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We consider the problem �u+ �u� 4
N−2 u = 0 in ��� u = 0 on ���� where �� �=

�\�B�a� �	 ∪ B�b� �	
, with � a bounded smooth domain in �N , N ≥ 3� a �= b two
points in �, and � is a positive small parameter. As � goes to zero, we construct
sign changing solutions with multiple blow up both at a and at b.

Keywords Blowing-up solution; Critical Sobolev exponent; Robin’s function;
Tower of bubbles.

Mathematics Subject Classification 35J20; 35J60.

1. Introduction

Let D be a smooth bounded domain in �N , N ≥ 3. Consider the following nonlinear
elliptic problem

�u+ �u� 4
N−2 u = 0 in D� u = 0 on �D� (1.1)

It is well known that the Sobolev embedding H1
0 �D	 ↪→ L

2N
N−2 �D	 is not compact and

for this reason solvability of (1.1) is a quite delicate issue. Pohozaev’s identity [33]
shows that problem (1.1) has only the trivial solution if the domain D is assumed
to be strictly star-shaped. On the other hand, if D is an annulus then (1.1) has a
(unique) positive solution in the class of functions with radial symmetry [22]. In the
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1420 Ge et al.

nonsymmetric case, Coron [13] found via variational methods that (1.1) is solvable
under the assumption that D is a domain exhibiting a small hole. Substantial
improvement of this result was obtained by Bahri and Coron [3], showing that if
some homology group of D with coefficients in Z2 is not trivial, then (1.1) has at
least one positive solution (see also [4, 8, 10, 19, 25, 29, 35] for related results). If the
domain D has several holes, then a multiplicity result for positive solutions to (1.1)
is obtained in [34]. On the other hand, in [12] the authors found a second solution in
Coron’s setting (one small hole), but they were unable to say if the second solution
was positive or changed sign. Existence and qualitative behavior of sign changing
solutions for elliptic problems with critical nonlinearity have been investigated by
several authors in the last years (see [5, 6, 9, 11, 20, 21, 26, 27]). A large number
of sign changing solutions to (1.1) in the presence of a single hole has been proved
in [28].

More precisely, in [28] the authors assume that D = �\B�0� �	, where � is a
bounded domain, which contains the origin and is symmetric with respect to the
origin. They prove the existence of an arbitrary number of sign changing solutions
for (1.1), if the radius � of the removed ball is small enough. The shape of such
solution is a superposition of blowing up bubbles with alternate sign concentrating
around the center 0 of the removed ball B�0� �	.

A bubble is a function defined in �N of the form

U���x	 = �N
(



2 + �x − ��2
) N−2

2

(1.2)

where �N �= �N�N − 2	�
N−2
4 �  is any positive parameter and � a point in �N . These

functions are all and the only positive bounded solutions of problem (1.1) in the
whole space �N [1, 36].

The result in [28], as well as in other related problems where construction
of tower of bubbles is obtained [14–16, 32], rely strongly on the assumption
of symmetry of the domain. On the other hand, even if delicate, removing the
symmetry assumption can be done. The first contribution in this direction is due
to [17], where the authors generalize the construction of tower of bubbles for
the slightly super critical Brezis–Nirenberg problem obtained in [14] for a general
non-symmetric domain. They obtained this result under a further non degeneracy
condition: if �0 is a non degenerate critical point of the Robin’s function of the
domain it is possible to construct a tower of bubbles concentrating at �0. Even if
generic, this non degeneracy assumption is hard to check: the only result about that
is contained in [18], where the author shows that the origin is a non degenerate
critical point of the Robin’s function if the domain is convex and axially symmetric
with respect to the origin. Let us mention that recently in [31] the authors drop both
the assumptions of symmetry of the domain and of non degeneracy of the Robin’s
function. The proof in [17] uses a gluing technique developed in [23] in some other
context. The proof in [31] is based on the use of a Liapunov–Schmidt reduction.

The aim of the present work is to remove the assumption of symmetry on the
pierced domain �. Let us be more precise.

Let � be a bounded domain with smooth boundary and a be a given point in �.
Given a parameter � > 0 small, we remove from � the ball centered at a with radius
ra�. Here ra is a positive fixed number. We are interested in constructing solutions
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Sign-Changing Tower of Bubbles 1421

with the shape of a tower of bubbles around the removed ball for the problem at
the critical exponent {

�u+ �u� 4
N−2 u = 0 in �\B�a� ra�	�

u = 0 on ���\B�a� ra�		
(1.3)

The result we prove is the following

Theorem 1.1. For any integer k ≥ 1� there exists �k > 0 such that for any � ∈ �0� �k	
there exists a pair of solutions u� and −u� to problem (1.3) such that

u��x	 = �N
k∑
i=1

�−1	i+1

(
Mi�

2i−1
2k

M2
i �

2 2i−1
2k + �x − a�2

) N−2
2

+���x	�

where M1� � � � �Mk are positive constants depending only on N and k and
����H1

0��\B�a�ra�		 → 0 as �→ 0�

The second result we get reads as follows. Let a, b be two given points in �
with a �= b. Given a parameter � > 0 small, we remove from � two balls of centers
a and b and radius respectively ra� and rb�. Here ra and rb are two positive fixed
numbers. We construct solutions with the shape of two towers of bubbles around
the removed balls for the problem at the critical exponent{

�u+ �u� 4
N−2 u = 0 in �\{B�a� ra�	 ∪ B�b� rb�	}�

u = 0 on �
(
�\{B�a� ra�	 ∪ B�b� rb�	})� (1.4)

The result we prove is the following

Theorem 1.2. For any integer k ≥ 1� there exists �k > 0 such that for any � ∈ �0� �k	
there exists a pair of solutions u� and −u� to problem (1.4) such that

u��x	 = �N
[ k∑
i=1

�−1	i+1

(
Mi�

2i−1
2k

M2
i �

2 2i−1
2k + �x − a�2

) N−2
2

−
k∑
i=1

�−1	i+1

(
Ni�

2i−1
2k

N 2
i �

2 2i−1
2k + �x − b�2

) N−2
2

]
+���x	�

where M1� � � � �Mk, N1� � � � � Nk are positive constants depending only on N and k and
����H1

0��\
{
B�a�ra�	∪B�b�rb�	

}
	
→ 0 as �→ 0�

Observe that in the above construction, the first elements in the two towers have
opposite sign. On the other hand, in case that the two towers are build upon bubbles
of the same sign, an extra condition on the position of the centers a and b of the
holes is required. This condition is on the sign of a certain combination of the Green
function of � and its regular part. We thus need to recall their definitions.
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1422 Ge et al.

We denote by G�x� y	 the Green function of the Laplace operator in � with
zero Dirichlet boundary condition and we denote by H�x� y	 its regular part, namely

G�x� y	 = �N
(

1
�x − y�N−2

−H�x� y	
)
� (1.5)

with �N �= 1
�N−2	��B� � where ��B� denotes the surface area of the unit sphere in �N �

Thus for all y ∈ �, H�x� y	 satisfies

−�H�x� y	 = 0 in �� H�x� y	 = 1
�x − y�N−2

x ∈ ��� (1.6)

The Robin’s function is defined as H�x� x	� x ∈ ��
Our last result is the following.

Theorem 1.3. Assume

H1/2�a� a	H1/2�b� b	−G�a� b	 > 0� (1.7)

For any integer k ≥ 1� there exists �k > 0 such that for any � ∈ �0� �k	 there exists a
pair of solutions u� and −u� to problem (1.4) such that

u��x	 = �N
[ k∑
i=1

�−1	i+1

(
Ai�

2i−1
2k

A2
i �

2 2i−1
2k + �x − a�2

) N−2
2

+
k∑
i=1

�−1	i+1

(
Bi�

2i−1
2k

B2
i �

2 2i−1
2k + �x − b�2

) N−2
2

]
+���x	�

where A1� � � � � Ak, B1� � � � � Bk are positive constants depending only on N and k and
����H1

0��\�B�a�ra�	∪B�b�rb�	
	 → 0 as �→ 0�

Theorems 1.2 and 1.3 extend the results obtained in [34] and in [30] in the case
of two holes when k = 1: our results claim that on top of solutions found in [30, 34]
one can put two towers of sign changing bubbles.

Let us mention that natural extensions of the results obtained in Theorems 1.2
and 1.3 can be obtained in the case of several holes removed.

We will prove our results with the aim of a Liapunov–Schmidt reduction, which
we describe, together with the scheme of the proof, in Section 2.

2. Proof of Theorems 1.2, 1.3 and 1.1

We will describe the steps of the proof of Theorem 1.2. The proof of Theorems 1.3
and 1.1 can be carried out in a similar way.

For any � > 0 fixed, set �� �= �\�B�a� ra�	 ∪ B�b� rb�	
� Let H1
0 ���	 be the

usual Sobolev space equipped with the scalar product �u� v	 = ∫
��
�u�b, which

induces the norm �u� = �∫
��

��u�2 dx	 1
2 � Let Lq���	 be the space equipped with

the norm �u�q = �
∫
��

�u�q dx	 1
q . By Sobolev Embedding Theorem we have the

existence of a positive constant S, depending only on N , such that �u� 2N
N−2

≤ S�u�
for all u ∈ H1

0 ���	� Consider now the adjoint operator of the above embedding
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Sign-Changing Tower of Bubbles 1423

i � H1
0 ���	 ↪→ L

2N
N−2 ���	, namely the map i∗ � L

2N
N+2 ���	→ H1

0 ���	 defined as
follows: if w∈L 2N

N+2 ���	 then u = i∗�w	 in H1
0 ���	 is the unique solution of the

equation −�u = w in ��� u = 0 on ���� We have the existence of a positive
constant c, which depends only on the dimension N , such that∥∥i∗�w	∥∥ ≤ c�w� 2N

N+2
for all u ∈ L 2N

N+2 ���	� (2.1)

Using the above definitions and notations, problem (1.4) can be re-written as follows

u = i∗�f�u	�� u ∈ H1
0 ���	� (2.2)

where f�u	 �= �u�p−1u and p = N+2
N−2 .

We next describe the shape of the solutions we are looking for. We start with
the definition of the two towers, centered respectively around a and b. We define

Va�x	 =
k∑
j=1

�−1	j+1uja�x	� Vb�x	 =
k∑
j=1

�−1	j+1ujb�x	 (2.3)

where

uja�x	 = P�Uj��aj� �x	� ujb�x	 = P�U�j��bj� �x	� (2.4)

In (2.4) P� denotes the projection onto H1
0 ���	, namely for a given function defined

on all �N , P�u is the unique solution in of the problem �P�u = �u in �� and
P�u= 0 on ���. Furthermore, in (2.4) we assume that

j� = �
2j−1
2k j and �j� = �

2j−1
2k �j (2.5)

for some positive numbers j and �j , and

aj� = a+ j��j and bj� = b + �j��j (2.6)

for some points �j and �j in �N . We will assume the following bounds on the
parameters and points appearing in (2.5) and (2.6): given � > 0 small

� < j� �j < �
−1� ��j�� ��j� < � for all j = 1� � � � � k� (2.7)

To refer to the parameters above, we will use the compact notation

�̄ = ��1� � � � � �k	� �̄ = ��1� � � � � �k	 ∈ �Nk� and
(2.8)

̄ = �1� � � � � k	� �̄ = ��1� � � � � �k	 ∈ �k
+�

The solution predicted by Theorem 1.2 has the form

u�x	 = V�x	+ ��x	� where V�x	 = Va�x	− Vb�x	� (2.9)

Here the term � has to be thought as a smaller perturbation of V .
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1424 Ge et al.

We next describe the term � in (2.9). To do so, let us recall (see [7]) that, for all
� > 0 and � ∈ �N , every bounded solution to the linear equation

−�� = f ′(U���)� in �N

is a linear combination of the functions

Z
j
����x	 �= ��jU����x	 = �N �N − 2	�

N−2
2

xj − �j
��2 + �x − ��2	N/2 � j = 1� � � � � N

and

Z0
����x	 �= ��U����x	 = �N

N − 2
2

�
N−4
2

�x − ��2 − �2
��2 + �x − ��2	N/2 �

We define the subspace of H1
0 ���	

K �= span
{
P�Z

h
j��aj�

� P�Z
h
�j��bj�

� h = 0� 1� � � � � N� j = 1� � � � � k
}
�

where P� is the projection onto H1
0 ���	 as defined before, and

K⊥ �= {
� ∈ H1

0 ���	 �
〈
��P�Z

h
j��aj�

〉 = 〈
��P�Z

h
�j��bj�

〉 = 0�

h = 0� 1� � � � � N� j = 1� � � � � k
}
�

Let � � H1
0 ���	→ K and �⊥ � H1

0 ���	→ K⊥ be the orthogonal projections.
In order to solve problem (1.4) we will solve the couple of equations

�⊥ �V + �− i∗ �f �V + �	�
 = 0 (2.10)

��V + �− i∗ �f �V + �	�
 = 0� (2.11)

Given �̄� �̄, ̄ and �̄ (see (2.8)) whose components satisfy conditions (2.7), one
can solve uniquely equation (2.10) in � ∈ K⊥. This solution � is the lower order term
in the description of the ansatz (2.9). This is the content of

Proposition 2.1. For any � > 0, there exists �0 > 0 and c > 0 such that for any �̄� �̄ ∈
�Nk, for any ̄� �̄ ∈ �k

+, satisfying (2.7) and for any � ∈ �0� �0	 there exists a unique
� = ���̄� �̄� ̄� �̄	 ∈ K⊥ which solves equation (2.10). Moreover

��� ≤


c�

N−2
2k

p
2 if N ≥ 7�

c�
N−2
2k � ln �� if N = 6�

c�
N−2
2k if 3 ≤ N ≤ 5�

(2.12)

Finally, ��̄� �̄� ̄� �̄	→ ���̄� �̄� ̄� �̄	 is a C1-map.

Roughly speaking, the solution � to (2.10) is found with a fixed point argument,
which works thanks to two fundamental ingredients: the existence and estimates of
the inverse of the linear operator obtained linearizing problem (1.4) around V in the
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Sign-Changing Tower of Bubbles 1425

space K⊥ (see Section 5) and the study of the error term

R �= �⊥ �i∗ �f �V 	�− V
 � (2.13)

This last estimate is carried out in Section 6.
We are left now to solve equation (2.11), more precisely to find points �̄, �̄

in �Nk, and parameters ̄, �̄ in �k
+ so that (2.11) is satisfied. It happens that this

problem has a variational structure, in the sense that solving (2.11) reduces to find
critical points to some given explicit finite dimensional functional. Let us introduce
the energy associated to problem (1.4)

J��u	 =
1
2

∫
��

��u�2 dx − 1
p+ 1

∫
��

�u�p+1� (2.14)

Furthermore, we define the function J̃� � �
kN ×�kN ×�k

+ ×�k
+ → � by

J̃���̄� �̄� ̄� �̄	 �= J��V + �	� (2.15)

Next result contains two fundamental statements to conclude the proof of
our Theorem 1.2. First it states that solving equation (2.11) is equivalent to
finding critical points ��̄�� �̄�� ̄�� �̄�	 of the finite dimensional function defined
in (2.15). Second it computes the asymptotic expansion, as �→ 0, of the function
J̃���̄� �̄� ̄� �̄	, for points and parameters satisfying (2.7). More precisely, in the above
region the function J̃���̄� �̄� ̄� �̄	 is uniformly close, together with its derivatives,
to J��V	. The proof of these facts are contained in Section 7. Furthermore, we can
expand explicitly J��V	 and prove that it is closed in a C1 sense to a constant plus
an function ���̄� �̄� ̄� �̄	�

N−2
2k plus a lower order term o��

N−2
2k 	. This fact is proved in

Section 3.
In the whole paper we will use the notation O�1	 or o�1	 to denote a continuous

function of the parameters j , �j , �j and �j , which is bounded or approaching to
zero as � goes to zero uniformly in the range described by constraint (2.7).

Proposition 2.2. The following facts hold.

Part 1. If ��̄�� �̄�� ̄�� �̄�	 is a critical point of J̃�� then the function V + � is a
solution to problem (1.4).

Part 2. For any � > 0, there exists �0 > 0 such that for any � ∈ �0� �0	 it holds

J̃���̄� �̄� ̄� �̄	 = 2c1
�
p+1
N

N
k+ �

p+1
N

2
���̄� �̄� ̄� �̄	�

N−2
2k �1+ o�1		� (2.16)

C1-uniformly with respect to points and parameters �̄� �̄� ̄� �̄ satisfying (2.7). The
functions � is defined as follows

���̄� �̄� ̄� �̄	 = c2
[
H�a� a	N−2

1 +H�b� b	�N−2
1 + 2G�a� b	

N−2
2

1 �
N−2
2

1

]
+ ���k	

�1+ ��k�2	 N−2
2

rN−2
a

N−2
k

+ ���k	

�1+ ��k�2	 N−2
2

rN−2
b

�N−2
k

+ 2
k−1∑
j=1

[
���j	

(
j+1

j

) N−2
2

+ ���j	
(
�j+1

�j

) N−2
2

]
� (2.17)
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1426 Ge et al.

Here

c1 =
∫
�N

1
�1+ �z�2	N dz� c2 =

∫
�N

1

�1+ �z�2	 N+2
2

dz� (2.18)

and F � �N → � is the smooth function defined by

��x	 �=
∫
�N

1

�1+ �y − x�2	 N+2
2

1
�y�N−2

dy� x ∈ �N � (2.19)

We have now all the tools to give the proof of Theorem 1.2.

Proof of Theorem 1.2. In virtue of (i) of Proposition 4.1 there exists a
nondegenerate critical point �0� 0� ̄0� �̄0	 of the function � introduced in (2.17),
which is stable with respect to C1-perturbation. Therefore, taking into account the
expansion (2.16) in Proposition 2.2, Part 2, we deduce that if � is small enough
the function J̃� (see (2.15)) has a critical point ��̄�� �̄�� ̄�� �̄�	 such that �̄�� �̄� → 0�
̄� → ̄0 and �̄� → �̄0 as � goes to 0. Finally, from Proposition 2.2, Part 1, and
from formula (2.12), it follows that V + �, where V is defined in (2.9) and � is the
function whose existence is guaranteed by Proposition 2.1, is the solution predicted
by Theorem 1.2. �

Proof of Theorem 1.3. We look for a solution to (1.4) of the form u�x	 = W�x	+
��x	 where W�x	 = Va�x	+ Vb�x	 (instead of Va�x	− Vb�x	). Here Va� Vb are defined
as in (2.3) and satisfy (2.5), (2.6), (2.7). The rest term � is a lower-order term which
is constructed exactly as in Proposition 2.1. Arguing as in the proof of Theorem 1.2
we are lead to find a critical point of the reduced energy, whose expansion is given
in (2.16) where in this case the function � = � ∗ becomes

� ∗��̄� �̄� ̄� �̄	 = c2
[
H�a� a	N−2

1 +H�b� b	�N−2
1 − 2G�a� b	

N−2
2

1 �
N−2
2

1

]
+ ���k	

�1+ ��k�2	 N−2
2

rN−2
a

N−2
k

+ ���k	

�1+ ��k�2	 N−2
2

rN−2
b

�N−2
k

+ 2
k−1∑
j=1

[
���j	

(
j+1

j

) N−2
2

+ ���j	
(
�j+1

�j

) N−2
2

]
� (2.20)

Let us point out that in this case the interaction between the first two bubbles of the
towers is negative and is given by −2G�a� b	, while in the case of Theorem 1.2 it is
positive and is given by +2G�a� b	� Finally, using (ii) of Proposition 4.1, the proof
follows the same argument of the proof of Theorem 1.2. �

Proof of Theorem 1.1. We look for a solution to (1.3) of the form u�x	 = Va�x	+
��x	� where Va is defined as in (2.3) and satisfy (2.5), (2.6), (2.7). The rest term � is
a lower order term which is constructed exactly as in Proposition 2.1. Arguing as in
the proof of Theorem 1.2 we are lead to find a critical point of the reduced energy,
whose expansion is given in (2.16) where in this case the function � reduces to

���̄� ̄	 = c2H�a� a	N−2
1 + ���k	

�1+ ��k�2	 N−2
2

rN−2
a

N−2
k

+ 2
k−1∑
j=1

���j	

(
j+1

j

) N−2
2

�
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Sign-Changing Tower of Bubbles 1427

Arguing as in Proposition 4.1, we can prove that � has a non degenerate critical
point �0� ̄0	� Finally, the proof follows the same argument of the proof of
Theorem 1.2. �

3. Expansion of the Energy Functional

This section is devoted to the computation of the expansion of J��V	, where J� is
the functional defined in (2.14) and V is defined in (2.9).

The main result of this section is contained in the following:

Theorem 3.1. For any � > 0, there exists �0 > 0 and c > 0 such that for any �̄� �̄ in
�Nk and any ̄� �̄ in �k

+ satisfying (2.7) and for any � ∈ �0� �0	, we have

J��Va − Vb	 = 2c1
�
p+1
N

N
k+ �

p+1
N

2

{
c2

[
H�a� a	N−2

1 +H�b� b	�N−2
1 + 2G�a� b	�1�1	

N−2
2

]
+ ���k	

�1+ ��k�2	 N−2
2

rN−2
a

N−2
k

+ ���k	

�1+ ��k�2	 N−2
2

rN−2
b

�N−2
k

+ 2
k−1∑
j=1

[
���j	

(
j+1

j

) N−2
2

+ ���j	
(
�j+1

�j

) N−2
2

]}
�
N−2
2k + o(�N−2

2k
)
�

(3.1)

C1-uniformly with respect to j , �j , �j and �j , satisfying (2.7). Here the positive
constants c1 and c2 are given in (2.18) and the function F is defined in (2.19).

Of fundamental importance to carry out the proof of the above expansion are
the two lemmas that follows. The first one gives a description of the basic element of
each one of our towers, namely the projection onto H1

0 ���	 of the standard bubble
U���, for proper election of � and �. The second lemma is a direct consequence of
the first one.

We start with

Lemma 3.1. Assume that � = a+ �, with → 0 as �→ 0 and � = o�	 as �→ 0.
Then, if we define

R�x	 �= P�U���x	− U���x	+ �N N−2
2 H�x� �	+ �N

1


N−2
2 �1+ ���2	 N−2

2

�ra�	
N−2

�x − a�N−2
�

there exists a positive constant c such that for any x ∈ �\ �B�a� ra�	 ∪ B�b� rb�		

�R�x	� ≤ c N−2
2

[
�N−2�1+ �−N+1	

�x − a�N−2
+ 2 +

(
�



)N−2
]

(3.2)

∣∣�R�x	∣∣ ≤ c N−4
2

[
�N−2�1+ �−N+1	

�x − a�N−2
+ 2 +

(
�



)N−2
]

(3.3)

∣∣��iR�x	∣∣ ≤ c N
2

[
�N−2�1+ �−N 	

�x − a�N−2
+ 2 + �N−2

N−1

]
� (3.4)
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1428 Ge et al.

Proof. We scale as follows: R̂�y	 = − N−2
2 �−1

N R�ra�y + a	. Thus −�R̂ = 0 in �̂�,
where

�̂� =
(
�− a
ra�

)∖(
B�0� 1	 ∪ B

(
b − a
ra�

�
rb
ra

))
�

It is easy to check that �̂� → �N\B�0� 1	 as �→ 0, and that if y ∈ �B�0� 1	

R̂�y	 = − 1

N−2�1+ � ra�

y − ��2	 N−2

2

+H�ra�y + a� �	+
1

N−2�1+ ���2	 N−2
2

and if y ∈ �
(
�−a
ra�

)
R̂�y	 = − 1

�2 + �ra�y − ��2	 N−2
2

+ 1
�ra�y − ��N−2

+ 1

N−2�1+ ���2	 N−2
2 �y�N−2

�

Thus we get the estimates

�R̂�y	� ≤ C
(
1+ 1

N−2

�



)
for all y ∈ �B�0� 1	�

and

�R̂�y	� ≤ C
(
2 +

(
�



)N−2)
for all y ∈ �

(
�− a
ra�

)
�

A comparison argument for harmonic functions implies that

�R̂�y	� ≤ C
[
1+ �1−N
�y�N−2

+ 2 +
(
�



)N−2
]
�

This fact gives (3.2).
Let us now denote by R�x	 = �R�x	 and define R̂�y	 = − N−4

2 R�ra�y + a	. A
direct computation shows that

�R̂�y	� ≤ C
(
1+ 1

N−2

�



)
for all y ∈ �B�0� 1	�

and

�R̂�y	� ≤ C
(
2 +

(
�



)N−2)
for all y ∈ �

(
�− a
ra�

)
�

This fact gives (3.3).
Finally, let Ri�x	 = ��iR�x	 and R̂i�y	 = −

N
2 Ri�ra�y + a	. We get the following

estimates

�R̂i�y	� ≤ C
(
1+ �

N

)
for all y ∈ �B�0� 1	�
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Sign-Changing Tower of Bubbles 1429

and

�R̂i�y	� ≤ C
(
2 + �N−2

N−1

)
for all y ∈ �

(
�− a
ra�

)
�

This fact gives (3.4). �

Lemma 3.2. Under the same assumption of Lemma 3.1 we have the validity of the
following estimate∫

��

U
4

N−2
��

(
P�U�� − U��

)2 = O (
N + ��/	N ) if N ≥ 5�

= O (
4� log � + ��/	4� log��/	�) if N = 4�

= O (
2 + ��/	2) if N = 3�

Proof. As direct consequence of Lemma 3.1, we have to estimate∫
��

2

�2 + �x − ��2	2
(
N−2 + �2�N−2	−�N−2	

�x − a�2�N−2	

)
dx�

Now, we have if N ≥ 5∫
��

2

�2 + �x − ��2	2 dx = 0
(
2

∫
�

1
�x − a�4 dx

)
and if N = 3 (setting x − � = y)∫

��

2

�2 + �x − ��2	2 dx = 0
(

∫
�N

1
�1+ �y�2	2 dy

)
�

Moreover, we have if N ≥ 5 (setting x − a = �y)∫
��

2

�2 + �x − ��2	2
1

�x − a�2�N−2	
= 0

(
�−�N−4	−2

∫
��y�≥1


1
�y�2�N−2	

dy

)
and if N = 3 (setting x − � = y)∫

��

2

�2 + �x − ��2	2
1

�x − a�2 = 0
(
−1

∫
�N

1
�1+ �y�2	2

1
�y − ��2 dy

)
�

The case N = 4 can be treated in a similar way.
Collecting all the previous estimates, the claim follows. �

Proof of Theorem 3.1. We write

J��Va − Vb	 = J��Va	+ J��Vb	+ Ja�b� (3.5)

where

Ja�b� �= −
∫
��

�Va�Vb −
1

p+ 1

∫
��

(�Va − Vb�p+1 − �Va�p+1 − �Vb�p+1
)
dx� (3.6)
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1430 Ge et al.

We start to estimate J��Va	 in (3.5). In a very similar way, the estimate of the
term J��Vb	 will follow.

Recall that Va�x	 =
∑k
j=1�−1	j+1uja�x	. For simplicity of notation, while

computing the expansion of J��Va	, we will write uj instead of uja. Then, using the
fact that

∫
��
�ui�ujdx =

∫
��
u
p
j ui dx, we have

J��Va	 =
k∑
j=1

J��uj	+ J 1� (3.7)

where

J 1� �= − 1
p+ 1

∫
��

[∣∣∣∣ k∑
j=1

�−1	j+1uj

∣∣∣∣p+1

dx −
k∑
j=1

�uj�p+1 − �p+ 1	
∑
i>j

�−1	i+jupi uj

]
dx�

(3.8)

Let us fix j in �1� � � � � k
. To simplify again the notation, we will use Uj to denote
the function Uj��aj� . Since �uj = Upj in �� and uj = 0 on ���, we see that, for some
0 ≤ s ≤ 1,

J��uj	 =
1
N

∫
��

U
p+1
j dx + 1

2

∫
��

U
p
j �uj − Uj	dx −

1
p+ 1

∫
��

[�uj�p+1 − Up+1
j

]
dx

= 1
N

∫
��

U
p+1
j dx − 1

2

∫
��

U
p
j �uj − Uj	 dx

− p
∫
��

[
Uj + s�uj − Uj	

]p−1
�uj − Uj�2 dx

= Aj + Bj + Cj� (3.9)

It is useful to point out that j��
j�
�

= O(
�

1
2k
)
� because of (2.5).

First we observe that Lemma 3.2 implies that

�Cj� = o
(
�
N−2
2k

)
� (3.10)

If we perform the change of variables x − a = j�z, the domain �� gets transformed
into

�̃� =
(
�\�a

j�

)∖(
B

(
0�
ra�

j�

)
∪ B

(
b − a� rb�

j�

))
� (3.11)

Since �
j�

→ 0 as �→ 0, the set �̃� converges to the whole space �N and we get

Aj =
1
N
�
p+1
N

∫
�N

1
�1+ �z�2	N dz+ O

(
�

2j−1
2k N

)
� for all j = 1� � � � � k� (3.12)

We observe for later purpose that �� 2j−1
2k N � ≤ � N

2k .
Using the notations introduced in Lemma 3.1, we write

Bj =
1
2
�Bj1 + Bj2 + Bj3	 (3.13)
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Sign-Changing Tower of Bubbles 1431

where

Bj1 = �p+1
N j�

N−2
2

∫
��

(
j�

j�
2 + �x − aj��2

) N+2
2

H�x� aj�	dx (3.14)

Bj2 = �p+1
N rN−2

a

�N−2
− N−2

2
j�

�1+ ��j�2	 N−2
2

∫
��

(
j�

j�
2 + �x − aj���2

) N+2
2 1
�x − a�N−2

dx (3.15)

and

Bj3 = −�p+1
N

∫
��

(
j�

j�
2 + �x − aj���2

) N+2
2

R�x	dx� (3.16)

Using again the change of variables x − a = j�z, the domain �� gets transformed
into �̃� (3.11) and we get

Bj1 = �p+1
N j�

N−2
∫
�̃�

(
1

1+ �z+ �j�2
) N+2

N−2

H�a+ j�z� a+ j��j	dz

= �p+1
N

( ∫
�N

1

�1+ �z�2	 N+2
2

dz

)
H�a� a	N−2

j �
2j−1
2k �N−2	�1+ o�1		 (3.17)

and

Bj2 = �p+1
N

rN−2
a �N−2

j�
N−2�1+ ��j�2	 N−2

2

∫
�̃�

(
1

1+ �z− �j�2
) N+2

N−2 1
�z�N−2

dz

= �p+1
N

rN−2
a

�1+ ��j�2	 N−2
2

( ∫
�N

1

�z�N−2�1+ �z− �j�2	 N+2
2

dz

)
�
�N−2	�2k−2j+1	

2k

N−2
j

�1+ o�1		�
(3.18)

Finally, using the result in Lemma 3.1, we have

�Bj3� = o
(
�

2j−1
2k �N−2	 + ��N−2	 2�k−j	−1

2k

)
� for all j = 1� � � � � k� (3.19)

Thus we conclude from (3.9)–(3.19) that

k∑
j=1

J��uj	 = kc1
�
p+1
N

N
+ �

p+1
N

2

[
c2H�a� a	

N−2
1 + rN−2

a ���k	

�1+ ��k�2	 N−2
2

1

N−2
k

]
�
N−2
2k �1+ o�1		�

(3.20)

Next we estimate the term J 1� (3.8) in (3.7). Assume B�a� �	 ∩ B�b� �	 = ∅ for
some � > 0. Thus we write

−�p+ 1	J 1� =
( ∫

��\B�a��	
+

∫
��∩B�a��	

)
G1
��x	dx� (3.21)
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1432 Ge et al.

with

G1
� =

(∣∣∣∣ k∑
j=1

�−1	j+1uj

∣∣∣∣p+1

dx −
k∑
j=1

�uj�p+1 − �p+ 1	
∑
i>j

�−1	i+jupi uj

)
�

The first integral in (3.21) is lower order respect to the first one. Indeed we have∣∣∣∣ ∫
��\B�a��	

G1
�

∣∣∣∣ ≤ C[ k∑
j=1

∫
��\B�a��	

U
p+1
j +∑

i �=j

∫
��\B�a��	

U
p
i Uj

]

≤ C
[∑

j

j�
N +∑

i �=j
i�

N+2
2 j�

N−2
2

]
= O(

�
N
2k
)
�

To deal with the second integral in (3.21), we will decompose the set
�� ∩ B�a� �	 = B�a� �	\B�a� ra�	 into the union of non-overlapping annuli. More
precisely, we write

B�a� �	\B�a� ra�	 =
k⋃
l=1

�l (3.22)

where for all l = 1� � � � � k,

�l �= B
(
a�

√
l�l−1�

)∖
B
(
a�

√
l�l+1�

)
�

with 0� �= −1
1� �

2 and k+1� �= −1
k� r

2
a�

2.
Thus we write ∫

��∩B�a��	
G�1 dx =

k∑
l=1

∫
�l
G�1 dx� (3.23)

Fix now l. We write∫
�l
G�1 dx =

∫
�l

[∣∣∣∣∑
j

�−1	j+1uj

∣∣∣∣p+1

− up+1
l − �p+ 1	upl

∑
i �=l
�−1	i+lui

]

−∑
i �=l

∫
�l
u
p+1
i − �p+ 1	

∫
�l

[∑
i>j

�−1	i+jupi uj − upl
∑
i �=l
�−1	i+lui

]
�

Now we further decompose the last integral above as follows

− �p+ 1	
∫
�l

[∑
i>j

�−1	i+jupi uj − ul
∑
i �=l
�−1	i+lui

]

= −�p+ 1	
[
−∑

j>l

�−1	l+j
∫
�l
u
p
l uj +

∑
i>j�i �=l

�−1	i+j
∫
�l
u
p
i uj

]

= �p+ 1	
[∑
j>l

�−1	j+l
∫
�l
U
p
l Uj +

∑
j>l

�−1	j+l
∫
�l
��u

p
l − Upl 	Uj�

+ �upl �uj − Uj	�−
∑
i>j�i �=l

�−1	j+i
∫
�l
u
p
i uj

]
�
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Sign-Changing Tower of Bubbles 1433

Summarizing the above information and putting in evidence the principal term,
we write ∫

�l
G�1 dx = �p+ 1	

∑
j>l

�−1	l+j
∫
�l
U
p
l Uj dx + rl (3.24)

where rl =
∑4
j=1 rjl with

r1l =
∫
�l

[∣∣∣∣∑
j

�−1	j+1uj

∣∣∣∣p+1

− up+1
l − �p+ 1	upl

∑
i �=l
�−1	i+lui

]
�

r2l = −∑
i �=l

∫
�l
u
p+1
i �

r3l = �p+ 1	
∑
j>l

�−1	j+l
∫
�l

{
��u

p
l − Upl 	Uj�+ �upl �uj − Uj	�

}
�

r4l = �p+ 1	
∑
i>j�i �=l

�−1	j+i
∫
�l
u
p
i uj�

We first deal with the main term in (3.24), namely �p+ 1	
∑
j>l�−1	l+j

∫
�l
U
p
l Uj dx.

Hence we are interested in computing
∫
�l
U
p
l Uj dx for l = 1� � � � � k− 1. In the region

�l we perform the change of variables x − a = l�z. Thus the transformed domains
are

�̃l =
{
z ∈ �N �

√
l+1�

l�
≤ �z� ≤

√
l−1�

l�

}
if l = 1� � � � � k− 1�

It is immediate to see that (2.5) gives that the transformed domain �̃l converges to
the whole space �N as �→ 0.

With this in mind and using the fact that j > l and l = 1� � � � � k− 1, we have

∫
�l
U
p
l Uj dx =

(
j�

l�

) N−2
2 ∫

�̃l

�
p+1
N

�1+ �z− �l�2	 N+2
2

1

��
j�
l�
	2 + �z− j�

l�
�j�2� N−2

2

dz

= �p+1
N

( ∫
�N

1

�z�N−2�1+ �z− �l�2	 N+2
2

dz

)(
j

l

) N−2
2

�
�N−2	�j−l	

2k �1+ o�1		�
(3.25)

Since �
N−2
2k + 1

k = � N
2k , we thus conclude that, for all l = 1� � � � � k− 1,

∑
j>l

�−1	l+j
∫
�l
U
p
l Uj dx = −�p+1

N ���l	

(
l+1

l

) N−2
2

�
�N−2	
2k �1+ o�1		� (3.26)

where F is defined in 2.19. To get the estimate of
∫
�l
G�1 dx we are left to show that

the term rl in (3.24) is negligible. We claim that this fact will be consequence of two
fundamental computations∫

�l
U
p+1
j dx = O(

�
N
2k
)

for all j �= l� (3.27)
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1434 Ge et al.

∫
�l
U
p
i Ujdx = O

(
�
N
2k
)

for all j �= l� for all i �= l� (3.28)

and ∫
�l
U
p
l Ujdx = O

(
�

�l−j��N−2	
2k

)
for all j �= l� (3.29)

To get (3.27), we perform the change of variable x − a = j�z to get

∫
�l
U
p+1
j dx =

∫
√
l�l+1�
j�

<�z�<
√
l�l−1�
j�

1
�1+ �z− �j�2	N

dz�

If j > l then
√
l�l−1�

j�
→ � and so, for some positive constant C,

∣∣∣∣ ∫
�l
U
p+1
j dx

∣∣∣∣ ≤ C ∫ �
√
l�l−1�
j�

t−N−1 dt = C
(

j�√
l�l+1�

)N
= O�� N

2k 	�

If j < l then
√
l�l+1�

j�
→ 0 and so, for some positive constant C,

∣∣∣∣ ∫
�l
U
p+1
j dx

∣∣∣∣ ≤ C(√
l�l−1�

j�
−

√
l�l+1�

j�

)N
≤ C

(√
l�l−1�

j�

)N
= O(

�
N
2k
)
�

These facts give the validity of (3.27).
Estimate (3.28) is a direct consequence of (3.27) and Holder inequality, since

∣∣∣∣ ∫
�l
U
p
i Ujdx

∣∣∣∣ ≤ ( ∫
�l
U
p+1
i dx

) p
p+1

( ∫
�l
U
p+1
j dx

) 1
p+1

≤ CO�� N
2k 	�

Finally (3.29) is a direct consequence of the computations contained in (3.25)
when j > l. Assume now that j < l. Perform the change of variable x − a = l�z,
one gets

∫
�l
U
p
l Uj dx =  N−2

2
l� 

N−2
2

j�

∫
�̃l

�
p+1
N

�1+ �z− �l�2	 N+2
2

1

�2j� + �l�z− j��j�2� N−2
2

dz

=
( ∫

�N

�
p+1
N

�z− �l�N−2�1+ �z− �j�2	 N+2
2

dz

)(
l
j

) N−2
2

�
�N−2	�l−j	

2k

= O(
�
�N−2	�l−j	

2k
)
�

From this we conclude (3.29).
Let us now estimate the terms that define rl (see (3.24)). First we have

�r1l� ≤ C
(∑
j �=l

∫
�l
U
p−1
l U 2

j +
∑
i�j �=l

∫
�l
U
p−1
i U 2

j

)
≤ C�N−2

2k �1+ 2
N+2 	
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Sign-Changing Tower of Bubbles 1435

since, if j �= l,

∫
�l
U
p−1
l U 2

j ≤ C
( ∫

�l
U
p
l Uj

) p−1
p
( ∫

�l
U
p+1
j

) 1
p

≤ C�N−2
2k �1+ N

N+2 	�

and, for i �= l and j �= l,

∫
�l
U
p−1
i U 2

j ≤ C
( ∫

�l
U
p
i Uj

) p−1
p
( ∫

�l
U
p+1
j

) 1
p

≤ C� N
2k �

An immediate consequence of (3.27) is that �r2l� ≤ C� N
2k , while from (3.28) we have

that �r4l� ≤ C� N
2k .

We are left to estimate r3l. We thus fix j > l. In particular we just take l �= j.
A consequence of Lemma 3.1 is that in �l we have

�uj�x	− Uj�x	� ≤ C
�N−2

j�
N−2
2 �x − a�N−2

�

Hence, using again the change of variables x − a = l�z, we see that the first terms
in the expression of r3l can be estimated as follows∣∣∣∣ ∫

�l
u
p
l �uj − Uj	dx

∣∣∣∣ ≤ C�N−2


N−2
2

j�

∫
�l
U
p
l

1
�x − a�N−2

dx

≤ C �N−2

�j�l�	
N−2
2

∫
�̃l

1

�1+ �z− �l�2	 N+2
2

1
�z�N−2

dz

≤ C�N−2
2k �2k−j−l+1	 ≤ C�N−2

k �

The remaining terms in the definition of r3l can be estimated as follows. We have
for j > l and using again the change of variable in �l given by x − a = l�z,∣∣∣∣ ∫

�l
�u
p
l − Upl 	Uj dx

∣∣∣∣ ≤ C ∫
�l
U
p−1
l �ul − Ul�Uj dx ≤ C

�N−2


N−2
2

l�

∫
�l

U
p−1
l Uj

�x − a�N−2
dx

≤ C�
N−2

N−2
2

j�


N−2
2

l�

∫
�̃l

1
�1+ �z− �l�2	2

1
�z�N−2

1

�2j� + �l�z− j��j�2	 N−2
2

dz

≤ C �N−2


N−2
2

l� 
N−2
2

j�

∫
�N

1
�1+ �z− �l�2	2

1
�z��N−2	

dz ≤ C�N−2
k �

By all the previous estimates we get

J 1� = �p+1
N

k−1∑
l=1

���l	

(
l+1

l

) N−2
2

�
N−2
2k �1+ o�1		� (3.30)
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1436 Ge et al.

By (3.7), (3.20) and (3.30) we conclude that

J��Va	 = kc1
�
p+1
N

N
+ �

p+1
N

2

{
c2H�a� a	

N−2
1 + rN−2

a ���k	

�1+ ��k�2	 N−2
2

1

N−2
k

+
k−1∑
l=1

���l	

(
l+1

l

) N−2
2

}
�
N−2
2k + o(�N−2

2k
)
� (3.31)

In a very similar way one gets the expansion of J��Vb	 in (3.5), that is

J��Vb	 = kc1
�
p+1
N

N
+ �

p+1
N

2

{
c2H�b� b	�

N−2
1 + rN−2

b ���k	

�1+ ��k�2	 N−2
2

1

�N−2
k

+
k−1∑
l=1

���l	

(
�l+1

�l

) N−2
2

}
�
N−2
2k + o(�N−2

2k
)
� (3.32)

We are now left with the estimate of Ja�b� in (3.6) to complete the expansion
of (3.5).

Standard arguments (see [2, 4]) prove that∫
��

�P�Ui��ai��P�U�j��bj�

= �p+1
N

( ∫
�N

1

�1+ �z�2	 N+2
2

dz

)
G�ai�� bj�	

N−2
2

i� �
N−2
2

j� �1+ o�1		

= �p+1
N

( ∫
�N

1

�1+ �z�2	 N+2
2

dz

)
G�a� b	

N−2
2

i �
N−2
2

j �
�j+i−1	�N−2	

2k �1+ o�1		�

Therefore∫
��

�Va�Vb = �p+1
N

( ∫
�N

1

�1+ �z�2	 N+2
2

dz

)
G�a� b	 �1�1	

N−2
2 �

N−2
2k �1+ o�1		� (3.33)

Let now � > 0 be such that B�a� �	 ∩ B�b� �	 = ∅. Define

G2� = �Va − Vb�p+1 − Vp+1
a − Vp+1

b �

Taking into account that D
(�x�p+1

) = �p+ 1	x�x�p−1, a Taylor expansion gives∫
��

G2� =
∫
��∩B�a��	

G2� +
∫
��∩B�b��	

G2� + O�N1� + �N1�	

= −�p+ 1	
[ ∫

��∩B�a��	
V pa Vb +

∫
��∩B�b��	

V
p
b Va

]
+ p�p+ 1	

2

[ ∫
��∩B�a��	

�Va + sVb	p−1V 2
b +

∫
��∩B�b��	

�Vb + sVa	p−1V 2
a

]
+ O�N1� + �N1�	

= −�p+ 1	
k∑
j=1

[ ∫
��∩B�a��	

Upj��aj�Vb +
∫
��∩B�b��	

U
p
�j��bj�

Va

]
+ I1 + I2 + O

(
�
N
2k
)
�

(3.34)
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Sign-Changing Tower of Bubbles 1437

where

I1 �= −
[ ∫

��∩B�a��	

(
Vpa −∑

j

Upj��aj�

)
Vb +

∫
��∩B�b��	

(
V
p
b −∑

j

U
p
�j��bj�

)
Va

]
and

I2 �= −p�p+ 1	
2

[ ∫
��∩B�a��	

�Va + sVb	p−1V 2
b +

∫
��∩B�b��	

�Vb + sVa	p−1V 2
a

]
�

It is straightforward to see that I1� I2 = O
(
�
N
2k
)
. Furthermore, it is by now standard

(see [2] and [4]) that∫
��∩B�a��	

Upj��aj�P�U�i��bi� dx

= �p+1
N

( ∫
�N

1

�1+ �z�2	 N+2
2

dz

)
G�ai�� bj�	

N−2
2

i� �
N−2
2

j� �1+ o�1		

= �p+1
N

( ∫
�N

1

�1+ �z�2	 N+2
2

dz

)
G�a� b	

N−2
2

i �
N−2
2

j �
�j+i−1	�N−2	

2k �1+ o�1		� (3.35)

By (3.34) and (3.35) we deduce∫
��

G2� = −2�p+ 1	�p+1
N

( ∫
�N

1

�1+ �z�2	 N+2
2

dz

)
G�a� b	�1�1	

N−2
2 �

N−2
2k �1+ o�1	�

We thus conclude that

Ja�b� = c2�p+1
N G�a� b	 �1�1	

N−2
2 �

N−2
2k �1+ o�1		� (3.36)

Finally by (3.5), (3.31), (3.32) and (3.36) the C0-estimate in (3.1) follows.
Arguing in a similar way, we can also prove the C1-estimate. �

4. The Reduced Function

This section is devoted to guarantee that the functions � and � ∗ defined in (2.17)
and (2.20) have critical points which are stable under C1-perturbation of them.

Proposition 4.1.

(i) There exist ̄0� �̄0 ∈ Rk+ such that �0� 0� ̄0� �̄0	 is a non degenerate critical point of
the function � defined in (2.17).

(ii) If (1.7) holds, there exist ̄0� �̄0 ∈ Rk+ such that �0� 0� ̄0� �̄0	 is a non degenerate
critical point of the function � ∗ defined in (2.20).

Proof. Let us rewrite the functions � and � ∗ as

 ��̄� �̄� ̄� �̄	 �= ha21 + hb�21 + 2hab1�1 + g��k	
1

2k
+ g��k	

1

�2k

+
[
f��1	

2
1

+ · · · + f��k−1	
k
k−1

]
+

[
f��1	

�2
�1

+ · · · + f��k−1	
�k
�k−1

]
�
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1438 Ge et al.

where we replaced 
N−2
2

i and �
N−2
2

i with i and �i� respectively, and we also set ha �=
c2H�a� a	� hb �= b2H�b� b	� ha�b �= ±c2G�a� b	

ga�x	 �=
rN−2
a ��x	

�1+ �x�2	 N−2
2

� gb�x	 �=
rN−2
b ��x	

�1+ �x�2	 N−2
2

� f�x	 �= 2��x	�

First of all, we point out that if we fix �̄ = �̄ = 0 the function �̄� �̄	→
 �0� 0� ̄� �̄	 has a minimum point �̄0� �̄0	� In fact, the quadratic form �1� �1	→
ha

2
1 + hb�21 + 2hab1�1 is strictly positively definite: this is trivial if hab = +2G�a� b	

and it follows by (1.7) if hab = −2G�a� b	�
We are going to show that �0� 0� ̄0� �̄0	 is a nondegenerate critical point of  �

The claim immediately follows.
Let us remark that

� �0� 0� ̄0� �̄0	 =
(
��̄��̄ �0� 0� ̄0� �̄0	 0

0 �̄��̄ �0� 0� ̄0� �̄0	

)
�

By Lemma 4.1 we easily deduce that
∣∣��̄��̄ �0� 0� ̄0� �̄0	∣∣ �= 0� It remains to prove

that ∣∣�̄��̄ �0� 0� ̄0� �̄0	∣∣ �= 0� (4.1)

Let us compute � ��̄� �̄� ̄� �̄	 in a generic point:

�1 = 2ha1 + 2hab�1 − f��1	
2
21

�i = f��i−1	

i−1

− f��i	
i+1

2i
� i = 2� � � � � k− 1

�k = −2
ga��k	

3k
+ f��k−1	

k−1

�

��1 = 2hb�1 + 2hab1 − f��1	
�2
�21

��i = f��i−1	

�i−1

− f��i	
�i+1

�2i
� i = 2� � � � � k− 1

��k = −2
gb��k	

�3k
+ f��k−1	

�k−1

�

If � ��̄� �̄� ̄� �̄	 = 0� in particular we get

�a �= A1 = f��1	
2
1

= · · · = f��k−1	
k
k−1

= 2ga��k	

2k
� A �= �2ha1 + 2hab�1	� (4.2)

�b �= B�1 = f��1	
�2
�1

= · · · = f��k−1	
�k
�k−1

= 2gb��k	

�2k
� B �= �2hb�1 + 2hab1	� (4.3)
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Sign-Changing Tower of Bubbles 1439

Now let �̄ = �̄ = 0 and set ! �= f�0	� Then we have:

�̄��̄ �0� 0� ̄0� �̄0	 =



2ha + 2!2
31

− !

21
� � � 0 2hab 0 � � � 0

− !

21

2!3
32

� � � 0 0 0 � � � 0
���

���
� � �

���
���

���
� � �

���

0 0 � � � 6ga�0	
4k

0 0 � � � 0

2hab 0 � � � 0 2hb + 2!2
�31

− !

�21
� � � 0

0 0 � � � 0 − !

�21

2!3
�32

� � � 0
���

���
� � �

���
���

���
� � �

���

0 0 � � � 0 0 0 � � � 6gb�0	
�4k


�

By (4.2) and (4.3) we get∣∣�̄��̄�0� 0� ̄0� �̄0	∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



2ha
2
1 + 2�a −! � � � 0 2hab

2
1 0 � � � 0

− �2a
!

2�a � � � 0 0 0 � � � 0
���

���
� � �

���
���

���
� � �

���
0 0 � � � 3�a 0 0 � � � 0

2hab�
2
1 0 � � � 0 2hb�

2
1 + 2�b −! � � � 0

0 0 � � � 0 − �2b
!

2�b � � � 0
���

���
� � �

���
���

���
� � �

���
0 0 � � � 0 0 0 � � � 3�b



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣( � 2hab
2
1�

2hab�
2
1� �

)∣∣∣∣
where

� �=


2ha

2
1 + 2�a −! � � � 0

− �2a
!

2�a � � � 0
���

���
� � �

���
0 0 � � � 3�a

 �

� �=


2hb�

2
1 + 2�b −! � � � 0

− �2b
!

2�b � � � 0
���

���
� � �

���
0 0 � � � 3�b


and

� �=


1 0 � � � 0
0 0 � � � 0
���
���
� � �

���
0 0 � � � 0

 �

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 0
1:

20
 2

6 
A

pr
il 

20
15

 



1440 Ge et al.

In order to prove (4.1) we will show that{
�x + 2hab

2
1�y = 0

2hab�
2
1�x +�y = 0

�⇒ x = y = 0�

By the first equation we deduce

x = −2hab
2
1

(
�−1�

)
y�

because by Remark 4.1 and by (4.2) we get

��� = �k−1
a

(
8kha

2
1 + 2hab�2k+ 1	1�1

) �= 0�

Therefore, by the second equation we get[
�− 4h2ab

2
1�

2
1

(
��−1�

)]
y = 0�

We point out that

�− 4h2ab
2
1�

2
1

(
��−1�

) =


2hb�
2
1 + 2�b − 4h2ab

2
1�

2
1a11 −! � � � 0

− �2b
!

2�b � � � 0
���

���
� � �

���
0 0 � � � 3�b

 �

where a11 is the element in the first row and in the first column of the matrix �−1�
namely

a11 =
�k−1
a �2k− 1	

��� = 2k− 1

8kha
2
1 + 2hab�2k+ 1	1�1

�

Finally, by Remark 4.1 and by (4.3) we get∣∣�− 4h2ab
2
1�

2
1

(
��−1�

)∣∣
=

∣∣∣∣∣∣∣∣∣


2hb�

2
1 + 2�b − 4h2ab

2
1�

2
1a11 −! � � � 0

− �2b
!

2�b � � � 0
���

���
� � �

���
0 0 � � � 3�b


∣∣∣∣∣∣∣∣∣

= �k−1
b

[(
2hb�

2
1 + 2�b − 4h2ab

2
1�

2
1a11

)
�2k− 1	− �b�2k− 3	

]
=

(
64k2hahb + 32kh2ab

)
21�

2
1

8kha
2
1 + 2hab�2k+ 1	1�1

�= 0�

That proves our claim. �

Lemma 4.1. x = 0 is a non degenerate critical point of the function � defined in (2.19).
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Sign-Changing Tower of Bubbles 1441

Proof. Let us compute the Hessian matrix ���0	� We have

�xi��x	 = −�N + 2	
∫
�N

yi + xi
�1+ �y + x�2	 N+4

2

1
�y�N−2

and

�2xixj ��x	 = −�N + 2	
∫
�N

[
−�N + 4	

�yi + xi	�yj + xj	
�1+ �y + x�2	 N+6

2

+ �ij

�1+ �y + x�2	 N+4
2

]
1

�y�N−2
�

In particular �2xixj ��0	 = 0 if i �= j and

�2xixi��0	 = −�N + 2	
∫
�N

[
−�N + 4	

y2i

�1+ �y�2	 N+6
2

+ 1

�1+ �y�2	 N+4
2

]
1

�y�N−2
�

Taking into account that

∫
�N

y2i

�1+ �y�2	 N+6
2

1
�y�N−2

= 1
N

∫
�N

�y�2
�1+ �y�2	 N+6

2

1
�y�N−2

we have

�2xixi��0	 = −N + 2
N

∫
�N

N − 4y21
�1+ �y�2	 N+6

2

1
�y�N−2

�

We are going to prove that

∫
�N

N − 4�y�2
�1+ �y�2	 N+6

2

1
�y�N−2

�= 0�

The claim immediately follows.
It holds

∫
�N

N − 4�y�2
�1+ �y�2	 N+6

2

1
�y�N−2

= "N
∫ +�

0
r
N − 4r2

�1+ r2	 N+6
2

dr

= "N�N + 4	
∫ +�

0

r

�1+ r2	 N+6
2

dr − 4"N
∫ +�

0

r

�1+ r2	 N+4
2

dr

= −"N
(

1

�1+ r2	 N+4
2

)∣∣∣∣+�

0

+ 4
N + 2

"N

(
1

�1+ r2	 N+2
2

)∣∣∣∣+�

0

= "N
N − 2
N + 2

�
�
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1442 Ge et al.

Remark 4.1. It holds∣∣∣∣∣∣∣∣∣∣∣


� −! 0 � � � 0

− �2

!
2� −! � � � 0

0 − �2

!
2� � � � 0

���
���

���
� � �

���
0 0 0 � � � 3�



∣∣∣∣∣∣∣∣∣∣∣
= �k−1 ���2k− 1	− ��2k− 3	� � (4.4)

where k denotes the dimension of the above matrix.

Proof. Let us introduce the tridiagonal matrix of order n defined by

An �=


2� −! 0 � � � 0
− �2

!
2� −! � � � 0

0 − �2

!
2� � � � 0

���
���

���
� � �

���
0 0 0 � � � 2�

 �

Arguing by induction one can easily prove that �An� = �n+ 1	�n� An easy
computation shows that∣∣∣∣∣∣∣∣∣∣∣


� −! 0 � � � 0

− �2

!
2� −! � � � 0

0 − �2

!
2� � � � 0

���
���

���
� � �

���
0 0 0 � � � 3�



∣∣∣∣∣∣∣∣∣∣∣
= � [3��Ak−2� − �2�Ak−3�

]− �2 [3��Ak−3� − �2�Ak−4�
]

= ��k−1�2k− 1	− �k�2k− 3	 = �k−1 ���2k− 1	− ��2k− 3	�

and the claim follows. �

5. The Linear Problem

Let us introduce the linear operator L � K⊥ → K⊥ defined by

L��	 �= �⊥ ��− i∗�f ′�V	��
 � (5.1)

where f ′�V	 = p�V �p−1, V is defined in (2.9) and p = N+2
N−2 . In what follows we study

the invertibility of the map L, starting with an a priori estimate for solutions � ∈
K⊥
d̄��

of Ld̄����	 = h, for some right hand side h with bounded � · �-norm. We have
the validity of the following lemma.

Lemma 5.1. For any � > 0, there exists �0 > 0 and c > 0 such that for any �̄� �̄ in
�Nk and any ̄� �̄ in �k

+ satisfying (2.7) and for any � ∈ �0� �0	, we have

�L��	� ≥ c��� for all � ∈ K⊥�
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Sign-Changing Tower of Bubbles 1443

Proof. We argue by contradiction. Assume there exist sequences �n → 0, �̄n� �̄n ∈
�Nk� ̄n, �̄n ∈ �k

+ where �in → �i ∈ �N , �in → �i, with ��i�, ��i� ≤ �, for i = 1� � � � � k,
and jn → j > 0� �jn → �j > 0� for j = 1� � � � � k, and functions �n� �n ∈ K⊥ such
that

L��n	 = �n� ��n� = 1 and ��n� → 0 as n→ �� (5.2)

From the definition of (5.1), we get the existence of �n ∈ K such that

�n − i∗�f ′�V	�n� = �n + �n� (5.3)

Step 1. We prove that

��n� → 0� (5.4)

By definition, we write �n =
∑
h=0�1�����N
i=1�����k

�ihn PZ
j
in�ain

+∑
h=0�1�����N
i=1�����k

!ihn PZ
j
�in�bin

� To prove

(5.4) it is enough to show that in�
ih
n → 0 and �in!

ih
n → 0 as n→ �, for all i, h. We

will do it for �ihn . Thus we multiply (5.3) by PZhln�aln , we integrate in � and we get

〈
�n� PZ

h
ln�aln

〉 = ∫
��n

f ′�V	�nPZ
h
ln�aln

dx� (5.5)

By Lemma 5.2 we deduce that

2ln
〈
�n� PZ

h
ln�aln

〉 = �lhn �ch + o�1	�+ o�1	(∑
j �=h
�ljn +∑

!ljn

)
� (5.6)

Moreover, using the orthogonality condition ���PZjln�aln	 = 0 we deduce

∫
��n

f ′�V	�nPZ
h
ln�aln

=
∫
��n

f ′�V	�n
(
PZhln�aln − Zhln�aln

)
+

∫
��n

[
f ′�V	− pUp−1

ln�aln

]
�nZ

h
ln�aln

≤ �f ′�V	� N
2
��n� 2N

N−2

∣∣PZhln�aln − Zhln�aln ∣∣ 2N
N−2

+ ∣∣f ′�V	− pUp−1
ln�aln

∣∣
N
2
��n� 2N

N−2

∣∣Zhln�aln ∣∣ 2N
N−2

= 1
ln
o�1	� (5.7)

Finally (5.4) follows by (5.5), (5.6) and (5.7).

Step 2. Let us define

un �= �n − �n − �n� so that �un� → 1� (5.8)
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1444 Ge et al.

Then equation (5.3) gets rewritten as{
−�un = f ′�V	un + f ′�V	 ��n + �n	 in ��n�

un = 0 on ���n �
(5.9)

We prove that

lim inf
n

∫
��n

f ′�V	u2n = c2 > 0� (5.10)

We multiply (5.9) by un, and we deduce that

�un�2 =
∫
��n

f ′�V	u2n +
∫
��n

f ′�V	 ��n + �n	 un� (5.11)

By Hölder’s inequality, (5.2) and (5.4) we get∣∣∣∣∫
��n

f ′�V	 ��n + �n	 un
∣∣∣∣ ≤ �f ′�V	� N

2
��n + �n� 2N

N−2
�un� 2N

N−2

≤ c ��n + �n� �un� = o�1	� (5.12)

We conclude that (5.10) follows by (5.8), (5.11) and (5.12).

Step 3. Let us define smooth cut off functions around each annuli �ln and �ln

defined in (3.22) around B�a� ra�	 and around B�b� rb�	, respectively. Namely

�ln �= B�a�√lnl−1�n	\B�a�√lnl+1�n	 and

�ln �= B
(
b�

√
�ln�l−1�n

)
\B

(
b�

√
�ln�l+1�n

)
�

with the convention that 0n = −1
1n �

2 for some � > 0 small and k+1�n = −1
kn r

2
a�

2 and
that �0n = �−1

1n �
2 for some � > 0 small and �k+1�n = �−1

kn r
2
a�

2.
For any j = 1� � � � � k, let #aj�n be a smooth cut-off function such that

#ajn�x	 = 1 if √jnj+1n ≤ �x − a� ≤ √
jnj−1n�

#ajn�x	 = 0 if �x − a� ≤
√
jnj+1n

2
or �x − a� ≥ 2

√
jnj−1n�

��#ajn�x	� ≤
2√

jnj−1n

and ��2#jn�x	� ≤
4

jnj−1n

�

(5.13)

Furthermore j = 1� � � � � k, let #bj�n be a smooth cut-off function such that

#bjn�x	 = 1 if
√
�jn�j+1n ≤ �x − b� ≤ √

�jn�j−1n�

#bjn�x	 = 0 if �x − b� ≤
√
�jn�j+1n

2
or �x − b� ≥ 2

√
�jn�j−1n�

��#bjn�x	� ≤
2√

�jn�j−1n

and ��2#jn�x	� ≤
4

�jn�j−1n

�

(5.14)
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Sign-Changing Tower of Bubbles 1445

For any j = 1� � � � � k we define

ûajn�y	 = jn
N−2
2 un�jny + a	#ajn�jny + a	

and

ûbjn�y	 = �jn
N−2
2 un��jny + b	#bjn��jny + b	�

We will show that, for any j = 1� � � � � k,

ûajn� û
b
jn → 0 weakly in D1�2��N 	 and strongly in Lqloc��

N 	 for any q ∈ �2� 2∗	�
(5.15)

We will prove this fact for ûajn. For simplicity of notation, in what is left of this step
we will drop the dependence on a.

Furthermore, let � > 0 be such that B�a� �	 ∩ B�b� �	 = ∅ and consider the
annuli introduced in (3.22).

It is useful to point out that for x = jny + a
�ûjn�y	 = jn N2

[
�un�x	#jn�x	+ un�x	�#jn�x	

]
� (5.16)

and

�ûjn�y	 = jn N+2
2

[
�un�x	#jn�x	+ 2�un�x	�#jn�x	+ un�x	�#jn�x	

]
� (5.17)

First of all, by (5.16) and (5.13) we easily deduce that �ûjn�D1�2��N 	 ≤ c�
Therefore, up to a subsequence, ûjn → ûj weakly in D1�2��N 	 and strongly in

Lqloc��
N 	 for any q ∈ �2� 2∗	�

We will show that ûj solves the problem

�ûj + f ′�U1�−�j 	ûj = 0 in �N (5.18)

and satisfies the orthogonality conditions∫
�N
�Zh1�−�j�ûj = 0� h = 0� 1� � � � � N� (5.19)

These two facts imply that ûj = 0, namely (5.15).
We are thus led to prove (5.18) and (5.19). We start with (5.18).
Let us perform the change of variable x = jny + a� y ∈ �jn �= ��n−a

jn
. By (5.17)

and (5.9) we get for any $ ∈ C�
0 ��

N 	∫
�N
�ûjn�y	�$�y	dy

=
∫
�N
2jnf

′�V�jny + a		ûjn�y	$�y	dy

+
∫
�N

N+2
2

jn f
′ (V�jny + a	) (�n�jny + a	+ �n�jny + a	) #jn�jny + a	$�y	dy

+ 2
N+2
2

jn

∫
�N

[
�un�jny + a	�#jn�jny + a	+ un�x	�#jn�jny + a	

]
$�y	dy

=� I1 + I2 + I3 + I4� (5.20)
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1446 Ge et al.

It is easy to check that I2� I3� I4 → 0� Let us compute the limit of I1� If we denote
ajn = a+ jn�j , for

√
jnj+1n

2 ≤ �jny� ≤ 2√jnj−1n we have

f ′
(
V�jny + a	

) = f ′( 1


N−2
2

jn

U1�0�y + �j	+
∑
i �=j
Uin�ain �jny + a	+ o�1	

)
� (5.21)

with

Uin�ain �jny + a	 =


O

(
1


N−2
2

in

)
if j > i

O

(

N−2
2

in

N−2
jn

1
�y�N−2

)
if i > j�

(5.22)

Therefore by (5.21) and (5.22), using the Lebesgue’s dominated convergence
Theorem we get that

I1 →
∫
�N
f ′

(
U1�0�y + �j	

)
ûj�y	$�y	dy�

Thus (5.18) follows by passing to the limit in (5.20).
Let us now prove (5.19). We have∫

�N
�Zh1�−�j �y	�ûjn�y	dy

=
∫
�N
f ′�U1�−�j �y		Z

h
1�−�j �y	ûjn�y	dy

= jn
∫
√
jnj+1n

2 ≤�x−a�≤2√jnj−1n

f ′�Ujn�ajn �x		Z
h
jn�ajn

�x	un�x	#jn�x	dx

= jn
[ ∫

�jn
f ′

(
Ujn�ajn �x	

)
Zhjn�ajn �x	un�x	dx + o�1	

]
� (5.23)

Now we observe that, by (5.4) and (5.8),

jn

∫
��n

�PZhjn�ajn �x	�un�x	dx = o�1	� (5.24)

On the other hand

jn

∫
��n

�PZhjn�ajn �x	�un�x	dx = jn
∫
��n

f ′
(
Ujn�ajn �x	

)
Zhjn�ajn �x	un�x	dx

= jn
∫
�jn
f ′

(
Ujn�ajn �x	

)
Zhjn�ajn �x	un�x	dx + o�1	 (5.25)

since ∣∣∣∣ ∫
��n \B�ajn��	

f ′�Ujn�ajn 	Z
h
jn�ajn

�x	un�x	dx

∣∣∣∣
≤ c∣∣Zhjn�ajn ∣∣ 2N

N−2
�un� 2N

N−2

( ∫
��n \B�a��	

U
2N
N−2
jn�ajn

) 2
N

= O�1	�
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Sign-Changing Tower of Bubbles 1447

and for l �= j

jn

∣∣∣∣ ∫
�ln
f ′�Ujn�ajn 	Z

h
jn�ajn

�x	un�x	dx

∣∣∣∣ ≤ c ∣∣∣Zhjn�ajn ∣∣∣ 2N
N−2

�un� 2N
N−2

( ∫
�ln
U

2N
N−2
jn�ajn

) 2
N

= o�1	�

From (5.23), (5.24) and (5.25) we get (5.19).

Step 4. We show that a contradiction arises with (5.10), by showing that∫
��n

f ′�n
(
Vd̄n��n

)
u2n = o�1	� (5.26)

This fact concludes the proof of this lemma.
Let us prove (5.26). We have

∫
��n

f ′�V	u2n =
∫
��n \�B�a��	∪B�b��	


f ′�V	u2n +
k∑
j=1

∫
�jn
f ′�V	u2n +

k∑
j=1

∫
�jn
f ′�V	u2n�

Now, it holds∫
��n \�B�a��	∪B�b��	


f ′�V	u2n ≤ c
k∑
i=1

(
2in + �2in

) ∫
��n \B����	

u2n = o�1	�

Finally, for any j, we scale x = jny + a and we get

∫
�jn
f ′�V	u2n ≤ c

k∑
i=1

∫
�jn
Up−1
in�ain

u2n + c
k∑
i=1

∫
�jn
U
p−1
�in�bin

u2n

≤ c
k∑
i=1

2in

∫
�N

(
in

2in + 2jn�y − �i�2
)2

û2jn + o�1	

≤ c∑
i<j

(
jn

in

)2

+ c
∫
�N

(
1

1+ �y�2
)2

û2jn + c
∑
i>j

(
in
jn

)2

+ o�1	

= o�1	�

where the last estimate follows from the fact that
(

1
1+�y�2

)2 ∈ L
N
2 ��N 	 and (5.15)

holds. In a similar way we prove that
∫
�jn
f ′�V	u2n = o�1	� That concludes the proof.

�

Next result states the invertibility of the operator defined in (5.1).

Proposition 5.2. For any � > 0, there exists �0 > 0 and c > 0 such that for any �̄� �̄
in �Nk and any ̄� �̄ in �k

+ satisfying (2.7) and for any h ∈ K⊥
d̄��

there exists a unique
� ∈ K⊥

d̄��
solution to L��	 = h, for any � ∈ �0� �0	. Furthermore

�h� ≥ c���� (5.27)

Proof. Notice that the problem L��	 = h in � gets re-written as

�+ K��	 = h̄ in K⊥
d̄��

(5.28)
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1448 Ge et al.

where h̄ is defined by duality and K � K⊥
d̄��

→ K⊥
d̄��

is a linear compact operator.
Using Fredholm’s alternative, showing that equation (5.28) has a unique solution
for each h̄ is equivalent to showing that the equation has a unique solution for h̄ =
0, which in turn follows from Lemma 5.1. The estimate (5.27) follows directly from
Lemma 5.1. This concludes the proof of Proposition 5.2. �

Remark 5.2. It holds

〈
PZji��ai� � PZ

h
l��al�

〉 = o( 1

2i�

)
if l > i�

〈
PZji��ai� � PZ

h
i��ai�

〉 = o(
1

2i�

)
if j �= h�

〈
PZji��ai� � PZ

j
i��ai�

〉 = cj

2j�
�1+ o�1		

〈
PZji��ai� � PZ

h
�l��bl�

〉 = o(
1

2i�

)
� o

(
1

�2l�

)
for some positive constants c0 and c1 = · · · = cN �

6. Proof of Proposition 2.1

The main point to prove Proposition 2.1 is to estimate the � · �-norm of the error
term R defined in (2.13). This is the content of next lemma.

Lemma 6.1. For any � > 0, there exists �0 > 0 and c > 0 such that for any �̄� �̄ in
�Nk and any ̄� �̄ in �k

+ satisfying (2.7) and for any � ∈ �0� �0	, we have

�R� ≤


c�

N−2
2k

p
2 if N ≥ 7�

c�
N−2
2k � ln �� if N = 6�

c�
N−2
2k if 3 ≤ N ≤ 5�

Proof. Since P�U��� = i∗�Up���	 = i∗�f�U���	� for any � > 0 and point � ∈ ��, we can
write

R = �⊥
(
i∗
[
f�V	−

k∑
j=1

�−1	j+1f�Uj��aj� 	+
k∑
j=1

�−1	j+1f�U�j��bj� 	

])
�

Therefore by (2.1) we deduce

�R� ≤ c
∣∣∣∣f�V	− k∑

j=1

�−1	j+1f�Uj��aj� 	+
k∑
j=1

�−1	j+1f�U�j��bj� 	

∣∣∣∣
2N
N+2

�

Let us call

I �=
∣∣∣∣f�V	− k∑

j=1

�−1	j+1f�Uj��aj� 	+
k∑
j=1

�−1	j+1f�U�j��bj� 	

∣∣∣∣
2N
N+2

�
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Sign-Changing Tower of Bubbles 1449

The claim will follow if we prove that

I ≤


c�

N−2
2k

p
2 if N ≥ 7�

c�
N−2
2k � ln �� if N = 6�

c�
N−2
2k if 3 ≤ N ≤ 5�

(6.1)

To simplify notation, we call q = 2N
N+2 . We have

I ≤
∣∣∣∣f�V	− k∑

j=1

�−1	j+1f�P�Uj��aj� 	+
k∑
j=1

�−1	j+1f�P�U�j��bj� 	

∣∣∣∣
q

+
k∑
j=1

∣∣∣f�P�Uj��aj� 	− f�Uj��aj� 	∣∣∣
q
+

k∑
j=1

∣∣∣f�P�U�j��bj� 	− f�U�j��bj� 	∣∣∣
q

= A+ B + C� (6.2)

We start with the estimate of A. Let � > 0 so that B�a� �	 ∩ B�b� �	 = ∅. We write

Aq =
∫
��\�B�a��	∪B�b��		

· · · +
∫
B�a��	\B�a�ra�	

· · · +
∫
B�b��	\B�b�rb�	

· · ·
= A1 + A2 + A3

In ��\�B�a� �	 ∪ B�b� �		 the function V is uniformly bounded by �
N−2
4k , so we get

∫
��\�B�a��	∪B�b��		

∣∣∣∣f�V	− k∑
j=1

�−1	j+1f�P�Uj��aj� 	+
k∑
j=1

�−1	j+1f�P�U�j��bj� 	

∣∣∣∣q
≤ C�N−2

2k
p
2 q�

thus A1 = O��N−2
2k

p
2 q	. We next estimate A2.

Let us then introduce the annuli �l already defined in (3.22), namely for all
l = 1� � � � � k, �l �= B�a�√l�l−1�	\B�a�√l�l+1�	� with 0� �= −1

1� �
2 and k+1� �=

−1
k� r

2
a�

2, so that B�a� �	\B�a� ra�	 =
⋃k
l=1 �l� We have

A2 =
k∑
l=1

∫
�l

∣∣∣∣f�V	− k∑
j=1

�−1	j+1f�P�Uj��aj� 	+
k∑
j=1

�−1	j+1f�P�U�j��bj� 	

∣∣∣∣q�
To simplify again the notation, we will use Uj to denote the function Uj��aj� . Fix l.
We have ∫

�l

∣∣∣∣f�V	− k∑
j=1

�−1	j+1f�P�Uj��aj� 	+
k∑
j=1

�−1	j+1f�P�U�j��bj� 	

∣∣∣∣q

≤ c
∫
�l

∣∣∣∣f�V	− k∑
j=1

�−1	j+1f�P�Uj	

∣∣∣∣q + O (
�
N−2
2k

p
2 q

)
≤ c

(∑
i �=l

∫
�l
�Up−1
l Ui�q +

∑
i �=l

∫
�l
U
pq
i

)
+ O

(
�
N−2
2k

p
2 q

)
�
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1450 Ge et al.

Since pq = p+ 1, arguing as in the proof of estimate (3.27) we obtain that
∫
�l
U
pq
i =

O��
N−2
2k

p
2 q	. On the other hand, if N > 6, we get

∫
�l

∣∣∣Up−1
l Ui

∣∣∣q ≤ c ∫
�l

(
2l�

�2l� + �x − al��2	2
)q (


N−2
2

i�

�2i� + �x − ai��2	 N−2
2

)q
= cN− N−2

2 q

i� 
2q
l�

∫
√
l�l+1�
i�

≤�y�≤
√
l�l−1�
i�

1

�2l� + 2i��y�2	2q
1

�1+ �y�2	 N−2
2 q

=


O

(

N− N+6

2 q

i� 
2q
l�

) ∫
√
l�l+1�
i�

≤�y�≤
√
l�l−1�
i�

1
�y�4q

1

�1+ �y�2	 N−2
2 q
� if l > i�

O
(

N− N−2

2 q

i� 
−2q
l�

) ∫
√
l�l+1�
i�

≤�y�≤
√
l�l−1�
i�

1

�1+ �y�2	 N−2
2 q
� if l < i�

= O
(
�
N−2
2k �

4
N−2+ p

2 	q
)
�

If N < 6 we get∫
�l

∣∣∣Up−1
l Ui

∣∣∣q ≤ cN−2q
l� 

N−2
2 q

i�

∫
√
l�l+1�
l�

1
�1+ �y�2	2q

1

�2i� + 2l��y�2	 N−2
2 q

=


O

(

N−2q
l� 

− N−2
2 q

i�

) ∫
√
l�l+1�
l�

≤�y�≤
√
l�l−1�
l�

1
�1+ �y�2	2q � if l > i�

O
(

N−Nq
l� 

N−2
2 q

i�

) ∫
√√

l�l+1�
l�

≤�y�≤
√
l�l−1�
l�

1
�y��N−2	q

1
�1+ �y�2	2q �

if l < i�

= O
(
�
N−2
2k q

)
�

A similar arguments allows to prove that if N = 6 then∫
�l

∣∣∣Up−1
l Ui

∣∣∣q = O (
�
N−2
2k q� ln ��q

)
�

We thus conclude that

A2 ≤


c�

N−2
2k

p
2 q if N ≥ 7�

c�
N−2
2k q� ln ��q if N = 6�

c�
N−2
2k q if 3 ≤ N ≤ 5�

A similar estimate can be obtained for A3. We proved that

A ≤


c�

N−2
2k

p
2 if N ≥ 7�

c�
N−2
2k � ln �� if N = 6�

c�
N−2
2k if 3 ≤ N ≤ 5�

(6.3)

Let us now estimate the term B in (6.2). For any fixed i, from Lemma 3.1 we have∫
��

��PUi	p − Upi �q ≤ c
∫
��

∣∣∣Up−1
i �PUi − Ui	

∣∣∣q + c ∫
��

�PUi − Ui�pq
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Sign-Changing Tower of Bubbles 1451

≤ c N−2
2 q

i�

∫
��

(
2i�

�2i� + �x − ai��2	2
)q

+ c�
�N−2	q


N−2
2 q

i�

∫
��

(
2i�

�2i� + �x − ai��2	2
)q 1

�x − a��N−2	q
+ c N+2

2 q

i� �

since

∫
��

(
2i�

�2i� + �x − ai��2	2
)q

=


O
(

2q
i�

)
if N ≥ 7�

O
(

2q
i� � ln i��q

)
if N = 6�

O
(

N−2q
i�

)
if 3 ≤ N ≤ 5�

Therefore

B ≤


�
N−2
2k

p
2 if N ≥ 7�

�
N−2
2k � ln �� if N = 6�

�
N−2
2k if 3 ≤ N ≤ 5�

(6.4)

In a very analogous way, one gets a similar estimate for C. Estimates (6.2), (6.3) and
(6.4) conclude the proof. �

We have now the tools to give the proof.

Proof of Proposition 2.1. First of all, we point out that in virtue of Proposition 5.2,
solving problem (2.10) is equivalent to find a fixed point of the operator

T��	 �= L−1 �N��	+ R	 � � ∈ K⊥�

where R is defined in (2.13) and

N��	 �= �⊥ �i∗ �f�V + �	− f�V	− f ′�V	��
 �
By Lemma 5.1 we get

�T��	� ≤ c ��N��	� + �R�	 and �T��1	− T��2	� ≤ c �N��1	− N��2	� �
It is by now standard to prove that

�N��	� ≤ c���min�2�p

2N
N+2

and �N��1	− N��2	� ≤ l ��1 − �2� � for some l ∈ �0� 1	�

At this point we consider the set E = �� � ��� ≤ r��	
� where

r��	 =


c�

N−2
2k

p
2 if N ≥ 7�

c�
N−2
2k � ln �� if N = 6�

c�
N−2
2k if 3 ≤ N ≤ 5�

We conclude then that, for c small, T is a contraction mapping from E to E, and so
it has a unique fixed point � in E. A standard argument shows that �d̄� �	→ ���d̄��
is a C1-map. This concludes the proof. �
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1452 Ge et al.

7. Proof of Proposition 2.2

Given the result of Proposition 2.1 we conclude that V + �, with V defined in (2.9)
and � predicted by Proposition 2.1, is a solution to our original problem if we can
find ��̄� �̄� ̄� �̄	 ∈ �2Nk ×�2k

+ satisfying constraints (2.7) to solve equation (2.11).
But this is equivalent to finding critical points to the explicit finite dimensional
functional J̃� defined in (2.15), as we prove next.

Proof of Proposition 2.2, Part 1. To simplify the notations, we set Zhj�a = Zhjve�aj�
and Zhj�b = Zh�j��bj� . By (2.10) we get

�J̃���̄� �̄� ̄� �̄	 = J ′� �V + �	 ��V + ���

=
N∑
l=0

k∑
i=1

clia
〈
P�Z

l
ia� �V + ��〉+ N∑

l=0

k∑
i=1

clib
〈
P�Z

l
ib� �V + ��〉 � (7.1)

for some vectors clia and clib . Thus, if ��̄� �̄� ̄� �̄	 is a critical point for J̃�, we have

N∑
l=0

k∑
i=1

clia
〈
P�Z

l
ia� �V + ��〉+ N∑

l=0

k∑
i=1

clib
〈
P�Z

l
ib� �V + ��〉 = 0� (7.2)

Equation (7.2) is equivalent to a homogeneous system of 2�N + 1	k equations in
2�N + 1	k variables, the components of the vectors clia and clia . We shall prove that
all the components of clia and clia are equal to zero, provided � is small enough,
showing that the matrix of coefficients is at main order invertible. This fact gives
the proof of the statement.

We start with the following direct computation

�jV = � 2j−1
2k P�Z

0
j�a + �

2j−1
2k

N∑
h=1

P�Z
h
ja�jh�

and

��jV = j�
(
P�Z

1
j�a� � � � � P�Z

N
j�a

)
�

And analogous formulas hold true for ��jV and ��jV . Now, by Lemma 5.2 one
easily gets that the system

N∑
l=0

k∑
i=1

clia
〈
P�Z

l
ia� �V

〉+ N∑
l=0

k∑
i=1

clib
〈
P�Z

l
ib� �V

〉 = 0�

has, at main order, an invertible matrix as the matrix of coefficients. Thus to get the
proof of the result, we need to show that the other part of system (7.2)

N∑
l=0

k∑
i=1

clia
〈
P�Z

l
ia� ��

〉+ N∑
l=0

k∑
i=1

clib
〈
P�Z

l
ib� ��

〉 = 0

is of lower order. To get this fact, we need to estimate the scalar products �P�Zlia�s�	
and �P�Zlib�s�	, where �s denotes one of the components of the gradient of �. Now,
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Sign-Changing Tower of Bubbles 1453

since � ∈ K⊥, one has �P�Zhja� �s�	 = −��sP�Zhja� �	� Since ��sP�Zhja� = O� 1

�
2j−1
2k
	,

one easily gets �P�Zhja� �s�	 = o���P�Zhja� �sV 	�	� A similar argument shows that
�P�Zhjb� �s�	 = o���P�Zhjb� �sV 	�	� These facts give the result. �

Remark 7.1. Following the proof and using the estimates contained in the proof of
Proposition 2.2, Part 1, above, one gets the following estimate for the components
of the vectors chja and chjb , for any h and j

�chja � ≤ Cj����� �chjb � ≤ C�j����� (7.3)

To get the proof of Proposition 2.2, Part 2, we need to estimate the C1 closeness of
J��V + �	 with J��V	. This is the content of next lemma.

Lemma 7.2. For any � > 0, there exists �0 > 0 such that for any � ∈ �0� �0	, we have

J��V + �	 = J��V	+ o��N−2
2k 	�

C1-uniformly for any �̄� �̄ in �Nk and any ̄� �̄ in �k
+ satisfying (2.7).

Proof. We write

J� �V + �	− J� �V 	 =
1
2
���2 −

∫
��

�f�V	−
k∑
j=1

�−1	j+1f�P�Uj��aj� 	

+
k∑
j=1

�−1	j+1f�P�U�j��bj� 	��

−
∫
�
�F�V + �	− F�V	− f�V	��� (7.4)

where F�u	 �= 1
p+1 �u�p+1� Using Hölder inequality and estimates (6.1) and (2.12)∣∣∣∣ ∫

��

�f�V	−
k∑
j=1

�−1	j+1f�P�Uj��aj� 	+
k∑
j=1

�−1	j+1f�P�U�j��bj� 	��

∣∣∣∣
≤

∣∣∣∣f�V	− k∑
j=1

�−1	j+1f�P�Uj��aj� 	+
k∑
j=1

�−1	j+1f�P�U�j��bj� 	

∣∣∣∣
2N
N+2

��� 2N
N−2

= o(�N−2
2k

)
� (7.5)

On the other hand, by the mean value theorem we get for some t ∈ �0� 1�∣∣∣∣ ∫
��

�F �V + �	− F�V	− f�V	��
∣∣∣∣ ≤ ∫

��

∣∣f ′ �V + t�	 �2
∣∣

≤ c
∫
��

�V �p−1 �2 + c
∫
��

���p+1

≤ c
∣∣∣�V �p−1

∣∣∣
N
2

���22N
N−2

+ c ���p+1
2N
N−2

= o(�N−2
2k

)
�

(7.6)
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1454 Ge et al.

using again (2.12) and taking into account that ��V �p−1� N
2
= O�1	� Therefore the C0

closeness follows.
We need to show now that

�J��V + �	− �J��V	 = o
(
�
N−2
2k

)
� (7.7)

The proof of the above estimate is very similar to the proof of Lemma 8.1 in [31].
For completeness, we briefly sketch the principal steps below.

We write

�J��V + �	− �J��V	 = �J ′��V + �	− J ′��V	���V�+ J ′��V + �	����� (7.8)

Let us use the notation �s to denote one of the partial derivatives in the gradient.
As computed in the Proof of Proposition 2.2, Part 1, the function �sV is a linear
combination of �

2j−1
2k P�Z

h
j�aj�

and �
2j−1
k P�Z

h
�j�bj�

, with coefficients uniformly bounded
as �→ 0 for any �̄� �̄ in �Nk and any ̄� �̄ in �k

+ satisfying (2.7). Thus, in order to
estimate the first term in (7.8) it is enough to estimate, for instance

�J ′ �V + �	− J ′ �V 	�
[
�

2j−1
2k P�Z

h
j�aj�

]
�

We write

�J ′ �V + �	− J ′ �V 	�
[
�

2j−1
2k P�Z

h
j�aj�

]
= −

∫
��

f ′ �V 	 ��
2j−1
2k

[
P�Z

h
j�aj�

− Zhj�aj�
]

−
∫
��

[
f ′ �V 	− f ′

(
Uj�aj�

)]
��

2j−1
2k Zhj�aj�

−
∫
��

�f �V + �	− f �V	− f ′ �V 	 �� � 2j−1
2k P�Z

h
j�aj�

=� I1 + I2 + I3�

because � ∈ K⊥� It is immediate to check that I1 = o
(
�
N−2
2k

)
� Let us estimate I2. Since∣∣� 2j−1

2k P�Z
h
j�aj�

∣∣ ≤ cUj�aj� we have

�I2� ≤ c
∫
��

∣∣∣Vp−1 − Up−1
j�aj�

∣∣∣ ���Uj�aj�
= c

∫
��\B�a��	

· · · + c
k∑
i=1
i �=j

∫
�i
· · · + c

∫
�j
· · ·

= c
∫
�j
· · · + o

(
�
N−2
2k

)
�

where �i are the annuli defined in (3.22). Observe now that if N ≥ 7∫
�j

∣∣∣Vp−1 − Up−1
j�aj�

∣∣∣ ���Uj�aj�
≤ c

∫
�j
Up−1
j�aj�

∣∣∣∣(P�Uj�aj� − Uj�aj�)+∑
i �=j
P�Ui�ai� +

∑
i

P�U�i�bi�

∣∣∣∣���
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Sign-Changing Tower of Bubbles 1455

≤ c
∣∣∣Up−1
j�aj�

∣∣∣
N
2

∣∣∣P�Uj�aj� − Uj�aj� ∣∣∣ 2N
N−2

��� 2N
N−2

+ c∑
i �=j

∣∣∣Up−1
j�aj�

∣∣∣
N
2

∣∣Ui�ai� ∣∣L 2N
N−2 ��j 	

��� 2N
N−2

+ c∑
i

∣∣∣Up−1
j�aj�

∣∣∣
N
2

∣∣U�i�bi� ∣∣L 2N
N−2 ���\B�a��		

��� 2N
N−2

= o
(
�
N−2
2k

)
�

where we use estimate (3.27). Thus we conclude that I1 = o��N−2
2k 	. The case 3 ≤ N ≤

6 can be treated similarly. Using similar arguments, we also obtain that I3 = o��N−2
2k 	.

We are left with the estimate of J ′��V + �	���� in (7.8). By definition we have

J ′��V + �	���� =
N∑
l=0

k∑
i=1

clia
〈
P�Z

l
i�ai�

� ��
〉+ N∑

l=0

k∑
i=1

clib
〈
P�Z

l
�i�bi�

� ��
〉
�

Taking into account estimate (7.3), we get that

�J ′��V + �	����� = O(���22N
N−2
	 = o(�N−2

2k
)

since one has, for instance,

� 〈P�Zli�ai� � ��〉 � ≤ C�Zli�ai� � 2N
N−2

��� 2N
N−2

≤ Ci���� 2N
N−2
�

This concludes the proof. �

Proof of Proposition 2.2, Part 2. It follows from Theorem 3.1 and Lemma 7.2. �
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