MULTIPLICITY AND SINGULAR SOLUTIONS FOR A LIOUVILLE-TYPE SYSTEM IN A BALL

Juan Dávila
Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807, CNRS), Universidad de Chile, Casilla 170/3 Correo 3, Santiago, Chile
Isabel Flores
Departamento de Matemática, Universidad Técnica Federico Santa María Casilla 110 V, Valparaíso, Chile
Ignacio Guerra
Departamento de Matemática y C.C., Facultad de Ciencia
Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile

(Submitted by: Michel Chipot)
Abstract. We consider the Liouville system

$$
-\Delta u=\lambda e^{v}, \quad-\Delta v=\mu e^{u} \quad \text { in } B
$$

with $u=v=0$ on ∂B, where B is the unit ball in $\mathbb{R}^{N}, N \geq 3$, and λ and μ are positive parameters. First we show that radial solutions in $B \backslash\{0\}$ are either regular or have a log-type singularity. Then, in dimensions $3 \leq N \leq 9$ we prove that there is an unbounded curve $\mathcal{S} \subset(0, \infty)^{2}$ such that for each $(\mu, \lambda) \in \mathcal{S}$ there exist infinitely many regular solutions. Moreover, the number of regular solutions tends to infinity as (μ, λ) approaches a fixed point in \mathcal{S}.

1. Introduction

We study radially symmetric solutions to the cooperative system

$$
\begin{cases}-\Delta u=\lambda e^{v} & \text { in } B \tag{1.1}\\ -\Delta v=\mu e^{u} & \text { in } B \\ u=v=0 & \text { on } \partial B\end{cases}
$$

where B is the unit ball in $\mathbb{R}^{N}, N \geq 3$, and λ and μ are positive parameters.
In 2 dimensions, more general cooperative versions have been considered in $[4,5,3,20,21]$. In this article we investigate (1.1) for dimensions $N \geq 3$.

[^0]AMS Subject Classifications: 35J60, 35J47, 35J57, 35B07.

All classical solutions to (1.1) are radially symmetric by a result of Troy [27]; see also [10]. This elliptic system is a natural generalization of the Liouville-Gelfand problem

$$
\left\{\begin{align*}
-\Delta u & =\lambda e^{u} \quad \text { in } B \tag{1.2}\\
u & =0 \quad \text { on } \partial B
\end{align*}\right.
$$

since for $\lambda=\mu$ and u and v classical solutions of (1.1), necessarily $u=v$, which can be seen by multiplying each equation by $u-v$ and integrating.

Concerning (1.2), classical solutions are radial by Gidas, Ni, Nirenberg [16]. Moreover, all of them can be found from one entire radial solution, which leads to a complete description of the bifurcation diagram of (1.2); see e.g. Joseph and Lundgren [19] and also [15]. In particular, there exists $\lambda^{*}=\lambda^{*}(N)>0$ such that for $0<\lambda<\lambda^{*},(1.2)$ has a minimal solution u_{λ}; for $\lambda=\lambda^{*},(1.2)$ has a unique solution u^{*} (possibly singular); and for $\lambda>\lambda^{*}$ (1.2) has no solution. Moreover, if $N=1,2$, then for $0<\lambda<\lambda^{*}$, there are exactly two solutions; one of them is the minimal solution u_{λ}, and the other one has Morse index 1. If $3 \leq N \leq 9$, then $\lambda^{*}>2(N-2)$. For $0<\lambda<\lambda^{*}$, $\lambda \neq 2(N-2),(1.2)$ has finitely many solutions, and for $\lambda=2(N-2)$, (1.2) has infinitely many solutions that converge to $-2 \log |x|$, which is a singular solution. If $N \geq 10$, then $\lambda^{*}=2(N-2)$ and $u_{*}=-2 \log |x|$. Moreover, (1.2) has a unique solution for each $\lambda \in\left(0, \lambda^{*}\right)$.

For problem (1.1) Montenegro [24] showed that there is a non-empty open set $\mathcal{U} \subset(0, \infty)^{2}$ such that a minimal classical solution $\left(u_{\mu, \lambda}, v_{\mu, \lambda}\right)$ exists if $(\mu, \lambda) \in \mathcal{U}$ and no solution exists if $(\mu, \lambda) \notin \overline{\mathcal{U}}$. Moreover, $\mathcal{C}=\partial \mathcal{U} \cap(0, \infty)^{2}$ can be described as a continuous curve, and for $(\mu, \lambda) \in \mathcal{C}$ the limit

$$
\lim _{m \rightarrow 1^{-}}\left(u_{m \mu, m \lambda}, v_{m \mu, m \lambda}\right)
$$

is a weak solution, called the extremal solution. This suggests strong analogies between (1.1) and (1.2). In this direction, for general domains it was proved by Cowan [7] (with some restriction on λ, μ) and Dupaigne, Farina, and Sirakov [11] (without restrictions) that if $N<10$ the extremal solution is bounded; and by Dávila and Goubet [9] that the singular set of the extremal solution has dimension at most $N-10$ in general.

In this work we focus on the analysis of singular radial solutions and multiplicity in low dimensions.

We prove the following results.

Theorem 1.1. Let $N \geq 3$. Suppose $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ is a radial solution of

$$
\left\{\begin{array}{l}
-\Delta u=\lambda e^{v} \quad \text { in } B_{1} \backslash\{0\} \tag{1.3}\\
-\Delta v=\mu e^{u} \quad \text { in } B_{1} \backslash\{0\} \\
u, v>0 \quad \text { in } B_{1} \backslash\{0\}
\end{array}\right.
$$

where $\lambda, \mu>0$. Then either both u and v admit a smooth extension to B_{1}, or u and v are both singular and satisfy

$$
\begin{cases}u(r)=-2 \log r+\log \left(\frac{2(N-2)}{\mu}\right)+o(1), & r u^{\prime}(r)=-2+o(1) \tag{1.4}\\ v(r)=-2 \log r+\log \left(\frac{2(N-2)}{\lambda}\right)+o(1), & r v^{\prime}(r)=-2+o(1)\end{cases}
$$

as $r \rightarrow 0$.
Thanks to Theorem 1.1, any radial singular solution (u, v) of system (1.1) in $B_{1}(0) \backslash\{0\}$ can be extended as a distribution solution in $B_{1}(0)$. We will call such solutions just radial singular solutions.
Theorem 1.2. Assume $N \geq 3$. There is a curve $\mathcal{S} \subset \overline{\mathcal{U}}$ described by $\lambda=\bar{h}(\mu)$, where $\bar{h}:(0, \infty) \rightarrow(0, \infty)$ is smooth and decreasing, with

$$
\lim _{\mu \rightarrow 0} \bar{h}(\mu)=\infty, \quad \lim _{\mu \rightarrow \infty} \bar{h}(\mu)=0
$$

such that (1.1) has a radial singular solution (u, v) with parameters (μ, λ) if and only if $\lambda=\bar{h}(\mu)$. Moreover, the radial singular solution is unique.
Theorem 1.3. Assume $3 \leq N \leq 9$. Then the curve \mathcal{S} is contained in \mathcal{U}, and for each $(\mu, \lambda) \in \mathcal{S}$ there exist infinitely many regular solutions of (1.1). Moreover, the number of regular solutions tends to infinity as (μ, λ) approaches a fixed point in \mathcal{S}.

In Figures 1 and 2 we have plotted the regions of existence computed numerically in dimensions 5 and 10 respectively. In both figures we have shown with a thick line the curve $\mathcal{C}=\partial \mathcal{U} \cap(0, \infty)^{2}$ and a dashed line $\lambda=\bar{h}(\mu)$, which is clearly visible in the case $N=5$, while in the case $N=10$ it is indistinguishable from \mathcal{C}. In the regions of existence, we have chosen to plot some curves obtained numerically from an initial-value problem; see Remark 3.1 for more details. From these numerical results and the analogy with the scalar equation (1.2) it is reasonable to conjecture that if $N \geq 10$ then the extremal curve for existence \mathcal{C} coincides with the curve of singular solutions \mathcal{S}. Actually, on the diagonal $\mu=\lambda$ this is true, and in dimension

Figure 1. Region of existence for $N=5$

Figure 2. Region of existence for $N=10$
$N \geq 11$ maybe one can prove that near the diagonal \mathcal{C} and \mathcal{S} coincide. Another related property that we conjecture in dimensions $N \geq 10$ is that for all (μ, λ) in \mathcal{U} there is a unique solution.

Section 2 is devoted to the proof of Theorem 1.1, which is based on arguments similar to those used for some fourth-order problems such as
$[1,8,13,14]$. In Section 3 we introduce a change of variables that transforms the first-order system of ODE (1.1) which we use later to prove the results on the existence of singular solutions and multiplicity. In this section we explain Figures 1 and 2 more. In Section 4 we prove Theorem 1.2, and in Section 5 we give the proof of Theorem 1.3.

2. Classification of singularities

This section is devoted to the proof of Theorem 1.1. In this argument we can assume that $\lambda=\mu=2(N-2)$. Indeed, we can replace u and v by $\tilde{u}(r)=u(R r)+\log \frac{\mu}{2(N-2)}+2 \log R$ and $\tilde{v}(r)=v(R r)+\log \frac{\lambda}{2(N-2)}+2 \log R$. Then \tilde{u} and \tilde{v} satisfy system (1.3) in $B_{\rho}(0) \backslash\{0\}$ with $\lambda=\mu=2(N-2)$ and $\rho=1 / R$. By choosing R large we can assume that \tilde{u} and \tilde{v} are positive in $B_{\rho}(0) \backslash\{0\}$, and thus we are left to study radial functions u and v which are $C^{2}\left(B_{\rho} \backslash\{0\}\right)$ and satisfy

$$
\begin{cases}-\Delta u=2(N-2) e^{v} & \text { in } B_{\rho} \backslash\{0\} \tag{2.1}\\ -\Delta v=2(N-2) e^{u} & \text { in } B_{\rho} \backslash\{0\} \\ u, v>0 & \text { in } B_{\rho} \backslash\{0\},\end{cases}
$$

where $\rho>0$. We define new variables

$$
\begin{equation*}
U(t)=u(r)+2 t, \quad V(t)=v(r)+2 t \quad \text { with } r=e^{t} \tag{2.2}
\end{equation*}
$$

and obtain the system

$$
\left\{\begin{array}{l}
U^{\prime \prime}+(N-2) U^{\prime}+2(N-2)\left(e^{V}-1\right)=0 \tag{2.3}\\
V^{\prime \prime}+(N-2) V^{\prime}+2(N-2)\left(e^{U}-1\right)=0
\end{array}\right.
$$

for t in $(-\infty, \log \rho)$. We observe that this system is autonomous, so we can assume that U and V solve the system in $(-\infty, 0)$. After this shift in time ($t=t_{\text {old }}-\log \rho$), from the positivity of $u(r)$ and $v(r)$, the functions U and V satisfy

$$
\begin{equation*}
U(t), V(t) \geq 2 t-C \quad \forall t \leq 0, \tag{2.4}
\end{equation*}
$$

where $C>0$.
Lemma 2.1. There is $T>0$ such that $U<V$ or $V>U$ or $U \equiv V$ in $(-\infty, 0)$.

Proof. Suppose $U \not \equiv V$ but that $U-V$ changes sign more than once in $(-\infty, 0)$. Let $t_{0}<t_{1}<0$ be such that $U\left(t_{0}\right)=V\left(t_{0}\right)$ and $U\left(t_{1}\right)=V\left(t_{1}\right)$.

Subtracting both equations we find

$$
(U-V)^{\prime \prime}+(N-2)(U-V)^{\prime}+\left(e^{V}-e^{U}\right)=0
$$

Let $w=U-V$ and $a=2(N-2) \frac{e^{V}-e^{U}}{V-U} \geq 0$ (whenever $U \neq V$). Then

$$
w^{\prime \prime}+(N-2) w^{\prime}-2(N-2) a w=0 \quad \text { in }(-\infty, 0) .
$$

Multiplying by w and integrating in $\left(t_{0}, t_{1}\right)$, and using that $w\left(t_{0}\right)=w\left(t_{1}\right)=$ 0 , we get

$$
\int_{t_{0}}^{t_{1}}\left(w^{\prime}\right)^{2}+a w^{2}=0
$$

from which we deduce that $U \equiv V$ in $\left[t_{0}, t_{1}\right]$. By uniqueness of the solution to ODE's we obtain $U \equiv V$ in $(-\infty, 0)$.

The case $U \equiv V$ corresponds to a radial solution of the equation $-\Delta u=$ $2(N-2) e^{u}$ in $B_{\rho}(0) \backslash\{0\}$, and then we know that either $u(r)=-2 \log r$ or u can be extended to 0 as a smooth function; see [23]. So it remains to study the case when the components are not identical. Therefore, thanks to Lemma 2.1 and shifting time, from here on we assume that

$$
\begin{equation*}
V<U \quad \text { in }(-\infty, 0) . \tag{2.5}
\end{equation*}
$$

Notice that (2.4) is still valid after this shift in time.
Lemma 2.2. We have

$$
\begin{equation*}
\liminf _{t \rightarrow-\infty} U(t) \leq 0 \tag{2.6}
\end{equation*}
$$

Proof. Suppose for the sake of contradiction that $U(t) \geq \delta>0$ for all $t \leq t_{0}$ where $t_{0} \leq 0$. Note that $2(N-2)\left(e^{U(t)}-1\right) \geq \tilde{\delta}>0$ for all $t \leq t_{0}$. Thus, by

$$
\begin{equation*}
V^{\prime \prime}+(N-2) V^{\prime} \leq-\tilde{\delta} \quad \text { for all } t \leq t_{0} \tag{2.3}
\end{equation*}
$$

Multiplying by $e^{(N-2) t}$ and integrating in $\left[s, t_{1}\right]$ with $s \leq t_{1} \leq t_{0}$, we find

$$
e^{(N-2) t_{1}} V^{\prime}\left(t_{1}\right)-e^{(N-2) s} V^{\prime}(s) \leq-\tilde{\delta} \frac{e^{(N-2) t_{1}}-e^{(N-2) s}}{N-2}
$$

Suppose that for some $t_{1} \leq t_{0}$ we have $V^{\prime}\left(t_{1}\right) \geq 0$. Then we obtain

$$
\tilde{\delta} \frac{e^{(N-2)\left(t_{1}-s\right)}-1}{N-2} \leq V^{\prime}(s) \quad \text { for all } s \leq t_{1} .
$$

Let us simplify the notation, writing

$$
\bar{\delta} e^{-(N-2) s}-C \leq V^{\prime}(s) \quad \text { for all } s \leq t_{1},
$$

where $\bar{\delta}, C>0$. Integrating in an interval $\left[t, t_{1}\right]$ with $t \leq t_{1}$, we see that

$$
V(t) \leq V\left(t_{1}\right)+\frac{\bar{\delta}}{N-2} e^{-(N-2) t_{1}}-\frac{\bar{\delta}}{N-2} e^{-(N-2) t}+C\left(t_{1}-t\right)
$$

for all $t \leq t_{1}$. But this contradicts (2.4).
Therefore it remains to do the analysis in the case $V^{\prime}(t) \leq 0$ for all $t \leq t_{0}$, which implies in particular $V(t) \geq V\left(t_{0}\right) \forall t \leq t_{0}$. Here we follow an idea of [22]; see also [1, 12, 13]. By shifting time, we assume that

$$
U(t) \geq \delta>0, \quad V(t) \geq V(0) \quad \forall t \leq 0
$$

Let $\phi \in C^{\infty}(\mathbb{R})$ be such that $0 \leq \phi \leq 1, \phi(t)=0$ for $t \in(-\infty,-3] \cup[0, \infty)$, $\phi(t)>0$ for $t \in(-3,0), \phi(t)=1$ for $t \in[-2,-1]$, and for $i=1,2$

$$
\int_{-3}^{0} \frac{\left(\phi^{(i)}\right)^{2}}{\phi} d t<+\infty
$$

Let $\tau>1$ and $\phi_{\tau}(t)=\phi(t / \tau)$. Multiplying the second equation in (2.3) by ϕ_{τ} and integrating, we find

$$
\begin{equation*}
2(N-2) \int_{-3 \tau}^{0}\left(e^{U}-1\right) \phi_{\tau}=\int_{-3 \tau}^{0}\left(-V \phi_{\tau}^{\prime \prime}+(N-2) V \phi_{\tau}^{\prime}\right) \tag{2.7}
\end{equation*}
$$

Let $\varepsilon>0$ be fixed later on. For all $t \in(-3 \tau, 0)$ and $i=1,2$ we have

$$
\left|V \phi_{\tau}^{(i)}\right| \leq \varepsilon V^{2} \phi_{\tau}+C_{\varepsilon} \frac{\left(\phi_{\tau}^{(i)}\right)^{2}}{\phi_{\tau}}
$$

so that from (2.7) we deduce that

$$
\begin{equation*}
\int_{-3 \tau}^{0}\left(e^{U}-1\right) \phi_{\tau} \leq C \varepsilon \int_{-3 \tau}^{0} V^{2} \phi_{\tau}+C_{\varepsilon} \sum_{i=1,2} \int_{-3 \tau}^{0} \frac{\left(\phi_{\tau}^{(i)}\right)^{2}}{\phi_{\tau}} d t \tag{2.8}
\end{equation*}
$$

But

$$
\int_{-3 \tau}^{0} \frac{\left(\phi_{\tau}^{(i)}\right)^{2}}{\phi_{\tau}} d t=\tau^{1-2 i} \int_{-3}^{0} \frac{\left(\phi^{(i)}\right)^{2}}{\phi} d t \leq C \tau^{1-2 i}
$$

so from (2.8) we have

$$
\begin{equation*}
\int_{-3 \tau}^{0}\left(e^{U}-1\right) \phi_{\tau} \leq C \varepsilon \int_{-3 \tau}^{0} V^{2} \phi_{\tau}+C_{\varepsilon} \tau^{-1} \tag{2.9}
\end{equation*}
$$

(assuming $\tau>1$). Now we use that $V \leq U, V \geq V(0)$, and $U \geq \delta$. From these inequalities we can deduce that

$$
V^{2} \leq\left(1+\frac{V(0)^{2}}{\delta^{2}}\right) U^{2}
$$

Combining with (2.9) we obtain

$$
\begin{equation*}
\int_{-3 \tau}^{0}\left(e^{U}-1\right) \phi_{\tau} \leq C \varepsilon\left(1+\frac{V(0)^{2}}{\delta^{2}}\right) \int_{-3 \tau}^{0} U^{2} \phi_{\tau}+C_{\varepsilon} \tau^{-1} \tag{2.10}
\end{equation*}
$$

We can select $\varepsilon>0$ sufficiently small so that

$$
e^{u}-1-C \varepsilon\left(1+V(0)^{2} / \delta^{2}\right) u^{2} \geq \delta / 4 \quad \text { for } u \geq \delta .
$$

From (2.10) we obtain then $\frac{\delta}{4} \tau \leq C_{\varepsilon} \tau^{-1}$, which is not possible for $\tau>1$ large.

Lemma 2.3. We have

$$
\limsup _{t \rightarrow-\infty} U(t)<+\infty .
$$

Proof. We follow the idea of Lemma 1 in [12]. Assume for the sake of contradiction that $\lim \sup _{t \rightarrow-\infty} U(t)=+\infty$. Then, taking into account (2.6), we can find a sequence $t_{k} \rightarrow-\infty$ such that $U\left(t_{k}\right) \rightarrow+\infty$, and for all $k \geq 1$ we have $t_{k+1}+\log 2<t_{k}, U\left(t_{k+1}\right) \geq U\left(t_{k}\right), U^{\prime}\left(t_{k}\right)=0$, and $U^{\prime \prime}\left(t_{k}\right) \leq 0$.

Let $M_{k}=U\left(t_{k}\right), r_{k}=e^{t_{k}}$, and $\rho_{k}=\frac{r_{k+1}}{r_{k}}$. Define

$$
u_{k}(r)=u\left(r r_{k}\right)-M_{k}+2 \log r_{k}, \quad v_{k}(r)=v\left(r r_{k}\right)+2 \log r_{k},
$$

where (u, v) is a solution of (2.1). Then

$$
-\Delta u_{k}=2(N-2) e^{v_{k}}, \quad-\Delta v_{k}=2(N-2) e^{M_{k}} e^{u_{k}}
$$

in $B_{1} \backslash\{0\}$, and satisfy the conditions

$$
\begin{equation*}
u_{k}(1)=0, \quad u_{k}\left(\rho_{k}\right)>0, \quad v_{k}(1) \geq 0, \quad v_{k}\left(\rho_{k}\right)>0 . \tag{2.11}
\end{equation*}
$$

The inequalities for v_{k} are obtained as follows. Since $U^{\prime}\left(t_{k}\right)=0$ and $U^{\prime \prime}\left(t_{k}\right) \leq$ 0 , from the system (2.3) we get $V\left(t_{k}\right) \geq 0$. Then $v_{k}(1)=V\left(t_{k}\right) \geq 0$ and $v_{k}\left(t_{k+1}\right)=V\left(T_{k+1}\right)+2 \log \frac{r_{k}}{r_{k+1}}>0$.

Consider the principal Dirichlet eigenvalue λ_{k} and eigenfunction $\phi_{k}>0$ of $-\Delta$ in $B \backslash B_{\rho_{k}}$, namely,

$$
\begin{aligned}
-\Delta \phi_{k} & =\lambda_{k} \phi_{k} \quad \text { in } \quad B_{1} \backslash B_{\rho_{k}} \\
\phi_{k} & =0 \quad \text { on } \quad \partial\left(B_{1} \backslash B_{\rho_{k}}\right),
\end{aligned}
$$

where $\left\|\phi_{k}\right\|_{L^{2}}=1$. Integration by parts, using (2.11), gives

$$
\lambda_{k} \int_{B_{1} \backslash B_{\rho_{k}}} u_{k} \phi_{k} \geq 2(N-2) \int_{B_{1} \backslash B_{\rho_{k}}} e^{v_{k}} \phi_{k}
$$

$$
\lambda_{k} \int_{B_{1} \backslash B_{\rho_{k}}} v_{k} \phi_{k} \geq 2(N-2) e^{M_{k}} \int_{B_{1} \backslash B_{\rho_{k}}} e^{u_{k}} \phi_{k} .
$$

Since u_{k} and v_{k} are positive, we have $e^{u_{k}} \geq u_{k}$ and $e^{v_{k}} \geq v_{k}$, and we conclude that

$$
4(N-2)^{2} e^{M_{k}} \leq \lambda_{k}^{2} .
$$

Note that λ_{k} is uniformly bounded, since the annulus $B_{1} \backslash B_{\rho_{k}}$ has a width that does not converge to zero; in fact, $0<\rho_{k} \leq 1 / 2$. It follows that M_{k} remains bounded as $k \rightarrow \infty$, which is a contradiction.

Lemma 2.4. Suppose U and V solve (2.3) and $U \not \equiv 0$ (equivalently $V \not \equiv 0$). If $t_{0}<0$ and $U^{\prime}\left(t_{0}\right)=0$, then U is strictly monotone in $\left(t_{0}-\varepsilon, t_{0}\right)$ and on $\left(t_{0}, t_{0}+\varepsilon\right)$ for some $\varepsilon>0$.

Proof. If $V\left(t_{0}\right) \neq 0$ this follows from (2.3) because then $U^{\prime \prime}\left(t_{0}\right) \neq 0$. Suppose $V\left(t_{0}\right)=0$. If $V^{\prime}\left(t_{0}\right) \neq 0$, then V has a sign on $\left(t_{0}-\varepsilon, t_{0}\right)$ and on $\left(t_{0}, t_{0}+\varepsilon\right)$, and then the conclusion still follows from the formula

$$
U^{\prime}(t)=-2(N-2) \int_{t_{0}}^{t} e^{(N-2)(s-t)}\left(e^{V(s)}-1\right) d s
$$

which is obtained from (2.3) by integration. The same argument applies if $V^{\prime}\left(t_{0}\right)=0$ and $V^{\prime \prime}\left(t_{0}\right) \neq 0$. In the case $V^{\prime}\left(t_{0}\right)=0$ and $V^{\prime \prime}\left(t_{0}\right)=0$ then by (2.3) $U\left(t_{0}\right)=0$. But then $U \equiv 0$ and $V \equiv 0$ by uniqueness of the initial-value problem.

Lemma 2.5. If

$$
\liminf _{t \rightarrow-\infty} U(t)=-\infty,
$$

then

$$
\lim _{t \rightarrow-\infty} U(t)=-\infty
$$

We will see later that in the case $\lim _{t \rightarrow-\infty} U(t)=-\infty$, which implies $\lim _{t \rightarrow-\infty} V(t)=-\infty$ by (2.5), the original pair (u, v) has a removable singularity at 0 .
Proof of Lemma 2.5. For the sake of contradiction, let us assume that

$$
\begin{equation*}
\liminf _{t \rightarrow-\infty} U(t)=-\infty \quad \text { and } \quad \limsup _{t \rightarrow-\infty} U(t)>-\infty \tag{2.12}
\end{equation*}
$$

We define

$$
\begin{equation*}
F(t)=U^{\prime}(t) V^{\prime}(t)+2(N-2)\left(e^{U(t)}-U(t)+e^{V(t)}-V(t)\right) . \tag{2.13}
\end{equation*}
$$

By a calculation we have

$$
F^{\prime}(t)=-2(N-2) U^{\prime}(t) V^{\prime}(t) .
$$

The idea is that if (2.12) holds then U oscillates more and more as $t \rightarrow-\infty$. We will argue that it is possible to find a non-trivial interval $[a, b]$ where U and V are decreasing (hence F is decreasing in this interval) and $F(a)$ is bounded, while $F(b) \gg 1$. But this contradicts that F is decreasing in this interval.

We start by fixing a local minimum $t_{1}<0$ of U such that $U\left(t_{1}\right)=-L$ with $L>0$ large. Note that $V\left(t_{1}\right)<-L<0$ by (2.5), so U is increasing in a small interval to the left of t_{1} (by Lemma 2.4). Let $t_{2}<t_{1}$ be the first local maximum of U. Then by (2.3) and (2.5),

$$
\begin{equation*}
0 \leq V\left(t_{2}\right) \leq U\left(t_{2}\right) \tag{2.14}
\end{equation*}
$$

Note that V is either increasing or decreasing on some interval to the left of t_{1} (by Lemma 2.4). If V is increasing in some interval to the left of t_{1} we define $t_{3}<t_{1}$ as the first local minimum of V. Otherwise we define $t_{3}=t_{1}$. In any case $t_{3} \geq t_{2}$ by (2.14), $V\left(t_{3}\right)<-L$, and either $U^{\prime}\left(t_{3}\right)=0$ or $V^{\prime}\left(t_{3}\right)=0$. It follows that $F\left(t_{3}\right)=2(N-2)\left(e^{U\left(t_{3}\right)}-U\left(t_{3}\right)+e^{V\left(t_{3}\right)}-V\left(t_{3}\right)\right)$, which is very large, if we take L large. Again V is decreasing to the left of t_{3}.

Let $t_{4} \leq t_{3}$ be the first local maximum of V. If $t_{4} \leq t_{2}$ we compare $F\left(t_{2}\right)$ with $F\left(t_{3}\right)$. We note that U and V are non-increasing in $\left[t_{2}, t_{3}\right]$, and hence F is non-increasing in this interval. Also $F\left(t_{2}\right)=2(N-2)\left(e^{U\left(t_{2}\right)}-U\left(t_{2}\right)+\right.$ $\left.e^{V\left(t_{2}\right)}-V\left(t_{2}\right)\right)$ is bounded independently of L, because of (2.14) (the bound depends only on upper bounds on U and V). But $F\left(t_{3}\right)$ is very large, and this contradicts that F is non-increasing in $\left[t_{2}, t_{3}\right]$.

If $t_{4}>t_{2}$ we compare $F\left(t_{4}\right)$ with $F\left(t_{3}\right)$. Again F is non-increasing in $\left[t_{4}, t_{3}\right]$ and $F\left(t_{3}\right)$ is large. We claim that $F\left(t_{4}\right)$ is bounded, and to prove this it is sufficient to show that $V\left(t_{4}\right) \geq 0$. First note that $U\left(t_{4}\right) \geq 0$ (because t_{4} is a local maximum of V and (2.3)). If $V\left(t_{4}\right)<0$, since $V\left(t_{2}\right) \geq 0$ and t_{4} is a local maximum of V, we see that there is a local minimum s of V with $s \in\left(t_{2}, t_{4}\right)$ (we get $s<t_{4}$ from Lemma 2.4). This implies $U(s) \leq 0$. But U is non-increasing in $\left[t_{2}, t_{1}\right]$, and it follows that $U \equiv 0$ in $\left[s, t_{4}\right]$. This leads to $U \equiv 0$ and $V \equiv 0$, a contradiction.

Lemma 2.6. If

$$
\liminf _{t \rightarrow-\infty} U(t)>-\infty,
$$

then

$$
\begin{equation*}
\liminf _{t \rightarrow-\infty} V(t)>-\infty \tag{2.15}
\end{equation*}
$$

Proof. 1.- We prove first that

$$
\begin{equation*}
\limsup _{t \rightarrow-\infty} V(t)>-\infty \tag{2.16}
\end{equation*}
$$

For the sake of contradiction, assume that $\lim _{t \rightarrow-\infty} V(t)=-\infty$. Since $U(t)$ is bounded as $t \rightarrow-\infty$, we can find a sequence $t_{k} \rightarrow-\infty$ such that $U^{\prime}\left(t_{k}\right)$ remains bounded as $k \rightarrow \infty$. For any $t_{k}<t<t$, by integration of (2.3) we get

$$
\begin{equation*}
U^{\prime}(t)=-2(N-2) \int_{t_{k}}^{t} e^{(N-2)(s-t)}\left(e^{V(s)}-1\right) d s+e^{(N-2)\left(t_{0}-t\right)} U^{\prime}\left(t_{k}\right) \tag{2.17}
\end{equation*}
$$

Letting $k \rightarrow \infty$, we find for any $t<0$

$$
\begin{equation*}
U^{\prime}(t)=-2(N-2) \int_{-\infty}^{t} e^{(N-2)(s-t)}\left(e^{V(s)}-1\right) d s \tag{2.18}
\end{equation*}
$$

Under the assumption $\lim _{t \rightarrow-\infty} V(t)=-\infty$ we deduce that $\lim _{t \rightarrow-\infty} U^{\prime}(t)=$ 2, which implies that $\lim _{t \rightarrow-\infty} U(t)=-\infty$, a contradiction.

From now on we prove (2.15) by contradiction; that is, we assume

$$
\begin{equation*}
\liminf _{t \rightarrow-\infty} V(t)=-\infty \tag{2.19}
\end{equation*}
$$

2.- Now let us show that V^{\prime} is bounded. Under the assumption (2.19) and knowing (2.16) we can find a sequence $t_{k} \rightarrow-\infty$ as $k \rightarrow \infty$ such that $V^{\prime}\left(t_{k}\right)$ remains bounded. Similarly as (2.17) we have

$$
V^{\prime}(t)=-2(N-2) \int_{t_{k}}^{t} e^{(N-2)(s-t)}\left(e^{U(s)}-1\right) d s+e^{(N-2)\left(t_{k}-t\right)} V^{\prime}\left(t_{k}\right)
$$

for $t_{k}<t<0$. Letting $k \rightarrow \infty$ we obtain

$$
V^{\prime}(t)=-2(N-2) \int_{-\infty}^{t} e^{(N-2)(s-t)}\left(e^{U(s)}-1\right) d s
$$

which shows that V^{\prime} is bounded.
3.- From (2.19) we can find $t_{0}<0$ such that $V\left(t_{0}\right)<-M, M>0$ a large constant to be fixed. Since V^{\prime} is uniformly bounded, we get $V(t) \leq-M / 2$ on an interval centered at t_{0} of length of order M / C, where C is independent of M. Using this information together with (2.18), we see that $U^{\prime}(t) \geq c>0$, on an interval $\left[t_{0}-M / C, t_{0}+M / C\right]$. Here $c>0$ can be chosen independently of M. If M is large enough, this contradicts that U is bounded as $t \rightarrow-\infty$.

Proof of Theorem 1.1. By (2.5) and Lemmas 2.5 and 2.6 we have only two possibilities: either $U(t), V(t) \rightarrow-\infty$ as $t \rightarrow-\infty$ or $U(t)$ and $V(t)$ remain bounded as $t \rightarrow-\infty$.

Let us assume that $U(t), V(t) \rightarrow-\infty$ as $t \rightarrow-\infty$. We claim that in this case the original u and v satisfying (2.1) have a removable singularity at 0 . Indeed, by (2.4) and Lemma 2.3, which ensures that U and V are bounded above, we have

$$
|U(t)|+|V(t)| \leq C(1+|t|) \quad \forall t \leq 0 .
$$

This combined with the equations (2.3), the upper bound for U and V obtained in Lemma 2.3 and (2.5), yields that

$$
\begin{equation*}
\left|U^{\prime}(t)\right|+\left|V^{\prime}(t)\right| \leq C(1+|t|) \quad \forall t \leq 0 \tag{2.20}
\end{equation*}
$$

Integrating (2.3) we find for $s \leq t \leq 0$

$$
e^{(N-2) s} U^{\prime}(s)=e^{(N-2) t} U^{\prime}(t)+2(N-2) \int_{s}^{t} e^{(N-2) \tau}\left(e^{V(\tau)}-1\right) d \tau
$$

Thanks to (2.20), $e^{(N-2) s} U^{\prime}(s) \rightarrow 0$ as $s \rightarrow-\infty$, and we obtain

$$
\begin{equation*}
U^{\prime}(t)=-2(N-2) \int_{-\infty}^{t} e^{(N-2)(\tau-t)}\left(e^{V(\tau)}-1\right) d \tau \tag{2.21}
\end{equation*}
$$

for all $t \leq 0$. Using $V(t) \rightarrow-\infty$ as $t \rightarrow-\infty$ we find

$$
\lim _{t \rightarrow-\infty} U^{\prime}(t)=2
$$

In a similar way, we find

$$
\lim _{t \rightarrow-\infty} V^{\prime}(t)=2
$$

Going back to u and v by the change of variables (2.2), we obtain

$$
\lim _{r \rightarrow 0} r u_{r}(r)=\lim _{r \rightarrow 0} r v_{r}(r)=0
$$

This is enough to show that u and v admit smooth extensions to 0 . Indeed, given $\varepsilon \in(0,1 / 2)$, let $\delta>0$ be so that $\left|r u_{r}(r)\right|+\left|r v_{r}(r)\right| \leq \varepsilon$ for $r \in(0, \delta]$. Integrating once $-\Delta u=2(N-2) e^{v}$ in $\left[r_{0}, r\right] \subset(0, \delta]$ and then letting $r_{0} \rightarrow 0$, we get

$$
u^{\prime}(r) \geq-C r^{1-\varepsilon}, \quad \forall 0<r \leq \delta .
$$

The same estimate for $v^{\prime}(r)$ is also valid. Integrating once again we see that u and v are bounded near the origin. Then by standard arguments u and v are smooth up to the origin.

Let us consider now the second case, i.e., $U(t)$ and $V(t)$ remain bounded as $t \rightarrow-\infty$. By the same argument as in the previous case we have the
estimate (2.20) and also (2.21) and the corresponding one for V^{\prime}. Since U and V remain bounded as $t \rightarrow-\infty$ we also deduce that $U^{\prime}, V^{\prime}, U^{\prime \prime}$, and $V^{\prime \prime}$ remain bounded as $t \rightarrow-\infty$. Let us recall F defined by (2.13) and that $F^{\prime}(t)=-2(N-2) U^{\prime}(t) V^{\prime}(t)$. For $t_{0} \leq t_{1} \leq 0$ we then find

$$
\begin{equation*}
-2(N-2) \int_{t_{0}}^{t_{1}} U^{\prime}(t) V^{\prime}(t) d t=\int_{t_{0}}^{t_{1}} F^{\prime}(t) d t=F\left(t_{1}\right)-F\left(t_{0}\right)=O(1) \tag{2.22}
\end{equation*}
$$

as $t_{0} \rightarrow-\infty$. Note however that $U^{\prime}(t) V^{\prime}(t)$ has no definite sign. Multiplying the equation for U in (2.3) by V and integrating in the interval $\left[t_{0}, t_{1}\right] \subset$ $(-\infty, 0]$ we get

$$
\int_{t_{0}}^{t_{1}}\left[U^{\prime \prime} V+(N-2) U^{\prime} V+2(N-2)\left(e^{V}-1\right) V\right] d t=0
$$

But

$$
\int_{t_{0}}^{t_{1}} U^{\prime \prime} V d t=U^{\prime}\left(t_{1}\right) V\left(t_{1}\right)-U^{\prime}\left(t_{0}\right) V\left(t_{0}\right)-\int_{t_{0}}^{t_{1}} U^{\prime} V^{\prime} d t=O(1)
$$

as $t_{0} \rightarrow-\infty$, by (2.22) and since $U, V, U^{\prime}, V^{\prime}=O(1)$ as $t \rightarrow-\infty$. Hence

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}} U^{\prime} V d t+2 \int_{t_{0}}^{t_{1}}\left(e^{V}-1\right) V d t=O(1) \quad \text { as } t_{0} \rightarrow-\infty \tag{2.23}
\end{equation*}
$$

In a similar way we can derive

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}} U V^{\prime} d t+2 \int_{t_{0}}^{t_{1}}\left(e^{U}-1\right) U d t=O(1) \quad \text { as } t_{0} \rightarrow-\infty \tag{2.24}
\end{equation*}
$$

and adding (2.23) and (2.24) we get

$$
\int_{t_{0}}^{t_{1}}\left(e^{U}-1\right) U+\left(e^{V}-1\right) V d t=O(1) \quad \text { as } t_{0} \rightarrow-\infty
$$

since

$$
\int_{t_{0}}^{t_{1}}\left(U V^{\prime}+U^{\prime} V\right) d t=O(1)
$$

Since the integrand has a sign we may write

$$
\begin{equation*}
\int_{-\infty}^{0}\left(e^{U}-1\right) U+\left(e^{V}-1\right) V d t<\infty . \tag{2.25}
\end{equation*}
$$

Since $U(t)$ and $V(t)$ are bounded as $t \rightarrow-\infty$, there is some uniform $\delta>0$ so that $\left(e^{U(t)}-1\right) U(t) \geq \delta U(t)^{2}$ for all $t \leq 0$ and similarly for V. We deduce
from (2.25) that

$$
\begin{equation*}
\int_{-\infty}^{0} U^{2}+V^{2} d t<\infty \tag{2.26}
\end{equation*}
$$

Observe that for $\left[t_{0}, t_{1}\right] \subset(-\infty, 0]$

$$
\begin{align*}
& \int_{t_{0}}^{t_{1}} U^{\prime \prime} U d t=-\int_{t_{0}}^{t_{1}}\left(U^{\prime}\right)^{2} d t+O(1) \tag{2.27}\\
& \int_{t_{0}}^{t_{1}} U^{\prime} U d t=\frac{1}{2}\left(U\left(t_{1}\right)^{2}-U\left(t_{0}\right)^{2}\right)=O(1) \quad \text { as } t_{0} \rightarrow-\infty \tag{2.28}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{0}\left(e^{V}-1\right) U d t \leq C \int_{-\infty}^{0}|V U| d t<\infty \tag{2.29}
\end{equation*}
$$

for some $C>0$ since V remains uniformly bounded, and where the last statement follows from (2.26). Multiplying the equation for U in (2.3) by U and integrating on $\left[t_{0}, t_{1}\right] \subset(-\infty, 0]$, we obtain, using (2.27), (2.28), and (2.29),

$$
\begin{equation*}
\int_{-\infty}^{0}\left(U^{\prime}\right)^{2} d t<\infty \tag{2.30}
\end{equation*}
$$

A similar calculation yields

$$
\int_{-\infty}^{0}\left(V^{\prime}\right)^{2} d t<\infty
$$

Using (2.3) and the L^{2} estimates for U, U^{\prime}, V, and V^{\prime} we also obtain

$$
\begin{equation*}
\int_{-\infty}^{0}\left(\left(U^{\prime \prime}\right)^{2}+\left(V^{\prime \prime}\right)^{2}\right) d t<\infty . \tag{2.31}
\end{equation*}
$$

Let us show now that $U^{\prime}(t) \rightarrow 0$ as $t \rightarrow-\infty$. Indeed, thanks to (2.30) there is a decreasing sequence $t_{n} \rightarrow-\infty$ as $n \rightarrow \infty$ such that $t_{n}-t_{n+1} \rightarrow 0$ and $U^{\prime}\left(t_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. For any $t \in\left[t_{n+1}, t_{n}\right]$ we have

$$
\left|U^{\prime}(t)\right|=\left|U^{\prime}\left(t_{n+1}\right)+\int_{t_{n+1}}^{t} U^{\prime \prime}\right| \leq\left|U^{\prime}\left(t_{n+1}\right)\right|+C\left(t_{n}-t_{n+1}\right)^{1 / 2}
$$

by (2.31), and this shows $U^{\prime}(t) \rightarrow 0$ as $t \rightarrow-\infty$. A similar argument applies to V^{\prime}. Since $U^{\prime}(t), V^{\prime}(t) \rightarrow 0$ as $t \rightarrow-\infty$ and $U(t)$ and $V(t)$ remain bounded, by applying standard interpolation inequalities to equations obtained from (2.3) by differentiation, we obtain that $U^{(k)}(t), V^{(k)}(t) \rightarrow 0$ as $t \rightarrow-\infty$, for
any integer $k \geq 1$. Then the equations (2.3) also yield $U(t), V(t) \rightarrow 0$ as $t \rightarrow-\infty$. Using the definition (2.2) we obtain the desired behavior (1.4).

3. The dynamical system

We assume throughout that $N \geq 3$. If u, v is a radial solution of

$$
\begin{cases}-\Delta u=\lambda e^{v} & \text { in } B_{R} \subset \mathbb{R}^{N} \\ -\Delta v=\mu e^{u} & \text { in } B_{R}\end{cases}
$$

the functions

$$
\begin{equation*}
w_{1}=\mu e^{2 t+u}, \quad w_{2}=r u_{r}, \quad w_{3}=\lambda e^{2 t+v}, \quad w_{4}=r v_{r}, \quad r=e^{t} \tag{3.1}
\end{equation*}
$$

satisfy

$$
\begin{cases}w_{1}^{\prime}=w_{1}\left(2+w_{2}\right), & w_{2}^{\prime}=-w_{3}-(N-2) w_{2} \tag{3.2}\\ w_{3}^{\prime}=w_{3}\left(2+w_{4}\right), & w_{4}^{\prime}=-w_{1}-(N-2) w_{4}\end{cases}
$$

for $t \in(-\infty, \log (R))$.
To study radial solutions of (1.1) it is convenient to consider the initialvalue problem

$$
\left\{\begin{array}{l}
-\Delta u=e^{v}, \quad-\Delta v=e^{u} \quad \text { in } \mathbb{R}^{N} \tag{3.3}\\
u(0)=\alpha, \quad v(0)=-\alpha, \quad u^{\prime}(0)=v^{\prime}(0)=0
\end{array}\right.
$$

where $\alpha \in \mathbb{R}$ is a parameter. We write as $u_{\alpha}(r), v_{\alpha}(r)$ the unique radial solution to this problem. This solution is defined on a maximal interval which turns out to be $[0, \infty)$, because u_{α} and v_{α} are decreasing, and hence one can replace the nonlinearity e^{s} by a globally Lipschitz one that the coincides with e^{s} for $s \leq|\alpha|$. We shall write $w_{i}(t ; \alpha), i=1, \ldots, 4$, the functions obtained applying the transformations (3.1) with $\lambda=\mu=1$ to u_{α} and v_{α}. They are solutions of (3.2). In the case $\alpha=0$ we have that $u_{0}=v_{0}$ is the radial solution of the scalar equation

$$
\begin{equation*}
-\Delta u_{0}=e^{u_{0}} \quad \text { in } \mathbb{R}^{N}, \quad u_{0}(0)=0 \tag{3.4}
\end{equation*}
$$

and it is known that it has the behavior

$$
\begin{equation*}
u_{0}(r)=-2 \log (r)+\log (2(N-2))+o(1) \quad \text { as } r \rightarrow \infty . \tag{3.5}
\end{equation*}
$$

The only stationary points of the system (3.2) are

$$
\left\{\begin{array}{l}
P_{1}=(0,0,0,0) \tag{3.6}\\
P_{2}=(2(N-2),-2,2(N-2),-2)
\end{array}\right.
$$

A smooth radial solution of (1.1) or (3.3) produces an orbit that emanates from P_{1}; in other words, the orbits $\left(w_{1}(\cdot ; \alpha), \ldots, w_{4}(\cdot ; \alpha)\right)$ are contained in $W^{u}\left(P_{1}\right)$. They do not exhaust $W^{u}\left(P_{1}\right)$, however, because $w_{1}, w_{3}>0$ and $w_{2}, w_{4}<0$. The boundary conditions in (1.1) imply that a radial solution of this system will also cross the hyperplanes $w_{3}=\lambda$ and $w_{1}=\mu$.

The usefulness of the solutions u_{α} and v_{α} of (3.3) and the associated functions $w_{i}(t ; \alpha)$ is that the curves $\left(w_{1}(t ; \alpha), w_{3}(t ; \alpha)\right), t \in \mathbb{R}$, describe points (μ, λ) for which the original system (1.1) has a classical radial solution. Thus the region of existence

$$
\mathcal{U}=\left\{(\mu, \lambda) \in(0, \infty)^{2}: \text { system (1.1) has a classical soluion }\right\}
$$

is precisely $\left\{\left(w_{1}(t ; \alpha), w_{3}(t ; \alpha)\right): t \in \mathbb{R}, \alpha \in \mathbb{R}\right\}$.
Remark 3.1. In Figures 1 and 2 we have plotted the components w_{1} (horizontal axis) and w_{3} (vertical axis) of the transformation (3.1) obtained from the numerical solution of (3.3) for different values of $\alpha \in \mathbb{R}$. This gives an idea of the region of existence \mathcal{U}.

The linearization of (3.2) around the point P_{1} is given by $Z^{\prime}=\bar{M} Z$, where

$$
\bar{M}=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & -(N-2) & -1 & 0 \\
0 & 0 & 2 & 0 \\
-1 & 0 & 0 & -(N-2)
\end{array}\right]
$$

The eigenvalues of this matrix are $-(N-2)$ and 2 , with multiplicity two. Then P_{1} is hyperbolic, has 2-dimensional unstable manifold $W^{u}\left(P_{1}\right)$, and a 2-dimensional stable manifold $W^{s}\left(P_{1}\right)$.

The linearization of (3.2) around P_{2} is given by $Z^{\prime}=M Z$, where

$$
M=\left[\begin{array}{cccc}
0 & 2(N-2) & 0 & 0 \tag{3.7}\\
0 & -(N-2) & -1 & 0 \\
0 & 0 & 0 & 2(N-2) \\
-1 & 0 & 0 & -(N-2)
\end{array}\right]
$$

The eigenvalues of M are given by

$$
\left\{\begin{array}{l}
\nu_{1}=\frac{1}{2}(2-N+\sqrt{(N+6)(N-2)}) \tag{3.8}\\
\nu_{2}=\frac{1}{2}(2-N-\sqrt{(N+6)(N-2)}) \\
\nu_{3}=\frac{1}{2}(2-N+\sqrt{(N-10)(N-2)}) \\
\nu_{4}=\frac{1}{2}(2-N-\sqrt{(N-10)(N-2)}) .
\end{array}\right.
$$

Note that for $N \geq 3$ we have $\nu_{2}<0<\nu_{1}$. If $3 \leq N \leq 9$, then ν_{3} and ν_{4} are complex conjugate with nonzero imaginary part and negative real part. More precisely, we have

$$
\nu_{2}<\operatorname{Re}\left(\nu_{4}\right)=\operatorname{Re}\left(\nu_{3}\right)<0<\nu_{1} .
$$

If $N \geq 11$,

$$
\nu_{2}<\nu_{4}<\nu_{3}<0<\nu_{1},
$$

and if $N=10$,

$$
\nu_{2}<\nu_{4}=\nu_{3}<0<\nu_{1} .
$$

Concerning the eigenvectors of M we have the following:
Lemma 3.2. The vector

$$
\begin{equation*}
v^{(k)}=\left[4(N-2)^{2}, 2(N-2) \nu_{k},-2(N-2)\left(\nu_{k}+N-2\right) \nu_{k},-\left(\nu_{k}+N-2\right) \nu_{k}^{2}\right] \tag{3.9}
\end{equation*}
$$

is the eigenvector of M associated to $\nu_{k}, k=1, \ldots, 4$. We have that $v^{(1)}$ and $v^{(2)}$ are always real, and $v^{(3)}$ and $v^{(4)}$ are complex conjugate if $3 \leq N \leq 9$. Let us write $v^{(i)}=\left(v_{1}^{(i)}, v_{2}^{(i)}, v_{3}^{(i)}, v_{4}^{(i)}\right), i=1, \ldots, 4$; then

$$
\begin{equation*}
v_{1}^{(1)}>0, \quad v_{2}^{(1)}>0, \quad v_{3}^{(1)}<0, \quad v_{4}^{(1)}<0, \tag{3.10}
\end{equation*}
$$

and

$$
v_{1}^{(2)}>0, \quad v_{2}^{(2)}<0, \quad v_{3}^{(2)}<0, \quad v_{4}^{(2)}>0 .
$$

Proof. Use that $\nu_{2}+\nu_{1}=2-N$.
Proposition 3.3. There exists a heteroclinic orbit connecting P_{1} and P_{2}.
The proof is to consider the solution of (3.3) with $\alpha=0$, in which case $u_{0}=v_{0}$ and the system (1.1) reduces to the equation (3.4). This solution is studied in [19], and provides the desired heteroclinic orbit.

4. Curve of singular solutions

Let P_{1} and P_{2} be the stationary points of the system (3.2) defined in (3.6). Then P_{1} has a 2-dimensional unstable manifold $W^{u}\left(P_{1}\right)$, while P_{2} has a 1dimensional unstable manifold $W^{u}\left(P_{2}\right)$ and a 3 -dimensional stable manifold $W^{s}\left(P_{2}\right)$.
Lemma 4.1. Let $V=\left(w_{1}, \ldots, w_{4}\right):(-\infty, T) \rightarrow \mathbb{R}^{4}$ be the trajectory in $W^{u}\left(P_{2}\right)$ such that $\left\langle V^{\prime}(t), v^{(1)}\right\rangle>0$ for t near $-\infty$, where T is the maximal time of existence. Then

$$
\begin{equation*}
w_{1}^{\prime}>0, \quad w_{2}^{\prime}>0, \quad w_{3}^{\prime}<0, \quad w_{4}^{\prime}<0 \quad \text { for all } t<T \tag{4.1}
\end{equation*}
$$

Proof. By (3.10) and the hypothesis $\left\langle V^{\prime}(t), v^{(1)}\right\rangle>0$ for $t \rightarrow-\infty$, we have

$$
w_{1}^{\prime}(t)>0, \quad w_{2}^{\prime}(t)>0, \quad w_{3}^{\prime}(t)<0, \quad w_{4}^{\prime}(t)<0
$$

for t near $-\infty$. For the sake of contradiction, suppose that $w_{1}^{\prime}=0$ at $t=t_{0}$; then $w_{2}=-2$ and $w_{2}^{\prime} \leq 0$ at $t=t_{0}$. This implies that $w_{3} \geq 2(N-2)$ at $t=t_{0}$. Consequently there exists $t_{1}<t_{0}$ such that $w_{3}^{\prime}=0$ and $w_{3}<2(N-2)$, and so $w_{4}=-2$ and $w_{4}^{\prime} \geq 0$ at $t=t_{1}$. Then $w_{1} \leq 0$, but $w_{1}>0$ at $t=t_{1}$. Then

$$
w_{1}^{\prime}>0 \quad \text { for all } t<T .
$$

Next let us see that $w_{4}^{\prime}>0$ for all $t<T$. If not, there is a first t_{1} such that $w_{4}^{\prime}\left(t_{1}\right)=0$. Then $w_{4}^{\prime \prime}\left(t_{1}\right) \geq 0$. But from $w_{4}^{\prime \prime}=-w_{1}^{\prime}-(N-2) w_{4}^{\prime}$, we see that $w_{4}^{\prime \prime}\left(t_{1}\right)<0$, a contradiction. Then $w_{4}^{\prime}<0$ for all $t<T$.

Similarly we have $w_{3}^{\prime}<0$ and $w_{2}^{\prime}>0$.
Lemma 4.2. Let $V=\left(w_{1}, \ldots, w_{4}\right):(-\infty, T) \rightarrow \mathbb{R}^{4}$ be the trajectory in $W^{u}\left(P_{2}\right)$ such that $\left\langle V^{\prime}(t), v^{(1)}\right\rangle>0$ for t near $-\infty$, where T is the maximal time of existence. Then $T=\infty$ and

$$
\begin{align*}
& w_{1}(t) \rightarrow \infty, \quad w_{3}(t) \rightarrow 0, \quad w_{2}(t) \rightarrow 0, \quad w_{4}(t) \rightarrow-\infty \\
& \frac{w_{4}(t)}{w_{1}(t)} \rightarrow-\frac{1}{N} \quad \text { as } t \rightarrow \infty \tag{4.2}
\end{align*}
$$

Proof. We first observe that w_{1} and w_{3} remain always positive, since this is true for $t \rightarrow-\infty$ and if one of them vanished for some time, it would be identically zero.

Let us show that $T=\infty$. Indeed, assume the maximal time of existence T is finite. Then from the equation for w_{2}^{\prime} in $(3.2), w_{2}(t) \leq e^{(N-2)\left(t_{0}-t\right)} w_{2}\left(t_{0}\right)$ for any $t_{0}, t<T$. Fixing t_{0} this gives an upper bound for w_{2} as $t \uparrow T$. It follows that also w_{1} has an upper bound as $t \uparrow T$. The same argument shows that w_{4} is bounded as $t \uparrow T$. Next, since w_{4} is decreasing and equal to -2 at $t=-\infty$, we get $w_{4}+2<0$ for all t. Then the equation for w_{3} implies that w_{3} remains bounded as $t \uparrow T$. Therefore all components remain bounded as $t \uparrow T$, which contradicts the maximality of T.

That $w_{1} \rightarrow \infty$ follows from the system equation for w_{1}^{\prime} in (3.2), since fixing any $t_{0} \in \mathbb{R}$, we have $w_{2}(t)+2 \geq w_{2}\left(t_{0}\right)+2>0$ for all $t \geq t_{0}$ by Lemma 4.1, and then $w_{1}^{\prime}(t) \geq\left(w_{2}\left(t_{0}\right)+2\right) w_{1}(t)$ for all $t \geq t_{0}$.

Next let us see that $w_{3}(t) \rightarrow 0$ as $t \rightarrow \infty$. Otherwise, since w_{3} is positive and decreasing, we would have $w_{3}(t) \rightarrow \bar{w}_{3}>0$ as $t \rightarrow \infty$. Then the equation for w_{2}^{\prime} in (3.2) would imply that $w_{2}(t) \rightarrow-\infty$ as $t \rightarrow \infty$. This is not possible because w_{2} is increasing by Lemma 4.1. Using that $w_{3}(t) \rightarrow 0$ as $t \rightarrow \infty$
and the second equation in (3.2), we can deduce that $w_{2}(t) \rightarrow 0$ as $t \rightarrow \infty$. Similarly, using the fourth equation and $w_{1}(t) \rightarrow \infty$ as $t \rightarrow \infty$ we can obtain that $w_{4}(t) \rightarrow-\infty$ as $t \rightarrow \infty$.

L'Hopital's rule gives for

$$
L=\lim _{t \rightarrow \infty} \frac{w_{4}(t)}{w_{1}(t)}
$$

the equation $L=-1 / 2-L(N-2) / 2$, and we obtain (4.2).
Proof of Theorem 1.2. Consider the trajectory $V=\left(w_{1}, \ldots, w_{4}\right)$: $(-\infty, \infty) \rightarrow \mathbb{R}^{4}$ in $W^{u}\left(P_{2}\right)$ such that $\left\langle V^{\prime}(t), v^{(1)}\right\rangle>0$ for t near $-\infty$, where $v^{(1)}$ is given in Lemma 3.9. By Lemmas 4.1 and 4.2 we can define w_{3} as a function of w_{1} :

$$
w_{3}=\bar{h}\left(w_{1}\right)
$$

for $w_{1} \in[2(N-2), \infty)$. This function is smooth monotone decreasing, and $\bar{h}\left(w_{1}\right) \rightarrow 0$ as $w_{1} \rightarrow \infty$. By symmetry we define

$$
\bar{h}\left(w_{1}\right)=\bar{h}^{-1}\left(w_{1}\right),
$$

where \bar{h}^{-1} is the inverse of \bar{h}.
We see that for $\lambda=\bar{h}(\mu)$ there exists a radial singular solution of (1.1). On the other hand, suppose that (u, v) is a radial singular solution associated to parameters (μ, λ). We can assume that $\mu \geq \lambda$ by symmetry. Then by Theorem 1.1, after the change of variables (3.1) we have that $\left(w_{1}, \ldots, w_{4}\right) \rightarrow$ P_{2} as $t \rightarrow-\infty$ (this is contained in the proof of Theorem 1.1). Since the unstable manifold of P_{2} is one-dimensional, the trajectory $\left(w_{1}, \ldots, w_{4}\right)$ is unique and $\lambda=\bar{h}(\mu)$. This shows that on $\mathcal{S}=\{(\mu, \bar{h}(\mu): \mu \in(0, \infty)\}$ we find singular solutions and that the singular solution is unique.

5. Multiplicity in dimensions $3 \leq N \leq 9$

Let $V_{0}: \mathbb{R} \rightarrow \mathbb{R}^{4}$ be the heteroclinic connection from P_{1} to P_{2} of Proposition 3.3 and $\hat{V}_{0}=V_{0}(-\infty, \infty)$. Then \hat{V}_{0} is contained in both $W^{u}\left(P_{1}\right)$ and $W^{s}\left(P_{2}\right)$.

Lemma 5.1. Assume $N \geq 3$. $W^{u}\left(P_{1}\right)$ and $W^{s}\left(P_{2}\right)$ intersect transversally on points of \hat{V}_{0}. More precisely, for points $Q \in \hat{V}_{0}$ sufficiently close to P_{2} there are directions in the tangent plane to $W^{u}\left(P_{1}\right)$ which are almost parallel to $v^{(1)}$, the tangent vector to $W^{u}\left(P_{2}\right)$ at P_{2}.

Proof. Let u_{α}, v_{α} be the solution of (3.3) with $\alpha>0$, and let $W=$ $\left(w_{1}, \ldots, w_{4}\right)$ be defined by (3.1) with $\lambda=\mu=1$. Then, from the system we get $v_{\alpha}^{\prime}<v_{0}^{\prime}$. Integrating,

$$
v_{\alpha}(r) \leq-\alpha+v_{0}(r) .
$$

Then

$$
-\Delta\left(u_{\alpha}-u_{0}\right)=e^{v_{\alpha}}-e^{v_{0}}<e^{v_{0}}\left(e^{-\alpha}-1\right) .
$$

By the asymptotic formula (3.5), $e^{v_{0}(r)} \sim r^{-2}$ as $r \rightarrow \infty$, and therefore, integrating we get

$$
u_{\alpha}^{\prime}(r)-u_{0}^{\prime}(r)>\left(1-e^{-\alpha}\right) r^{-1}
$$

for all $r \geq 1$. Therefore

$$
w_{2}(r, \alpha)-w_{2}(r, 0) \geq c \alpha
$$

for some $c>0$. We deduce that

$$
\begin{equation*}
\frac{\partial w_{2}}{\partial \alpha}(r, 0) \geq c>0 \tag{5.1}
\end{equation*}
$$

for all $r>0$ large. Let $Z=\left.\frac{\partial W}{\partial \alpha}\right|_{\alpha=0}$. Then $Z=\left(z_{1}, \ldots, z_{4}\right)$ satisfies

$$
Z^{\prime}=(M+R(t)) Z,
$$

where M is the matrix defined in (3.7) and

$$
R(t)=\left[\begin{array}{cccc}
\left(2+w_{2}\right) & \left(w_{1}-2(N-2)\right) & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \left(2+w_{4}\right) & \left(w_{3}-2(N-2)\right) \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Recall that $V(t) \rightarrow P_{2}$ as $t \rightarrow \infty$. Moreover, the convergence is exponential; that is, there are $C, \sigma>0$ such that $\left|V(t)-P_{2}\right| \leq C e^{-\sigma t}$ for all $t \geq 0$. This follows from the Hartman-Grobman theorem (see Theorem 7.1 in [18] or Theorem 1.1.3 in [17]), which shows that the system (3.2) is C^{0}-conjugate to its linearization near P_{2}. Recall that the eigenvalues of M are $\nu_{1}>0>\nu_{2}$ and ν_{3} and ν_{4}, which have negative real part and nonzero imaginary part. Let $v^{(i)} \in \mathbb{C}^{4}$ denote an eigenvector associated to ν_{i}. By Theorem 8.1 in [6, Chapter 3] there are solutions φ_{k} to

$$
\varphi_{k}^{\prime}=(M+R(t)) \varphi_{k}, \quad t>0
$$

such that $\lim _{t \rightarrow \infty} \varphi_{k}(t) e^{-\nu_{k} t}=v^{(k)}$. It follows from this that $Z=\sum_{i=1}^{4} c_{i} \varphi_{i}$ for some constants $c_{1}, \ldots, c_{4} \in \mathbb{C}$. The condition (5.1) imply that $\left|z_{2}(t)\right| \geq c$
for some $c>0$ and all $t \geq 0$, so $|Z(t)| \geq c$ for t large. Since $\nu_{1}>0$ and ν_{2}, ν_{3}, and ν_{4} have negative real part, we conclude that $c_{1} \neq 0$ and

$$
Z(t)=c_{1} v^{(1)} e^{\nu_{1} t}+o\left(e^{\nu_{1} t}\right) \quad \text { as } t \rightarrow \infty .
$$

Since $v^{(1)}$ is the tangent vector to $W^{u}\left(P_{2}\right)$, we have that $\left.\frac{\partial W}{\partial \alpha}\right|_{\alpha=0}$ is not tangent to $W^{s}\left(P_{2}\right)$ for t large. On the other hand, $\left.\frac{\partial W}{\partial \alpha}\right|_{\alpha=0}$ is tangent to $W^{u}\left(P_{1}\right)$ by construction. This shows that $W^{s}\left(P_{2}\right)$ and $W^{u}\left(P_{1}\right)$ intersect transversally on points of \hat{V}_{0} close to P_{2}. By the invertibility of the flow away from the stationary points, $W^{s}\left(P_{2}\right)$ and $W^{u}\left(P_{1}\right)$ intersect transversally on all points of \hat{V}_{0}

Let $v^{(j)}$ denote the eigenvectors of the linearization of (3.2) at P_{2} with corresponding eigenvalue ν_{j}, given explicitly in (3.9). Then $W^{u}\left(P_{2}\right)$ is one-dimensional and tangent to $v^{(1)}$ at P_{2}. Hence, if $V=\left(v_{1}, \ldots, v_{4}\right)$: $(-\infty, T) \rightarrow \mathbb{R}^{4}$ is any trajectory in $W^{u}\left(P_{2}\right)$ there are 2 cases: $\left\langle V^{\prime}(t), v^{(1)}\right\rangle<0$ or $\left\langle V^{\prime}(t), v^{(1)}\right\rangle>0$ for t near $-\infty$.
Lemma 5.2. The system (3.2) is C^{1}-conjugate to its linearization around P_{2} in a neighborhood of this point.

Proof. This follows from a result of Belickiĭ (see [2] or [26, p. 25]), which says that the system (3.2) is C^{1}-conjugate to its linearization around the point P_{2} under the non-resonance condition

$$
\operatorname{Re}\left(\nu_{i}\right) \neq \operatorname{Re}\left(\nu_{j}\right)+\operatorname{Re}\left(\nu_{k}\right) \quad \text { when } \operatorname{Re}\left(\nu_{j}\right)<0<\operatorname{Re}\left(\nu_{k}\right),
$$

where ν_{1}, \ldots, ν_{4} are the eigenvalues of M defined in (3.7). For $3 \leq N \leq 9$ we have

$$
\nu_{2}<\operatorname{Re}\left(\nu_{4}\right)=\operatorname{Re}\left(\nu_{3}\right)=\frac{2-N}{2}<0<\nu_{1} .
$$

Considering the pair $\nu_{2}<0<\nu_{1}$ we see that $\operatorname{Re}\left(\nu_{2}\right)+\operatorname{Re}\left(\nu_{1}\right)=2-N$, which is different from $\operatorname{Re}\left(\nu_{3}\right)$ and $\operatorname{Re}\left(\nu_{4}\right)$. The only case left is $\operatorname{Re}\left(\nu_{3}\right)<0<\nu_{1}$, and we need to verify that

$$
\operatorname{Re}\left(\nu_{3}\right)+\nu_{1} \neq \nu_{2}, \quad \operatorname{Re}\left(\nu_{3}\right)+\nu_{1} \neq \operatorname{Re}\left(\nu_{4}\right) .
$$

Both relations hold for all integer $N \geq 3$.
Proof of Theorem 1.3. We will write generic points in the phase space \mathbb{R}^{4} as $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$. Let $\left\{e_{j}: j=1, \ldots, 4\right\}$ denote the canonical basis of \mathbb{R}^{4}.

For $\mu \geq 2(N-2)$, by Lemmas 4.1 and 4.2, $W^{u}\left(P_{2}\right) \cap\left\{w_{1}=\mu\right\}$ is a single point, which we call $P^{*}(\mu)=\left(P_{1}^{*}(\mu), P_{2}^{*}(\mu), P_{3}^{*}(\mu), P_{4}^{*}(\mu)\right)$. Note that $\bar{h}(\mu)=P_{3}^{*}(\mu)$.

For $\alpha \in \mathbb{R}$, let u_{α}, v_{α} be the solution of (3.3) and let $W(t ; \alpha)=\left(w_{1}, \ldots, w_{4}\right)$ be defined by (3.1) with $\lambda=\mu=1$. Define

$$
\widetilde{W}^{u}\left(P_{1}\right)=\{W(t ; \alpha): \alpha \in \mathbb{R}, t \in \mathbb{R}\},
$$

which is the part of $W^{u}\left(P_{1}\right)$ giving rise to smooth solutions of (1.1). Let $\mathcal{E}=\widetilde{W}^{u}\left(P_{1}\right) \cap\left\{w_{1}=\mu\right\}$. We will prove Theorem 1.3 by showing that \mathcal{E} contains a curve \mathcal{S} which spirals around $P^{*}(\mu)$. By this we mean that there exist linearly independent vectors $S_{1}, S_{2} \in \mathbb{R}^{4}$ and numbers $\alpha>0$ and $\beta \in \mathbb{R}$ such that \mathcal{S} can be parametrized by

$$
\begin{equation*}
t \in[0, \infty) \mapsto P^{*}(\mu)+e^{-\alpha t} \cos (\beta t) S_{1}+e^{-\alpha t} \sin (\beta t) S_{2}+o\left(e^{-\alpha t}\right) \tag{5.2}
\end{equation*}
$$

as $t \rightarrow \infty$. Actually we will obtain $\alpha=-\operatorname{Re}\left(\nu_{3}\right)=\frac{N-2}{2}$ and $\beta=\operatorname{Im}\left(\nu_{3}\right)$, with ν_{3} given in (3.8). In this setting we define the tangent plane to \mathcal{S} at $P^{*}(\mu)$ as the plane generated by S_{1} and S_{2}. An important property that we will prove later is that this tangent plane is transversal to the plane $\left\{w_{3}=0\right\}$.

Let us proceed with the construction of \mathcal{S}. Let X_{t} denote the flow generated by (3.2). Let M_{D} be the matrix

$$
M_{D}=\left[\begin{array}{cccc}
\nu_{1} & 0 & 0 & 0 \tag{5.3}\\
0 & \nu_{2} & 0 & 0 \\
0 & 0 & \operatorname{Re}\left(\nu_{3}\right) & -\operatorname{Im}\left(\nu_{3}\right) \\
0 & 0 & \operatorname{Im}\left(\nu_{3}\right) & \operatorname{Re}\left(\nu_{3}\right)
\end{array}\right] .
$$

By Lemma 5.2 there is an open neighborhood $N_{P_{2}}$ of P_{2} and a C^{1} diffeomorphism $H: N_{P_{2}} \rightarrow N_{0}$, where N_{0} is an open neighborhood of 0 , such that $H \circ X_{t} \circ H^{-1}=L_{t}$, where $L_{t}=e^{M_{D} t}$ is the flow generated by M_{D}, and the formula holds in some neighborhood of the origin.

Let

$$
D=\left\{w=\left(w_{1}, \ldots, w_{4}\right): w_{1}=\mu,\left|w-P^{*}(\mu)\right|<1\right\} .
$$

Then by Lemma 4.1 D is a 3 -dimensional disk transversal to $W^{u}\left(P_{2}\right)$. Next we apply the λ-lemma of Palis [25], which says that there is an open neighborhood B^{s} of P_{2} relative to $W^{s}\left(P_{2}\right)$ and an open neighborhood \mathcal{N} of P_{2}, both of them contained in $N_{P_{2}}$, such that given $\varepsilon>0$, the connected component of $X_{-t_{0}}(D) \cap \mathcal{N}$ that contains $X_{t}\left(P^{*}(\mu)\right)$ is εC^{1}-close to B^{s} if $t_{0}>0$ is sufficiently large. Let us write \mathcal{M} for the connected component of $X_{-t_{0}}(D) \cap \mathcal{N}$ that contains $X_{-t_{0}}\left(P^{*}(\mu)\right)$.

Choose some point $Q \in \hat{V}_{0}$ such that $Q \in N_{P_{2}}$. By Lemma (5.1) we may choose a C^{1} curve contained in $\widetilde{W}^{u}\left(P_{1}\right)$, say $\Gamma=\{\gamma(s):|s|<\delta\}$ with $\gamma:(-\delta, \delta) \rightarrow \mathbb{R}^{4}$ a C^{1} function such that $\gamma(0)=Q$ and $\gamma^{\prime}(0)$ not tangent to
$W^{s}\left(P_{2}\right)$ at Q. This curve can be taken to be of the form $\gamma(s)=W\left(t_{1}, s\right)$, where $W(t, \alpha)=\left(w_{1}, \ldots, w_{4}\right)$ is defined by (3.1) with $\lambda=\mu=1$ starting with u_{α}, v_{α} the solution of (3.3) with $\alpha \in \mathbb{R}$. We take t_{1} large so that $\gamma(0)=W\left(t_{1}, 0\right)$ meets the requirements of being close to P_{0} and $\gamma^{\prime}(0)$ very close to the tangent to $W^{u}\left(P_{2}\right)$. We can assume also that this curve is contained in $N_{P_{2}}$. Choosing ε small we can assume that Γ intersects \mathcal{M}.

To describe the structure of $X_{t}(\Gamma) \cap \mathcal{M}$, thanks to the conjugation H, we assume that P_{2} is at the origin and that near the origin the flow is given by $L_{t}=e^{M_{D} t}$ given in (5.3). In particular, after this change of variables, the local unstable manifold of P_{2} is contained in the axis $e_{1}=(1,0,0,0)$ and the local stable manifold is contained in the space $\left\{\left(y_{1}, \ldots, y_{4}\right): y_{1}=0\right\}$. We may further assume that $B^{s}=\left\{\left(y_{1}, \ldots, y_{4}\right): y_{1}=0,|y|<\delta\right\}$ for some $\delta>0$ and that the heteroclinic orbit V_{0} near the origin in the new variables is given by

$$
\begin{equation*}
V_{0}(t)=\left(0, c_{2} e^{\nu_{2} t}, e^{\nu_{3} t}\left(c_{3}+i c_{4}\right)\right), \quad t \geq 0 \tag{5.4}
\end{equation*}
$$

for some constants $c_{2}, c_{3}, c_{4} \in \mathbb{R}$, where in the last two components we are using complex notation. Note that the curve V_{0} cannot have a tangent vector that becomes parallel to $e_{2}=(0,1,0,0)$ as $t \rightarrow \infty$, that is, $c_{3} \neq 0$ or $c_{4} \neq 0$ (recall that $\nu_{2}<\operatorname{Re}\left(\nu_{3}\right)<0$ by (3.8)). By choosing ε small, we can assume that the normal vector to \mathcal{M} near P_{2} is almost parallel to $e_{1}=(1,0,0,0)$. Thus by passing to a subset of \mathcal{M} we may assume that \mathcal{M} is a C^{1} graph over the variables $\left(y_{2}, y_{3}, y_{4}\right)$; that is, there exists a C^{1} function $\psi:\left\{y^{\prime}=\left(y_{2}, y_{3}, y_{4}\right) \in \mathbb{R}^{3},\left|y^{\prime}\right|<\delta\right\} \rightarrow \mathbb{R}$ with $\psi(0)>0$ such that

$$
\mathcal{M}=\left\{\left(\psi\left(y^{\prime}\right), y^{\prime}\right): y^{\prime} \in \mathbb{R}^{3},\left|y^{\prime}\right|<\delta\right\} .
$$

By Lemma 5.1 the tangent plane to $W^{u}\left(P_{1}\right)$ at points close to the origin (i.e., P_{2} after the change of variables) contains vectors almost parallel to $e_{1}=(1,0,0,0)$, and hence $\gamma_{1}^{\prime}(0) \neq 0$. We may assume that $\gamma_{1}^{\prime}(0)>0$. We claim that for all $t>0$ large there is a unique small s such that $L_{t}(\gamma(s)) \in \mathcal{M}$. Indeed, this condition is equivalent to

$$
e^{\nu_{1} t} \gamma_{1}(s)=\psi\left(e^{\nu_{2} t} \gamma_{2}(s), e^{\nu_{3} t}\left(\gamma_{3}(s)+i \gamma_{4}(s)\right)\right) .
$$

Write $\tau=1 / t>0$ and

$$
\begin{equation*}
F(\tau, s)=\gamma_{1}(s)-e^{-\nu_{1} t} \psi\left(e^{\nu_{2} t} \gamma_{2}(s), e^{\nu_{3} t}\left(\gamma_{3}(s)+i \gamma_{4}(s)\right)\right) . \tag{5.5}
\end{equation*}
$$

Then $F(\tau, s)$ is well defined in C^{1} in a set of the form $\left(0, \delta_{0}\right) \times\left(-\delta_{0}, \delta_{0}\right)$ for some $\delta_{0}>0$, and one can verify that it admits a C^{1} extension to $\tau=0$ with

$$
F(0, s)=\gamma_{1}(s), \quad \frac{\partial F}{\partial s}(0, s)=\gamma_{1}^{\prime}(s), \quad \frac{\partial F}{\partial \tau}(0, s)=0
$$

Since $F(0,0)=0$ and $\frac{\partial F}{\partial s}(0,0)=\gamma_{1}^{\prime}(0) \neq 0$, by the implicit function theorem, given $\tau>0$ small we can find a unique small s such that $F(\tau, s)=0$. This defines a function $s=s(t)$ defined for $t>0$ large such that $L_{t}(\gamma(s(t))) \in \mathcal{M}$. Moreover, from (5.5) we get

$$
\gamma_{1}^{\prime}(0) s+o(s)=e^{-\nu_{1} t}\left(\psi(0)+O\left(e^{-\operatorname{Re}\left(\nu_{3}\right) t}\right)\right)
$$

and hence we find the expansion

$$
s(t)=\frac{e^{-\nu_{1} t} \psi(0)}{\gamma_{1}^{\prime}(0)}\left(1+O\left(e^{-\operatorname{Re}\left(\nu_{3}\right) t}\right)\right) \quad \text { as } t \rightarrow \infty .
$$

The point of intersection $L_{t}(\gamma(s(t)))$ can be written then in the form

$$
\begin{aligned}
L_{t}(\gamma(s(t)))= & (\psi(0), 0,0,0)+e^{\operatorname{Re}\left(\nu_{3}\right) t} \cos \left(\operatorname{Im}\left(\nu_{3}\right) t\right) \tilde{S}_{1} \\
& +e^{\operatorname{Re}\left(\nu_{3}\right) t} \sin \left(\operatorname{Im}\left(\nu_{3}\right) t\right) \tilde{S}_{2}+o\left(e^{\operatorname{Re}\left(\nu_{3}\right) t}\right) \quad \text { as } t \rightarrow \infty,
\end{aligned}
$$

where

$$
\begin{align*}
\tilde{S}_{1} & =\left(a \gamma_{3}(0)+b \gamma_{4}(0), 0, \gamma_{3}(0), \gamma_{4}(0)\right) \tag{5.6}\\
\tilde{S}_{2} & =\left(-a \gamma_{4}(0)+b \gamma_{3}(0), 0, \gamma_{3}(0), \gamma_{4}(0)\right) \tag{5.7}\\
a & =\frac{\partial \psi}{\partial y_{3}}(0), \quad b=\frac{\partial \psi}{\partial y_{4}}(0) . \tag{5.8}
\end{align*}
$$

Thus the curve $\left\{L_{t}(\gamma(s(t))), t>0\right.$ large $\}$ defines a spiral contained in \mathcal{M}. Applying the conjugation H^{-1} and the flow $X_{t_{0}}$ we see that

$$
\mathcal{S}=\left\{X_{t+t_{0}}(\gamma(s(t))): t \geq t_{1}\right\}
$$

with $t_{1}>0$ large has the structure of a spiral (5.2) with $\alpha=-\operatorname{Re}\left(\nu_{3}\right)=\frac{N-2}{2}$ and $\beta=\operatorname{Im}\left(\nu_{3}\right)$. By construction \mathcal{S} is contained in $\mathcal{E}=\widetilde{W}^{u}\left(P_{1}\right) \cap\left\{w_{1}=\mu\right\}$.

We now prove the following statement:
the tangent plane to \mathcal{S} at $P^{*}(\mu)$ is transversal to the plane $\left\{w_{3}=0\right\}$.

Recall that by definition this plane is the one generated by S_{1} and S_{2} appearing in (5.2). Since \mathcal{S} is contained in $\left\{w_{1}=\mu\right\}$, it is sufficient to show that inside the space $\left\{w_{1}=\mu\right\}$ the plane generated by e_{2} and e_{4} is transversal to the tangent plane to \mathcal{S} at $P^{*}(\mu)$. Let $V=\left(w_{1}, \ldots, w_{4}\right):(-\infty, \infty) \rightarrow \mathbb{R}^{4}$ denote the trajectory in $W^{u}\left(P_{2}\right)$ such that $\left\langle V^{\prime}(t), v^{(1)}\right\rangle>0$ for t near $-\infty$, where $v^{(1)}$ is given in Lemma 3.9. To prove our claim we need to transport the plane generated by e_{2} and e_{4} back along V, and this is accomplished by solving the linearized equation around V. More precisely, let
$Z, \tilde{Z}:(-\infty, 0] \rightarrow \mathbb{R}^{4}$ be solutions to the linearization of (3.2) around V; that is, $Z=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ satisfies for $t<0$

$$
\begin{cases}z_{1}^{\prime}=\left(2+w_{2}\right) z_{1}+w_{1} z_{2}, & z_{2}^{\prime}=-(N-2) z_{2}-z_{3} \tag{5.10}\\ z_{3}^{\prime}=\left(2+w_{4}\right) z_{3}+w_{3} z_{4}, & z_{4}^{\prime}=-(N-2) z_{4}-z_{1}\end{cases}
$$

and similarly for $\tilde{Z}=\left(\tilde{z}_{1}, \tilde{z}_{2}, \tilde{z}_{3}, \tilde{z}_{4}\right)$. As final conditions we take $Z(0)=e_{2}$ and $\tilde{Z}(0)=e_{4}$.

By Theorem 8.1 in [6, Chapter 3] there are solutions $\psi_{k}:(-\infty, 0] \rightarrow \mathbb{C}^{4}$ to (5.10) such that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} \psi_{k}(t) e^{-\nu_{k} t}=v^{(k)} \tag{5.11}
\end{equation*}
$$

where $v^{(1)}, \ldots, v^{(4)}$ are the eigenvectors of M. Recall that $v^{(1)}$ and $v^{(2)}$ are real, and $v^{(3)}$ and $v^{(4)}$ are complex conjugate. Thus one can assume that ψ_{1} and ψ_{2} are real, and ψ_{3} and ψ_{4} are complex conjugate. Let

$$
\left\{\begin{array}{l}
\varphi_{i}=\psi_{i}, \quad i=1,2 \tag{5.12}\\
\varphi_{3}=\operatorname{Re}\left(\psi_{3}\right), \quad \varphi_{4}=\operatorname{Im}\left(\psi_{3}\right)
\end{array}\right.
$$

so that now $\varphi_{i}, i=1, \ldots, 4$ is a fundamental system of real-valued solutions of (5.10). Then we can write

$$
Z(t)=\sum_{i=1}^{4} c_{i} \varphi_{i}(t), \quad \text { and } \quad \tilde{Z}(t)=\sum_{i=1}^{4} \tilde{c}_{i} \varphi_{i}(t)
$$

for some constants $c_{1}, \ldots, c_{4}, \tilde{c}_{1}, \ldots, \tilde{c}_{4} \in \mathbb{R}$. We remark that V^{\prime} is a solution of (5.10), and therefore it can be written as a linear combination of the φ_{i}. But $V^{\prime}(t) \rightarrow 0$ as $t \rightarrow-\infty$, and since the only function of the φ_{i} that tends to 0 as $t \rightarrow-\infty$ is φ_{1} by (5.11) we must have that $V^{\prime}=c_{0} \varphi_{1}$ for some nonzero constant $c_{0} \in \mathbb{R}$.

We claim that

$$
\begin{equation*}
c_{2} \neq 0 \quad \text { or } \quad \tilde{c}_{2} \neq 0 \tag{5.13}
\end{equation*}
$$

Assume, for the sake of contradiction, that $c_{2}=0$ and $\tilde{c}_{2}=0$. Define $\forall t \leq 0$

$$
f(t)=e^{(N-2) t}\left(\frac{z_{4}(t) \tilde{z}_{1}(t)}{w_{1}}-\frac{z_{3}(t) \tilde{z}_{2}(t)}{w_{3}}+\frac{z_{2}(t) \tilde{z}_{3}(t)}{w_{3}}-\frac{z_{1}(t) \tilde{z}_{4}(t)}{w_{1}}\right)
$$

A calculation using (5.10) shows that f is constant. Using the final conditions for Z and \tilde{Z} we see that $f(0)=0$, and hence $f(t)=0 \forall t \leq 0$. We can compute $\lim f(t)$ as $t \rightarrow-\infty$. Indeed, using the asymptotic behavior (5.11),
the relations (5.12), the formulas for the eigenvectors (3.9), the behavior of w_{1} and w_{3} given by

$$
w_{1}(t)=2(N-2)+O\left(e^{\nu_{1} t}\right), \quad w_{3}(t)=2(N-2)+O\left(e^{\nu_{1} t}\right)
$$

as $t \rightarrow-\infty$, and the assumption $c_{2}=0$ and $\tilde{c}_{2}=0$, we get

$$
\lim _{t \rightarrow-\infty} f(t)=\left(c_{3} \tilde{c}_{4}-\tilde{c}_{3} c_{4}\right) B
$$

where $B=-(N-2)^{2} \sqrt{(10-N)(N-2)}$. Thus $B \neq 0$, and we conclude that $\left(c_{3} \tilde{c}_{4}-\tilde{c}_{3} c_{4}\right)=0$. This means that there exists $\lambda \in \mathbb{R}$ such that $\tilde{c}_{k}=\lambda c_{k}$, $k=3,4$. Using $Z(0)=e_{2}$ and $\tilde{Z}(0)=e_{4}$ we see that

$$
\left(\tilde{c}_{1}-\lambda c_{1}\right) \varphi_{1}(0)=e_{4}-\lambda e_{2} .
$$

But, as remarked before, $\varphi_{1}=c_{0} V^{\prime}$, for some constant $c_{0} \in \mathbb{R}, c_{0} \neq 0$. By Lemma 4.1 all components of $V^{\prime}(0)$ are non-zero, which implies that $\tilde{c}_{1}-\lambda c_{1}=0$, leading to $\tilde{Z}(0)=\lambda Z(0)$, a contradiction.

The condition (5.13) implies the assertion (5.9). Indeed, let us recall that we defined \mathcal{M} as the connected component of $X_{-t_{0}}(D) \cap \mathcal{N}$ that contains $Q_{t_{0}} \equiv X_{-t_{0}}\left(P^{*}(\mu)\right)$ with $t_{0}>0$ large. Using a C^{1} conjugation that allows us to assume that near P_{2} the system is linear, we saw that $\mathcal{M} \cap \widetilde{W}^{u}\left(P_{1}\right)$ contains a spiral $\tilde{\mathcal{S}}$ around the point $Q_{t_{0}} . \mathcal{S}$ was defined as $X_{t_{0}}$ applied to $\tilde{\mathcal{S}}$. The tangent vectors to $\tilde{\mathcal{S}}$ at $Q_{t_{0}}$ after the conjugation are \tilde{S}_{1} and \tilde{S}_{2} given in (5.6)-(5.8). Since the derivatives in (5.8) can be assumed to be small, we see that \tilde{S}_{1} and \tilde{S}_{2} are almost contained in the plane generated by e_{3} and e_{4}, which by the conjugation correspond to $\operatorname{Re}\left(v^{(3)}\right)$ and $\operatorname{Im}\left(v^{(3)}\right)$. Therefore the tangent plane to \mathcal{S} at $Q_{t_{0}}$ is almost parallel to the plane generated by the eigenvectors $\operatorname{Re}\left(v^{(3)}\right)$ and $\operatorname{Im}\left(v^{(3)}\right)$. Since either $c_{2} \neq 0$ or $\tilde{c}_{2} \neq 0$, for t_{0} large at least one of the vectors $Z\left(t_{0}\right)$ or $\tilde{Z}\left(t_{0}\right)$ is transversal to the tangent plane to $\tilde{\mathcal{S}}$ at $Q_{t_{0}}$.

Finally, once we have shown that $\widetilde{W}^{u}\left(P_{1}\right) \cap\left\{w_{1}=\mu\right\}$ contains a spiral \mathcal{S} centered around $P^{*}(\mu)$, using the transversality property (5.9) one can show that for $\lambda=\bar{h}(\mu)$ there are infinitely many intersections of \mathcal{S} with the hyperplane $\left\{w_{3}=\lambda\right\}$ and that for λ close to $\bar{h}(\mu)$ there is a large number of such intersections. Each intersection yields a regular solution of (1.1) with parameters (μ, λ).

We remark that the argument given above proves a slightly weaker statement than the one in Theorem 1.3, in the sense that we consider μ fixed and let λ approach $\bar{h}(\mu)$ to obtain a large number of solutions. The argument above can be adapted to prove the version stated in the theorem.

Acknowledgments. J.D. was supported by Fondecyt 1130360, CAPDEAnillo ACT-125 and Fondo Basal CMM. The author I.G. was supported by Fondecyt 1130790 and CAPDE-Anillo ACT-125. I.F. was supported by Fondecyt 1131135.

References

[1] G. Arioli, F. Gazzola, and H.-C. Grunau, Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity, J. Differential Equations, 230 (2006), 743-770.
[2] G.R. Belickiĭ, Functional equations, and conjugacy of local diffeomorphisms of finite smoothness class, Functional Anal. Appl., 7 (1973), 268-277.
[3] S. Chanillo and M. Kiessling, Conformally invariant systems of nonlinear PDE of Liouville type, Geom. Funct. Anal., 5 (1995), 924-947.
[4] M. Chipot, I. Shafrir, and G. Wolansky, On the solutions of Liouville systems, J. Differential Equations, 140 (1997), 59-105.
[5] M. Chipot, I. Shafrir, and G. Wolansky, Erratum: "On the solutions of Liouville systems", J. Differential Equations, 178 (2002), 630.
[6] E.A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.
[7] C. Cowan, Regularity of the extremal solution in a Gelfand system problem, Adv. Nonlinear Stud., 11 (2011), 695-700.
[8] J. Dávila, I. Flores, and I. Guerra, Multiplicity of solutions for a fourth order problem with exponential nonlinearity, J. Differential Equations, 247 (2009), 3136-3162.
[9] J. Dávila and O. Goubet, Partial regularity for a Liouville system, preprint (2013).
[10] D.G. de Figueiredo, Monotonicity and symmetry of solutions of elliptic systems in general domains, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 119-123.
[11] L. Dupaigne, A. Farina, and B. Sirakov, Regularity of the extremal solutions for the Liouville system, to appear in Proceedings of the ERC Workshop on Geometric Partial Differential Equations, Ed. Scuola Normale Superiore di Pisa.
[12] A. Ferrero and H.-C. Grunau, The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity, J. Differential Equations, 234 (2007), 582606.
[13] F. Gazzola and H.-C. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann., 334 (2006), 905-936.
[14] G. Arioli, F. Gazzola, H. Grunau, and E. Mitidieri, A semilinear fourth order elliptic problem with exponential nonlinearity, SIAM J. Math. Anal., 36 (2005), 1226-1258.
[15] I.M. Gelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl., 29 (1963), 295-381.
[16] B. Gidas, W.M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
[17] J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," revised and corrected reprint of the 1983 original, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1990.
[18] P. Hartman, "Ordinary Differential Equations," Classics in Applied Mathematics, 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
[19] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972), 241-269.
[20] C.S. Lin and L. Zhang, Profile of bubbling solutions to a Liouville system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 117-143.
[21] C.S. Lin and L. Zhang, A topological degree counting for some Liouville systems of mean field type, Comm. Pure Appl. Math., 64 (2011), 556-590.
[22] È. Mitidieri and S.I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.
[23] F. Mignot and J.-P. Puel, Solution radiale singulière de $-\Delta u=\lambda e^{u}$, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 379-382.
[24] M. Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005) 405-416.
[25] J. Palis, On Morse-Smale dynamical systems, Topology, 8 (1968), 385-404.
[26] D. Ruelle, "Elements of Differentiable Dynamics and Bifurcation Theory," Academic Press, Inc., Boston, MA, 1989.
[27] W.C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations, 42 (1981), 400-413.

[^0]: Accepted for publication: April 2013.

