Lemma 3.1. There exist R0 > 0 and p0 > 0 so that for p > p0 and any
solution φ of (3.31) with the orthogonality conditions

∫

Ωp

Zijχj φ = 0 ∀i = 0, ..., Jj ∀j = 1, . . . , m (3.40)

we have
‖φ‖∞ ≤ C‖h‖∗

where C is independent of p.

Proof of Lemma 3.1. We divide the proof into three steps.
Step 1. We first construct a suitable barrier. Namely, we show that, for
p large enough there exist R1 > 0, and

ψ : Ωp \ ∪m
j=1BR1(ξ

′
j) → R

smooth and positive so that

−∆ψ + e−
p
2 ψ −Wψ ≥

m∑

j=1

1
|y − ξ′j |2+σ

+ e−
p
2 , in Ωp \

m∪
j=1

BR1(ξ
′
j),

∂ψ

∂ν
≥ 0, on ∂Ωp \

m∪
j=1

BR1(ξ
′
j),

ψ > 0, in Ωp \
m∪

j=1
BR1(ξ

′
j),

ψ ≥ 1, on Ωp ∩
( m∪

j=1
∂BR1(ξ

′
j)

)
.

Take

ψ1j(r) = 1− 1
rσ

, where r = |y − ξ
′
j |.

Then

−∆ψ1j = σ2 1
r2+σ

,

and, for |y − ξ
′
j | > R,

−∆ψ1j + e−
p
2 ψ1j −Wψ1j ≥ σ2 1

r2+σ
−Wψ1j ≥ σ2

2
1

r2+σ
(3.41)

since

W ≤
m∑

j=1

1
1 + |y − ξ

′
j |4

.

If ξ
′
j ∈ Ωp, then we have

∂ψ1j

∂ν
= o(e−

p
4 ) on ∂Ωp.
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If ξ
′
j ∈ ∂Ωp and |y − ξ

′
j | > R, we have

∂ψ1j

∂ν
= σ

< y − ξ
′
j , ν >

r2+σ

As before, we write ∂Ωp near ξ′j as the graph {(y1, y2) : y2 = e
p
4 G(e−

p
4 y1)}

with G(0) = 0 and G′(0) = 0.
Then

∂ψ1j

∂ν
=

σ

r2+σ

1√
G′(e−

p
4 y1)2 + 1

(
−y1G

′(e−
p
4 y1), e

p
4 G(e−

p
4 (y1)

)

=
σ

r2+σ

1√
O(δ2) + 1

O(e−
p
4 r2) ∀ R1 < r < δe

p
4

= O(
e−

p
4

rσ
) ∀ R1 < r < δe

p
4 . (3.42)

Combining together the previous estimates, we see that

∂ψ1j

∂ν
= o(e−

p
4 ) on ∂Ωp. (3.43)

Now let ψ0 be the unique solution of

∆ψ0 − e−
p
2 ψ0 + e−

p
2 = 0 in Ωp,

∂ψ0

∂ν
= e−

p
4 on ∂Ωp.

Set

ψ :=
m∑

j=1

ψ1j + Cψ0. (3.44)

It is easy to see that ψ is the function we are looking for. Observe that the
constants R1 > 0 can be chosen independently of p and that ψ is uniformly
bounded, that is

0 < ψ ≤ C in Ωp \ ∪m
j=1BR1(ξ

′
j)

with a positive constant C independent of p.

Step 2. We take R0 = 2R1. Thanks to the barrier ψ of the previous step
we deduce that the following maximum principle holds in Ωp \∪m

j=1BR1(ξ
′
j):

if φ ∈ H1(Ωp \ ∪m
j=1BR1(ξ

′
j)) satisfies





−∆φ + e−
p
2 φ ≥ Wφ, in Ωp \

m∪
j=1

BR1(ξ
′
j),

∂φ
∂ν = 0, on ∂Ωp \

m∪
j=1

BR1(ξ
′
j)

φ ≥ 0 on Ωp ∩
( m∪

j=1
∂BR1(ξ

′
j)

)

then φ ≥ 0 in Ωp \ ∪m
j=1BR1(ξ

′
j).
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Let h be bounded and φ a solution to (3.31) satisfying (3.40). We first
claim that ‖φ‖∞ can be controlled in terms of ‖h‖∗ and the following inner
norm of φ

‖φ‖IN = sup
Ωp∩(∪m

j=1BR1
(ξ′j))

|φ|.

Indeed, set
φ̃ = C1ψ (‖φ‖IN + ‖f‖∗) ,

with C1 a constant independent of p. By the above maximum principle we
have φ ≤ φ̃ and −φ ≤ φ̃ in Ωp \ ∪m

j=1BR1(ξ
′
j). Since ψ is uniformly bounded

we deduce

‖φ‖∞ ≤ C (‖φ‖IN + ‖f‖∗) , (3.45)

for some constant C independent of φ and p.

Step 3. We prove the lemma by contradiction. Assume that there exist a
sequence pn →∞, points (ξn

1 , . . . ξn
m) satisfying (3.39) and functions φn, fn

and hn with ‖φn‖∞ = 1 and ‖hn‖∗ → 0 so that for each n φn solves (3.31)
and satisfies (3.40). By (3.45) we see that ‖φn‖IN stays away from zero.
For one of the indices, say j, we can assume that supBR1

(ξ′j)
|φn| ≥ c > 0 for

all n. Consider φ̂n(z) = φn(z − (ξn
j )′). We may assume, up to subsequence,

that ξn
j converges to ξj . Let us translate and rotate Ωpn so that ξ′j = 0 and

Ωpn approaches the entire plane R2 if j = 1, . . . , K or the upper half plane
R2

+ if j = K + 1, . . . , m. Then by elliptic estimates φ̂n converges uniformly
on compact sets to a nontrivial solution of

∆φ + eωj(|y|)φ = 0, |φ| ≤ C.

Thus φ̂ is a linear combination of zij , i = 0, ..., Jj (see (3.33) and (3.34)). On
the other hand we can take the limit in the orthogonality relations (3.40),
observing that limits of the functions Zij are just rotations and translations
of zij , and we find

∫
R2

+
χφ̂ zij = 0 for i = 0, Jj . This contradicts the fact

that φ̂ 6≡ 0. ¤
We will establish next an a-priori estimate for solutions to problem (3.31)

that satisfy orthogonality conditions with respect to Zij , i = 1, Jj only.

Lemma 3.2. For p sufficiently large, if φ solves




−∆φ + e−
p
2 φ−Wφ = h in Ωp

∂φ
∂ν = 0 on ∂Ωp

(3.46)

and satisfies
∫

Ωp

Zijχj φ = 0 ∀j = 1, . . . , m, i = 1, Jj (3.47)
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then

‖φ‖∞ ≤ Cp‖h‖∗ (3.48)

where C is independent of p.

Proof. Let φ satisfy (3.46) and (3.47). We will modify φ to satisfy all
orthogonality relations in (3.40) and for this purpose we consider modifica-
tions with compact support of the functions Z0j . Let R > R0 + 1 be large
and fixed.

Let

a0j :=
1

µj( 4
cj

log e
p
4

R + H(ξj , ξj))
. (3.49)

Set

Ẑ0j(y) := Z0j(y)− 1
µj

+ a0jG(ξj , e
− p

4 y). (3.50)

Note that by our definition, Ẑ0,j satisfies the Neumann boundary condition.
Let η be radial smooth cut-off function on R2 so that

0 ≤ η ≤ 1, |∇η| ≤ C in R2

η ≡ 1 in BR(0), η ≡ 0 in R2 \BR+1(0).
If ξj ∈ Ω, we write

ηj(y) = η(|y − ξ
′
j |).

If ξj ∈ ∂Ω, we write

ηj(y) = η(|F p
j (y)|). (3.51)

Now define

Z̃0j := ηjZ0j + (1− ηj)Ẑ0j . (3.52)

Given φ satisfying (3.46) and (3.47) let

φ̃ := φ +
m∑

j=1

djZ̃0j , where dj := −
∫
Ωp

Z0jχj φ
∫
Ωp

Z2
0jχj

.

Estimate (3.48) is a direct consequence of

|dj | ≤ Cp‖h‖∗ ∀j = 1, . . . , m. (3.53)

We start proving this by observing, using the notation L = −∆ + e−
p
2 −W ,

that

L(φ̃) = h +
m∑

j=1

djL(Z̃0j) in Ωp, (3.54)

and
∂φ̃

∂ν
= 0 on ∂Ωp. (3.55)



18 MONICA MUSSO AND JUNCHENG WEI

Thus by Lemma 3.1 we have

‖φ̃‖∞ ≤ C
m∑

j=1

|dj |‖L(Z̃0j)‖∗ + C‖h‖∗. (3.56)

Multiplying equation (3.54) by Z̃0k, integrating by parts and using (3.55)
we find

m∑

j=1

dj

∫

Ωp

L(Z̃0j)Z̃0k ≤ C‖h‖∗[1 +
m∑

j=1

‖L(Z̃0j)‖∗]

+C
m∑

j=1

|dj |‖L(Z̃0j)‖2
∗. (3.57)

We now measure the size of ‖L(Z̃0j)‖∗. To this end, we have for |y−ξ
′
j | > R,

according to (3.37)

L(Ẑ0j) = −eω0jZ0j −WẐ0j + O(e−
p
4 (1 + |y − ξ

′
j |)−3)

= eω0j (a0jG(ξj , e
− p

4 y)− 1
µj

)

+O(e−
p
4 (1 + |y − ξ

′
j |)−3 + e−

(2+α)p
4 ). (3.58)

Thus

‖(1− ηj)L(Ẑ0j)‖∗ ≤ C

p

where the number C depends in principle of the chosen large constant R.
So

L(Z̃0j) = ηjL(Z0j) + (1− ηj)L(Ẑ0j) + 2∇ηj∇(Z0j − Ẑ0j) + ∆ηj(Z0j − Ẑ0j)

= O(e−
(2+α)p

4 ) + (1− ηj)eω0j (a0jG(ξj , e
− p

4 y)− 1
µj

)

+2∇ηj∇(Z0j − Ẑ0j) + ∆ηj(Z0j − Ẑ0j). (3.59)

Note that for r = |y − ξ
′
j | ∈ (R, R + 1), we have

Ẑ0j − Z0j = a0jG(ξj , e
− p

4 y)− 1
µj

= a0j

(
4
cj

log 1

e−
p
4 |ξ′j−y|

+ H(ξj , e
− p

4 y)

)
− 1

µj

Hence we derive that for r ∈ (R, R + 1),

Ẑ0j − Z0j =
C

p
log

1
r

+ O(
e−

αp
4

p
), ∇(Ẑ0j − Z0j) = −C

p

1
r

+ O(
e−

αp
4

p
).

(3.60)

From (3.59) and (3.60), we conclude that

‖L(Z̃0j)‖∗ ≤ C

p
.
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Now we estimate the left hand side integral of (3.57). From (3.59), we see
that for j 6= k,

∫

Ωp

L(Z̃0j)Z̃0k = O(e−
αp
4 ) +

∫

Ωp

O(
1
p
(|η′j |+ |∆ηj |))Z̃0,k = O(

1
p2

).

For j = k, we decompose∫

Ωp

L(Z̃0k)Z̃0k = I + II + O(e−
p
4 )

where

II =
∫

Ωp

O(e−
(2+α)p

4 ) + (1− ηk)eω0j (a0kG(ξk, e
− p

4 y)− 1
µk

)Z̃0k

= O(e−
αp
4 ) + O(

1
pR

)

and
I =

∫

Ωp

(2∇ηk∇(Z0k − Ẑ0k) + ∆ηk(Z0k − Ẑ0k))Z̃0k.

Thus integrating by parts we find

I =
∫
∇η∇(Z0k − Ẑ0k)Ẑ0k −

∫
∇ηj(Z0k − Ẑ0k)∇Ẑ0k + O(e−

p
4 )

Now, we observe that in the considered region, r ∈ (R, R + 1) with r =
|y − ξ

′
k|, |Ẑ0k − Z0k| ≤ C

p while |∇Z
′
0k| ≤ 1

R3 + 1
p . Thus

|
∫
∇ηj(Z0k − Ẑ0k)∇Ẑ0k| ≤ D

pR3

where D may be chosen independent of R. Now
∫
∇ηk∇(Z0k − Ẑ0k)Ẑ0k =

∫ R+1

R
η
′
(a0k

1
r

+ O(e−
p
4 ))Ẑ0krdr

= a0k

∫ R+1

R
η
′
(1 + O(e−

p
4 ) + O(R−1))

= −E

p
[1 + O(R−1)] (3.61)

where E is a positive constant independent of p. Thus we conclude, choosing
R large enough, that I ∼ −E

p . Combining this and the estimate for II we
find∫

Ωp

L(Z̃0k)Z̃0k = −E

p
[1 + O(R−1)],

∫

Ωp

L(Z̃0j)Z̃0k = O((pR)−1) for j 6= k
(3.62)

This, combined with (3.57), proves the lemma.
¤

Proof of Proposition 3.1.
First we prove that for any φ, cij solution to (3.31) the bound

‖φ‖∞ ≤ Cp‖h‖∗ (3.63)
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holds.
The previous lemma yields

‖φ‖∞ ≤ Cp(‖h‖∗ +
m∑

j=1

Jj∑

i=1

|cij |). (3.64)

So it suffices to estimate the values of the constants cij . We show that

|cij | ≤ Cp‖h‖∗ (3.65)

To this end, we multiple (3.31) by Zij and integrate to find
∫

Ωp

L(φ)(Zij) =
∫

Ωp

hZij + cij

∫

Ωp

χj |Zij |2 (3.66)

Note that for i 6= 0
Zij = O((1 + |y − ξj |)−1)

So ∫

Ωp

hZij = O(‖h‖∗) (3.67)

and ∫

Ωp

L(φ)Zij =
∫

Ωp

L(Zij)φ = O(e−
p
4 ‖φ‖∞) (3.68)

Substituting (3.67) and (3.68) into (3.66), we obtain (3.65).
Now consider the Hilbert space

H =



φ ∈ H1(Ωp) :

∂φ

∂ν

∣∣∣∣∣
∂Ωp

= 0,

∫

Ωp

χjZijφ = 0 ∀j = 1, . . . , m, i = 1, Jj





with the norm ‖φ‖2
H1 =

∫
Ωp
|∇φ|2 + e−

p
2 φ2. Equation (3.31) is equivalent to

find φ ∈ H such that
∫

Ωp

(∇φ∇ψ + e−
p
2 φψ)−

∫

Ωp

Wφψ =
∫

Ωp

hψ ∀ψ ∈ H.

By Fredholm’s alternative this is equivalent to the uniqueness of solutions
to this problem, which is guaranteed by (3.63).

¤

Remark 3.1. Given h ∈ L∞(Ωp) with ‖h‖∗ < ∞, let φ be the solution
to (3.31) given by Proposition 3.1. Multiplying the first equation in (3.31)
against φ and integrating by parts, we get

‖φ‖2
H1 ≡

∫

Ωp

|∇φ|2 + e−
p
2 φ2 =

∫

Ωp

Wφ−
∫

Ωp

hφ.

Taking into account (2.25) we conclude that

‖φ‖H1 ≤ C(‖φ‖∞ + ‖h‖∗).



STATIONARY STATES 21

4. The nonlinear problem

Consider the nonlinear equation




−∆φ + e−
p
4 φ−Wφ = R + N(φ) +

∑
ij cijχjZij in Ωp

∂φ
∂ν = 0 on ∂Ωp

∫
Ωp

χjZijφ = 0 ∀j = 1, . . . ,m, i = 1, Jj

(4.69)

where W is as in (2.25) and N , R are defined in (2.19) and (2.20) respectively.

Lemma 4.1. Let m > 0, d > 0. Then there exist p0 > 0, C > 0 such
that for p > p0 and any (ξ1, . . . , ξm) satisfying constraint (3.39) the problem
(4.69) admits a unique solution φ, cij such that

‖φ‖∞ ≤ Cp−3 (4.70)

and
∑

i,j

|cij | ≤ C

p4
, ‖φ‖H1 ≤ C

p3
. (4.71)

Proof. Let us denote by C∗ the function space C(Ω̄) endowed with the norm
‖ · ‖∗. Proposition 3.1 implies that the unique solution φ = T (h) of (3.31)
defines a continuous linear map from the Banach space C∗ into C0(Ω̄), with
norm bounded by a multiple of p. Problem (4.69) becomes

φ = A(φ) := −T (R + N(φ)).

For a given number γ > 0, let us consider the region

Fγ := {φ ∈ C0(Ω̄) : ||φ||∞ ≤ γ

p3
}.

We have the following estimates



‖N(φ)‖∗ ≤ Cp‖φ‖2∞

‖N(φ1)−N(φ2)‖∗ ≤ Cp (maxi=1,2 ‖φi‖∞) ‖φ1 − φ2‖∞, (4.72)

for any φ, φ1, φ2 ∈ Fγ . In fact, by Lagrange theorem we have that

|N(φ)| ≤ p(p− 1)
(

V + O(
1
p3

)
)p−2

φ2

and

|N(φ1)−N(φ2)| ≤ p(p− 1)
(

V + O(
1
p3

)
)p−2 (

max
i=1,2

|φi|
)
|φ1 − φ2|

for any x ∈ Ω, and hence, we get (4.72) since ‖∑m
j=1 eUj‖∗ = O(1). By

(4.72), Proposition 3.1 and (2.24) imply that

‖A(φ)‖∞ ≤ D′p (‖N(φ)‖∗ + ‖R‖∗) ≤ O(p2‖φ‖2
∞) +

D

p3
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and

‖A(φ1)−A(φ2)‖∞ ≤ C ′p ‖N(φ1)−N(φ2)‖∗ ≤ Cp2
(

max
i=1,2

‖φi‖∞
)
‖φ1−φ2‖∞

for any φ, φ1, φ2 ∈ Fγ , where D is independent of γ. Hence, if ‖φ‖∞ ≤ 2D
p3 ,

we have that

‖A(φ)‖∞ = O(
1
p
‖φ‖∞) +

D

p3
≤ 2D

p3
.

Choose γ = 2D. Then, A is a contraction mapping of Fγ since

‖A(φ1)−A(φ2)‖∞ ≤ 1
2
‖φ1 − φ2‖∞,

for any φ1, φ2 ∈ Fγ . Therefore, a unique fixed point φ of A exists in Fγ . By
(3.65), we get that

∑

i,j

|cij(ξ)| = O

(
‖N(φ)‖∗ + ‖R‖∗ +

1
p
‖φ‖∞

)
≤ C

p4

and by Remark 3.1 we deduce that

‖φ‖H1 = O (‖φ‖∞ + ‖N(φ)‖∗ + ‖R‖∗) ≤ C

p3
.

¤

Remark 4.1. The function V +φ, where φ is given by Lemma 4.1, is positive
in Ωp. In fact, we observe first that V is positive. Indeed, from (2.23) we
argue that, in the region |y−ξ′j | < δe

p
4 , V is positive. Outside this region, we

may conclude the same from (2.11), (2.12). Finally observe that p|φ| → 0
uniformly over compacts of Ω̄p.

5. Variational reduction

In view of Lemma 4.1, given ξ = (ξ1, . . . , ξm) ∈ Md, we define φ(ξ) and
cij(ξ) to be the unique solution to (4.69) satisfying the bound (4.70). Define
the following function of ξ,

Fp(ξ) = Jp(U [ξ] + φ̃[ξ]) (5.73)

where Jp is the functional defined by

Jp(v) =
1
2

∫

Ω
(|∇v|2 + v2)− 1

p + 1

∫

Ω
vp+1, (5.74)

U [ξ](x) is the function defined in (2.13) (with this notation we just want to
stress the dependence on ξ) and

φ̃[ξ](x) = e
p

2(p−1) φ[ξ](e
p
4 x), x ∈ Ω. (5.75)

Lemma 5.1. Let p be large. The function Fp is of class C1. If ξ =
(ξ1, . . . , ξm) ∈ Md is a critical point of Fp then u(x) = U [ξ](x) + φ̃[ξ](x) is
a critical point of Jp, that is, a solution to (1.5).
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Proof. Fix p large. Since all the terms in (4.69) depends C1 on ξ, the map
ξ → φ in a C1-function in L∞(Ωp), as consequence of the Implicit Function
Theorem. From Remark 3.1 one gets that Fp ∈ C1.

Let
Ip(v) =

1
2

∫

Ωp

|∇v|2 + e−
p
2 v2 − 1

p + 1

∫

Ωp

vp+1.

Then, performing a change of variable, Fq(ξ) = Jq(U [ξ]+φ̃[ξ]) = e
p

p−1 Ip(V [ξ′]+
φ[ξ′]) where ξ′ = e

p
4 ξ and V is given by (2.16). Therefore

e
− p

p−1
∂Fp

∂ξk,l
= e

p
4 DIp(V [ξ′] + φ[ξ′])

[∂V [ξ′]
∂ξ′k,l

+
∂φ[ξ′]
∂ξ′k,l

]
.

Since v = V [ξ′] + φ[ξ′] solves (4.69)

e−
p
4 e
− p

p−1
∂Fp

∂ξk,l
=

∑

i=1,Jj ,j=1,...,m

cij

∫

Ωp

χjZij

[∂V [ξ′]
∂ξ′k,l

+
∂φ[ξ′]
∂ξ′k,l

]
.

Let us assume that DF (ξ) = 0. From the previous equation and the orthog-
onality condition

∫
Ωp

χjZijφ = 0, we conclude that, for all k = 1, . . . , m,
l = 1, Jk

∑

j=1,...,m

∑

i=1,Jj

cij

[∫

Ωp

χjZij
∂V [ξ′]
∂ξ′k,l

+
∫

Ωp

φ[ξ′]
∂(χjZij)

∂ξ′k,l

]
= 0.

Now direct computation shows that ∂V [ξ′]
∂ξ′

k,l
= ±Zkl + o(1) where o(1) is in

the L∞ norm and that∫

Ωp

φ[ξ′]
∂(χjZij)

∂ξ′k,l

= o(1)
∫

Ωp

χjZij
∂V [ξ′]
∂ξ′k,l

.

Hence, equation DF (ξ) = 0 is reformulated into
∑

j=1,...,m

∑

i=1,Jj

cij

∫

Ωp

χjZij(±Zkl + o(1)) = 0 ∀k = 1, . . . , m.

This is a strictly diagonal dominant system. We thus get that cij = 0
∀j = 1, . . . , m, i = 1, Jj . Positivity of the function u follows from Remark
4.1.

¤
Next Lemma shows that the leading part of Fp(ξ) is given by ϕm.

Lemma 5.2. Let d > 0 be small and µj be given by (2.22). Then

Fp(ξ) = 8π(K +
L

2
)e

p
p−1 p

− p+1
p−1 + (C − p

p + 1
8π)(K +

L

2
)e

p
p−1 p

− 2p
p−1

−1
2

m∑

j=1

cj

[
cjH(ξj , ξj) +

∑

i6=j

ciG(ξi, ξj)
]
e

p
p−1 p

− 2p
p−1

+
1
p3

Θp(ξ) (5.76)
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where Θp(ξ) is uniformly bounded in Md as p → ∞ and C is a universal
constant.

Proof. Observe first that
∫
Ω(U + φ̃)p+1 = e

p
p−1

∫
Ωp

(V + φ)p+1

= e
p

p−1

[∫
Ωp

[|∇(V + φ)|2 + e−
p
2 (V + φ)2] +

∑
i,j cij

∫
Ωp

χjZijV
]

=
∫
Ω[|∇(U + φ̃)|2 + (U + φ̃)2] + O( 1

p4 )

since (4.71) holds true. Hence

Fp(ξ) = (
1
2
− 1

p + 1
)
∫

Ω
[|∇(U + φ̃)|2 + (U + φ̃)2] + O(

1
p4

).
(5.77)

Now,
∫
Ω[|∇(U + φ̃)|2 + (U + φ̃)2] =

∫
Ω[|∇U |2 + U2] + 2

∫
Ω[∇U∇φ̃ + Uφ̃]

+
∫
Ω[|∇φ̃|2 + φ̃2]

= e
p

p−1
∫
Ωp

[|∇V |2 + e−
p
2 V 2] + 2e

p
p−1

∫
Ωp

[∇V∇φ + e−
p
2 V φ]

+e
p

p−1
∫
Ωp

[|∇φ|2 + e−
p
2 φ2]

= e
p

p−1 [A + B + C].

We observe first that, as a consequence of (4.71)

B + C = O(
1
p3

) (5.78)

uniformly for ξ ∈M as p →∞.
We will devote the rest of this proof to estimating A. Define

Vj(y) =
∑

i=0,1,2

p−iûij(y) y ∈ Ωp

(see (2.10)) so we may rewrite (2.16) in equivalent form V (y) = 1

p
p

p−1

∑m
j=1 Vj(y).

Note that Vj satisfies

−∆Vj +e−
p
2 Vj = eω0j +

1
p
(−∆ω1j +e−

p
2 ω1j)+

1
p2

(−∆ω1j +e−
p
2 ω1j) in Ωp,

∂Vj

∂ν
= 0 on ∂Ωp.
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Then

p
2p

p−1 A =
∫

Ωp

(−∆V + e−
p
2 V )V

=
∑

j

∫

B(ξ′j ,δe
p
4 )

(−∆V + e−
p
2 V )V + o(e−

p
4 ). (5.79)

Let us fix j. We have
∫

B(ξ′j ,δe
p
4 )

(−∆V + e−
p
2 V )V

=
∫

B(ξ′j ,δe
p
4 )

(
eω0j +

1
p
(−∆ω1j + e−

p
2 ω1j) +

1
p2

(−∆ω2j + e−
p
2 ω2j)

)
×

(
p + ω0j +

1
p
ω1j +

1
p2

ω2j

)
+ o(e−

p
4 )

= p

∫

B(ξ′j ,δe
p
4 )

eω0j +
∫

B(ξ′j ,δe
p
4 )

(
eω0jω0j −∆ω1j + e−

p
2 ω1j

)

+O(
1
p
) (5.80)

Define ηj to be equal to 1 if j = 1, . . . , K and equal to 1
2 if j = K +

1, . . . , K + L. We have
∫

B(ξ′j ,δe
p
4 )

eω0j = 8πηj + O(e−
3p
4 ); (5.81)

if we call β =
∫
R2

8
(1+|z|2)2

log 8
(1+|z|2)2

,
∫

B(ξ′j ,δe
p
4 )

eω0jω0j = βηj − 2ηj log µj

∫

R2

8
(1 + |z|2)2 + o(e−

p
4 )

= βηj − 16ηjπ log µj + o(e−
p
4 )

= βηj + 12πηj − cj

2
[cjH(ξj , ξj)−

∑

i6=j

ciG(ξi, ξj)]

+O(
1
p
) (5.82)

because of (2.22). Since ω1j(y) = ω̃1(
|y−ξj |

µj
) for a certain real function ω̃1,

we get
∫

B(ξ′j ,δe
p
4 )

∆ω1j = αηj + o(e−
p
4 ) (5.83)

for a certain universal constant α, and

e−
p
2

∫

B(ξ′j ,δe
p
4 )

ω1j = O(e−
p
2 ). (5.84)
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Summing up all the information contained in (5.79)–(5.84), we obtain

A =
8π

p
2p

p−1

(K +
L

2
)p +

β − α + 12π

p
2p

p−1

(K +
L

2
)

− 1

2p
2p

p−1


∑

j

[c2
jH(ξj , ξj) +

∑

i6=j

cicjG(ξi, ξj)]


 + O(

1
p3

). (5.85)

The expansion (5.76) thus follows from (5.77), (5.78) and (5.85). ¤

6. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We first need the
following

Lemma 6.1. We have

min
ξ∈∂Md

ϕm(ξ) → +∞ as δ → 0. (6.86)

Proof: The proof of this Lemma is similar to [14], we briefly reproduce it
here for completeness. Let ξ = (ξ1, ..., ξm) ∈ ∂Md. There are two possibil-
ities: either there exists j0 ≤ K such that d(ξj0 , ∂Ω) = d, or there exists
i0 6= j0, |ξi0 − ξj0 | = d.

In the first case, a consequence of the properties of the Green’s function
is that for all ξ ∈ Ω

H(ξ, ξ) ≥ C log
1

d(ξ, ∂Ω)
. (6.87)

In the second case, we may assume that there exists a fixed constant C such
that d(ξi, ∂Ω) ≥ C, i = 1, ..., K, as otherwise it follows into the first case.
But then it is easy to see that

G(ξi, ξj) ≥ C log
1

|ξi − ξj | . (6.88)

The statement of the Lemma follows from (6.87) and (6.88). ¤
We are now ready to give the

Proof of Theorem 1: According to Lemma 5.1, the function U [ξ] + φ̃[ξ],
where U and φ̃ are defined respectively by (2.13) and (5.75), is a solution
of Problem (1.5) if we adjust ξ so that it is a critical point of Fp(ξ) =
Jp(U [ξ] + φ̃[ξ]) defined by (5.73). This is obviously equivalent to finding a
critical point of

F̃p(ξ) = −2e
− p

p−1 p
2p

p−1

(
Fp(ξ) + Ae

p
p−1 p

− p+1
p−1 + Be

p
p−1 p

− 2p
p−1

)

for suitable constants A and B. On the other hand, from Lemma 5.2, we
have that for ξ ∈Md,

F̃p(ξ) = ϕm(ξ) + O(p−1)Θp(ξ) (6.89)

where ϕm is give by (1.9), Θp is uniformly bounded in Md as p →∞.
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From the above Lemma, the function ϕm is C1, bounded from below in
Md and such that

min
ξ∈∂Md

ϕm(ξ1, . . . , ξm) → +∞ as d → 0

Hence, for d is arbitrarily small, ϕm has an absolute minimum M in Md.
This implies that F̃p(ξ) also has an absolute minimum (ξp

1 , ..., ξp
m) ∈ Md

such that

ϕm(ξp
1 , ..., ξp

m) → min
ξ∈Md

ϕm(ξ) as p →∞. (6.90)

Hence Lemma 5.1 guarantees the existence of a solution up for (1.5). The
qualitative properties of the solution follow directly from the ansatz (2.13).

¤

Remark 6.1. By using Ljusternik-Schnirelmann theory, one can get an-
other distinct solution satisfying Theorem 1. The proof is similar to [10].
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