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Abstract. We consider the Liouville system

−∆u = λev, −∆v = µeu in B

with u = v = 0 on ∂B, where B is the unit ball in RN , N ≥ 3, and λ and
µ are positive parameters. First we show that radial solutions in B \{0}
are either regular or have a log-type singularity. Then, in dimensions
3 ≤ N ≤ 9 we prove that there is an unbounded curve S ⊂ (0,∞)2 such
that for each (µ, λ) ∈ S there exist infinitely many regular solutions.
Moreover, the number of regular solutions tends to infinity as (µ, λ)
approaches a fixed point in S.

1. Introduction

We study radially symmetric solutions to the cooperative system
−∆u = λev in B

−∆v = µeu in B

u = v = 0 on ∂B

(1.1)

where B is the unit ball in RN , N ≥ 3, and λ and µ are positive parameters.
In 2 dimensions, more general cooperative versions have been considered

in [4, 5, 3, 20, 21]. In this article we investigate (1.1) for dimensions N ≥ 3.
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All classical solutions to (1.1) are radially symmetric by a result of Troy
[27]; see also [10]. This elliptic system is a natural generalization of the
Liouville–Gelfand problem {−∆u = λeu in B

u = 0 on ∂B,
(1.2)

since for λ = µ and u and v classical solutions of (1.1), necessarily u = v,
which can be seen by multiplying each equation by u− v and integrating.

Concerning (1.2), classical solutions are radial by Gidas, Ni, Nirenberg
[16]. Moreover, all of them can be found from one entire radial solution,
which leads to a complete description of the bifurcation diagram of (1.2);
see e.g. Joseph and Lundgren [19] and also [15]. In particular, there exists
λ∗ = λ∗(N) > 0 such that for 0 < λ < λ∗, (1.2) has a minimal solution uλ;
for λ = λ∗, (1.2) has a unique solution u∗ (possibly singular); and for λ > λ∗

(1.2) has no solution. Moreover, if N = 1, 2, then for 0 < λ < λ∗, there are
exactly two solutions; one of them is the minimal solution uλ, and the other
one has Morse index 1. If 3 ≤ N ≤ 9, then λ∗ > 2(N − 2). For 0 < λ < λ∗,
λ 6= 2(N − 2), (1.2) has finitely many solutions, and for λ = 2(N − 2), (1.2)
has infinitely many solutions that converge to −2 log |x|, which is a singular
solution. If N ≥ 10, then λ∗ = 2(N − 2) and u∗ = −2 log |x|. Moreover,
(1.2) has a unique solution for each λ ∈ (0, λ∗).

For problem (1.1) Montenegro [24] showed that there is a non-empty open
set U ⊂ (0,∞)2 such that a minimal classical solution (uµ,λ, vµ,λ) exists if

(µ, λ) ∈ U and no solution exists if (µ, λ) 6∈ U . Moreover, C = ∂U ∩ (0,∞)2

can be described as a continuous curve, and for (µ, λ) ∈ C the limit

lim
m→1−

(umµ,mλ, vmµ,mλ)

is a weak solution, called the extremal solution. This suggests strong analo-
gies between (1.1) and (1.2). In this direction, for general domains it was
proved by Cowan [7] (with some restriction on λ, µ) and Dupaigne, Farina,
and Sirakov [11] (without restrictions) that if N < 10 the extremal solu-
tion is bounded; and by Dávila and Goubet [9] that the singular set of the
extremal solution has dimension at most N − 10 in general.

In this work we focus on the analysis of singular radial solutions and
multiplicity in low dimensions.

We prove the following results.
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Theorem 1.1. Let N ≥ 3. Suppose u, v ∈ C2(B1 \ {0}) is a radial solution
of 

−∆u = λev in B1 \ {0}
−∆v = µeu in B1 \ {0}
u, v > 0 in B1 \ {0},

(1.3)

where λ, µ > 0. Then either both u and v admit a smooth extension to B1,
or u and v are both singular and satisfy

u(r) = −2 log r + log(
2(N − 2)

µ
) + o(1), ru′(r) = −2 + o(1),

v(r) = −2 log r + log(
2(N − 2)

λ
) + o(1), rv′(r) = −2 + o(1),

(1.4)

as r → 0.

Thanks to Theorem 1.1, any radial singular solution (u, v) of system (1.1)
in B1(0) \ {0} can be extended as a distribution solution in B1(0). We will
call such solutions just radial singular solutions.

Theorem 1.2. Assume N ≥ 3. There is a curve S ⊂ U described by
λ = h̄(µ), where h̄ : (0,∞)→ (0,∞) is smooth and decreasing, with

lim
µ→0

h̄(µ) =∞, lim
µ→∞

h̄(µ) = 0,

such that (1.1) has a radial singular solution (u, v) with parameters (µ, λ) if
and only if λ = h̄(µ). Moreover, the radial singular solution is unique.

Theorem 1.3. Assume 3 ≤ N ≤ 9. Then the curve S is contained in
U , and for each (µ, λ) ∈ S there exist infinitely many regular solutions of
(1.1). Moreover, the number of regular solutions tends to infinity as (µ, λ)
approaches a fixed point in S.

In Figures 1 and 2 we have plotted the regions of existence computed
numerically in dimensions 5 and 10 respectively. In both figures we have
shown with a thick line the curve C = ∂U ∩ (0,∞)2 and a dashed line
λ = h̄(µ), which is clearly visible in the case N = 5, while in the case N = 10
it is indistinguishable from C. In the regions of existence, we have chosen
to plot some curves obtained numerically from an initial-value problem; see
Remark 3.1 for more details. From these numerical results and the analogy
with the scalar equation (1.2) it is reasonable to conjecture that if N ≥ 10
then the extremal curve for existence C coincides with the curve of singular
solutions S. Actually, on the diagonal µ = λ this is true, and in dimension
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Figure 2. Region of existence for N = 10

N ≥ 11 maybe one can prove that near the diagonal C and S coincide.
Another related property that we conjecture in dimensions N ≥ 10 is that
for all (µ, λ) in U there is a unique solution.

Section 2 is devoted to the proof of Theorem 1.1, which is based on
arguments similar to those used for some fourth-order problems such as
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[1, 8, 13, 14]. In Section 3 we introduce a change of variables that trans-
forms the first-order system of ODE (1.1) which we use later to prove the
results on the existence of singular solutions and multiplicity. In this section
we explain Figures 1 and 2 more. In Section 4 we prove Theorem 1.2, and
in Section 5 we give the proof of Theorem 1.3.

2. Classification of singularities

This section is devoted to the proof of Theorem 1.1. In this argument
we can assume that λ = µ = 2(N − 2). Indeed, we can replace u and v by
ũ(r) = u(Rr) + log µ

2(N−2) + 2 logR and ṽ(r) = v(Rr) + log λ
2(N−2) + 2 logR.

Then ũ and ṽ satisfy system (1.3) in Bρ(0) \ {0} with λ = µ = 2(N − 2) and
ρ = 1/R. By choosing R large we can assume that ũ and ṽ are positive in
Bρ(0) \ {0}, and thus we are left to study radial functions u and v which are
C2(Bρ \ {0}) and satisfy

−∆u = 2(N − 2)ev in Bρ \ {0}
−∆v = 2(N − 2)eu in Bρ \ {0}
u, v > 0 in Bρ \ {0},

(2.1)

where ρ > 0. We define new variables

U(t) = u(r) + 2t, V (t) = v(r) + 2t with r = et (2.2)

and obtain the system{
U ′′ + (N − 2)U ′ + 2(N − 2)(eV − 1) = 0,

V ′′ + (N − 2)V ′ + 2(N − 2)(eU − 1) = 0
(2.3)

for t in (−∞, log ρ). We observe that this system is autonomous, so we can
assume that U and V solve the system in (−∞, 0). After this shift in time
(t = told − log ρ), from the positivity of u(r) and v(r), the functions U and
V satisfy

U(t), V (t) ≥ 2t− C ∀t ≤ 0, (2.4)

where C > 0.

Lemma 2.1. There is T > 0 such that U < V or V > U or U ≡ V in
(−∞, 0).

Proof. Suppose U 6≡ V but that U − V changes sign more than once in
(−∞, 0). Let t0 < t1 < 0 be such that U(t0) = V (t0) and U(t1) = V (t1).
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Subtracting both equations we find

(U − V )′′ + (N − 2)(U − V )′ + (eV − eU ) = 0.

Let w = U − V and a = 2(N − 2) e
V −eU
V−U ≥ 0 (whenever U 6= V ). Then

w′′ + (N − 2)w′ − 2(N − 2)aw = 0 in (−∞, 0).

Multiplying by w and integrating in (t0, t1), and using that w(t0) = w(t1) =
0, we get ∫ t1

t0

(w′)2 + aw2 = 0,

from which we deduce that U ≡ V in [t0, t1]. By uniqueness of the solution
to ODE’s we obtain U ≡ V in (−∞, 0). �

The case U ≡ V corresponds to a radial solution of the equation −∆u =
2(N − 2)eu in Bρ(0) \ {0}, and then we know that either u(r) = −2 log r
or u can be extended to 0 as a smooth function; see [23]. So it remains to
study the case when the components are not identical. Therefore, thanks to
Lemma 2.1 and shifting time, from here on we assume that

V < U in (−∞, 0). (2.5)

Notice that (2.4) is still valid after this shift in time.

Lemma 2.2. We have

lim inf
t→−∞

U(t) ≤ 0. (2.6)

Proof. Suppose for the sake of contradiction that U(t) ≥ δ > 0 for all t ≤ t0
where t0 ≤ 0. Note that 2(N − 2)(eU(t) − 1) ≥ δ̃ > 0 for all t ≤ t0. Thus, by
(2.3)

V ′′ + (N − 2)V ′ ≤ −δ̃ for all t ≤ t0.
Multiplying by e(N−2)t and integrating in [s, t1] with s ≤ t1 ≤ t0, we find

e(N−2)t1V ′(t1)− e(N−2)sV ′(s) ≤ −δ̃
e(N−2)t1 − e(N−2)s

N − 2
.

Suppose that for some t1 ≤ t0 we have V ′(t1) ≥ 0. Then we obtain

δ̃
e(N−2)(t1−s) − 1

N − 2
≤ V ′(s) for all s ≤ t1.

Let us simplify the notation, writing

δ̄e−(N−2)s − C ≤ V ′(s) for all s ≤ t1,
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where δ̄, C > 0. Integrating in an interval [t, t1] with t ≤ t1, we see that

V (t) ≤ V (t1) +
δ̄

N − 2
e−(N−2)t1 − δ̄

N − 2
e−(N−2)t + C(t1 − t),

for all t ≤ t1. But this contradicts (2.4).
Therefore it remains to do the analysis in the case V ′(t) ≤ 0 for all t ≤ t0,

which implies in particular V (t) ≥ V (t0) ∀t ≤ t0. Here we follow an idea of
[22]; see also [1, 12, 13]. By shifting time, we assume that

U(t) ≥ δ > 0, V (t) ≥ V (0) ∀t ≤ 0.

Let φ ∈ C∞(R) be such that 0 ≤ φ ≤ 1, φ(t) = 0 for t ∈ (−∞,−3] ∪ [0,∞),
φ(t) > 0 for t ∈ (−3, 0), φ(t) = 1 for t ∈ [−2,−1], and for i = 1, 2∫ 0

−3

(φ(i))2

φ
dt < +∞.

Let τ > 1 and φτ (t) = φ(t/τ). Multiplying the second equation in (2.3) by
φτ and integrating, we find

2(N − 2)

∫ 0

−3τ
(eU − 1)φτ =

∫ 0

−3τ
(−V φ′′τ + (N − 2)V φ′τ ). (2.7)

Let ε > 0 be fixed later on. For all t ∈ (−3τ, 0) and i = 1, 2 we have

|V φ(i)τ | ≤ εV 2φτ + Cε
(φ

(i)
τ )2

φτ

so that from (2.7) we deduce that∫ 0

−3τ
(eU − 1)φτ ≤ Cε

∫ 0

−3τ
V 2φτ + Cε

∑
i=1,2

∫ 0

−3τ

(φ
(i)
τ )2

φτ
dt. (2.8)

But ∫ 0

−3τ

(φ
(i)
τ )2

φτ
dt = τ1−2i

∫ 0

−3

(φ(i))2

φ
dt ≤ Cτ1−2i,

so from (2.8) we have∫ 0

−3τ
(eU − 1)φτ ≤ Cε

∫ 0

−3τ
V 2φτ + Cετ

−1 (2.9)

(assuming τ > 1). Now we use that V ≤ U , V ≥ V (0), and U ≥ δ. From
these inequalities we can deduce that

V 2 ≤ (1 +
V (0)2

δ2
)U2.
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Combining with (2.9) we obtain∫ 0

−3τ
(eU − 1)φτ ≤ Cε(1 +

V (0)2

δ2
)

∫ 0

−3τ
U2φτ + Cετ

−1. (2.10)

We can select ε > 0 sufficiently small so that

eu − 1− Cε(1 + V (0)2/δ2)u2 ≥ δ/4 for u ≥ δ.
From (2.10) we obtain then δ

4τ ≤ Cετ
−1, which is not possible for τ > 1

large. �

Lemma 2.3. We have

lim sup
t→−∞

U(t) < +∞.

Proof. We follow the idea of Lemma 1 in [12]. Assume for the sake of
contradiction that lim supt→−∞ U(t) = +∞. Then, taking into account
(2.6), we can find a sequence tk → −∞ such that U(tk) → +∞, and for
all k ≥ 1 we have tk+1 + log 2 < tk, U(tk+1) ≥ U(tk), U

′(tk) = 0, and
U ′′(tk) ≤ 0.

Let Mk = U(tk), rk = etk , and ρk =
rk+1

rk
. Define

uk(r) = u(rrk)−Mk + 2 log rk, vk(r) = v(rrk) + 2 log rk,

where (u, v) is a solution of (2.1). Then

−∆uk = 2(N − 2)evk , −∆vk = 2(N − 2)eMkeuk

in B1 \ {0}, and satisfy the conditions

uk(1) = 0, uk(ρk) > 0, vk(1) ≥ 0, vk(ρk) > 0. (2.11)

The inequalities for vk are obtained as follows. Since U ′(tk) = 0 and U ′′(tk) ≤
0, from the system (2.3) we get V (tk) ≥ 0. Then vk(1) = V (tk) ≥ 0 and
vk(tk+1) = V (Tk+1) + 2 log rk

rk+1
> 0.

Consider the principal Dirichlet eigenvalue λk and eigenfunction φk > 0
of −∆ in B \Bρk , namely,

−∆φk = λkφk in B1 \Bρk
φk = 0 on ∂(B1 \Bρk),

where ‖φk‖L2 = 1. Integration by parts, using (2.11), gives

λk

∫
B1\Bρk

ukφk ≥ 2(N − 2)

∫
B1\Bρk

evkφk
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λk

∫
B1\Bρk

vkφk ≥ 2(N − 2)eMk

∫
B1\Bρk

eukφk.

Since uk and vk are positive, we have euk ≥ uk and evk ≥ vk, and we conclude
that

4(N − 2)2eMk ≤ λ2k.
Note that λk is uniformly bounded, since the annulus B1 \Bρk has a width
that does not converge to zero; in fact, 0 < ρk ≤ 1/2. It follows that Mk

remains bounded as k →∞, which is a contradiction. �

Lemma 2.4. Suppose U and V solve (2.3) and U 6≡ 0 (equivalently V 6≡ 0).
If t0 < 0 and U ′(t0) = 0, then U is strictly monotone in (t0 − ε, t0) and on
(t0, t0 + ε) for some ε > 0.

Proof. If V (t0) 6= 0 this follows from (2.3) because then U ′′(t0) 6= 0. Sup-
pose V (t0) = 0. If V ′(t0) 6= 0, then V has a sign on (t0 − ε, t0) and on
(t0, t0 + ε), and then the conclusion still follows from the formula

U ′(t) = −2(N − 2)

∫ t

t0

e(N−2)(s−t)(eV (s) − 1) ds,

which is obtained from (2.3) by integration. The same argument applies if
V ′(t0) = 0 and V ′′(t0) 6= 0. In the case V ′(t0) = 0 and V ′′(t0) = 0 then by
(2.3) U(t0) = 0. But then U ≡ 0 and V ≡ 0 by uniqueness of the initial-value
problem. �

Lemma 2.5. If

lim inf
t→−∞

U(t) = −∞,
then

lim
t→−∞

U(t) = −∞.

We will see later that in the case limt→−∞ U(t) = −∞, which implies
limt→−∞ V (t) = −∞ by (2.5), the original pair (u, v) has a removable sin-
gularity at 0.

Proof of Lemma 2.5. For the sake of contradiction, let us assume that

lim inf
t→−∞

U(t) = −∞ and lim sup
t→−∞

U(t) > −∞. (2.12)

We define

F (t) = U ′(t)V ′(t) + 2(N − 2)(eU(t) − U(t) + eV (t) − V (t)). (2.13)
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By a calculation we have

F ′(t) = −2(N − 2)U ′(t)V ′(t).

The idea is that if (2.12) holds then U oscillates more and more as t→ −∞.
We will argue that it is possible to find a non-trivial interval [a, b] where U
and V are decreasing (hence F is decreasing in this interval) and F (a) is
bounded, while F (b) >> 1. But this contradicts that F is decreasing in this
interval.

We start by fixing a local minimum t1 < 0 of U such that U(t1) = −L
with L > 0 large. Note that V (t1) < −L < 0 by (2.5), so U is increasing
in a small interval to the left of t1 (by Lemma 2.4). Let t2 < t1 be the first
local maximum of U . Then by (2.3) and (2.5),

0 ≤ V (t2) ≤ U(t2). (2.14)

Note that V is either increasing or decreasing on some interval to the left
of t1 (by Lemma 2.4). If V is increasing in some interval to the left of t1
we define t3 < t1 as the first local minimum of V . Otherwise we define
t3 = t1. In any case t3 ≥ t2 by (2.14), V (t3) < −L, and either U ′(t3) = 0 or

V ′(t3) = 0. It follows that F (t3) = 2(N − 2)(eU(t3)−U(t3) + eV (t3)−V (t3)),
which is very large, if we take L large. Again V is decreasing to the left of
t3.

Let t4 ≤ t3 be the first local maximum of V . If t4 ≤ t2 we compare F (t2)
with F (t3). We note that U and V are non-increasing in [t2, t3], and hence

F is non-increasing in this interval. Also F (t2) = 2(N − 2)(eU(t2) − U(t2) +

eV (t2)−V (t2)) is bounded independently of L, because of (2.14) (the bound
depends only on upper bounds on U and V ). But F (t3) is very large, and
this contradicts that F is non-increasing in [t2, t3].

If t4 > t2 we compare F (t4) with F (t3). Again F is non-increasing in
[t4, t3] and F (t3) is large. We claim that F (t4) is bounded, and to prove this
it is sufficient to show that V (t4) ≥ 0. First note that U(t4) ≥ 0 (because
t4 is a local maximum of V and (2.3)). If V (t4) < 0, since V (t2) ≥ 0 and t4
is a local maximum of V , we see that there is a local minimum s of V with
s ∈ (t2, t4) (we get s < t4 from Lemma 2.4). This implies U(s) ≤ 0. But U
is non-increasing in [t2, t1], and it follows that U ≡ 0 in [s, t4]. This leads to
U ≡ 0 and V ≡ 0, a contradiction. �

Lemma 2.6. If

lim inf
t→−∞

U(t) > −∞,
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then

lim inf
t→−∞

V (t) > −∞. (2.15)

Proof. 1.- We prove first that

lim sup
t→−∞

V (t) > −∞. (2.16)

For the sake of contradiction, assume that limt→−∞ V (t) = −∞. Since U(t)
is bounded as t → −∞, we can find a sequence tk → −∞ such that U ′(tk)
remains bounded as k → ∞. For any tk < t < t, by integration of (2.3) we
get

U ′(t) = −2(N − 2)

∫ t

tk

e(N−2)(s−t)(eV (s) − 1) ds+ e(N−2)(t0−t)U ′(tk). (2.17)

Letting k →∞, we find for any t < 0

U ′(t) = −2(N − 2)

∫ t

−∞
e(N−2)(s−t)(eV (s) − 1) ds. (2.18)

Under the assumption limt→−∞ V (t) = −∞ we deduce that limt→−∞ U
′(t) =

2, which implies that limt→−∞ U(t) = −∞, a contradiction.

From now on we prove (2.15) by contradiction; that is, we assume

lim inf
t→−∞

V (t) = −∞. (2.19)

2.- Now let us show that V ′ is bounded. Under the assumption (2.19) and
knowing (2.16) we can find a sequence tk → −∞ as k →∞ such that V ′(tk)
remains bounded. Similarly as (2.17) we have

V ′(t) = −2(N − 2)

∫ t

tk

e(N−2)(s−t)(eU(s) − 1) ds+ e(N−2)(tk−t)V ′(tk)

for tk < t < 0. Letting k →∞ we obtain

V ′(t) = −2(N − 2)

∫ t

−∞
e(N−2)(s−t)(eU(s) − 1) ds,

which shows that V ′ is bounded.

3.- From (2.19) we can find t0 < 0 such that V (t0) < −M , M > 0 a large
constant to be fixed. Since V ′ is uniformly bounded, we get V (t) ≤ −M/2 on
an interval centered at t0 of length of order M/C, where C is independent of
M . Using this information together with (2.18), we see that U ′(t) ≥ c > 0, on
an interval [t0−M/C, t0+M/C]. Here c > 0 can be chosen independently of
M . If M is large enough, this contradicts that U is bounded as t→ −∞. �



12 Juan Dávila, Isabel Flores, and Ignacio Guerra

Proof of Theorem 1.1. By (2.5) and Lemmas 2.5 and 2.6 we have only
two possibilities: either U(t), V (t) → −∞ as t → −∞ or U(t) and V (t)
remain bounded as t→ −∞.

Let us assume that U(t), V (t)→ −∞ as t→ −∞. We claim that in this
case the original u and v satisfying (2.1) have a removable singularity at 0.
Indeed, by (2.4) and Lemma 2.3, which ensures that U and V are bounded
above, we have

|U(t)|+ |V (t)| ≤ C(1 + |t|) ∀t ≤ 0.

This combined with the equations (2.3), the upper bound for U and V
obtained in Lemma 2.3 and (2.5), yields that

|U ′(t)|+ |V ′(t)| ≤ C(1 + |t|) ∀t ≤ 0. (2.20)

Integrating (2.3) we find for s ≤ t ≤ 0

e(N−2)sU ′(s) = e(N−2)tU ′(t) + 2(N − 2)

∫ t

s
e(N−2)τ (eV (τ) − 1) dτ.

Thanks to (2.20), e(N−2)sU ′(s)→ 0 as s→ −∞, and we obtain

U ′(t) = −2(N − 2)

∫ t

−∞
e(N−2)(τ−t)(eV (τ) − 1) dτ (2.21)

for all t ≤ 0. Using V (t)→ −∞ as t→ −∞ we find

lim
t→−∞

U ′(t) = 2.

In a similar way, we find

lim
t→−∞

V ′(t) = 2.

Going back to u and v by the change of variables (2.2), we obtain

lim
r→0

rur(r) = lim
r→0

rvr(r) = 0.

This is enough to show that u and v admit smooth extensions to 0. Indeed,
given ε ∈ (0, 1/2), let δ > 0 be so that |rur(r)| + |rvr(r)| ≤ ε for r ∈ (0, δ].
Integrating once −∆u = 2(N−2)ev in [r0, r] ⊂ (0, δ] and then letting r0 → 0,
we get

u′(r) ≥ −Cr1−ε, ∀0 < r ≤ δ.
The same estimate for v′(r) is also valid. Integrating once again we see that
u and v are bounded near the origin. Then by standard arguments u and v
are smooth up to the origin.

Let us consider now the second case, i.e., U(t) and V (t) remain bounded
as t → −∞. By the same argument as in the previous case we have the
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estimate (2.20) and also (2.21) and the corresponding one for V ′. Since U
and V remain bounded as t → −∞ we also deduce that U ′, V ′, U ′′, and
V ′′ remain bounded as t→ −∞. Let us recall F defined by (2.13) and that
F ′(t) = −2(N − 2)U ′(t)V ′(t). For t0 ≤ t1 ≤ 0 we then find

−2(N − 2)

∫ t1

t0

U ′(t)V ′(t) dt =

∫ t1

t0

F ′(t) dt = F (t1)− F (t0) = O(1) (2.22)

as t0 → −∞. Note however that U ′(t)V ′(t) has no definite sign. Multiplying
the equation for U in (2.3) by V and integrating in the interval [t0, t1] ⊂
(−∞, 0] we get∫ t1

t0

[U ′′V + (N − 2)U ′V + 2(N − 2)(eV − 1)V ] dt = 0.

But ∫ t1

t0

U ′′V dt = U ′(t1)V (t1)− U ′(t0)V (t0)−
∫ t1

t0

U ′V ′ dt = O(1)

as t0 → −∞, by (2.22) and since U, V, U ′, V ′ = O(1) as t→ −∞. Hence∫ t1

t0

U ′V dt+ 2

∫ t1

t0

(eV − 1)V dt = O(1) as t0 → −∞. (2.23)

In a similar way we can derive∫ t1

t0

UV ′ dt+ 2

∫ t1

t0

(eU − 1)U dt = O(1) as t0 → −∞, (2.24)

and adding (2.23) and (2.24) we get∫ t1

t0

(eU − 1)U + (eV − 1)V dt = O(1) as t0 → −∞

since ∫ t1

t0

(UV ′ + U ′V ) dt = O(1).

Since the integrand has a sign we may write∫ 0

−∞
(eU − 1)U + (eV − 1)V dt <∞. (2.25)

Since U(t) and V (t) are bounded as t → −∞, there is some uniform δ > 0

so that (eU(t)−1)U(t) ≥ δU(t)2 for all t ≤ 0 and similarly for V . We deduce
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from (2.25) that ∫ 0

−∞
U2 + V 2 dt <∞. (2.26)

Observe that for [t0, t1] ⊂ (−∞, 0]∫ t1

t0

U ′′U dt = −
∫ t1

t0

(U ′)2 dt+O(1) (2.27)∫ t1

t0

U ′U dt =
1

2
(U(t1)

2 − U(t0)
2) = O(1) as t0 → −∞, (2.28)

and ∫ 0

−∞
(eV − 1)U dt ≤ C

∫ 0

−∞
|V U | dt <∞, (2.29)

for some C > 0 since V remains uniformly bounded, and where the last
statement follows from (2.26). Multiplying the equation for U in (2.3) by
U and integrating on [t0, t1] ⊂ (−∞, 0], we obtain, using (2.27), (2.28), and
(2.29), ∫ 0

−∞
(U ′)2 dt <∞. (2.30)

A similar calculation yields ∫ 0

−∞
(V ′)2 dt <∞.

Using (2.3) and the L2 estimates for U, U ′, V, and V ′ we also obtain∫ 0

−∞
((U ′′)2 + (V ′′)2) dt <∞. (2.31)

Let us show now that U ′(t)→ 0 as t→ −∞. Indeed, thanks to (2.30) there
is a decreasing sequence tn → −∞ as n → ∞ such that tn − tn+1 → 0 and
U ′(tn)→ 0 as n→∞. For any t ∈ [tn+1, tn] we have

|U ′(t)| = |U ′(tn+1) +

∫ t

tn+1

U ′′| ≤ |U ′(tn+1)|+ C(tn − tn+1)
1/2

by (2.31), and this shows U ′(t)→ 0 as t→ −∞. A similar argument applies
to V ′. Since U ′(t), V ′(t)→ 0 as t→ −∞ and U(t) and V (t) remain bounded,
by applying standard interpolation inequalities to equations obtained from
(2.3) by differentiation, we obtain that U (k)(t), V (k)(t)→ 0 as t→ −∞, for
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any integer k ≥ 1. Then the equations (2.3) also yield U(t), V (t) → 0 as
t→ −∞. Using the definition (2.2) we obtain the desired behavior (1.4). �

3. The dynamical system

We assume throughout that N ≥ 3. If u, v is a radial solution of{
−∆u = λev in BR ⊂ RN

−∆v = µeu in BR

the functions

w1 = µe2t+u, w2 = rur, w3 = λe2t+v, w4 = rvr, r = et, (3.1)

satisfy {
w′1 = w1(2 + w2), w′2 = −w3 − (N − 2)w2

w′3 = w3(2 + w4), w′4 = −w1 − (N − 2)w4
(3.2)

for t ∈ (−∞, log(R)).
To study radial solutions of (1.1) it is convenient to consider the initial-

value problem {
−∆u = ev, −∆v = eu in RN

u(0) = α, v(0) = −α, u′(0) = v′(0) = 0,
(3.3)

where α ∈ R is a parameter. We write as uα(r), vα(r) the unique radial
solution to this problem. This solution is defined on a maximal interval
which turns out to be [0,∞), because uα and vα are decreasing, and hence
one can replace the nonlinearity es by a globally Lipschitz one that the
coincides with es for s ≤ |α|. We shall write wi(t;α), i = 1, . . . , 4, the
functions obtained applying the transformations (3.1) with λ = µ = 1 to uα
and vα. They are solutions of (3.2). In the case α = 0 we have that u0 = v0
is the radial solution of the scalar equation

−∆u0 = eu0 in RN , u0(0) = 0, (3.4)

and it is known that it has the behavior

u0(r) = −2 log(r) + log(2(N − 2)) + o(1) as r →∞. (3.5)

The only stationary points of the system (3.2) are{
P1 = (0, 0, 0, 0)

P2 = (2(N − 2),−2, 2(N − 2),−2) .
(3.6)
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A smooth radial solution of (1.1) or (3.3) produces an orbit that emanates
from P1; in other words, the orbits (w1(· ;α), . . . , w4(· ;α)) are contained in
W u(P1). They do not exhaust W u(P1), however, because w1, w3 > 0 and
w2, w4 < 0. The boundary conditions in (1.1) imply that a radial solution
of this system will also cross the hyperplanes w3 = λ and w1 = µ.

The usefulness of the solutions uα and vα of (3.3) and the associated
functions wi(t;α) is that the curves (w1(t;α), w3(t;α)), t ∈ R, describe points
(µ, λ) for which the original system (1.1) has a classical radial solution. Thus
the region of existence

U = {(µ, λ) ∈ (0,∞)2 : system (1.1) has a classical soluion}
is precisely {(w1(t;α), w3(t;α)) : t ∈ R, α ∈ R}.
Remark 3.1. In Figures 1 and 2 we have plotted the components w1 (hori-
zontal axis) and w3 (vertical axis) of the transformation (3.1) obtained from
the numerical solution of (3.3) for different values of α ∈ R. This gives an
idea of the region of existence U .

The linearization of (3.2) around the point P1 is given by Z ′ = M̄Z, where

M̄ =


2 0 0 0
0 −(N − 2) −1 0
0 0 2 0
−1 0 0 −(N − 2)

 .
The eigenvalues of this matrix are −(N − 2) and 2, with multiplicity two.
Then P1 is hyperbolic, has 2-dimensional unstable manifold W u(P1), and a
2-dimensional stable manifold W s(P1).

The linearization of (3.2) around P2 is given by Z ′ = MZ, where

M =


0 2(N − 2) 0 0
0 −(N − 2) −1 0
0 0 0 2(N − 2)
−1 0 0 −(N − 2)

 . (3.7)

The eigenvalues of M are given by

ν1 = 1
2

(
2−N +

√
(N + 6)(N − 2)

)
ν2 = 1

2

(
2−N −

√
(N + 6)(N − 2)

)
ν3 = 1

2

(
2−N +

√
(N − 10)(N − 2)

)
ν4 = 1

2

(
2−N −

√
(N − 10)(N − 2)

)
.

(3.8)
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Note that for N ≥ 3 we have ν2 < 0 < ν1. If 3 ≤ N ≤ 9, then ν3 and ν4
are complex conjugate with nonzero imaginary part and negative real part.
More precisely, we have

ν2 < Re(ν4) = Re(ν3) < 0 < ν1.

If N ≥ 11,
ν2 < ν4 < ν3 < 0 < ν1,

and if N = 10,
ν2 < ν4 = ν3 < 0 < ν1.

Concerning the eigenvectors of M we have the following:

Lemma 3.2. The vector

v(k)= [4(N − 2)2, 2(N − 2)νk, −2(N − 2)(νk +N − 2)νk, −(νk +N − 2)ν2k ]
(3.9)

is the eigenvector of M associated to νk, k = 1, . . . , 4. We have that v(1) and
v(2) are always real, and v(3) and v(4) are complex conjugate if 3 ≤ N ≤ 9.

Let us write v(i) = (v
(i)
1 , v

(i)
2 , v

(i)
3 , v

(i)
4 ), i = 1, . . . , 4; then

v
(1)
1 > 0, v

(1)
2 > 0, v

(1)
3 < 0, v

(1)
4 < 0, (3.10)

and

v
(2)
1 > 0, v

(2)
2 < 0, v

(2)
3 < 0, v

(2)
4 > 0.

Proof. Use that ν2 + ν1 = 2−N. �

Proposition 3.3. There exists a heteroclinic orbit connecting P1 and P2.

The proof is to consider the solution of (3.3) with α = 0, in which case
u0 = v0 and the system (1.1) reduces to the equation (3.4). This solution is
studied in [19], and provides the desired heteroclinic orbit.

4. Curve of singular solutions

Let P1 and P2 be the stationary points of the system (3.2) defined in (3.6).
Then P1 has a 2-dimensional unstable manifold W u(P1), while P2 has a 1-
dimensional unstable manifold W u(P2) and a 3-dimensional stable manifold
W s(P2).

Lemma 4.1. Let V = (w1, . . . , w4) : (−∞, T ) → R4 be the trajectory in

W u(P2) such that 〈V ′(t), v(1)〉 > 0 for t near −∞, where T is the maximal
time of existence. Then

w′1 > 0, w′2 > 0, w′3 < 0, w′4 < 0 for all t < T . (4.1)
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Proof. By (3.10) and the hypothesis 〈V ′(t), v(1)〉 > 0 for t→ −∞, we have

w′1(t) > 0, w′2(t) > 0, w′3(t) < 0, w′4(t) < 0

for t near −∞. For the sake of contradiction, suppose that w′1 = 0 at t = t0;

then w2 = −2 and w′2 ≤ 0 at t = t0. This implies that w3 ≥ 2(N − 2) at
t = t0. Consequently there exists t1 < t0 such that w′3 = 0 and w3 < 2(N−2),
and so w4 = −2 and w′4 ≥ 0 at t = t1. Then w1 ≤ 0, but w1 > 0 at t = t1.
Then

w′1 > 0 for all t < T .

Next let us see that w′4 > 0 for all t < T . If not, there is a first t1 such that
w′4(t1) = 0. Then w′′4(t1) ≥ 0. But from w′′4 = −w′1− (N − 2)w′4, we see that
w′′4(t1) < 0, a contradiction. Then w′4 < 0 for all t < T .

Similarly we have w′3 < 0 and w′2 > 0. �

Lemma 4.2. Let V = (w1, . . . , w4) : (−∞, T ) → R4 be the trajectory in

W u(P2) such that 〈V ′(t), v(1)〉 > 0 for t near −∞, where T is the maximal
time of existence. Then T =∞ and

w1(t)→∞, w3(t)→ 0, w2(t)→ 0, w4(t)→ −∞
w4(t)

w1(t)
→ − 1

N
as t→∞. (4.2)

Proof. We first observe that w1 and w3 remain always positive, since this
is true for t → −∞ and if one of them vanished for some time, it would be
identically zero.

Let us show that T =∞. Indeed, assume the maximal time of existence T
is finite. Then from the equation for w′2 in (3.2), w2(t) ≤ e(N−2)(t0−t)w2(t0)
for any t0, t < T . Fixing t0 this gives an upper bound for w2 as t ↑ T . It
follows that also w1 has an upper bound as t ↑ T . The same argument shows
that w4 is bounded as t ↑ T . Next, since w4 is decreasing and equal to −2 at
t = −∞, we get w4 + 2 < 0 for all t. Then the equation for w3 implies that
w3 remains bounded as t ↑ T . Therefore all components remain bounded as
t ↑ T , which contradicts the maximality of T .

That w1 → ∞ follows from the system equation for w′1 in (3.2), since
fixing any t0 ∈ R, we have w2(t) + 2 ≥ w2(t0) + 2 > 0 for all t ≥ t0 by
Lemma 4.1, and then w′1(t) ≥ (w2(t0) + 2)w1(t) for all t ≥ t0.

Next let us see that w3(t)→ 0 as t→∞. Otherwise, since w3 is positive
and decreasing, we would have w3(t)→ w̄3 > 0 as t→∞. Then the equation
for w′2 in (3.2) would imply that w2(t)→ −∞ as t→∞. This is not possible
because w2 is increasing by Lemma 4.1. Using that w3(t) → 0 as t → ∞
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and the second equation in (3.2), we can deduce that w2(t) → 0 as t → ∞.
Similarly, using the fourth equation and w1(t)→∞ as t→∞ we can obtain
that w4(t)→ −∞ as t→∞.

L’Hopital’s rule gives for

L = lim
t→∞

w4(t)

w1(t)

the equation L = −1/2− L(N − 2)/2, and we obtain (4.2). �

Proof of Theorem 1.2. Consider the trajectory V = (w1, . . . , w4) :

(−∞,∞)→ R4 in W u(P2) such that 〈V ′(t), v(1)〉 > 0 for t near −∞, where

v(1) is given in Lemma 3.9. By Lemmas 4.1 and 4.2 we can define w3 as a
function of w1:

w3 = h̄(w1)

for w1 ∈ [2(N − 2),∞). This function is smooth monotone decreasing, and
h̄(w1)→ 0 as w1 →∞. By symmetry we define

h̄(w1) = h̄−1(w1),

where h̄−1 is the inverse of h̄.
We see that for λ = h̄(µ) there exists a radial singular solution of (1.1).

On the other hand, suppose that (u, v) is a radial singular solution associated
to parameters (µ, λ). We can assume that µ ≥ λ by symmetry. Then by
Theorem 1.1, after the change of variables (3.1) we have that (w1, . . . , w4)→
P2 as t → −∞ (this is contained in the proof of Theorem 1.1). Since the
unstable manifold of P2 is one-dimensional, the trajectory (w1, . . . , w4) is
unique and λ = h̄(µ). This shows that on S = {(µ, h̄(µ) : µ ∈ (0,∞)} we
find singular solutions and that the singular solution is unique. �

5. Multiplicity in dimensions 3 ≤ N ≤ 9

Let V0 : R → R4 be the heteroclinic connection from P1 to P2 of Propo-
sition 3.3 and V̂0 = V0(−∞,∞). Then V̂0 is contained in both W u(P1) and
W s(P2).

Lemma 5.1. Assume N ≥ 3. W u(P1) and W s(P2) intersect transversally

on points of V̂0. More precisely, for points Q ∈ V̂0 sufficiently close to P2

there are directions in the tangent plane to W u(P1) which are almost parallel

to v(1), the tangent vector to W u(P2) at P2.
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Proof. Let uα, vα be the solution of (3.3) with α > 0, and let W =
(w1, . . . , w4) be defined by (3.1) with λ = µ = 1. Then, from the system we
get v′α < v′0. Integrating,

vα(r) ≤ −α+ v0(r).

Then

−∆(uα − u0) = evα − ev0 < ev0(e−α − 1).

By the asymptotic formula (3.5), ev0(r) ∼ r−2 as r → ∞, and therefore,
integrating we get

u′α(r)− u′0(r) > (1− e−α)r−1

for all r ≥ 1. Therefore

w2(r, α)− w2(r, 0) ≥ cα
for some c > 0. We deduce that

∂w2

∂α
(r, 0) ≥ c > 0 (5.1)

for all r > 0 large. Let Z = ∂W
∂α |α=0. Then Z = (z1, . . . , z4) satisfies

Z ′ = (M +R(t))Z,

where M is the matrix defined in (3.7) and

R(t) =


(2 + w2) (w1 − 2(N − 2)) 0 0

0 0 0 0
0 0 (2 + w4) (w3 − 2(N − 2))
0 0 0 0

 .
Recall that V (t)→ P2 as t→∞. Moreover, the convergence is exponential;
that is, there are C, σ > 0 such that |V (t)− P2| ≤ Ce−σt for all t ≥ 0. This
follows from the Hartman–Grobman theorem (see Theorem 7.1 in [18] or
Theorem 1.1.3 in [17]), which shows that the system (3.2) is C0-conjugate to
its linearization near P2. Recall that the eigenvalues of M are ν1 > 0 > ν2
and ν3 and ν4, which have negative real part and nonzero imaginary part.
Let v(i) ∈ C4 denote an eigenvector associated to νi. By Theorem 8.1 in [6,
Chapter 3] there are solutions ϕk to

ϕ′k = (M +R(t))ϕk, t > 0

such that limt→∞ ϕk(t)e
−νkt = v(k). It follows from this that Z =

∑4
i=1 ciϕi

for some constants c1, . . . , c4 ∈ C. The condition (5.1) imply that |z2(t)| ≥ c
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for some c > 0 and all t ≥ 0, so |Z(t)| ≥ c for t large. Since ν1 > 0 and ν2,
ν3, and ν4 have negative real part, we conclude that c1 6= 0 and

Z(t) = c1v
(1)eν1t + o(eν1t) as t→∞.

Since v(1) is the tangent vector to W u(P2), we have that ∂W
∂α |α=0 is not

tangent to W s(P2) for t large. On the other hand, ∂W
∂α |α=0 is tangent to

W u(P1) by construction. This shows that W s(P2) and W u(P1) intersect

transversally on points of V̂0 close to P2. By the invertibility of the flow away
from the stationary points, W s(P2) and W u(P1) intersect transversally on

all points of V̂0 �

Let v(j) denote the eigenvectors of the linearization of (3.2) at P2 with
corresponding eigenvalue νj , given explicitly in (3.9). Then W u(P2) is

one-dimensional and tangent to v(1) at P2. Hence, if V = (v1, . . . , v4) :

(−∞, T )→ R4 is any trajectory inW u(P2) there are 2 cases: 〈V ′(t), v(1)〉 < 0

or 〈V ′(t), v(1)〉 > 0 for t near −∞.

Lemma 5.2. The system (3.2) is C1-conjugate to its linearization around
P2 in a neighborhood of this point.

Proof. This follows from a result of Belickĭı (see [2] or [26, p. 25]), which
says that the system (3.2) is C1-conjugate to its linearization around the
point P2 under the non-resonance condition

Re(νi) 6= Re(νj) + Re(νk) when Re(νj) < 0 < Re(νk),

where ν1, . . . , ν4 are the eigenvalues of M defined in (3.7). For 3 ≤ N ≤ 9
we have

ν2 < Re(ν4) = Re(ν3) =
2−N

2
< 0 < ν1.

Considering the pair ν2 < 0 < ν1 we see that Re(ν2)+Re(ν1) = 2−N , which
is different from Re(ν3) and Re(ν4). The only case left is Re(ν3) < 0 < ν1,
and we need to verify that

Re(ν3) + ν1 6= ν2, Re(ν3) + ν1 6= Re(ν4).

Both relations hold for all integer N ≥ 3. �

Proof of Theorem 1.3. We will write generic points in the phase space
R4 as (w1, w2, w3, w4). Let {ej : j = 1, . . . , 4 } denote the canonical basis of
R4.

For µ ≥ 2(N − 2), by Lemmas 4.1 and 4.2, W u(P2) ∩ {w1 = µ} is a
single point, which we call P ∗(µ) = (P ∗1 (µ), P ∗2 (µ), P ∗3 (µ), P ∗4 (µ)). Note that
h̄(µ) = P ∗3 (µ).
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For α ∈ R, let uα, vα be the solution of (3.3) and letW (t;α) = (w1, . . . , w4)
be defined by (3.1) with λ = µ = 1. Define

W̃ u(P1) = {W (t;α) : α ∈ R, t ∈ R},
which is the part of W u(P1) giving rise to smooth solutions of (1.1). Let

E = W̃ u(P1) ∩ {w1 = µ}. We will prove Theorem 1.3 by showing that E
contains a curve S which spirals around P ∗(µ). By this we mean that there
exist linearly independent vectors S1, S2 ∈ R4 and numbers α > 0 and β ∈ R
such that S can be parametrized by

t ∈ [0,∞) 7→ P ∗(µ) + e−αt cos(βt)S1 + e−αt sin(βt)S2 + o(e−αt) (5.2)

as t → ∞. Actually we will obtain α = −Re(ν3) = N−2
2 and β = Im(ν3),

with ν3 given in (3.8). In this setting we define the tangent plane to S at
P ∗(µ) as the plane generated by S1 and S2. An important property that
we will prove later is that this tangent plane is transversal to the plane
{w3 = 0}.

Let us proceed with the construction of S. Let Xt denote the flow gener-
ated by (3.2). Let MD be the matrix

MD =


ν1 0 0 0
0 ν2 0 0
0 0 Re(ν3) − Im(ν3)
0 0 Im(ν3) Re(ν3)

 . (5.3)

By Lemma 5.2 there is an open neighborhood NP2 of P2 and a C1 diffeo-
morphism H : NP2 → N0, where N0 is an open neighborhood of 0, such that
H ◦Xt ◦H−1 = Lt, where Lt = eMDt is the flow generated by MD, and the
formula holds in some neighborhood of the origin.

Let
D = {w = (w1, . . . , w4) : w1 = µ, |w − P ∗(µ)| < 1}.

Then by Lemma 4.1 D is a 3-dimensional disk transversal to W u(P2). Next
we apply the λ-lemma of Palis [25], which says that there is an open neighbor-
hood Bs of P2 relative to W s(P2) and an open neighborhood N of P2, both
of them contained in NP2 , such that given ε > 0, the connected component
of X−t0(D)∩N that contains Xt(P

∗(µ)) is ε C1-close to Bs if t0 > 0 is suffi-
ciently large. Let us writeM for the connected component of X−t0(D)∩N
that contains X−t0(P ∗(µ)).

Choose some point Q ∈ V̂0 such that Q ∈ NP2 . By Lemma (5.1) we

may choose a C1 curve contained in W̃ u(P1), say Γ = {γ(s) : |s| < δ} with
γ : (−δ, δ)→ R4 a C1 function such that γ(0) = Q and γ′(0) not tangent to
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W s(P2) at Q. This curve can be taken to be of the form γ(s) = W (t1, s),
where W (t, α) = (w1, . . . , w4) is defined by (3.1) with λ = µ = 1 starting
with uα, vα the solution of (3.3) with α ∈ R. We take t1 large so that
γ(0) = W (t1, 0) meets the requirements of being close to P0 and γ′(0) very
close to the tangent to W u(P2). We can assume also that this curve is
contained in NP2 . Choosing ε small we can assume that Γ intersects M.

To describe the structure of Xt(Γ)∩M, thanks to the conjugation H, we
assume that P2 is at the origin and that near the origin the flow is given by
Lt = eMDt given in (5.3). In particular, after this change of variables, the
local unstable manifold of P2 is contained in the axis e1 = (1, 0, 0, 0) and
the local stable manifold is contained in the space {(y1, . . . , y4) : y1 = 0}.
We may further assume that Bs = {(y1, . . . , y4) : y1 = 0, |y| < δ} for some
δ > 0 and that the heteroclinic orbit V0 near the origin in the new variables
is given by

V0(t) = (0, c2e
ν2t, eν3t(c3 + ic4)), t ≥ 0 (5.4)

for some constants c2, c3, c4 ∈ R, where in the last two components we are
using complex notation. Note that the curve V0 cannot have a tangent
vector that becomes parallel to e2 = (0, 1, 0, 0) as t → ∞, that is, c3 6= 0
or c4 6= 0 (recall that ν2 < Re(ν3) < 0 by (3.8)). By choosing ε small,
we can assume that the normal vector to M near P2 is almost parallel to
e1 = (1, 0, 0, 0). Thus by passing to a subset ofM we may assume thatM is
a C1 graph over the variables (y2, y3, y4); that is, there exists a C1 function
ψ : {y′ = (y2, y3, y4) ∈ R3, |y′| < δ} → R with ψ(0) > 0 such that

M = {(ψ(y′), y′) : y′ ∈ R3, |y′| < δ}.
By Lemma 5.1 the tangent plane to W u(P1) at points close to the origin

(i.e., P2 after the change of variables) contains vectors almost parallel to
e1 = (1, 0, 0, 0), and hence γ′1(0) 6= 0. We may assume that γ′1(0) > 0. We
claim that for all t > 0 large there is a unique small s such that Lt(γ(s)) ∈M.
Indeed, this condition is equivalent to

eν1tγ1(s) = ψ(eν2tγ2(s), e
ν3t(γ3(s) + iγ4(s))).

Write τ = 1/t > 0 and

F (τ, s) = γ1(s)− e−ν1tψ(eν2tγ2(s), e
ν3t(γ3(s) + iγ4(s))). (5.5)

Then F (τ, s) is well defined in C1 in a set of the form (0, δ0)× (−δ0, δ0) for
some δ0 > 0, and one can verify that it admits a C1 extension to τ = 0 with

F (0, s) = γ1(s),
∂F

∂s
(0, s) = γ′1(s),

∂F

∂τ
(0, s) = 0.
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Since F (0, 0) = 0 and ∂F
∂s (0, 0) = γ′1(0) 6= 0, by the implicit function theorem,

given τ > 0 small we can find a unique small s such that F (τ, s) = 0. This
defines a function s = s(t) defined for t > 0 large such that Lt(γ(s(t))) ∈M.
Moreover, from (5.5) we get

γ′1(0)s+ o(s) = e−ν1t(ψ(0) +O(e−Re(ν3)t)),

and hence we find the expansion

s(t) =
e−ν1tψ(0)

γ′1(0)
(1 +O(e−Re(ν3)t)) as t→∞.

The point of intersection Lt(γ(s(t))) can be written then in the form

Lt(γ(s(t))) = (ψ(0), 0, 0, 0) + eRe(ν3)t cos(Im(ν3)t)S̃1

+ eRe(ν3)t sin(Im(ν3)t)S̃2 + o(eRe(ν3)t) as t→∞,
where

S̃1 = (aγ3(0) + bγ4(0), 0, γ3(0), γ4(0)) (5.6)

S̃2 = (−aγ4(0) + bγ3(0), 0, γ3(0), γ4(0)) (5.7)

a =
∂ψ

∂y3
(0), b =

∂ψ

∂y4
(0). (5.8)

Thus the curve {Lt(γ(s(t))), t > 0 large} defines a spiral contained in M.
Applying the conjugation H−1 and the flow Xt0 we see that

S = {Xt+t0(γ(s(t))) : t ≥ t1}
with t1 > 0 large has the structure of a spiral (5.2) with α = −Re(ν3) = N−2

2

and β = Im(ν3). By construction S is contained in E = W̃ u(P1)∩{w1 = µ}.
We now prove the following statement:

the tangent plane to S at P ∗(µ) is transversal to the plane {w3 = 0}.
(5.9)

Recall that by definition this plane is the one generated by S1 and S2 appear-
ing in (5.2). Since S is contained in {w1 = µ}, it is sufficient to show that
inside the space {w1 = µ} the plane generated by e2 and e4 is transversal
to the tangent plane to S at P ∗(µ). Let V = (w1, . . . , w4) : (−∞,∞)→ R4

denote the trajectory in W u(P2) such that 〈V ′(t), v(1)〉 > 0 for t near −∞,

where v(1) is given in Lemma 3.9. To prove our claim we need to trans-
port the plane generated by e2 and e4 back along V , and this is accom-
plished by solving the linearized equation around V . More precisely, let



Multiplicity for a Liouville system 25

Z, Z̃ : (−∞, 0] → R4 be solutions to the linearization of (3.2) around V ;
that is, Z = (z1, z2, z3, z4) satisfies for t < 0{

z′1 = (2 + w2)z1 + w1z2, z′2 = −(N − 2)z2 − z3,
z′3 = (2 + w4)z3 + w3z4, z′4 = −(N − 2)z4 − z1,

(5.10)

and similarly for Z̃ = (z̃1, z̃2, z̃3, z̃4). As final conditions we take Z(0) = e2
and Z̃(0) = e4.

By Theorem 8.1 in [6, Chapter 3] there are solutions ψk : (−∞, 0] → C4

to (5.10) such that

lim
t→−∞

ψk(t)e
−νkt = v(k), (5.11)

where v(1), . . . , v(4) are the eigenvectors of M . Recall that v(1) and v(2) are
real, and v(3) and v(4) are complex conjugate. Thus one can assume that ψ1

and ψ2 are real, and ψ3 and ψ4 are complex conjugate. Let{
ϕi = ψi, i = 1, 2

ϕ3 = Re(ψ3), ϕ4 = Im(ψ3),
(5.12)

so that now ϕi, i = 1, . . . , 4 is a fundamental system of real-valued solutions
of (5.10). Then we can write

Z(t) =
4∑
i=1

ciϕi(t), and Z̃(t) =
4∑
i=1

c̃iϕi(t)

for some constants c1, . . . , c4, c̃1, . . . , c̃4 ∈ R. We remark that V ′ is a solution
of (5.10), and therefore it can be written as a linear combination of the ϕi.
But V ′(t)→ 0 as t→ −∞, and since the only function of the ϕi that tends
to 0 as t → −∞ is ϕ1 by (5.11) we must have that V ′ = c0ϕ1 for some
nonzero constant c0 ∈ R.

We claim that

c2 6= 0 or c̃2 6= 0. (5.13)

Assume, for the sake of contradiction, that c2 = 0 and c̃2 = 0. Define ∀t ≤ 0

f(t) = e(N−2)t
(
z4(t)z̃1(t)

w1
− z3(t)z̃2(t)

w3
+
z2(t)z̃3(t)

w3
− z1(t)z̃4(t)

w1

)
.

A calculation using (5.10) shows that f is constant. Using the final condi-

tions for Z and Z̃ we see that f(0) = 0, and hence f(t) = 0 ∀t ≤ 0. We can
compute lim f(t) as t→ −∞. Indeed, using the asymptotic behavior (5.11),
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the relations (5.12), the formulas for the eigenvectors (3.9), the behavior of
w1 and w3 given by

w1(t) = 2(N − 2) +O(eν1t), w3(t) = 2(N − 2) +O(eν1t)

as t→ −∞, and the assumption c2 = 0 and c̃2 = 0, we get

lim
t→−∞

f(t) = (c3c̃4 − c̃3c4)B,

where B = −(N−2)2
√

(10−N)(N − 2). Thus B 6= 0, and we conclude that
(c3c̃4 − c̃3c4) = 0. This means that there exists λ ∈ R such that c̃k = λck,

k = 3, 4. Using Z(0) = e2 and Z̃(0) = e4 we see that

(c̃1 − λc1)ϕ1(0) = e4 − λe2.
But, as remarked before, ϕ1 = c0V

′, for some constant c0 ∈ R, c0 6= 0.
By Lemma 4.1 all components of V ′(0) are non-zero, which implies that

c̃1 − λc1 = 0, leading to Z̃(0) = λZ(0), a contradiction.
The condition (5.13) implies the assertion (5.9). Indeed, let us recall that

we defined M as the connected component of X−t0(D) ∩ N that contains
Qt0 ≡ X−t0(P ∗(µ)) with t0 > 0 large. Using a C1 conjugation that allows

us to assume that near P2 the system is linear, we saw that M∩ W̃ u(P1)

contains a spiral S̃ around the point Qt0 . S was defined as Xt0 applied to S̃.

The tangent vectors to S̃ at Qt0 after the conjugation are S̃1 and S̃2 given
in (5.6)–(5.8). Since the derivatives in (5.8) can be assumed to be small, we

see that S̃1 and S̃2 are almost contained in the plane generated by e3 and
e4, which by the conjugation correspond to Re(v(3)) and Im(v(3)). Therefore

the tangent plane to S̃ at Qt0 is almost parallel to the plane generated by

the eigenvectors Re(v(3)) and Im(v(3)). Since either c2 6= 0 or c̃2 6= 0, for t0
large at least one of the vectors Z(t0) or Z̃(t0) is transversal to the tangent

plane to S̃ at Qt0 .

Finally, once we have shown that W̃ u(P1) ∩ {w1 = µ} contains a spiral
S centered around P ∗(µ), using the transversality property (5.9) one can
show that for λ = h̄(µ) there are infinitely many intersections of S with the
hyperplane {w3 = λ} and that for λ close to h̄(µ) there is a large number of
such intersections. Each intersection yields a regular solution of (1.1) with
parameters (µ, λ).

We remark that the argument given above proves a slightly weaker state-
ment than the one in Theorem 1.3, in the sense that we consider µ fixed and
let λ approach h̄(µ) to obtain a large number of solutions. The argument
above can be adapted to prove the version stated in the theorem. �
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