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Abstract

In this article we study basic properties for a class of nonlinear integral operators related to their fun-
damental solutions. Our goal is to establish Liouville type theorems: non-existence theorems for positive
entire solutions for Iu � 0 and for Iu + up � 0, p > 1.

We prove the existence of fundamental solutions and use them, via comparison principle, to prove the
theorems for entire solutions. The non-local nature of the operators poses various difficulties in the use of
comparison techniques, since usual values of the functions at the boundary of the domain are replaced here
by values in the complement of the domain. In particular, we are not able to prove the Hadamard Three
Spheres Theorem, but we still obtain some of its consequences that are sufficient for the arguments.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

During the last years there has been a renewed and increasing interest in the study of nonlinear
integral operators. Motivated in part, by the important advances on the theory of nonlinear partial
differential equations, a great variety of diffusion phenomena are being described using integral
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operators: in Particle Models in Physics [19], in Nonlinear Reaction–Diffusion for Population
Biology [3,5], in Financial Mathematics and Stochastic Control Theory [21], just to name some
references.

From the mathematical point of view, given an operator one is interested in understanding the
structure of the solutions sets of equations involving it. In an attempt to address an edge of this
formidable problem, one tries to understand some basic questions constructing simple solutions.
In this category falls the question of existence of entire solutions, fundamental solutions and the
related Liouville property or Liouville type theorems.

Assuming we have an operator I , the first question we are interested in addressing in this
paper is the possibility of having nontrivial solutions for the equation

Iu � 0, u � 0 in R
N, (1.1)

and the second question is about the possibility of having nontrivial solutions to the equation
with an added power nonlinearity

Iu + up � 0, u � 0 in R
N, (1.2)

for p > 1. The study of these questions is deeply related with the existence of fundamental
solutions for the operator, that is simple radially symmetric power-like solutions of the equation
Iu = 0. In this article we consider these questions for a class of nonlinear operators introduced
by Caffarelli and Silvestre [7]. We prove the existence of fundamental solutions and we use
them to prove Liouville type theorems. The comparison principle is here the tool to compare the
entire solutions with the fundamental solutions. At this point we have to introduce various new
techniques in order to overcome the difficulties posed by the fact that the operators are non-local,
and so, the values at the boundary of the functions to be compared have to be replaced by the
values of the functions in the complement of the domain.

Let us be more precise about the operators we consider in this paper. Let K : R
N → R be a

positive even function satisfying

λ

|y|N+2α
� K(y) � Λ

|y|N+2α
, (1.3)

where N � 2, Λ � λ > 0 and α ∈ (0,1). We consider such a K as the kernel for defining the
linear operator LK(u) at x ∈ R

N as

LK(u)(x) =
∫

RN

(
u(x + y) + u(x − y) − 2u(x)

)
K(y)dy,

where u is such y → (u(x + y) + u(x − y) − 2u(x))K(y) is integrable in R
N \ B(0, ε) for all

ε > 0 and of class C1,1(x) in the sense defined by Caffarelli and Silvestre in [7], that is, there
exist v ∈ R

N and M > 0 so that

∣∣u(x + y) − u(x) − v · y∣∣ � M|y|2,
for y small. In particular, the linear operator LK is well defined at x if u is bounded, continuous
and of class C1,1(x).
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If we define by L0 the class of all these linear operators then we define the extremal operators
of L0 as

M+u(x) = sup
L∈L0

L(u)(x) and M−u(x) = inf
L∈L0

L(u)(x), (1.4)

the maximal and the minimal operator, respectively. We remark that the class L0, and a posteriori
M+ and M+, depends on the parameters Λ, λ and α, but we do not explicitly write them in
order to avoid overcharged notation.

It is easy to see that these extremal operators can be explicitly characterized considering the
functions

S+(t) = Λt+ − t− and S−(t) = t+ − Λt−

writing

M+u(x) =
∫

RN

S+(δ(u, x, y))

|y|N+2α
dy and M−u(x) =

∫

RN

S−(δ(u, x, y))

|y|N+2α
dy,

where δ(u, x, y) = u(x + y) + u(x − y) − 2u(x). Here and in the rest of the paper we will
consider Λ � 1 and λ = 1 for simplicity. We observe that the operators just defined are extremal
for a much larger class of operators, including nonlinear, non-autonomous operators like

F (u)(x) =
∫

RN

G(δ(u, x, y), x, y)

|y|N+2α
dy, (1.5)

where the nonlinear function G : R × R
N × R

N → R is continuous and it satisfies

S−(t) � G(t, x, y) � S+(t) for all (t, x, y) ∈ R × R
N × R

N.

Our first theorem is devoted to the existence of fundamental solutions for the extremal opera-
tors M+ and M−. We have:

Theorem 1.1 (Existence of fundamental solutions). Associated to the operator M+, with pa-
rameters (α,Λ) ∈ (0,1) × [1,∞) and dimension N � 2, there exist dimension-like numbers
N+ = N+(α,Λ,N) and N− = N−(α,Λ,N) such that

0 < N+ � N � N− < N + 2α.

As functions of Λ, N+(α,Λ,N) is strictly decreasing and N−(α,Λ,N) is strictly increasing
and they satisfy

N+(α,1,N) = N = N−(α,1,N),

lim N+(α,Λ,N) =
{

0 if 2α � 1,
and lim N−(α,Λ,N) = N + 2α.
Λ→∞ 2α − 1 if 2α > 1, Λ→∞
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Moreover, these numbers are so that the functions

φN+(r) =

⎧⎪⎨
⎪⎩

r−N++2α if N+ > 2α,

− log r if N+ = 2α,

−r−N++2α if N+ < 2α

(1.6)

and

φN−(r) = −r−N−+2α

satisfy the equation

M+(
u(r)

) = 0, r > 0.

The functions φN+ and φN− are the only power-like solutions of this equation.
The functions defined as ϕN+(r) = −φN+(r) and ϕN−(r) = −φN−(r) are fundamental solu-

tions of the operator M−, respectively. They are the only power-like solutions to the equation

M−(
u(r)

) = 0, r > 0.

Remark 1.1. In what follows we define, for notational convenience, σ+ = −N+ + 2α and σ− =
−N− + 2α.

Fundamental solutions for the extremal Pucci operator (α = 1) were first defined by Labutin
[17,18] and were used for the study of removability of singularities for these operators. They
were used later by Cutri and Leoni [12] for the study of Liouville type theorems and later for
operators involving first order terms by Capuzzo-Dolcetta and Cutri in [9]. The results in [12]
were generalized by the authors in [14] for a class of extremal operators with radial symme-
try. Recently Armstrong, Sirakov and Smart [2] obtained fundamental solutions for general, not
necessarily radially symmetric fully nonlinear differential operators, and they were used very
recently by Armstrong and Sirakov [1] to prove Liouville type theorems for these differential
operators.

Now we state our main theorems on entire solutions. In these theorems and in all the paper, by
solution to an integral inequality or equation we mean solution in the viscosity sense as defined
in [7] as we describe in Section 2.

Theorem 1.2 (The Liouville property). Assume that N+ � 2α and u is a viscosity solution of

M+(u) � 0, and u � 0, in R
N,

then u is a constant. Similarly, if N+ � 2α and u is a viscosity solution of

M−(u) � 0, and u � 0, in R
N,

then u is a constant.
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Remark 1.2. The case N− � 2α does not occur since N− > N � 2.

We observe that for a given nonlinear operator F as in (1.5) we have a corresponding Liouville
property, by comparison with the extremal operators. Our next result is a Liouville type theorem
for the operator with a power nonlinearity. We have:

Theorem 1.3 (Liouville type theorem). Assume N+ > 2α and that u is a viscosity solution of

M+(u) + up � 0. (1.7)

If p � N+
N+−2α

, then u ≡ 0. Reciprocally, if p > N+
N+−2α

then Eq. (1.7) has a nontrivial viscosity
solution.

Similar statements hold with M− and N−.

It is important to say here that the non-existence theorems of Liouville type are closely related
with existence theorems in bounded domains. In the case of second order differential operators,
the well-known blow-up technique introduced by Gidas and Spruck [16] allows to find a priori
bounds for the positive solutions of the problem in a bounded domain, as a consequence of
the non-existence theorem. Then classical degree theory is applicable to complete the existence
arguments. Even though we do not investigate this line of research in this article, we believe that
results of this sort are valid for non-local operators in the class considered here.

We would like to emphasize that, as far as we know, the theorems just stated are new even
for the case Λ = 1, that corresponds to the fractional Laplacian. Related results for this linear
operators are the existence and uniqueness of a positive solution for nonlinear equation


α(u) + up = 0 (1.8)

in the Sobolev critical case p = (N + 2α)/(N − 2α) and the non-existence result for this nonlin-
ear equation in the Sobolev sub-critical case, see Li [20] and Chen, Li and Ou [11]. In the case
α = 1 and Λ = 1, that is for the Laplacian, Theorem 1.3 is an extension of the classical result of
Gidas [15]. Concerning results of classification of solution and Liouville type result for Eq. (1.8)
and α = 1 we mention the fundamental papers by Gidas and Spruck [16], Caffarelli, Gidas and
Spruck [8] and Chen and Li [10].

Notice that a Liouville type theorem and the classification of solution for the equation

M+(u) + up = 0 (1.9)

for p > N+
N+−2α

is a wide open problem, even in the radially symmetric case. We conjecture that
there is a critical Sobolev type exponent with value between (N +2α)/(N −2α) and (N+ +2α)/

(N+ − 2α) for Λ > 1, that allows to classify the positive solutions, as in the case of the extremal
Pucci operators, see [13].

As we have already mentioned, the proofs of Theorems 1.2 and 1.3 are based on the study
of fundamental solutions for the extremal integral operators and the use of these solutions to-
gether with comparison principle. To be more specific, the proofs use two weak versions of the
Hadamard Three Spheres (circles), see Lemmas 4.1 and 4.2. The difficulty of these arguments is
due to the application comparison principle for non-local operator that needs the right inequality
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for the function in all complement of the domain (not only on the boundary as in the case of local
operators), see Theorem 2.1.

Finally, notice that the extremal operators we are considering in this article have a clear con-
nection with nonlinear second order elliptic operators, when α → 1. Actually it is not difficult to
prove that

lim
α→1

2(1 − α)M±u =
∫

SN−1

S±
( ∑

i=1,N

eiω
2
i

)
dω,

where e1, e2, . . . , eN are the eigenvalues of D2u(x) and ω = (ω1, . . . ,ωn) is a generic point
in SN−1. For more details on other connection with nonlinear second order elliptic operators,
see [7].

2. Preliminaries

In this section we briefly review some basic definitions and comparison theorems for integral
operators. In this section I will denote any linear operators or extremal operator, as defined
above. The definition and comparison theorem we give here are valid for much larger class of
operators as given in [7] or [4], but for this paper we do not need such generality.

Definition 2.1. Assume f : R → R is a continuous function and g : R
N → R is a function.

A continuous function u : R
N → R is a viscosity super-solution (sub-solution) of

I(u) + f (u) = g(x) in R
N (2.1)

at the point x0 ∈ R
N , if for any neighborhood V of x0 and for any ϕ ∈ C2(V̄ ) such that

u(x0) = ϕ(x0) and u(x) > ϕ(x)
(
resp. u(x) < ϕ(x)

)

for all x ∈ V \ {x0}, then if we define

v(x) = u(x) if x ∈ R
N \ V and v(x) = ϕ(x) if x ∈ V (2.2)

we have

I(v)(x0) + f
(
v(x0)

)
� g(x0)

(
resp. I(v)(x0) + f

(
v(x0)

)
� g(x0)

)
.

Remark 2.1. In the definition we may consider inequality instead of strict inequality

u(x) � ϕ(x) for all x ∈ V \ {x0},
and in ‘some neighborhood V of x0’ instead of in ‘all neighborhood’. See also [4] for alternative
equivalent definitions.

Remark 2.2. Naturally, if D is a subset of R
N , we say that u is a viscosity super-solution (sub-

solution) of Eq. (2.1) in D if u is a super-solution (sub-solution) of Eq. (2.1) at every point of D.
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Next we recall the comparison principle, Theorem 5.2, proved in [7], that we use later to prove
our theorems.

Theorem 2.1. Assume u and v are super-solution and sub-solutions of the equation

I(u) = g,

in Ω̄ , where Ω is a bounded open subset of R
N and g is a continuous function in Ω̄ . Moreover,

assume that u � v in R
N \ Ω . Then u � v in Ω .

3. Fundamental solutions

In this section we study the fundamental solutions for the operators M+ and M−, associated
to the class of linear operators L0, as defined in (1.4). The main goal is to prove Theorem 1.1.
We recall that these integral operators depend on the ellipticity parameters λ and Λ � λ, where
λ has been normalized as λ = 1, and the order of the fractional parameter α ∈ (0,1). We make
this notational simplification for the reader convenience, since no confusion will arise.

After some basic properties we concentrate in the analysis of sign of the coefficient we get
when plugging in these operators a power function. Let us start observing the simple fact that
when we apply any of the extremal operators to a radial function we obtain a radial function, that
is, if v(x) = u(r) with |x| = r then M+v(x) and M−v(x) are radial functions.

Now we begin the study of fundamental solutions. We define the radially symmetric functions
vσ as follows

vσ (r) =
⎧⎨
⎩

rσ if −N < σ < 0,

− log r if σ = 0,

−rσ if 0 < σ < 2α,

(3.1)

our goal is to find the value of the parameter σ so that this function solves the equation
M+(vσ ) = 0. Similar with M−(vσ ) = 0. We start describing the range of σ for which the
evaluation of the integral operator M+(vσ ) and M−(vσ ) makes sense. In order to find when
M+(vσ ) vanishes we need to analyze the resulting coefficient (see c+ below), in analogy with
what we usually do with the Laplacian. We denote in all what follows e1 = (1,0, . . . ,0) ∈ R

N .
We have:

Lemma 3.1. For all −N < σ < 2α, M+(vσ )(x) is well defined for x �= 0. Moreover,

M+vσ (x) = c+(σ )|x|σ−2α, x ∈ R
N \ {0},

where

c+(σ ) =
∫

RN

S+(δσ (y))

|y|N+2α
dy, (3.2)

and
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δσ (y) =
⎧⎨
⎩

|e1 + y|σ + |e1 − y|σ − 2 if σ ∈ (−N,0),

− log |e1 + y| − log |e1 + y| if σ = 0,

−|e1 + y|σ − |e1 − y|σ + 2 if σ ∈ (0,2α).

(3.3)

In addition,

lim
σ→−N

M+(vσ )(x) = ∞ and lim
σ→2α

M+(vσ )(x) = −∞.

Similar statement can be made for M−.

Proof. For x �= 0 fixed and σ ∈ (−N,0), the integral defining M+vσ (x) has three singularities:
y = 0, y = x and y = −x. First, for y = 0, the singularity is removable by the regularity of vσ .
For y = x we easily see that

c1η
N+σ − c2ε

N+σ

N + σ
�

∫
B(x,η)\B(x,ε)

S+(δ(vσ , x, y))

|y|N+2α
� C1η

N+σ − C2ε
N+σ

N + σ
,

where 0 < ε < η are small and for some positive constants c1, c2, C1 and C2. Therefore the
integral is finite since −N < σ � 0. The same holds true for the singularity y = −x, and so
M+vσ (x) is well defined, for σ ∈ (−N,0). In case σ ∈ (0,2α), we only need to check the
integral at infinity, which is well defined since σ < 2α and

|S+(δ(vσ , x, y))|
|y|N+2α

� C1|y|σ−2α−N.

In case σ = 0 there are simultaneous singularities at 0, x, −x and infinity, but the estimates are
similar.

Regarding the limits, for σ < 0, we have that

δ(vσ , x, y) � C|x − y|σ and δ(vσ , x, y) � C|x + y|σ ,

for y near x and near −x, respectively. Consequently, when integrating in balls near these singu-
larities the result follows. In the case of σ > 0 we have

δ(vσ , x, y) � −C|y|σ ,

for y large, so that the result follows integrating outside a large ball.
Let us consider first σ ∈ (−N,0) ∪ (0,2α). We have that δ(vσ , x, y) = |x|σ δσ (y/|x|) and

then,

M+vσ (x) = |x|σ−2α

∫

RN

S+(δσ (y))

|y|N+2α
dy,

from where (3.2) follows. When σ = 0 we see that, according to (3.3),

δ(vσ , x, y) = δ0
(
y/|x|)

and then the result follows changing variables as above. The case of M− is similar. �
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Now we see a series of lemmas towards the proof of Theorem 1.1. We start with the case
of the fractional Laplacian that will serve as a reference. Using the half space representation as
in [6], through an explicit computation the following lemma can be proved.

Lemma 3.2. If Λ = 1 then 
α = M+ = M− and 
α(r−(N−2α)) = 0.

In the next lemma we study differentiability properties of the function c+ that we need in the
proof of our Theorem 1.1 about fundamental solutions.

Lemma 3.3. The function c+ is twice differentiable in (−N,0) ∪ (0,2α) and the second deriva-
tive in the case σ ∈ (0,2α) is given in (3.5). At σ = 0 the function c+ is differentiable from the
left and from the right and the derivatives are given in (3.8).

Proof. We first study the differentiability of c+ at σ0 ∈ (0,2α). We observe that the function
δσ is of class C∞(RN \ {e1,−e1,0} × (0,2α)), but if Λ > 1 the term S+(δσ (y)) in (3.2) is not
differentiable. For σ ∈ (0,2α) we see that the set

C 0
σ = {

y/δσ (y) = 0
}

is a bounded (N −1)-dimensional smooth hyper-surface except for a singularity at y = 0. In fact,
we have that

∇δσ (y) = −σ |e1 + y|σ−2(e1 + y) − σ |e1 − y|σ−2(e1 − y), (3.4)

so that ∇δσ (y) = 0 if and only if y = 0. We define the sets C 0 = C 0
σ0

, C+ = {y/δσ0(y) > 0},
C− = {y/δσ0(y) < 0} and, for ε > 0, we further define

C 0,ε = {
y/dist

(
y, C 0) < ε

}
, C+,ε = C+ \ C 0,ε and C−,ε = C− \ C 0,ε.

By the regularity of the set C 0, there exists ρ > 0 so that C 0
σ ⊂ C 0,ε for all σ ∈ (σ0 − ρ,σ0 + ρ).

Thus

c+(σ ) =
∫

C+,ε∪C−,ε

S+(δσ (y))

|y|N+2α
dy +

∫

C 0,ε

S+(δσ (y))

|y|N+2α
dy,

where we observe that the second term above is differentiable at σ0. If we denote by c+
ε (σ ) the

third term above, we find that

∣∣∣∣c
+
ε (σ ) − c+

ε (σ0)

σ − σ0

∣∣∣∣ � C

∫

C 0,ε

∣∣∣∣δσ (y) − δσ0(y)

σ − σ0

∣∣∣∣ dy

|y|N+2α
� Cm(ε),

where m(ε) → 0 as ε → 0, since the function under the integral sign is integrable in bounded
sets and the measure of C 0,ε approaches zero as ε → 0. From here we see that c+ is differentiable
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at σ0 its derivative is obtained by differentiating under the integral. Using the same argument we
find that c+ is twice differentiable at σ0 and

(
c+)′′

(σ0) =
∫

C+

Λ[−|e1 + y|σ0(log |e1 + y|)2 − |e1 − y|σ0(log |e1 − y|)2]
|y|N+2α

dy

+
∫

C−

−|e1 + y|σ0(log |e1 + y|)2 − |e1 − y|σ0(log |e1 − y|)2

|y|N+2α
dy. (3.5)

To prove that c+ is twice differentiable in (−N,0) we proceed similarly.
Next we analyze the behavior of the function c+(σ ) near σ = 0 as in the case σ0 > 0, but

being more careful in the analysis of the set C 0
σ . We see that C 0

σ , for σ �= 0, corresponds to the set
of points y satisfying

|e1 + y|σ − 1

σ
+ |e1 − y|σ − 1

σ
= 0. (3.6)

The point here is that this constraint corresponds, as σ → 0, to the constraint defining the set C 0
0

which is

log
(|e1 + y|) + log

(|e1 − y|) = 0. (3.7)

Moreover, if we call δ̃σ (y) and δ̃0(y) the left-hand side of (3.6) and (3.7), respectively, then we
see from (3.4) that limσ→0 ∇ δ̃σ (y) = ∇ δ̃0(y). Furthermore, for y ∈ C 0

0 \{0}, we have ∇ δ̃0(y) �= 0,
since

∇ δ̃0(y) = e1 + y

|e1 + y|2 − e1 − y

|e1 − y|2 = 0

implies that |e1 +y| = |e1 −y|. But, being y ∈ C 0
0 , this further implies that |e1 +y| = |e1 −y| = 1

and then y = 0, which is impossible.
Now we are in the same position as in the proof of differentiability of c+ at σ �= 0, so we have

that

(
c+)′(0−) = lim

σ↑0

c+(σ )

σ
= −

∫

RN

S+(δ0(y))

|y|N+2α
dy (3.8)

and (c+)′(0+) = −(c+)′(0−). Here δ0 was defined in (3.3).

Corollary 3.1. The function c+ is strictly convex in (−N,0) and strictly concave in (0,2α).

Proof. In the interval (0,2α) the second derivative of c+ is given by (3.5) which negative, fin-
ishing the proof. In the interval (−N,0) we could proceed similarly, however here c+ is strictly
convex simply because the function S+(δσ (y)) is strictly convex as a function of σ , for all y. �

Now we are prepared to prove the existence of fundamental solutions.
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Proof of Theorem 1.1. As a first step we find an increasing surjective function σ+ : [1,∞) →
[−N + 2α,2α), such that for σ = σ+(Λ) we have M+(vσ ) = 0. This means that for each Λ,
M+ (that depends on Λ) has vσ+(Λ) as a fundamental solution. According to Lemma 3.1 we
have to analyze the zeroes of the coefficient c+. At this point it is convenient to consider Λ as
an explicit variable, so we write c+(σ,Λ). We observe that c+(σ,Λ) is strictly increasing in Λ,
that c+(0,Λ) = 0 for all Λ and we recall that c+(σ,Λ) is strictly convex in σ . For Λ = 1 the
function c+(σ,1) is associated to the linear operator −(−
)α and it satisfies c+(−N + 2α,1) =
0, according to Lemma 3.2. Clearly c+(σ,1) < 0 for σ ∈ (−N + 2α,0) and we can define

Λ∗ = sup
{
Λ > 1/c+(σ,Λ) is negative at some point in (−N,0)

}
,

which is bounded, since for large Λ we have (c+)′(0−,Λ) < 0 as can be seen from (3.8). By the
above properties it is now clear that for all Λ ∈ (1,Λ∗) there is a unique σ+(Λ) ∈ (−N + 2α,0)

such that c+(σ+(Λ),Λ) = 0. We observe σ+(Λ) defines an increasing function, that further
satisfies limΛ↑Λ∗ σ+(Λ) = 0.

Since c+(σ+(Λ),Λ) = 0, from the left differentiability of c+ at σ = 0 and its continuity,
we find that (c+)′(0−,Λ∗) = 0. A consequence of this is that (c+)′(0+,Λ∗) = 0 as we can see
from (3.8). Then, by monotonicity in Λ, we see that (c+)′(0−,Λ) < 0 and (c+)′(0+,Λ) > 0 if
Λ > Λ∗. Thus, by the concavity of c+ in (0,2α) and its limit property at 2α given in Lemma 3.1,
we find that, for every Λ > Λ∗ there exists σ+(Λ) ∈ (0,2α) such that c+(σ+(Λ),Λ) = 0. Notice
that c+(1,Λ) < 0 for all Λ �, therefore σ+(Λ) ∈ (0,min{1,2α}). Since the set {δσ > 0} has
positive measure for fix σ ∈ (0,min{1,2α}) we have that limΛ→∞ c+(σ,Λ) = ∞. From last fact
it follows that limΛ→∞ c+(Λ) = min{1,2α}. This completes the construction of the function σ+.

If we define

N+
Λ,α = −σ+(Λ) + 2α,

we finish the part of the proof concerning N+ and the functions φN+ .
As a second step we prove the results related to N−, that is, we find σ ∈ (−N,−N + 2α)

such that M+(−vσ ) = 0, or equivalently M−(vσ ) = 0. We notice that the function vσ (r) = rσ

is a convex function of r and a convex function of σ . Here we can find a coefficient analogous to
c+ in Lemma 3.1. We have that for any −N < σ < 0,

M−vσ (x) = c−(σ )|x|σ−2α

where

c−(σ ) =
∫

RN

S−(δσ (y))

|y|N+2α
dy. (3.9)

The goal is to find a decreasing surjective function σ− : [1,∞) → (−N,−N + 2α] such that,
for σ = σ−(Λ),

M−(vσ ) = 0.

This means that for each Λ, M− (that depends on Λ) has vσ−(Λ) as a fundamental solution.
As before we explicit the parameter Λ in c−.
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Using the arguments of Lemma 3.3 we can prove that c− is twice differentiable and that its
second derivative is positive, so that c− is strictly convex. Then, since limσ→−N c−(σ,Λ) = ∞
and c−(σ,Λ) < c−(σ,1) ≡ c+(σ,1), we find that for every Λ > 1 there exists a unique σ−(Λ)

such that c−(σ−(Λ),Λ) = 0. Since the set {δσ < 0} has positive measure for fix σ ∈ (−N,0) we
have that limΛ→∞ c−(σ,Λ) = −∞. From last fact it follows that limΛ→∞ c−(Λ) = −N . So,
function σ− has the required properties.

If we define

N−
Λ,α = −σ−(Λ) + 2α

and the function φN− = −r−N−+2α we complete the proof of the theorem regarding N−
and φN− .

The corresponding functions ϕN+ and ϕN− obviously satisfy the required properties. The
theorem is now proved. �
Remark 3.1. One may think that there are still other fundamental solutions. One could try to find
some σ ∈ (0,2α) such that M−(−rσ ) = 0. However, as we see next, such a σ does not exist.

First, by properties of the extremal operators, the equation is equivalent to M+(rσ ) = 0.
Next we see that M+(rσ ) > −(−
)α(rσ ), for all Λ > 1. Then we observe that, as a function
of σ , −(−
)α(rσ ) is convex and it vanishes at −N + 2α and 0. Thus, −(−
)α(rσ ) > 0 for all
σ ∈ (0,2α), from where the conclusion follows.

4. Hadamard property for Liouville type theorems

A key ingredient in the study of Liouville type theorems for Pucci’s operators has been the
Hadamard Three Spheres Theorem, see [12] and [14]. The proof of this theorem in the case of
the Laplacian and Pucci’s operator requires a comparison with fundamental solutions through
the use of the maximum principle: the maximum of a sub-harmonic function is achieved at the
boundary. In the case of integral operators we do not have such a maximum principle, since
values of the function at the boundary of a domain have a weaker meaning than in the differential
case. However, for the analysis needed for proving the Liouville type theorems less information
is needed. In this section we prove two properties of super-harmonic functions, that is functions
satisfying M+u � 0 or M−u � 0 in R

N , in the case when N+ > 2α or N− > 2α. We call them
Hadamard properties, since both of them are consequences of Hadamard Three Spheres Theorem
in the second order differential case and they will be sufficient for our purposes.

In proving our lemmas we use comparison techniques that require the modification of the
fundamental solution near the origin, in order to put it below the super-harmonic function near
the origin. This is necessary since u is bounded and the fundamental solutions are singular at the
origin.

We recall that the operators we are working with depend on the parameters λ = 1, 1 < Λ

and α, but we do not write them explicitly. We define

m(r) = min|x|�r
u(x),

where u is a non-negative function.
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Lemma 4.1. Given N � 2, Λ > 1 and α ∈ (0,1) and assume that N+ > 2α. Then, for all σ ∈
(−N,−N+ + 2α), there exists c > 0 such that for every non-negative viscosity solution u �= 0 of

M+u(x) � 0 in R
N (4.1)

we have

m(r) � cm(r1)r
σ , for all r � r1 � 1. (4.2)

Similarly, assume that N− > 2α, then for all σ ∈ (−N,−N− + 2α) there exists c > 0 such that
for every non-negative viscosity solution u �= 0 of

M−u(x) � 0 in R
N (4.3)

we have (4.2).

Remark 4.1. Notice that u(x) > 0 for all x ∈ R
N . In fact, since u is non-negative and u �= 0,

if u attains the minimum value 0 at a point x, just by computing M+ at x we get M+u(x) > 0,
a contradiction. The same holds for M−.

Remark 4.2. We observe that (4.2) is a bit weaker than what is usually achieved in the second
order differential case, since σ < σ+, the decay rate of the fundamental solutions.

Proof. We only do the proof for M+, since the other case is analogous. Let R > r1 � 1, ε > 0
and for σ ∈ (−N,−N+ + 2α) define the function

w(r) =
{

εσ if 0 < r � ε,

rσ if ε � r .

We claim that for ε small M+w(|x|) � 0 for all r1 < |x| < R. Postponing the proof claim, we
define

φ(x) = m(r1)
w(|x|) − w(R)

w(ε) − w(R)
, for |x| � R

and φ(x) = 0 for |x| � R. Now, using the claim, we have that

M+φ � 0, for all r1 < |x| < R

and, since u(x) � φ(|x|) if |x| � r1 or |x| � R, using Theorem 2.1 we obtain u(x) � φ(|x|), for
all r1 � |x| � R. Thus, taking the limit as R → ∞ and we obtain (4.2) with c = ε−σ . Now we
prove the claim: we have

M+rσ = c+(σ )rσ−2α,

with c+(σ ) > 0, since σ ∈ (−N,−N+ + 2α), and we see that
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M+w(r) = rσ−2α
(
c+(σ ) − I (r, ε)

)
,

with

I (r, ε) = r−σ+2α

∫
Bε(x)∪Bε(−x)

S+(δ(x, y, rσ )) − S+δ(x, y,w)

|y|N+2α
dy,

here r = |x|. Making a change of variables and using the fact that for all a, b ∈ R we have

S−(a − b) � S+(a) − S+(b) � S+(a − b), (4.4)

we find

I (r, ε) �
∫

Bε/r (e1)

S+(|e1 − y|σ − |ε/r|σ )

|y|N+2α
dy

+
∫

Bε/r (−e1,)

S+(|e1 + y|σ − |ε/r|σ )

|y|N+2α
dy.

Then we consider that r = |x| � r1 � 1 and take ε > 0 small enough to obtain I (r, ε) < c+(σ ),
for all r � r1, completing the proof. �

The next lemma is more delicate since, for comparison purposes, the fundamental solution
needs to be cut near the origin in a big portion. Then it is necessary to cut it also in the comple-
ment of a large ball, so we produce an appropriate balance in the errors occurring both sides.

Lemma 4.2. Given N � 2, Λ > 1 and α ∈ (0,1) and assume that N+ > 2α. Then, there is r1 > 0
and a constant c such that for every non-negative viscosity solution of u �= 0 of (4.1) we have

m(R/2) � cm(R), for all R � r1. (4.5)

Similarly, assuming that N− > 2α, there is r1 > 0 and a constant c such that for every non-
negative viscosity solution of u �= 0 of (4.3) we have (4.5).

Proof. Given ε > 0 and R > 0, we define

R0 = R

[
ε

1 + ε2σ+

]−1/σ+

and assume that ε is such that R0 < R/2. We consider the functions

wR(r) =

⎧⎪⎨
⎪⎩

(R0)
σ+

if 0 < r � R0,

rσ+
if R0 � r � 2R,

(2R)σ
+

if r � 2R

and w(r) =
{

(R0)
σ+

if 0 < r � R0,

rσ+
if R0 � r ,
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and define

φ(r) = m(R/2)
wR(r) − w(2R)

w(R0) − w(2R)
.

We observe that u(x) � φ(|x|) for all |x| � R/2 or |x| � 2R. Next we claim that

M+φ
(|x|) � 0, for all R/2 < |x| < 2R. (4.6)

Assuming the claim for the moment, we may apply the comparison principle Theorem 2.1 to
obtain that u(x) � φ(|x|) for all R/2 < |x| < 2R, from where we obtain, by taking the minimum
of u in 0 < |x| � R, that

m(R) � εm(R/2)
(
1 − 2σ+)

.

The result follows taking c = ε(1 − 2σ+
). Next we show that the claim (4.6) holds if we choose

ε > 0 small enough. We just need to see that M+wR(|x|) � 0 if R/2 < |x| < 2R. By definition
of σ+ we have that

0 = M+(
rσ+) = M+w(r) + I (ε, r), (4.7)

where r = |x| and

I =
∫

BR0 (x)∪BR0 (−x)

S+δ(x, y, rσ+
) − S+δ(x, y,w)

|y|N+2α
dy

�
∫

BR0 (x)

Λ
|x − y|σ+ − (R0)

σ+

|y|N+2α
dy +

∫
BR0 (−x)

Λ
|x + y|σ+ − (R0)

σ+

|y|N+2α
dy,

by (4.4) and since the balls BR0(x) and BR0(−x) are disjoint. We only need to estimate one of
these integrals, since they are equal. By definition of R0, for every y ∈ BR0(x), we have that
|y| � R/3 if we take ε small enough. Then we obtain

∫
BR0 (x)

|x − y|σ+ − (R0)
σ+

|y|N+2α
dy �

(
3

R

)N+2α
R0∫

0

(
rσ++N−1 − (R0)

σ+
rN−1)dr

� CR−N+
ε−(σ++N)/σ+

, (4.8)

where we have used the definition of R0 and the fact that σ+ + N > 0. The constant C does not
depend on ε nor R.

On the other hand we consider E(ε, r) such that M+w = M+wR − E(ε, r) and we estimate
its value from below. We recall that wR(r) � w(r) for all r and we observe that for y /∈ B5R(0)
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we have wR(x + y) = wR(x − y) = (2R)σ
+

and δ(x, y,wR), δ(x, y,w) � 0, thus

E(ε, r) �
∫

Bc
5R(0)

S+δ(x, y,wR) − S+δ(x, y,w)

|y|N+2α
dy

�
∫

Bc
5R(0)

2(2R)σ
+ − |x − y|σ+ − |x + y|σ+

|y|N+2α
dy. (4.9)

We see that, for x, y such that R/2 � |x| � 2R and |y| � 5R, we have |x − y| � 3|y|/5 and
|x − y| � 3|y|/5. Consequently

E(ε, r) � 2

∞∫
5R

[
(2R)σ

+
r−2α−1 −

(
3

5

)σ+

rσ+−2α−1
]

dr � CR−N+
, (4.10)

where the generic constant C is positive and does not depend on R nor ε. We recall that, by
definition N+ = −σ+ + 2α. Since

M+wR = E(ε, r) − I (ε, r),

for all R/2 � r � 2R, from (4.8) and (4.10) the result follows if we choose ε small enough. The
case M− is similar. �
5. The Liouville property

We devote this section to the proof of Theorem 1.2, which is obtained by comparing the super-
harmonic function with fundamental solutions. The goal is to reach a contradiction by proving
that the super-harmonic function possesses a global minimum. As in Section 4, we also need to
adapt the fundamental solutions, cutting them near the origin, in order to have proper comparison
with the given super-harmonic function outside the domain where the equation holds.

Proof of Theorem 1.2. By Remark 4.1, we may assume that u(x) > 0 for all x. Let us consider
first the case N+ < 2α, that is, σ+ = −N+ + 2α ∈ (0,2α), and consider the function

w(r) =
{−εσ if 0 < r � ε,

−rσ if ε � r ,
(5.1)

where ε > 0 and σ ∈ (0, σ+). We recall that −rσ+
is a fundamental solution for M+, where as

usual, |x| = r . According to the analysis in Section 3, we have that

M+(−rσ
) = c+(σ )rσ−2α,

with c+(σ ) > 0. Now we choose r1 > 1 � 2ε and consider

M+w(r) = c+(σ )rσ−2α +
∫

S+(δ(x, y,w)) − S+(δ(x, y,−rσ ))

|y|N+2α
dy
Bε(x)∪Bε(−x)
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for |x| > r1. In order to estimate this integral, by (4.4) and symmetry, we just need to estimate

∫
Bε(x)

|x − y|σ − εσ

|y|N+2α
dy = rσ−2α

∫
Bε/|x|(e1)

|e1 − y|σ − (ε/|x|)σ
|y|N+2α

dy = e(ε, r)rσ−2α.

It is not difficult to see that e(ε, r) → 0 as ε → 0, uniformly since |x| � r1. Thus, choosing ε

small enough we have that

M+w � 0, for all |x| � r1.

We define now the function

φ(x) = m(r1)
w(|x|) − w(r2)

w(ε) − w(r2)
, for |x| � r2,

and φ(x) = 0 for |x| � r2 and we see that

M+φ � 0, for all r1 < |x| < r2,

and u(x) � φ(x) for all r1 � |x| or |x| � r2. Then we use comparison Theorem 2.1 to obtain that
u(x) � φ(x) for r2 � |x| � r1. If we take limit when r2 → ∞, noticing that w(r2) → −∞, we
obtain that

u(x) � m(r1), for all r1 < |x|. (5.2)

But then u has a global minimum point in B(0, r1), contradicting M+u � 0.
To conclude we analyze the case σ+ = −N+ + 2α = 0. Take σ such that −N < σ < −N− −

2α < −N+ − 2α = 0. Thus M−(rσ ) = c−(σ )rσ−2α , with c−(σ ) > 0. Notice that

M+(
rσ − log r

)
� M+(− log r) + M−(

rσ
) = c−(σ )rσ−2α.

Define now the function

w(r) =
{

εσ − log ε if 0 < r � ε,

rσ − log r if ε � r .
(5.3)

As in the cases discussed above, we can choose ε small enough such that

M+w � 0, for all |x| � r1

and from here we conclude as before. �
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6. Nonlinear Liouville type theorem

In this section we provide a proof of our main theorem on the Liouville type non-existence
result. In the proof we use appropriate estimates derived directly from the scaling property of the
integral operator and an adequate test function on the equation. This estimated is put together
with the Hadamard properties that we proved in Section 4.

The critical case requires an extra work, since the usual fundamental solution does not provide
a sharp enough estimate.

Proof of Theorem 1.3. (The sub-critical case.) Let η : [0,∞) → R such that 0 � η(r) � 1,
η ∈ C∞, η non-increasing, η(r) = 1 if 0 � r � 1/2 and η(r) = 0 if r � 1. It is obvious that there
exists C > 0 such that

−M+(
η|x|) � C.

Define now ξ(x) = m(R/2)η(|x|/R), where m(r) was defined in Section 4. Then by scaling
property of M+ we have

M+(
ξ |x|) � −m(R/2)C

R2α
.

In addition, ξ(x) = 0 � u(x) if |x| > R and ξ(x) = m(R/2) � u(x) if |x| � R/2. Thus there
exists a global minimum of u(x) − ξ(x) achieved in a point xR with |xR| < R.

Let now ϕ(x) := ξ(x) − ξ(xR) + u(xR) and N = B(0,R), then ϕ(xR) = u(xR) and u(x) �
ϕ(x) for all x ∈ N . If v is defined as in (2.2), since u is a viscosity super-solution of (1.7), we
have

M+(v) + u(xR)p � 0. (6.1)

We claim that

M±(v)(xR) � M±(ξ)(xR).

In fact w(x) := v(x) − ξ(x) � 0 for all x ∈ R
N, and xR is a global minimum of w. Thus,

M−(w)(xR) > 0 and then the claim follows by the fact that M−(v − ξ) � M+(v) − M+(ξ).
Therefore from (6.1) we get

m(R)p � u(xR)p � m(R/2)C

R2α
.

Using now Lemma 4.2, from the above inequality we obtain

m(R) � C

R
2α

p−1

. (6.2)

Now, let us assume that p < N+
N+−2α

. Then we choose σ < −N+ + 2α such that p − 1 < −2α/

σ < 2α
+ and we apply Lemma 4.1 to obtain (4.2). Combining (4.2) with (6.2) we reach a con-
N −2α
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tradiction, unless u ≡ 0. In a completely similar way, replacing M+ by M− and N+ by N− we
obtain the proof for M−. This finishes the proof of the theorem in the sub-critical case. �
Remark 6.1. We would like to mention that in studying Liouville type theorems for general fully
nonlinear second order operators, in a very recent paper Armstrong and Sirakov [1] avoided the
use of an estimate like in Lemma 4.2 by using an estimate for the first half eigenvalue for the
operator in an annulus. We do not have such an eigenvalue theory here, but it would be interesting
to explore this idea in the future.

In the case p = N±
N±−2α

this argument cannot be applied directly and we need some extra
work. We define the function Γ ±(x) = η(x)h±(x) for x �= 0, where

η(x) = log
(
1 + |x|) and h±(x) = |x|−N±+2α,

then the following lemma allows to use Γ ± as a good comparison function:

Lemma 6.1. There exists a constant C > such that

M−(
Γ ±)

(x) � −C|x|−N±
, x �= 0. (6.3)

Proof. We have

M−(
Γ −)

(x) = M−(
ηh−)

(x) − η(x)M−(
h−)

(x)

� M−(
ηh− − η(x)h−)

(x), (6.4)

where η(x) is considered constant regarding the integral defining M−. Similarly we have

M+(
Γ +)

(x) = M+(
Γ +)

(x) − η(x)M+(
h+)

(x)

� M−(
ηh+ − η(x)h+)

(x). (6.5)

Here we have used that for any u,v such that M−(u) and M+(v) are well defined we have

M−(u) � M−(u − v) + M−(v) and M−(u) � M+(u + v) − M+(v).

Our purpose is to find a lower estimate for M−(ηh − η(x)h)(x), when x is large. We have

M−(
ηh − η(x)h

)
(x) =

∫

RN

S−
(
δ̂(x, y)

) dy

|y|N+2α
, (6.6)

where

δ̂(x, y) = (
η(x + y) − η(x)

)
h(x + y) + (

η(x − y) − η(x)
)
h(x − y).

At this point it is convenient to write h(x) = |x|σ , where σ = −N− + 2 or σ = −N+ + 2. Thus,
we get
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δ̂(x, y) = |x + y|σ log

(
1 + |x + y|

1 + |x|
)

+ |x − y|σ log

(
1 + |x − y|

1 + |x|
)

= rσ δ1(r, z)

where x = re1, z = y/r and

δ1(r, z) = |e1 + z|σ log

(
1 + r|e1 + z|

1 + r

)
+ |e1 − z|σ log

(
1 + r|e1 − z|

1 + r

)
.

Since η and h are radially symmetric, there is no loss of generality in considering x = re1. Now
we introduce this expression back into (6.6) and make the change of variables z = y/r to obtain

M−(
ηh − η(x)h

)
(x) = rσ−2αI (r) (6.7)

where

I (r) =
∫

RN

S−
(
δ1(r, z)

) dz

|z|N+2α
. (6.8)

In order to complete the proof we just need to find a constant C � 0 such that I (r) � −C for
large r . For this purpose we study the integral (6.8) at the singularities e1, −e1, 0 and at infinity.
It is convenient to write

δ1(r, z) = g
(|e1 + z|, θ) + g

(|e1 − z|, θ)
, (6.9)

where

g(t, θ) = tσ log
(
1 + θ(t − 1)

)
and θ = r

1 + r
,

for t > 0, θ ∈ [0,1) and r � 0. First consider B1 = {z/|z + e1| � 1/2} and observe that
g(|e1 − z|, θ) is bounded in B1 while g(|e1 + z|, θ) has a singularity at −e1 ∈ B1. Then we
see that, for a generic constant C,

∫
B1

∣∣g(|e1 + z|, θ)∣∣ dz

|z|N+2α
� −C

1/2∫
0

g(t, θ)tN−1 dt

� −C

1/2∫
0

tσ+N−1 log(t) dt � C. (6.10)

Notice that 1 + θ(t − 1) � t , as θ ∈ [0,1). We have used that σ + N > 0, that is, −N− + 2α +
N > 0 and −N+ + 2α + N > 0, which hold by Theorem 1.1. Thus, the integral in (6.8) when
consider over B1 is bounded below by a constant independent of r . Similar result is obtained in
B2 = {z/|z − e1| � 1/2}.
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On the set B3 = {z |z| � 2} we have

∣∣δ1(r, z)
∣∣ � C|z|σ−N−2α log |z|.

Since σ −N −2α = −N±−N < −N the integral in (6.8) when consider over B3 is also bounded
by a constant independent of r .

We finally analyze the behavior of the integral over B4 = {z |z| � 1/2}. By the fundamental
theorem of calculus we have

δ1(r, z) = zt ·
1∫

0

(1 − t)D2δ1(r, tz) dt · z, (6.11)

where we used that δ1(r,0) = 0, Dδ1(r,0) = 0 and derivatives are considered only with respect
to z. Thus, to estimate the integral (6.8) over B4 we just need to prove

∣∣D2δ1(r, z)
∣∣ � C, for all |z| � 1/2, (6.12)

for a constant C independent of r . It is a direct computation to obtain

g′(t, θ) = σ tσ−1 log
(
1 + θ(t − 1)

) + θtσ

1 + θ(t − 1)
,

g′′(t, θ) = σ(σ − 1)tσ−2 log
(
1 + θ(t − 1)

) + 2θσ tσ

1 + θ(t − 1)
− θ2tσ

(1 + θ(t − 1))2

and then we see that there is a constant so that

∣∣g′(t, θ)
∣∣, ∣∣g′′(t, θ)

∣∣ � C, for all θ ∈ [0,1), 1/2 � t � 3/2.

Then, computing the derivatives of δ1 using formula (6.9),

∂2δ1(r, z)

∂zi∂zj

= g′′(|e1 + z|, θ)
Dij + g′(|e1 + z|, θ)

dij ,

for certain functions Dij and dij , which are bounded since |z| � 1/2. From here we obtain (6.12),
completing the proof of the lemma. �
Proof of Theorem 1.3 continued. (The critical case.) We do the proof only for M+, since the
other case is similar. We start by proving that for certain r1 > 0 and c > 0 we have

u(x) � cm(r1)r
σ+

, for r � r1. (6.13)

From Eq. (1.7) and Lemma 4.1 we have that, for any σ < σ+,

M+u(x) = −up � c
(
m(r1)

)p
rpσ , for r � r1. (6.14)
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On the other hand we consider the function w defined as

w(r) =
{

εσ+
if 0 < r � ε,

rσ+
if ε � r ,

(6.15)

where ε > 0 and ε < r1/2. Since rσ+
is a fundamental solution for M+ we have that

M+w(r) =
∫

Bε(x)∪Bε(−x)

S+(δ(x, y,w)) − S+(δ(x, y, rσ+
))

|y|N+2α
dy.

We easily see that δ(x, y,w) − δ(x, y, rσ+
) = εσ+ − |x − y|σ+

and |y| � |x|/2 if y ∈ Bε(x) and
r � r1. Consequently, by (4.4)

∫
Bε(x)

S+(δ(x, y,w)) − S+(δ(x, y, rσ+
))

|y|N+2α
dy � −c

εσ++N

|x|N+2α

for some constant c and then, by symmetry of the integrals, we obtain that

M+w(r) � −c
εσ++N

|x|N+2α
. (6.16)

If we define

φ(r) = m(r1)
w(r) − w(r2)

w(ε) − w(r2)
,

we have that

M+φ(r) � m(r1)

w(ε) − w(r2)
M+w(r) � − c

|x|N+2α
, (6.17)

for all r � r1. On the other hand, we recall that σ+ + N > 0 and we choose σ < σ+ such that
−σp < N +2α. Then, using (6.14), (6.17) and taking r1 large enough, by the choice of σ , we find
that

M+u � − c

|x|−pσ
� − c

|x|−N+2α
� M+φ

and u(x) � φ(x) for all r = |x| such that 0 � r � r1 or r � r2. Thus, by comparison principle
Theorem 2.1 we have that u(x) � φ(r) for all r1 � r = |x| � r2. Taking the limit as r2 → ∞,
we find (6.13).

At this point we have to distinguish two cases, depending on the value of σ+. The first case
corresponds to σ+ ∈ (−N,−1]. Here we observe that the function Γ is decreasing for all r > 0,
with a singularity at the origin if σ+ ∈ (−N,−1) and bounded if σ+ = −1. We consider ε > 0
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and define the function

w(r) =
{

Γ (ε) if 0 < r � ε,

Γ (r) if ε � r .
(6.18)

We have

M+w(x) =
∫

RN

S+(δ(x, y,Γ ))

|y|N+2α
dy

+
∫

Bε(x)∪Bε(−x)

S+(δ(x, y,w)) − S+(δ(x, y,Γ ))

|y|N+2α
dy.

The first integral can be estimated using Lemma 6.1. If we assume that ε < r1/2, then for every
y ∈ Bε(x) ∪ Bε(−x) we have |y| � |x|/2 thus, using (4.4) the second integral can be estimated
as

∫
Bε(x)∪Bε(−x)

∣∣∣∣δ(x, y,w) − δ(x, y,Γ )

|y|N+2α
dy

∣∣∣∣ � c

|x|N+2α

∣∣∣∣
∫

Bε(x)

(
Γ (ε) − Γ

(|x − y|))
∣∣∣∣dy.

Using the definition of Γ and the fact that σ+ + N > 0 we see that this integral is bounded by a
term of the form o(1)|x|−N−2α , where o(1) → 0 as ε → 0. Putting together this and the estimate
in Lemma 6.1 we find that

M+w(x) � − c

|x|N+ − o(1)

|x|N+2α
� − c

|x|N+ , for all |x| � r1, (6.19)

where we used the fact that N+ < N + 2α. Then we define

φ(x) = m(r1)
w(r) − w(r2)

w(ε) − w(r2)
, |x| < r2,

and φ(x) = 0, for |x| � r2, where r2 > r1. We observe that φ(x) � u(x) for all x such that
|x| � r1 or |x| � r2. Moreover

M+φ(x) � − c

|x|N+ , for all r1 � |x| � r2.

From here, the equation for u and (6.13) we can use the comparison Theorem 2.1 to obtain
u(x) � φ(x) for all r1 < |x| < r2. Taking limit as r2 → ∞ we find that

u(x) � c
log(1 + |x|)
|x|N+−2α

, for all r1 < |x|.

From here and estimate (6.2) we find that

C

|x|N+−2α
� m(r) � c

log(1 + |x|)
|x|N+−2α

for all |x| large, a contradiction.
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We still need to analyze the remaining case, when σ+ ∈ (−1,0). In this case the function
Γ (r) is increasing near the origin and decreasing for r large, with exactly on maximum point,
say at r̃1 > 0. We define the function

w(r) =
{

Γ (r1) if 0 < r � r̃1,

Γ (r) if r1 � r
(6.20)

and then the comparison function

φ(x) = m(r1)
w(r) − w(r2)

w(r1) − w(r2)
, |x| < r2,

with φ(x) = 0, for |x| � r2, where r2 > r1. We observe that φ(x) � u(x) for all x such that
|x| � r1 or |x| � r2. Moreover

M+φ(x) � − c

|x|N+ , for all r1 � |x| � r2.

Here we used Lemma 6.1 and the fact that Γ is increasing in (0, r1). From here we proceed as
before, completing the proof in the critical case. �

We still need to prove the existence statement in the super-critical case. We start with a lemma
on a general inequality we use later.

Lemma 6.2. Let α ∈ (0,1) and consider q be such that

1

p − 1
< q <

N± − 2α

2α
, (6.21)

which exists by our assumption. Then, for all s ∈ [0,1), t � 0 and u � 0 the following inequality
holds:

(
1 − s + (

(s + t)2 + u2)1/2)−2αq + (
1 − s + (

(s − t)2 + u2)1/2)−2αq

�
(
(1 + t)2 + u2)−αq + (

(1 − t)2 + u2)−αq
. (6.22)

Proof. We define a function f (s, t, u) as the left-hand side minus the right-hand side of (6.22).
Given t � 0 and u � 0, we see that

f (0, t, u) = 2
(
1 + (

t2 + u2)1/2)−2αq − (
(1 + t)2 + u2)−αq − (

(1 − t)2 + u2)−αq � 0,

since

(
1 + (

t2 + u2)1/2)2 � (1 + t)2 + u2 � (1 − t)2 + u2,

where the first inequality can easily be seen by direct computation. Next, taking s = 1 we easily
see that f (1, t, u) = 0. Finally, we compute the partial derivative with respect to s,
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∂f

∂s
(s, t, u) = −2αq

(1 − s + ((s + t)2 + u2)1/2)2αq+1

(
−1 + s + t

((s + t)2 + u2)1/2

)

− 2αq

(1 − s + ((s − t)2 + u2)1/2)2αq+1

(
−1 + s − t

((s − t)2 + u2)1/2

)

which is easily seen non-negative. With this we complete the proof of the lemma. �
Proof of Theorem 1.3. (The super-critical case.) We define the function

v(x) = 1

(1 + |x|)2αq
, (6.23)

with q as in (6.21) and we prove next that v satisfies (1.7). As a direct consequence of this lemma
we have the following inequality:

1

(1 − s + |se1 + y|)2αq
+ 1

(1 − s + |se1 − y|)2αq
� 1

|e1 + y|2αq
+ 1

|e1 − y|2αq
.

Now we consider r = |x|, x̂ = x/r , s = r/(1 + r) and we write

δ(v, x, y) = 1

(1 + |x + y|)2αq
+ 1

(1 + |x − y|)2αq
− 2

(1 + |x|)2αq

= 1

(1 + |x|)2αq

{
1

(1 − s + |se1 + ỹ|)2αq
+ 1

(1 − s + |se1 − ỹ|)2αq
− 2

}

� 1

(1 + |x|)2αq

{
1

|e1 + ỹ|2αq
+ 1

|e1 − ỹ|2αq
− 2

}
, (6.24)

where ỹ = Ry/(1+r), with R an appropriate rotation matrix. Here we used the inequality proved
above. Now, in the case of M+, we use that S+ is an increasing function to compose it with this
inequality, recalling the definition of c+ in (3.2), multiplying by 1/|y|N+2α and then integrating
in R

N we obtain

M+(v) =
∫

RN

S+(δ(v, x, y))

|y|N+2α
dy

� 1

(1 + |x|)2αq

∫

RN

S+(δ2αq(ỹ))

|y|N+2α
dy

= 1

(1 + |x|)2α(q+1)
c+(−2αq) = −C

(1 + |x|)2α(q+1)
.

Since q was chosen to satisfy (6.21) we see, from the definition of N+ and the properties of c+,
that −C = c+(−2αq) < 0. Then we have that

M+(cv) + (cv)p � −cC

2α(q+1)
+ cp

2αqp
.

(1 + |x|) (1 + |x|)
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Now we use (6.21) and we choose c small enough to finally obtain

M+(cv) + (cv)p � 0,

completing the proof. With a similar argument we obtain a function v that serves as solution in
the case of M− such that

M−(cv) + (cv)p � 0,

whenever p > N−/(N− − 2α). Here we just notice that after (6.24) we could use S− and then
argue analogously. The proof of Theorem 1.2 is now complete. �
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