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1. Introduction. In this article we consider the Dirichlet problem{
F (D2u,Du, u, x) = f(x) in Ω,

u = 0 on Ω,
(1.1)

where the second-order differential operator F is of Hamilton–Jacobi–Bellman (HJB)
type and Ω ⊂ R

N is a bounded domain. These equations—see the book [17] and
the surveys [20], [29], and [9], as well as [21] (various other references will be given
below)—have been very widely studied because of their connection with the general
problem of optimal control for stochastic differential equations (SDEs). We recall that
a powerful approach to this problem is the so-called dynamic programming method,
initiated by R. Bellman, which indicates that the optimal cost (value) function of a
controlled SDE should be a solution of a PDE like (1.1). More precisely, let us have
a stochastic process Xt satisfying

dXt = bαt(Xt)dt+ σαt(Xt)dWt ,

with X0 = x for some x ∈ Ω, and the cost function

J(x, α) = E

∫ τx

0

f(Xt) exp

{∫ t

0

cαs(Xs)ds

}
dt,

where τx is the first exit time from Ω of Xt, and αt is an index (control) process with
values in a set A. Then the optimal cost function v(x) = infα∈A J(x, α) is such that
−v is a solution of (1.1), which is in the form{

sup
α∈A

{tr(Aα(x)D2u) + bα(x).Du + cα(x)u} = f(x) in Ω,

u = 0 on ∂Ω.
(1.2)
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998 P. FELMER, A. QUAAS, AND B. SIRAKOV

We are going to study this boundary value problem under the following hypotheses,
which will be kept throughout the paper: for some constants 0 < λ ≤ Λ, γ ≥ 0, δ ≥ 0,
we assume Aα(x) := σα(x)T σα(x) ∈ C(Ω), λI≤Aα(x) ≤ΛI, |bα(x)| ≤ γ, |cα(x)| ≤ δ
for almost all x ∈ Ω and all α ∈ A, and f ∈ Lp(Ω) for some p > N . We stress,
however, that all our results are new even for operators with smooth coefficients.

Our main statements on resonance, applied to this setting, imply in particular
that for some A, b, c, the optimal cost becomes arbitrarily large or small, depending on
the function f which stays bounded. We give conditions under which (1.2) is solvable
or not and describe properties of its solutions.

The majority of works on HJB equations concern proper equations, that is, cases
when F is monotone in the variable u (cα ≤ 0), in which no resonance phenomena
can arise. It was shown in the well-known papers [15], [16], and [22] that a proper
equation of type (1.2) has a unique strong solution, which is classical, if the coefficients
are smooth. Uniqueness in the viscosity sense was proved in [19], [14], [12], and [30].

Two of the authors recently showed in [24] that existence and uniqueness of viscos-
ity solutions hold for a larger class of operators, including nonproper operators whose
principal eigenvalues—defined below—are positive. This had been proved much earlier
for HJB operators with smooth coefficients, in [21], through a mix of probabilistic and
analytic techniques. Very recently, existence, nonexistence, and multiplicity results
for cases when the eigenvalues are negative or have different signs, but are different
from zero, appeared in [1] and [27].

Thus, the only situations which remain completely unstudied are the cases when
(1.2) is “at resonance,” that is, when one of the principal eigenvalues of F is zero.
The present paper is devoted to this problem. We also obtain a number of new results
for cases without resonance.

We shall make essential use of the work [24], where the properties of the eigen-
values are studied. In particular, based on the definition for the linear case in [4], it
is shown in [24] that the numbers

λ+1 (F,Ω) = sup{λ |Ψ+(F,Ω, λ) �= ∅}, λ−1 (F,Ω) = sup{λ |Ψ−(F,Ω, λ) �= ∅},
where the sets Ψ+(F,Ω, λ) and Ψ−(F,Ω, λ) are defined as

Ψ±(F,Ω, λ) = {ψ ∈ C(Ω) | ± (F (D2ψ,Dψ, ψ, x) + λψ) ≤ 0, ±ψ > 0 in Ω},
are simple and isolated eigenvalues of F , associated with positive and negative eigen-
functions ϕ+

1 , ϕ
−
1 ∈W 2,q(Ω), q <∞, and that their positivity guarantees the validity

of one-sided Alexandrov–Bakelman–Pucci (ABP)-type estimates; see the review in the
next section. From the optimal control point of view, λ+1 can be seen as the fastest
exponential rate at which paths can exit the domain, and λ−1 is the slowest one; we
refer to the exact formulae given in equalities (30)–(31) of [21]. For extensions and
related results on eigenvalues for fully nonlinear operators, we refer to [18] and [1],
where Isaacs operators are studied, and to [5] and [6], where more general singular
fully nonlinear elliptic operators are considered. When no confusion arises, we write
λ±1 or λ±1 (F ), and we always suppose that λ+1 < λ−1 — note it easily follows from the
results in [24] that λ+1 = λ−1 can only happen if all linear operators which appear in
(1.2) have the same principal eigenvalues and eigenfunctions. For simplicity, we as-
sume that Ω is regular, in the sense that it satisfies an uniform interior ball condition,
even though many of the results can be extended to general bounded domains.

We make the convention that all (in)equalities in the paper are meant to hold in
the Lp-viscosity sense, as defined and studied in [12]. Note, however, that it is known
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that any viscosity solution of (1.2) is in W 2,p(Ω) and that any W 2,p-function which
satisfies (1.2) in the viscosity sense is also a strong solution (that is, it satisfies (1.2)
a.e. in Ω); see [11], [12], [30], and [32]. All constants in the estimates will be allowed
to depend on N, λ, Λ, γ, δ, and Ω.

Given a fixed function h ∈ Lp(Ω) which is not a multiple of the principal eigen-
function ϕ+

1 , everywhere in the paper we write

f = tϕ+
1 + h, t ∈ R,(1.3)

and consider t as a parameter. We note that all results and proofs below hold without
modifications if the function ϕ+

1 in (1.3) is replaced by any other positive function,
which vanishes on ∂Ω and whose interior normal derivative on the boundary is strictly
positive. We visualize the set S of solutions of (1.2) in the space C(Ω)×R as follows:
(u, t) ∈ S if and only if u is a solution of (1.2) with f = tϕ+

1 + h. The following
notation will be useful: given a subset A ⊂ C(Ω)×R and t ∈ R, we define At = {u ∈
C(Ω) | (u, t) ∈ A} and AI = ∪t∈IAt if I is an interval.

Our purpose is to describe the set S = {(ut, t) | t ∈ R}. When λ+1 (F ) > 0, this
can be done in a rather precise way thanks to the results in [21] and [24].

Theorem 1.1. Assume λ+1 (F ) > 0. Then the following apply.
1. (See [24].) For every t ∈ R (1.2) possesses exactly one solution u = ut. In

addition, if f = tϕ+
1 + h �= 0 and f ≤ (≥)0, then u > (<)0 in Ω. If t < s,

then ut > us in Ω.
2. The set S is a Lipschitz continuous curve such that t → ut(x) is convex for

each x ∈ Ω. There exist numbers t± = t±(h) such that if t ≥ t+ (t ≤ t−),
then ut < (>)0 in Ω. Moreover, for each compact K ⊂⊂ Ω,

lim
t→−∞min

x∈K
ut(x) = +∞ and lim

t→+∞max
x∈K

ut(x) = −∞.

Next, we state our first main theorem, which describes the set S when the first
eigenvalue is zero. In this case the set of solutions is again a unique continuous curve,
but it exists only on a half-line with respect to t, and becomes unbounded when t is
close or equal to a critical number t∗+; see Figure 1 below. Note the picture is very
different from the one we obtain in the linear case—if L is a linear operator, then the
Fredholm alternative for Lu+ λ1(L)u = tϕ1(L) + h says this equation has a solution
only for one value of t, and then any two solutions differ by a multiple of ϕ1(L).

Theorem 1.2. Assume λ+1 (F ) = 0. Then the following apply.
1. There exists a number t∗+ = t∗+(h) such that if t < t∗+, then there is no solution

of (1.2), while for t > t∗+, (1.2) has a solution.
2. The set S is a continuous curve such that St is a singleton for all t > t∗+;

that is, solutions are unique for t > t∗+. If t∗+ ≤ t < s and (ut, t), (us, s) ∈ S,
then ut > us in Ω. The map t→ ut(x) is convex for each x ∈ Ω.

3. There exists t+ = t+(h) > t∗+ such that if t ≥ t+, then ut < 0 in Ω, and for
every compact K ⊂⊂ Ω, we have lim

t→+∞max
x∈K

ut(x) = −∞.

4. If t = t∗+, then either
(i) (1.2) does not have a solution (that is, St∗ is empty),

limt↘t∗+ minx∈K ut = +∞ for every compact K ⊂⊂ Ω, and there ex-

ists ε = ε(h) > 0 such that if t ∈ (t∗+, t
∗
+ + ε), then ut > 0 or

(ii) there exists a function u∗ such that St∗+ = {u∗ + sϕ+
1 | s ≥ 0}.

In case the two eigenvalues have opposite signs, a multiplicity phenomenon occurs.
This situation was studied in [27] and we recall it here.
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(1)
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Fig. 1. The number at each graph corresponds to the number of the theorem where the shown
situation is described. When λ+

1 crosses 0 the set S curves so that one region of nonexistence

and one region of multiplicity of solutions appears for t. Similarly when λ−
1 crosses 0 the set S

“uncurves” back. In this process, the set S evolves from being “decreasing,” when both eigenvalues
are positive, to being “increasing,” at least for large |t|, when both eigenvalues are negative. Note
(1) and (2.1)–(2.2) are exact, while in (3)–(5) there may be other solutions, except if Theorem 1.6
below holds.

Theorem 1.3 (see [27]). Assume λ+1 (F ) < 0 < λ−1 (F ). Then there exists a
number t∗ = t∗(h) such that the following apply.

1. If t < t∗, then there is no solution of (1.2).
2. If t > t∗, then there are at least two solutions of (1.2); more precisely, for
t ∈ (t∗,∞) there is a continuous curve of minimal solutions ut of (1.2) such
that t → ut(x) is convex and strictly decreasing for x ∈ Ω and a connected
set of solutions different from the minimal ones.

3. If t = t∗, then there is at least one solution of (1.2).
Note that in [27] the properties of the two branches were not described; however,

by using the results there, our Lemma 2.1 and some topological and degree arguments,
like in sections 3 through 5, they can be obtained easily.

Now we state our second main theorem, which describes properties of the set
S when the second eigenvalue is at resonance, that is, when λ−1 (F ) = 0. Here the
analysis is more difficult than in Theorem 1.2, but still the picture is quite clear.

Theorem 1.4. Assume λ−1 (F ) = 0. Then there exists t∗− = t∗−(h) such that the
following apply.

1. If t < t∗−, then there is no solution of (1.2).
2. There is a closed connected set C ⊂ S such that Ct �= ∅ for all t > t∗−.
3. The set SI is bounded in W 2,p(Ω) for each compact I ⊂ (t∗−,∞).
4. If we denote αt = inf{supΩ u |u ∈ St}, we have limt→+∞ αt = +∞.
5. The set C[t∗−,t∗−+ε) is unbounded in L∞(Ω) for all ε > 0; there exists C =

C(h) > 0 such that if u ∈ S[t∗−,t∗−+ε) and ‖u‖L∞(Ω) ≥ C, then u < 0 in Ω; if

un ∈ S[t∗−,t∗−+ε) and ‖un‖L∞(Ω) → ∞, then maxK un → −∞ for each compact
K ⊂ Ω.

6. If St∗− is unbounded in L∞(Ω), then there exists a function u∗ such that

St∗− = {u∗ + sϕ−
1 | s ≥ 0}.

D
ow

nl
oa

de
d 

01
/0

1/
13

 to
 1

50
.1

08
.1

61
.7

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RESONANCE FOR STOCHASTIC CONTROL EQUATIONS 1001

Both Theorems 1.2 and 1.4 are proved by a careful analysis of the behavior of
the sets of solutions to equations with positive (resp., negative) eigenvalues when
λ+1 (F ) ↘ 0 (resp., λ−1 (F ) ↗ 0).

We note that not much is known on solutions of (1.2) when both eigenvalues are
negative. Thus, before proving Theorem 1.4, we need to analyze solutions of problems
in which λ−1 (F ) is small and negative. This is the content of the next theorem, which
is of clear independent interest.

Theorem 1.5. There exists 0 < L ≤ ∞ such that if λ−1 (F ) ∈ (−L, 0), then
1. there exists a closed connected set C ⊂ S such that Ct �= ∅ for each t ∈ R

(further, SI is bounded in W 2,p(Ω) for each bounded I ⊂ R);
2. setting αt = inf{supΩ u |u ∈ St} and ut(x) = sup{u(x) |u ∈ St}, we have

lim
t→+∞αt = +∞ and lim

t→−∞ sup
K
ut(x) = −∞

for each K ⊂⊂ Ω, and ut < 0 in Ω for all t below some number t−(h).
The mere existence of solutions to (1.2) when λ−1 (F ) ∈ (−L, 0) was recently

proved in [1]. Here we describe qualitative properties of the set of solutions.
To summarize, the five theorems above give a global picture of the solutions of

(1.2), depending on the values of the eigenvalues with respect to zero. This is shown
on Figure 1.

A number of remarks on questions that are still open are now in order. First, it is
clearly very important to give some characterization of the critical numbers t∗ in terms
of F, h, and λ. On submitting this paper we learned of a very recent work by Armstrong
[2], where he studies this question in the case λ = λ+1 and proves part 1 of Theorem
1.2 by a different method. More specifically, he proves an interesting minimax formula
for λ+1 (F ), which generalizes the Donsker–Varadhan formula for linear operators to the
nonlinear case. In particular, it is proved in [2] that

λ+1 = min
μ∈M(Ω)

sup
u∈C2

+(Ω)

∫
Ω

(
−F (D

2u(x), Du(x), u(x), x)

u(x)

)
dμ(x).

Further, if M∗ is the subset of the set of probability measures M on which this
minimum is attained, then for each μ ∈ M∗, there exists a positive function ϕμ ∈
LN/(N−1)(Ω) such that dμ = ϕμϕ

+
1 dx, and the number t∗+ from Theorem 1.2 can be

written as

t∗+ = − min
μ∈M∗

∫
Ω

hϕμ dx.

The results in [2] and our Theorem 1.2 are complementary to each other, as we
describe the set of solutions, while the main theorems in [2] characterize the critical
value t∗+(h).

Next, it is not clear how to distinguish between the two alternatives in statement
4 of Theorem 1.2 (that is, (2.1) and (2.2) on Figure 1) for any given operator F . A
simple and important example where we have alternative (ii) is the Fučik operator
F (u) = Δu+λ1(Δ)u++bu−; indeed, if we had (i), the fact that the solutions become
positive for t close to t∗ eliminates the term in u−, giving a contradiction. A rather
simple example of an operator for which both (i) and (ii) can happen (depending on
f) is given in [2].

Naturally, the description of the set S when λ−1 = 0, in contrast with λ+1 = 0, is
less precise due to the fact that in this situation we only have degree theory at our
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disposal to get existence of solutions and that uniqueness of solutions above λ−1 is not
available in general (see, however, Theorem 1.6 below).

Further, a number of basic questions can be asked about exact multiplicity of
solutions of (1.2) when λ+1 (F ) < 0. When λ−1 (F ) > 0 this question is a generalization
of the famous Lazer–McKenna problem, which concerns the Fučik equation

Δu+ bu+ = ϕ1 in Ω, u = 0 on ∂Ω.(1.4)

Here F (D2u,Du, u) = Δu + bu+, λ+1 (F ) = λ1 − b, λ−1 (F ) = λ1, b = λ−1 − λ+1 and
λi are the eigenvalues of the Laplacian. It is known that equation (1.4) has exactly
one solution if b < λ1, exactly two solutions if b ∈ (λ1, λ2), exactly four solutions if
b ∈ (λ2, λ3) and exactly six solutions if b ∈ (λ3, λ3 + δ), see [28] and the references
in that paper. This example suggests that multiplicity of solutions when the two
eigenvalues have opposite signs depends on the distance λ−1 − λ+1 . We conjecture
that there exists a number C0 such that if λ+1 (F ) < 0 < λ−1 (F ) ≤ λ+1 (F ) + C0, then
problem (1.2) has exactly two solutions, one solution, or no solution, depending on f .

In the same way it should be asked if uniqueness of solutions holds when λ−1 (F ) ∈
(−L, 0) for some L > 0. In view of the discussion above one might expect that the
answer is affirmative if the two eigenvalues are sufficiently close to each other. This
fact constitutes our last main theorem.

Theorem 1.6. There exists a number d0 > 0 such that if

−d0 ≤ λ+1 (F ) ≤ λ−1 (F ) < 0,

then problem (1.2) has at most one solution.
A consequence of this result is that if both Theorems 1.5 and 1.6 hold, then the

sets C of solutions obtained in Theorems 1.4 and 1.5 are continuous curves, like in
Theorems 1.1 and 1.2. We remark that d0 is the difference between λ+1 (F,Ω

′) and
λ+1 (F,Ω), where Ω

′ is some subset of Ω, whose Lebesgue measure is smaller than half
the measure of Ω; see Proposition 6.1 and the proof of Theorem 1.6 in section 6.

The article is organized as follows. In section 2 we recall some known results
which we use repeatedly in our analysis. We also complete the proof of Theorem 1.1.
Section 3 is devoted to resonance phenomena at λ+1 = 0. In section 4 we analyze the
existence and the properties of the set of solutions of (1.2) when λ−1 < 0. This set
serves to obtain the set of solutions at resonance when λ−1 = 0, in section 5. Finally,
in section 6 we prove Theorem 1.6.

Some notational conventions will be helpful in the following. When no confusion
arises, we write F [u] := F (D2u,Du, u, x). We reserve the notation ‖ · ‖ = ‖ · ‖L∞(Ω);
while for all other norms, we make precise mention to the corresponding space.

2. Preliminaries. In this section we give, for the reader’s convenience, some of
the results of the general theory of viscosity solutions of HJB equations, which we
use in the following. We start by restating the basic assumptions on the operator
F : SN × R

N × R× Ω → R.
(H0) F is positively homogeneous of degree one; that is, for all t ≥ 0 and for all

(M,p, u, x) ∈ SN × R
N × R× Ω,

F (tM, tp, tu, x) = tF (M,p, u, x).

(H1) There exist γ, δ > 0 such that for all M,N ∈ SN , p, q ∈ R
N , u, v ∈ R, and

a.e. x ∈ Ω,

M−
λ,Λ(M −N)− γ|p− q| − δ|u− v| ≤ F (M,p, u, x)− F (N, q, v, x)

≤ M+
λ,Λ(M −N) + γ|p− q|+ δ|u− v|.
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(H2) F (M, 0, 0, x) is continuous in SN × Ω.
(H3) If we denote G(M,p, u, x) = −F (−M,−p,−u, x), then

G(M −N, p− q, u− v, x) ≤ F (M,p, u, x)− F (N, q, v, x)

≤ F (M −N, p− q, u− v, x).

Under (H0) the last assumption (H3) is equivalent to the convexity of F in
(M,p, u). The simple proof of this fact can be found for instance in Lemma 1.1
in [24]. We recall that the Pucci extremal operators [10], [23] are defined by
M+(M) = supA∈A tr(AM), M−

λ,Λ(M) = infA∈A tr(AM), where A ⊂ SN denotes
the set of matrices whose eigenvalues lie in the interval [λ,Λ].

We often use the following results from [24] (Theorems 1.2–1.4 of that paper),
which state that the principle eigenvalues are simple and isolated.

Theorem 2.1 (see [24]). Assume F satisfies (H0)−(H3) and there exists a vis-
cosity solution u ∈ C(Ω) of

F (D2u,Du, u, x) = −λ+1 u in Ω, u = 0 on ∂Ω,(2.1)

or of one of the problems{
F (D2u,Du, u, x) ≤ −λ+1 u in Ω,

u > 0 in Ω,
(2.2)

{
F (D2u,Du, u, x) ≥ −λ+1 u in Ω,
u(x0) > 0, u ≤ 0 on ∂Ω

(2.3)

for some x0 ∈ Ω. Then u ≡ tϕ+
1 for some t ∈ R. If a function v ∈ C(Ω) satisfies

either (2.1) or the inverse inequalities in (2.2) or (2.3), with λ+1 replaced by λ−1 , then
v ≡ tϕ−

1 for some t ∈ R.
Theorem 2.2 (see [24]). There exists ε0 > 0 depending on N, λ,Λ, γ, δ,Ω such

that the problem

F (D2u,Du, u, x) = −λu in Ω, u = 0 on ∂Ω,(2.4)

has no solutions u �≡ 0 for λ ∈ (−∞, λ−1 + ε0) \ {λ+1 , λ−1 }.
We shall need the following one-sided ABP estimate, which was obtained in [24]

as well. The ABP inequality for proper operators can be found in [12] (an ABP
inequality for the Pucci operator was first proved in [11]). We recall that λ+1 , λ

−
1 are

bounded above and below by constants which depend only on N, λ,Λ, γ, δ,Ω, and that
both principal eigenvalues of any proper operator are positive; see [24].

Theorem 2.3 (see [24]). Suppose the operator F satisfies (H0)−(H3).
I. If λ−1 (F,Ω) > 0, then for any u ∈ C(Ω), f ∈ LN (Ω), the inequality

F (D2u,Du, u, x) ≤ f

implies

sup
Ω
u− ≤ C

(
sup
∂Ω

u− + ‖f+‖LN(Ω)

)
,

where C depends on N, λ,Λ, γ, δ, Ω, and 1/λ−1 .
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1004 P. FELMER, A. QUAAS, AND B. SIRAKOV

II. In addition, if λ+1 (F,Ω) > 0, then F (D2u,Du, u, x) ≥ f implies

sup
Ω
u ≤ C

(
sup
∂Ω

u+ + ‖f−‖LN (Ω)

)
.

Hence, if λ+1 (F,Ω) > 0, then the comparison principle holds: if u, v ∈ C(Ω) are such
that F [u] ≤ F [v] in Ω, u ≥ v on ∂Ω, and either u or v is in W 2,N (Ω), then u ≥ v in
Ω.

Note that this result with f = 0 gives one-sided maximum principles. We also re-
call the following strong maximum principle or Hopf’s lemma, which is a consequence
of the results in [3] (a simple proof can be found in the appendix of [1]).

Theorem 2.4 (see [3]). Suppose w ∈ C(Ω) is a viscosity solution of

M−
λ,Λ(D

2w)− γ|Dw| − δw ≤ 0 in Ω,

and w ≥ 0 in Ω. Then either w ≡ 0 in Ω or w > 0 in Ω, and at any point x0 ∈ ∂Ω

at which w(x0) = 0, we have lim inf t↘0
w(x0+tν)−w(x0)

t > 0, where ν is the interior
normal to ∂Ω at x0.

We are going to use the following regularity result. It was proved in this generality
in [30] (interior estimate) and in [32] (global estimate).

Theorem 2.5 (see [30] and [32]). Suppose the operator F satisfies (H0)−(H2)
and u is a viscosity solution of F (D2u,Du, u, x) = f in Ω, u = 0 on ∂Ω. Then
u ∈W 2,p(Ω), and

‖u‖W 2,p(Ω) ≤ C
(‖u‖L∞(Ω) + ‖f‖Lp(Ω)

)
,

where C depends only on N, p, λ,Λ, γ, δ, Ω.
Next we quote the existence result from [21] and [24].
Theorem 2.6 (see [24]). Suppose the operator F satisfies (H0)−(H3).
I. If λ−1 (F,Ω) > 0, then for any f ∈ Lp(Ω), p ≥ N , such that f ≥ 0 in Ω, there

exists a solution u ∈ W 2,p(Ω) of F (D2u,Du, u, x) = f in Ω, u = 0 on ∂Ω, such that
u ≤ 0 in Ω.

II. In addition, if λ+1 (F,Ω) > 0, then for any f ∈ Lp(Ω), p ≥ N , there exists a
unique viscosity solution u ∈W 2,p(Ω) of F (D2u,Du, u, x) = f in Ω, u = 0 on ∂Ω.

The next theorem is a simple consequence of the compact embedding W 2,p(Ω) ↪→
C1,α(Ω), Theorem 2.5, and the convergence properties of viscosity solutions (see The-
orem 3.8 in [12]).

Theorem 2.7. Let λn → λ in R and fn → f in Lp(Ω), p > N . Suppose F
satisfies (H1) and un is a solution of F (D2un, Dun, un, x) + λnun = fn in Ω, un = 0
on ∂Ω. If {un} is bounded in L∞(Ω), then a subsequence of {un} converges in C1(Ω)
to a function u, which solves F (D2u,Du, u, x) + λu = f in Ω, u = 0 on ∂Ω.

We now give the proof of Theorem 1.1.
Proof of Theorem 1.1. Part 1 is a consequence of Theorems 2.3 and 2.6.
Let us prove part 2. For t ∈ R, let ut be the solution of (1.2) with f as in (1.3);

that is, F [ut] = tϕ+
1 + h, where λ+1 (F ) > 0. Then ‖ut‖/t is bounded as t → −∞.

Indeed, if this is not the case, there exists a sequence {tn} such that we have tn → −∞
and ‖utn/tn‖ → ∞, in particular, ‖utn‖ → ∞. Defining ûn = utn/‖utn‖, we get by
(H0)

F (D2ûn, Dûn, ûn, x) =
tn

‖utn‖
ϕ+
1 +

h

‖utn‖
in Ω, ûn = 0 on ∂Ω.
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RESONANCE FOR STOCHASTIC CONTROL EQUATIONS 1005

The right-hand side of this equation converges to zero in Lp(Ω), so ûn converges
uniformly to zero by Theorem 2.7 (note the limit equation F [û] = 0 has only the
trivial solution, since λ+1 (F,Ω) > 0). This contradicts ‖ûn‖ = 1.

Thus, by Theorem 2.7, for some sequence tn → −∞, we have that

lim
n→∞

utn
−tn = v∗ in C1(Ω),(2.5)

where v∗ satisfies

F (D2v∗, Dv∗, v∗, x) = −ϕ+
1 in Ω, v∗ = 0 on ∂Ω.

By Theorems 2.3 and 2.4, we have v∗ > 0 in Ω and ∂v
∂ν > 0 on ∂Ω. These facts, (2.5),

and the monotonicity of ut in t imply the last two statements of part 2 (the analysis
for t→ ∞ is similar).

That S is Lipschitz follows from (H3) and Theorem 2.3, applied to

F [ut − us] ≥ (t− s)ϕ+
1 and F [us − ut] ≥ (s− t)ϕ+

1 .

Finally, the convexity property of the curve is a consequence of the following
simple lemma and the comparison principle, Theorem 2.3.

Lemma 2.1. Let t0, t1 ∈ R and tk = kt1 + (1 − k)t0 for k ∈ [0, 1]. Suppose
uti ∈ Sti , i = 0, 1. Then the function kut1 + (1− k)ut0 is a supersolution of

F (D2u,Du, u, x) = tkϕ
+
1 + h in Ω, u = 0 on ∂Ω.

Proof. Use F [kut1 + (1− k)ut0 ] ≤ kF [ut1 ] + (1− k)F [ut0 ].
Notation. In what follows it will be convenient for us to write problem (1.1) in

the form {
F (D2u,Du, u, x) + λu = tϕ1(x) + h(x) in Ω,

u = 0 on Ω,
(2.6)

where F is supposed to be proper (if necessary, we replace F by F −δ and λ by λ+δ),
and study its solvability in terms of the value of the parameter λ ∈ R

+. For instance,
Theorem 1.2 corresponds to λ = λ+1 , Theorem 1.4 corresponds to λ = λ−1 , Theorem
1.1 corresponds to λ < λ+1 , etc.

3. Resonance at λ = λ+
1 . Proof of Theorem 1.2. We first set up some

preliminaries. Let {λn} be a sequence such that λn < λ+1 for all n, and limn→∞ λn =
λ+1 . We consider the problem

F (D2u,Du, u, x) + λnu = tϕ+
1 + h in Ω, u = 0 on ∂Ω,

and its unique solution u(n, t). In the following we shall write un(t) = u(n, t) and
also sometimes un or ut instead of u(n, t) when one of the parameters is kept fixed.

We define Γ+
n = {un(t) | t ∈ R}. Recall that, by Theorem 1.1, if s < t, then

un(t) < un(s).
We parameterize Γ+

n in the following way. We take a reference function ũn =
un(t̃n) ∈ Γ+

n , which is arbitrary but fixed for each n ∈ N (later we choose an appro-
priate sequence {ũn}), and we define the function{

dn : Γ+
n → R

dn(u) = sign(u− ũn)‖u− ũn‖.(3.1)
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1006 P. FELMER, A. QUAAS, AND B. SIRAKOV

Lemma 3.1. The function dn : Γ+
n → R is a bijection for each n ∈ N. In addition,

dn is (Lipschitz) continuous.
Proof. By (H3) for any t1, t2 ∈ R (say t1 > t2), we have

F [un(t1)− un(t2)] + λn(un(t1)− un(t2)) ≥ (t1 − t2)ϕ
+
1 .(3.2)

The ABP inequality (Theorem 2.3) applies to this inequality—here we use λn < λ+1 —
so we have

‖un(t1)− un(t2)‖ ≤ Cn|t1 − t2|.

If t1 > t2 > t̃n (the argument is the same if t2 < t1 < t̃n), we get

|dn(u1)− dn(u2)| = ‖ut1 − ũn‖ − ‖ut2 − ũn‖ ≤ ‖ut1 − ut2‖ ≤ Cn|t1 − t2|.

If t1 > t̃n > t2, we have

|dn(u1)− dn(u2)| ≤ ‖ut1 − ũn‖+ ‖ut2 − ũn‖ ≤ Cn(t1 − t̃n + t̃n − t2) = Cn|t1 − t2|,

which proves the Lipschitz continuity.
Assume that dn(un(t1)) = dn(un(t2)); then ‖un(t1) − ũn‖ = ‖un(t2) − ũn‖ and

un(ti) > ũn (or un(ti) < ũn) for i = 1, 2. On the other hand, if t1 �= t2, say t1 < t2,
then un(t1) > un(t2) and, consequently, ‖un(t1) − ũn‖ �= ‖un(t2) − ũn‖, which is
impossible. Thus, dn is one-to-one. By part 2 in Theorem 1.1, we see that dn is
onto.

Now we start the analysis of the resonance at λ = λ+1 (recall we are working with
(2.6)). Given s ∈ R, we define the proposition P(s) as follows:

P(s) : There exist sequences {λn}, {hn} and {un} such that λn < λ+1 for all n,
limn→∞ λn = λ+1 , hn → h in Lp(Ω) as n→ ∞,

F (D2un, Dun, un, x) + λnun = sϕ+
1 + hn,(3.3)

and ‖un‖ is unbounded.
By dividing (3.3) by ‖un‖—thanks to (H0), Theorem 2.1, and Theorem 2.7—we

easily see that this definition is equivalent to the following:
P(s) : There exist sequences {λn} and {hn} such that λn < λ+1 for all n, λn →λ+1 ,

hn → h in Lp(Ω), the solution of F (D2un, Dun, un, x) + λnun = sϕ+
1 + hn

satisfies ‖un‖ → ∞, and

un
‖un‖ → ϕ+

1 > 0 in C1(Ω).

We define

t∗+ = sup{t ∈ R | P(s) for all s < t}.(3.4)

The next lemmas give meaning to this definition.
Lemma 3.2. Given t̄ ∈ R, P(t̄) implies P(t) for all t < t̄.
Proof. Assuming the contrary, there is t0 < t̄ such that P(t0) is false. This means

that for some sequences {λn}, {hn} as above, the sequence of the solutions of

F (D2vn, Dvn, vn, x) + λnvn = t̄ϕ+
1 + hn in Ω, vn = 0 on ∂Ω,
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is unbounded; while the sequence of the solutions of

F (D2un, Dun, un, x) + λnun = t0ϕ
+
1 + hn in Ω, un = 0 on ∂Ω,

is bounded in L∞(Ω). By the comparison principle (Theorem 2.3), vn ≤ un for all
n, since t̄ > t0 and ϕ+

1 > 0. On the other hand, by the one-sided ABP inequality,
Theorem 2.3(I) (note λn is uniformly away from λ−1 ; that is, λ

−
1 (F + λn) ≥ λ−1 (F )−

λ+1 (F ) > 0), the sequence {vn} is bounded below. Thus, {vn} is bounded, which is a
contradiction.

Lemma 3.3. There exists a real number t̄1 = t̄1(h) such that the problem

F (D2u,Du, u, x) + λ+1 u = tϕ+
1 + h in Ω, u = 0 on ∂Ω,(3.5)

has no solutions for t < t̄1.
Proof. Let v be the solution of the Dirichlet problem

F (D2v,Dv, v, x) = −h in Ω, u = 0 on ∂Ω

(this problem is uniquely solvable by the well-known results on proper equations or
by Theorem 2.6). We are going to show that the statement of the lemma is true with

t̄1 = −1− λ+1 sup
x∈Ω

v(x)

ϕ+
1 (x)

.

The last quantity is finite by Theorems 2.3–2.5.
Indeed, if (3.5) has a solution u = u(t) for some t < t̄1, we get

F [u+ v] + λ+1 (u + v) ≤ F [u] + F [v] + λ+1 u+ λ+1 v

≤ tϕ+
1 + λ+1 v ≤ −ϕ+

1 < 0,(3.6)

where we have used F [u + v] ≤ F [u] + F [v], which follows from (H3). Since we have
λ−1 (F + λ+1 ,Ω) = λ−1 − λ+1 > 0, Theorem 2.3(I) again applies and yields u+ v > 0 in
Ω. We can now use Theorem 2.1 and conclude that u + v is a multiple of ϕ+

1 , which
contradicts the strict inequality in (3.6).

Lemma 3.4. The set T = {t ∈ R | P(t)} is not empty.
Proof. Assuming the contrary, we find sequences {tn}, {umn } such that P(tn) is

false, tn → −∞ as n→ ∞, umn satisfies

F (D2umn , Du
m
n , u

m
n , x) + (λ+1 − 1/m)umn = tnϕ

+
1 + h in Ω, umn = 0 on ∂Ω,

for each n, and {umn } is bounded in L∞(Ω) as m → ∞. Hence, by Theorem 2.7, umn
converges as m→ ∞ (up to a subsequence), for each fixed n, to a function un which
satisfies (3.5) with t = tn. This and the previous lemma give a contradiction when tn
is sufficiently small.

Lemma 3.5. The set T is bounded above; that is, t∗+ is a real number.
Proof. Let λn ↗ λ+1 , hn → h in Lp(Ω), and let un = un(t) be such that

F (D2un, Dun, un, x) + λnun = tϕ+
1 + hn in Ω, un = 0 on ∂Ω

(we recall that this problem has a unique solution, since λn < λ+1 and comparison
holds). We need to show {un} is bounded in L∞(Ω) if t is large enough.

First, Theorem 2.3(I) implies that un is bounded below independently of n (we
recall once again that λ−1 (F + λn) ≥ λ−1 − λ+1 > 0).
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Next, let vn be the solution of the Dirichlet problem

F (D2vn, Dvn, vn, x) = min{hn, 0} ≤ 0 in Ω, v = 0 on ∂Ω.

Then vn ≥ 0 in Ω by the maximum principle, {vn} is bounded in C1(Ω) by Theorems
2.3 and 2.5, and

F [vn] + λnvn ≤ min{hn, 0}+ λ+1 vn ≤ hn + tϕ+
1 = F [un] + λnun,

provided

t > λ+1 sup
x∈Ω,n∈N

vn(x)

ϕ+
1 (x)

.(3.7)

By the comparison principle, un ≤ vn; hence, un is bounded above independently
of n. So P(t) is false if (3.7) holds.

The following two propositions give existence and uniqueness of solutions to our
problem at resonance, provided t > t∗+.

Proposition 3.1. 1. If t > t∗+, then the equation

F (D2u,Du, u, x) + λ+1 u = tϕ+
1 + h in Ω, u = 0 on ∂Ω,(3.8)

possesses at least one solution.
2. If t < t∗+, then (3.8) has no solutions.
Proof. 1. Given a sequence {λn} such that λn < λ+1 for all n ∈ N and λn → λ+1

as n→ ∞, there is a sequence {un} such that

F (D2un, Dun, un, x) + λnun = tϕ+
1 + h in Ω, un = 0 on ∂Ω.(3.9)

Then t > t∗ implies that {un} is bounded, so by Theorem 2.7 {un} converges, up to
a subsequence, to a function u satisfying (3.8).

2. Suppose, for contradiction, (3.8) has a solution u for some t < t∗+. Fix
t1 ∈ (t, t∗+). Then P(t1) holds, so for some sequences λn ↗ λ+1 , hn → h, the sequence
of solutions un of

F (D2un, Dun, un, x) + λnun = t1ϕ
+
1 + hn in Ω, un = 0 on ∂Ω,

is such that un ≥ knϕ
+
1 for some kn → ∞. Now let wn be the solution of

F (D2wn, Dwn, wn, x) = hn − h in Ω, un = 0 on ∂Ω.(3.10)

By Theorems 2.3 and 2.5, we know that (up to a subsequence) wn → 0 in C1(Ω).
Hence, by the boundary Lipschitz estimates (see Theorem 2.5 or Proposition 4.9 in
[24]) applied to (3.8) and (3.10), we have

‖u‖+ ‖wn‖ ≤ Cdist(x, ∂Ω),

which implies

un − wn − u > 0

for n sufficiently large. Since wn → 0 and λn → λ+1 , we also have

t1ϕ
+
1 − 2λ+1 |wn| > tϕ+

1 and |u| ≤ t1 − t

2(λ+1 − λn)
ϕ+
1 in Ω.
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However, (H3) implies F [un − wn − u] ≥ F [un]− F [wn]− F [u], so

F [un − wn − u] + λn(un − wn − u) ≥ (t1 − t)ϕ+
1 − λ+1 |wn|+ (λ+1 − λn)u ≥ 0.

Then the maximum principle (Theorem 2.3) gives un − wn − u ≤ 0, which is a
contradiction.

Next we prove the uniqueness of solutions above t∗+. In order to do this, we need
the following simple result on convex functions.

Lemma 3.6. Let f : Rn → R be positively homogeneous of degree one and convex.
If for some u, v ∈ R

n and for some τ > 0 we have

f(u+ τv) = f(u) + τf(v),(3.11)

then (3.11) holds for all τ ≥ 0.
Proof. Using (3.11) and the homogeneity of f , we find that

f(λ0u+ (1− λ0)v) = λ0f(u) + (1− λ0)f(v),

with λ0 = 1/(1 + τ). If there is λ ∈ (λ0, 1) such that

f(λu+ (1− λ)v) < λf(u) + (1− λ)f(v),(3.12)

we take θ = 1− λ0/λ ∈ (0, 1)—that is, (1− θ)λ = λ0—and note that

λ0f(u) + (1 − λ0)f(v) = f(λ0u+ (1− λ0)v)

= f (θv + (1 − θ)(λu + (1− λ)v))

≤ θf(v) + (1− θ)f(λu + (1− λ)v)

< (1− λ0)f(v) + λ0f(u),

which is a contradiction. If there is λ ∈ (0, λ0) such that (3.12) holds, we proceed
similarly. Thus, f(λu + (1 − λ)v) = λf(u) + (1 − λ)f(v) for all λ ∈ [0, 1]. From here
we get the conclusion, taking λ = 1/(1 + t).

Proposition 3.2. 1. If t > t∗+ and u1, u2 satisfy

F (D2ui, Dui, ui, x) + λ+1 ui = tϕ+
1 + h in Ω, ui = 0 on ∂Ω,

i = 1, 2, then u1 = u2.
2. If t = t∗+ and u1, u2 are as in part 1, then u1 = u2 + sϕ1 for some s ∈ R.
Proof. Suppose u1 �= u2, then we may assume there exists x0 ∈ Ω such that

u1(x0) > u2(x0). By (H3), we have F [u1− u2] +λ+1 (u1 − u2) ≥ 0, so by Theorem 2.1,
there exists τ > 0 such that u1 − u2 = τϕ+

1 . This implies

F [u1 + τϕ+
1 ] = F [u1] + τF [ϕ+

1 ] a.e. in Ω(3.13)

(note u1, ϕ
+
1 ∈ W 2,N (Ω)). Consider the function f(X) = F (X, x), where X =

(M,p, u) ∈ SN × R
N × R = R

N2+N+1, and x ∈ Ω is fixed. By hypotheses (H0)
and (H3), the function f is positively homogeneous of degree one and convex in X .
Therefore, we can use Lemma 3.6 to conclude that (3.13) holds for every τ > 0.

We obtain that for every n ∈ N, the function vn = u1 + nϕ+
1 satisfies

F (D2vn, Dvn, vn, x) + λ+1 vn = tϕ+
1 + h in Ω, ui = 0 on ∂Ω.
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1010 P. FELMER, A. QUAAS, AND B. SIRAKOV

It follows that

F [vn] +

(
λ+1 − 1

n2

)
vn = tϕ+

1 + h− 1

n2
u1 − 1

n
ϕ+
1 =: tϕ+

1 + hn

in Ω. Note hn → h in Lp(Ω). However, this is impossible if t > t∗+ by the definition
of t∗+, since ‖vn‖ is unbounded, which means P(t) holds.

Now we study the behavior of the branch Γ+
n as n → ∞. Let ũ be the unique

solution (given by Proposition 3.1) of

F (D2ũ, Dũ, ũ, x) + λ+1 ũ = (1 + t∗+)ϕ
+
1 + h in Ω, ũ = 0 on ∂Ω,

and set

d(u) = sign(u − ũ)‖u− ũ‖.
Lemma 3.7. If ui and ti, i = 1, 2, are such that d(u1) = d(u2) and

F (D2ui, Dui, ui, x) + λ+1 ui = tiϕ
+
1 + h in Ω, ui = 0 on ∂Ω,

for i = 1, 2, then t1 = t2 and u1 = u2.
Proof. By Proposition 3.2 then u1 �= u2 implies t1 �= t2. If t1 �= t2 (say t1 > t2),

F [u1 − u2] + λ+1 (u1 − u2) ≥ (t1 − t2)ϕ
+
1 > 0 in Ω, u1 − u2 = 0 on ∂Ω.

Either there exists x0 ∈ Ω such that u1(x0) > u2(x0) or u1 ≤ u2 in Ω. In the first
case, Theorem 2.1 implies the existence of τ > 0 such that u1 − u2 = τϕ+

1 so that
u1 > u2 in Ω. In the second case, by the strong maximum principle, we have that
u1 = u2 (excluded by t1 �= t2) or u1 < u2 in Ω.

Thus, if u1 �= u2, then either u1 > u2 or u1 < u2 in Ω, and in both cases
d(u1) �= d(u2), completing the proof of the lemma.

We recall (Lemma 3.1) that the set Γ+
n can be reparameterized as a curve by using

the function dn. In the definition of dn we used the arbitrary function ũn, which we
choose now as the unique solution of

F (D2ũn, Dũn, ũn, x) + λnũn = (1 + t∗+)ϕ
+
1 + h in Ω, ũn = 0 on ∂Ω.

By the definition of t∗+, {‖ũn‖} is bounded, so by Theorem 2.7 and the uniqueness
property proved in Proposition 3.2, we find that ũn → ũ, where ũ is as above, the
unique solution of

F (D2ũ, Dũ, ũ, x) + λ+1 ũ = (1 + t∗+)ϕ
+
1 + h in Ω, ũ = 0 on ∂Ω.

By Lemma 3.7, for fixed d ∈ R, the following system in (u, t){
F (D2u,Du, u, x) + λnu = tϕ+

1 + h in Ω, u = 0 on ∂Ω,
dn(u) = d,

(3.14)

has a unique solution (un, tn) in C(Ω) × R. The sequence {un} is bounded, since
‖un− ũn‖ = |d| and {ũn} is bounded. Hence {tn} is also bounded (if not, un/tn → 0,
so by passage to the limit, F [0] = ϕ+

1 ).
Then subsequences of {un} and {tn} converge to a function u = u(d) and a

number t = t(d), which satisfy

F (D2u,Du, u, x) + λ+1 u = tϕ+
1 + h in Ω, u = 0 on ∂Ω.(3.15)
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By Lemma 3.7, the whole sequences {un} and {tn} converge to the same limit that
we call u(d) and t(d).

Lemma 3.8. The map {
U : R → C(Ω)× R

U(d) = (u(d), t(d))

is continuous.
Proof. Take dk → d as k → ∞. Then the sequences uk = u(dk), tk = t(dk) are

bounded, as above. Any convergent subsequence of {(uk, tk)} tends to a solution of
an equation to which Lemma 3.7 applies, so the whole sequences uk, tk converge to
u(d), t(d).

We define Γ+ = {u(d) | d ∈ R}. The last lemma allows us to say that Γ+ is
actually a continuous curve, the pointwise limit of the curves {Γ+

n }.
Lemma 3.9. If t1 > t2 ≥ t∗+, then any two solutions u1, u2 of

F (D2ui, Dui, ui, x) + λ+1 ui = tiϕ
+
1 + h in Ω, ui = 0 on ∂Ω,

are such that u1 < u2 in Ω.
Proof. We already showed in the proof of Lemma 3.7 that either u1 > u2 or

u1 < u2 in Ω. Since the curve Γ+ is the limit of Γ+
n , which is strictly decreasing in t,

u1 > u2 is impossible.
Proof of Theorem 1.2. The set of solutions is {(u(d), t(d)) | d ∈ R}, as the above

discussion shows. Part 1 of the theorem was proved in Proposition 3.1. The first two
statements of part 2 follow from Proposition 3.2 and Lemma 3.9.

For t > t∗, let ut be the solution of

F (D2ut, Dut, ut, x) + λ+1 ut = tϕ+
1 + h in Ω, ut = 0 on ∂Ω.(3.16)

By Lemma 3.9, ut is strictly decreasing in t.
When t→ t∗+, two cases may occur: either ‖ut‖ is bounded or ‖ut‖ → ∞. In the

first case the monotonous sequence ut converges in C1(Ω) to a solution u∗ of (3.16)
with t = t∗+. Then by Proposition 3.2, all solutions u ∈ Γ+ with d(u) ≥ d(u∗) are
solutions of (3.16) with t = t∗+, which is the situation described in part 4(ii). In the

second case ut/‖ut‖ converges in C1(Ω) to ϕ+
1 > 0, which implies part 4(i). Note in

this case there cannot be solutions with t = t∗+ because of Lemma 3.9.
Let us now consider the limit t→ ∞. First, if for some sequence tn → ∞ we have

‖utn‖/tn → 0, then we divide (3.16) by tn, pass to the limit, and get a contradiction.
So ‖ut‖ → ∞ as t→ ∞. By the monotonicity of ut in t, minΩ ut < −1 for sufficiently
large t.

Assume for some sequence tn → ∞, we have ‖utn‖/tn → ∞. Then we divide
(3.16) by ‖utn‖ and see that utn/‖utn‖ converges uniformly to ϕ+

1 , which is impossible,
since utn takes negative values and ϕ+

1 > 0.
So there is a sequence tn → ∞ such that utn/‖utn‖ converges in C1(Ω) to a

solution of

F (D2v,Dv, v, x) + λ+1 v = kϕ+
1 in Ω, v = 0 on ∂Ω,(3.17)

for some k > 0. This problem is the particular case of (2.6) when h = 0. It is clear
that (3.17) has solutions for k ≥ 0 (by Theorem 2.6) and does not have solutions for
k < 0 (by the definition of λ+1 and Theorem 2.1). Further, this problem obviously has
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1012 P. FELMER, A. QUAAS, AND B. SIRAKOV

solutions for k = 0 (in other words, for h = 0 we always are in the case of part 4(ii)),
and the minimal solution at k = 0 is u∗ = 0. Then, by the properties of the curve of
solutions we already proved, (3.17) has a unique solution which satisfies v < u∗ = 0,
since k > 0.

This means utn/‖utn‖ converges in C1(Ω) to a negative function v such that
∂v
∂ν < 0 on ∂Ω (by (3.17) and Hopf’s lemma). This implies statement 3 for the
subsequence utn . Since ut is monotonous, we have statement 3 for all ut.

Finally, let us show that t → ut(x) is convex. With the notations from Lemma
2.1, we note that for each compact interval [t0, t1] ⊂ [t∗+,∞), there exists a function
v ∈ W 2,p(Ω) which is a subsolution of

F (D2u,Du, u, x) + λ+1 u = tkϕ
+
1 + h in Ω, u = 0 on ∂Ω,(3.18)

and v < kut1 + (1 − k)ut0 for each k ∈ (0, 1) (we take ut0 = u∗ if t0 = t∗+). For
instance, we can take v to be the negative solution—given by Theorem 2.6(I)—of the
problem

F [v] + λ+1 v = max{t1, 1}ϕ+
1 +max{h, 0} in Ω, u = 0 on ∂Ω,

and then a take a multiple of v, by a sufficiently large constant, to ensure that v <
ut1 ≤ kut1 +(1−k)ut0 for each k ∈ (0, 1). Then by Lemma 2.1 and the usual sub- and
supersolution method, there exists a solution of (3.18) which is below kut1+(1−k)ut0.
By the uniqueness which we already proved, this solution has to be utk .

Theorem 1.2 is proved.

4. The case λ > λ−
1 . Proof of Theorem 1.5. In this section we prove

Theorem 1.5 and some auxiliary results which will be helpful in our analysis of the
resonance phenomena at λ = λ−1 .

We start with some simple preliminary lemmas which will lead us to the proof of
the first part in Theorem 1.5. Our arguments for Lemmas 4.1–4.2 below are similar
to those in [7], [24], and [1], but we sketch them here for completeness. We define the
operators

Fτ (D
2u,Du, u, x) = τF (D2u,Du, u, x) + (1 − τ)Δu,

and we write λ−1 (τ) = λ−1 (Fτ ) for τ ∈ [0, 1]. Note that Fτ satisfies (H0)−(H3), and,
recalling that we work with (2.6), Fτ is proper, since F is proper.

Lemma 4.1. The function τ → λ−1 (τ) is continuous in the interval [0, 1], and
there exists ε̄ > 0 so that there is no eigenvalue of Fτ in the interval (λ−1 (τ), λ

−
1 (τ)+ ε̄]

for τ ∈ [0, 1].
Proof. Let {τn} be a sequence in [0, 1]; then it follows by Proposition 4.1 in [24]

that the sequence {λ−1 (τn)} is bounded. Then, by a compactness argument and the
simplicity of the eigenvalues, the continuity follows. The isolation property follows by
the same argument as the one used in the proof of Theorem 1.3 in [24].

Lemma 4.2. There exists ε > 0 such that for each λ ∈ (λ−1 , λ
−
1 + ε) and each

n ∈ N, there is a closed connected set C(λ, n) ⊂ C(Ω)× [−n, n], with the property that
for all (u, t) ∈ C(λ, n), we have

F (D2u,Du, u, x) + λu = tϕ+
1 + h in Ω, u = 0 on ∂Ω.

Moreover, if we define the projection P : C(Ω) × R → R as P(u, t) = t, we have
P(C(λ, n)) = [−n, n].
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Proof. For τ ∈ [0, 1], let us define

λ2(τ) = inf{μ > λ−1 (τ) |μ is an eigenvalue of Fτ in Ω}.
Observe that λ2(τ) = +∞ is possible. Then, given λ ∈ (λ−1 , λ

−
1 + ε̄), by the previous

lemma there exists a continuous function μ : [0, 1] → R such that μ(1) = λ, λ−1 (τ) <
μ(τ) < λ2(τ), and the equation

Fτ (D
2u,Du, u, x) + μ(τ)u = 0 in Ω, u = 0 on ∂Ω,(4.1)

has no nontrivial solution for all τ ∈ [0, 1]. Now we define the operator G : R× [0, 1]×
C(Ω) → C(Ω) for (t, τ, v) ∈ R× [0, 1]×C(Ω) as u = G(t, τ, v), where u is the solution
of the equation

Fτ (D
2u,Du, u, x) = −μ(τ)v + tϕ+

1 + h in Ω, u = 0 on ∂Ω.(4.2)

When we restrict the variable t to the interval [−n, n], the operator G becomes
compact. Moreover, there exists R > 0 such that the Leray–Schauder degree
d(I − G(t, τ, ·), BR, 0) is well defined. Indeed, a priori bounds follow directly from
the nonexistence property of (4.1); in fact, if (4.2) has a sequence of solutions un = vn
with ‖un‖ → ∞, we divide (4.2) by ‖un‖, pass to the limit, and get a contradiction.
Then, by the homotopy invariance of the Leray–Schauder degree, we have

d(I −G(t, 1, ·), BR, 0) = d(I −G(t, 0, ·), BR, 0) = −1.

The last equality is a standard fact, since the operator F0 is the Laplacian. Thus,
by the well-known results of [26], see in particular Corollary 10 in chapter V of that
work (alternatively, we refer to [13]), the lemma follows.

We will need the following topological result, whose proof is a direct consequence
of Lemma 3.5.2 in [13].

Lemma 4.3. Let R ⊂ C(Ω) × [−n, n] be a compact connected set such that
P(R) = [−n, n]. If R0 = {(u, t) ∈ R | t ∈ [t−, t+]}, with [t−, t+] ⊂ [−n, n], then there
exists a connected component E0 of R0 such that P(E0) = [t−, t+].

Proof of Theorem 1.5, statement 1. The boundedness of SI for each bounded
interval I is trivial; indeed, if we have a sequence of solutions to the problem which is
unbounded in L∞(Ω), we divide each equation by the norm of its solution, as we have
already done a number of times, and we find a solution which contradicts Theorem
2.2. Recall the regularity result in Theorem 2.5.

For each n ∈ N we define En = C(λ, n) as the connected set given in Lemma
4.2. Then, by Lemma 4.3, there are closed connected subsets EN

n of {(u, t) ∈ En | t ∈
[−N,N ]}, for 1 ≤ N ≤ n, such that P(EN

n ) = [−N,N ] and EN
n ⊂ EN+1

n for N =
1, 2, . . . , n−1. In order to get the last property, we proceed step-by-step, defining EN

n

through Lemma 4.3 by decreasing N starting from n. Now we define the sets EN for
N ∈ N as follows:

EN = {(u, t) ∈ C(Ω)× R | there exist (u�k , t�k) ∈ EN
�k ,

�k ≥ k for all k ∈ N, (u�k , t�k) → (u, t) as k → ∞}.
We notice that EN is closed and P(EN ) = [−N,N ]. Since the pairs (u, t) ∈ EN

n are
solutions of

F (D2u,Du, u, x) + λu = tϕ+
1 + h in Ω, u = 0 on ∂Ω, t ∈ [−N,N ],
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we see that the set EN is composed of solutions of these equations, and consequently,
it is compact in C1(Ω). Then it is easy to see that for all ε > 0, there exists n0 ∈
N such that EN

n ⊂ B(EN , ε) for all n ≥ n0. Here we denote by B(U, ε) the ε-
neighborhood of the set U . Indeed, if there exist ε > 0 and a sequence �k ≥ k such
that (u�k , t�k) ∈ EN

�k
\B(EN , ε), then t�k and u�k are bounded, and a subsequence of

(u�k , t�k) converges to some (u, t) in EN , which is a contradiction.
By the convergence property just proved, we see thatEN is connected. In fact, if it

is not connected, there exist nonempty closed subsets U, V of EN such that U ∩V = ∅
and U ∪ V = EN . By compactness, there exists ε > 0 such that dist(U, V ) > ε, and
then B(U, ε/4) ∩ B(V, ε/4) = ∅ which is impossible, since the connected set EN

n is
contained in B(U, ε/4) ∪B(V, ε/4) for n large enough, as stated in the claim above.

We observe that, according to our construction of the sets EN
n and EN , we have

EN ⊂ EN+1 for all N ∈ N. So to complete the proof of part 1, we just need to
define C = C(λ) = ∪N∈NE

N , which is clearly a closed connected set of solutions, and
P(C) = R.

Before proceeding to the proof of part 2 of Theorem 1.5, we give a generalized
version of the antimaximum principle for fully nonlinear equations, recently proved
in [1].

Proposition 4.1. Let f ∈ Lp(Ω), p > N , be such that f ≤ 0, f �≡ 0 in Ω.
1. There is ε0 > 0 (depending on f) such that any solution of the equation

F (D2u,Du, u, x) + λu = kf in Ω, u = 0 on ∂Ω,(4.3)

satisfies u < 0 in Ω, provided λ ∈ (λ−1 , λ
−
1 + ε0) and k ∈ (0,∞).

2. Equation (4.3) has no solutions if λ = λ−1 and k > 0.
Proof. We first prove statement 2. Suppose there is a solution u of (4.3) with λ =

λ−1 and k > 0. If there exists x0 ∈ Ω such that u(x0) < 0, then by Theorem 2.1, there
exists k0 > 0 such that u = k0ϕ

−
1 , which is a contradiction with f �≡ 0. Therefore,

u ≥ 0 in Ω, and then, by the strong maximum principle, u > 0 in Ω. The existence
of such a function contradicts Theorem 2.1.

Let us now prove statement 1. Suppose there are sequences kn > 0, λn > λ−1 ,
λn → λ−1 , and ũn of solutions of (4.3) such that ũn is positive or zero somewhere in
Ω. Then un = ũn/kn has the same property and solves (4.3) with k = 1. Suppose
first that un is bounded; then a subsequence of un converges uniformly to a solution
of (4.3) with λ = λ−1 and k = 1, which is a contradiction with the result we already
proved in 2. If un is unbounded, then a subsequence of un/‖un‖ converges in C1(Ω)
to the negative function ϕ−

1 —a contradiction as well.
We now prove that the solutions of our equation are negative for small t.
Lemma 4.4. Given R > 0, there are numbers ε > 0 and t̄ such that for all

λ ∈ [λ−1 , λ
−
1 + ε), t ≤ t̄, and h with ‖h‖Lp(Ω) ≤ R, if u solves the equation

F (D2u,Du, u, x) + λu = tϕ+
1 + h in Ω, u = 0 on ∂Ω,(4.4)

then u < 0 in Ω.
Proof. Assuming the result is not true, there are sequences {tn}, {un}, {λn}, and

{hn} such that λn ≥ λ−1 , λn → λ−1 , tn → −∞, ‖hn‖Lp ≤ R, un is positive or zero at
a point in Ω, and

F (D2un, Dun, un, x) + λnun = tnϕ
+
1 + hn in Ω, un = 0 on ∂Ω,

for all n ∈ N. Defining vn = −un/tn, we can easily check that if {vn} is bounded,
then a subsequence of it converges to a solution of F (v) + λ−1 v = −ϕ+

1 in Ω, which
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is a contradiction with part 2 of Proposition 4.1; while if {vn} is unbounded, then a
subsequence of vn/‖vn‖ converges in C1(Ω) to ϕ−

1 < 0, which is a contradiction, since
these functions are positive or zero somewhere.

Proof of Theorem 1.5, statement 2. It remains to analyze the asymptotic behavior
of the set S. Take any ut ∈ St, t ∈ R. It is clear that there exist constants C0, T > 0,
depending only on F , Ω, and h such that ‖ut‖ ≥ C0|t| if |t| ≥ T . Indeed, assuming that
{t/‖ut‖} is not bounded, one easily gets the contradiction 0 = ±ϕ+

1 , after dividing
the equation by t and passing to the limit.

First, suppose for contradiction that there exist a compact set K ⊂ Ω and se-
quences tn → −∞, un ∈ Stn such that utn(xn) ≥ −c for some constant c and some
xn ∈ K. Note that by the previous lemma, we already know that utn < 0 in Ω for
large n. Thus, setting vn = utn/‖utn‖, we have ‖vn‖ = 1, vn < 0 in Ω, vn(xn) → 0 as
n→ ∞, and

F [vn] + λvn = (tn/‖utn‖)ϕ+
1 + h/‖utn‖ in Ω, vn = 0 on ∂Ω.

Now, if tn/‖utn‖ → 0, a subsequence of vn converges to a nontrivial solution of F [v]+
λv = 0, which is a contradiction with λ ∈ (λ−1 , λ

−
1 +ε). On the contrary, if tn/‖utn‖ �→

0, then a subsequence of vn converges uniformly to a solution of F (v) + λv = −kϕ+
1

for some k > 0. In addition v(x0) = 0 for some x0 ∈ K, which is a contradiction with
the antimaximum principle, Proposition 4.1, provided ε < ε0(−ϕ+

1 ), with ε0 defined
in that proposition.

Second, suppose there is a sequence tn → +∞ such that utn ≤ C for some
constant C. Then, as above, either vn = utn/‖utn‖ converges to a nontrivial solution
of F (v) + λv = 0, which is a contradiction with Theorem 2.2, or vn converges to a
nonpositive solution of F (v)+λv = kϕ1 > 0, which is then negative by Hopf’s lemma.
This is a contradiction again, here with the definition of λ−1 and λ > λ−1 . Theorem
1.5 is proved.

5. Resonance at λ = λ−
1 . Proof of Theorem 1.4. In this section we study

the behavior of the set of solutions of our problem in the second resonant case, that is,
when λ = λ−1 . For this purpose we consider a sequence {λn}, with λn ∈ (λ−1 , λ

−
1 + ε)

(everywhere in this section ε = L will be the number which appears in Theorem 1.5,
found in the previous section), which converge to λ−1 , and we study the asymptotic
behavior of the connected sets C = C(λn) ⊂ S(λn) obtained in Theorem 1.5.

We modify the definition of condition P(s) as follows:
P(s): There exist sequences {λn}, {hn}, and {un} such that λn > λ−1 for all n,

limn→∞ λn = λ−1 , hn → h in Lp(Ω),

F (D2un, Dun, un, x) + λnun = sϕ+
1 + hn in Ω, un = 0 on ∂Ω,

and ‖un‖ is unbounded.
Since no confusion arises with the definition given in section 3, we keep the same

notation. As before, P(s) is equivalent to the following:
P(s) : There exist sequences {λn}, {hn}, and {un} such that λn > λ−1 for all n,

limn→∞ λn = λ−1 , hn → h in Lp(Ω), {un} is a sequence of solutions of
F (D2un, Dun, un, x) + λnun = sϕ+

1 + hn such that ‖un‖ → ∞, and

un
‖un‖ → ϕ−

1 < 0 in C1(Ω).

Then we define, as before,

t∗− = sup{t ∈ R | P(s) for all s < t}.(5.1)

D
ow

nl
oa

de
d 

01
/0

1/
13

 to
 1

50
.1

08
.1

61
.7

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1016 P. FELMER, A. QUAAS, AND B. SIRAKOV

The following lemmas are necessary to give sense to this definition.
Lemma 5.1. P(t̄) implies P(t) for all t < t̄.
Proof. Assume that there exists t0 < t̄ such that P(t0) is false. Since P(t̄)

holds, there exist sequences {λn}, {hn}, and {vn} such that λn > λ−1 for all n,
limn→∞ λn = λ−1 , hn → h in Lp(Ω), the solutions of

F (D2vn, Dvn, vn, x) + λnvn = t̄ϕ+
1 + hn in Ω, vn = 0 on ∂Ω,

satisfy limn→∞ ‖vn‖ = ∞, and vn/‖vn‖ converges to ϕ−
1 < 0 in C1(Ω); in other words,

vn ≤ knϕ
−
1 for some sequence kn → ∞. On the other hand, let {un} be any sequence

such that

F (D2un, Dun, un, x) + λnun = t0ϕ
+
1 + hn in Ω, un = 0 on ∂Ω.

Such a sequence exists thanks to Theorem 1.5. Since we are assuming that P(t0) is
false, {‖un‖} is bounded, so a subsequence of {un} converges in C1(Ω).

Then |un| ≤ C|ϕ−
1 | in Ω, by the boundary Lipschitz estimates (recall ϕ−

1 has non-
zero normal derivative on the boundary, by Hopf’s lemma), so the above convergence
properties of vn imply that for n large ψn = vn − un < 0 in Ω. However, by (H3) we
have F [ψn] ≥ F [vn]− F [un], so

F (D2ψn, Dψn, ψn, x) + λnψn ≥ (t̄− t0)ϕ
+
1 > 0 in Ω, ψn = 0 on ∂Ω,

for large n, contradicting the definition of λ−1 , since λn > λ−1 .
Now we prove that t∗− is a real number. We set T = {t ∈ R | P(t)}.
Lemma 5.2. The set T is not empty.
Proof. Assuming the contrary, we find a sequence {tn} such that P(tn) is false

and tn → −∞, which implies the existence of a sequence un satisfying

F (D2un, Dun, un, x) + λ−1 un = tnϕ
+
1 + h in Ω, un = 0 on ∂Ω.

This statement follows from Theorem 2.7 through exactly the same argument as the
one used in the proof of Lemma 3.4. Next, we see that vn = −un/tn is unbounded,
since the contrary implies the existence of a solution to F (D2v,Dv, v, x)+λ−1 v = −ϕ+

1

in Ω, v = 0 on ∂Ω, which was shown to be impossible in Proposition 4.1. Then a
subsequence of un/‖un‖ converges in C1(Ω) to a solution of the equation

F (D2w,Dw,w, x) + λ−1 w = 0 in Ω, w = 0 on ∂Ω,

which implies that w = ϕ−
1 . We conclude that maxK un → −∞ for each compact

K ⊂ Ω. To complete the proof, let v be the solution of

F (D2v,Dv, v, x) = −h in Ω, v = 0 on ∂Ω.

Then, for n large, the function ψ = un + v is negative at some point and satisfies

F (D2ψ,Dψ, ψ, x) + λ−1 ψ ≤ tnϕ
+
1 + λ−1 v in Ω, ψ = 0 on ∂Ω

(we use F [ψ] ≤ F [un] +F [v] which is a consequence of (H0) and (H3)). The quantity
tnϕ

+
1 + λ−1 v is strictly negative for large n, so by Theorem 2.1, we have ψ = kϕ−

1

for some k > 0, which is a contradiction with the strict inequality F [ψ] + λ−1 ψ < 0.
Hence T �= ∅.
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Lemma 5.3. There exists t̄ = t̄(h) ∈ R such that for any t ≥ t̄, we can find
C, δ > 0 such that if ‖h̃− h‖Lp(Ω) < δ, then all solutions to

F (D2u,Du, u, x) + λv = tϕ+
1 + h̃ in Ω, u = 0 on ∂Ω,

with λ ∈ [λ−1 , λ
−
1 + ε), satisfy ‖u‖ ≤ C. In particular, the set T is bounded above by

t̄; that is, t∗− is finite.
Proof. Assuming the contrary, we may find sequences tn → ∞ as n → ∞,

λ
(m)
n ∈ [λ−1 , λ

−
1 + ε), h

(m)
n → h in Lp(Ω) as m→ ∞ for each fixed n, and {u(m)

n } such
that

F (D2u(m)
n , Du(m)

n , u(m)
n , x) + λ(m)

n u(m)
n = tnϕ

+
1 + h(m)

n in Ω, u(m)
n = 0 on ∂Ω,

and {u(m)
n } is unbounded as m→ ∞ for each n. Then, as we have done a number of

times already, we can divide the last equation by ‖u(m)
n ‖ and use Theorem 2.7, which

implies that, up to a subsequence, u
(m)
n /‖u(m)

n ‖ converges in C1(Ω) as m → ∞ to a
function ûn �≡ 0, which solves

F (D2ûn, Dûn, ûn, x) + λnûn = 0 in Ω, ûn = 0 on ∂Ω.

This implies that λn = λ−1 and ûn = ϕ−
1 < 0. Hence u

(m)
n ≤ k

(m)
n ϕ−

1 for some

sequence {k(m)
n } such that k

(m)
n → ∞ as m→ ∞.

Next, we remark that we can find (thanks to Theorems 2.3 and 2.5) a constant
C0 = C0(h) such that for any g ∈ Lp(Ω) with ‖g‖Lp(Ω) ≤ ‖h‖Lp(Ω) + 1, if w is a
solution of

F (D2w,Dw,w, x) = g in Ω, g = 0 on ∂Ω,(5.2)

then ‖w‖W 2,p(Ω) ≤ C0. This, of course, implies w ≥ C̃0ϕ
−
1 for some C̃0 > 0.

Now, for each n, we fix m(n) such that λ
(m(n))
n < λ−1 + 1/n, hn := h

(m(n))
n

satisfies ‖hn − h‖Lp(Ω) ≤ 1/n, and un := u
(m(n))
n < w for each solution w of (5.2). So,

in particular, un < vn, where vn is the solution of

F (D2vn, Dvn, vn, x) = hn in Ω, vn = 0 on ∂Ω.

Then we choose n large enough so that tnϕ
+
1 > λ−1 vn, and we see that the function

ψn = un − vn < 0 satisfies

F (D2ψn, Dψn, ψn, x) + λ−1 ψn ≥ tnϕ
+
1 − λ−1 vn > 0 in Ω, ψn = 0 on ∂Ω.

By Theorem 2.1 we find that ψn = ϕ−
1 , which contradicts the last strict

inequality.
The next result contains part 1 of Theorem 1.4.
Proposition 5.1. The equation

F (D2u,Du, u, x) + λ−1 u = tϕ+
1 + h in Ω, u = 0 on ∂Ω,

(i) has at least one solution if t > t∗− ;
(ii) does not have a solution if t < t∗−.
Proof. (i) is proved in exactly the same way as Proposition 3.1(1), using Theorems

1.5 and 2.7. In order to prove (ii), let t1 ∈ (t, t∗−). By Lemma 5.1, P(t1) holds; then
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1018 P. FELMER, A. QUAAS, AND B. SIRAKOV

there exist sequences {vn}, {hn}, and {λn} such that {vn} is unbounded, λn > λ−1 ,
λn → λ−1 , hn → h, vn/‖vn‖ → ϕ−

1 in C1(Ω), and

F (D2vn, Dvn, vn, x) + λnvn = t1ϕ
+
1 + hn in Ω, vn = 0 on ∂Ω.

Now, supposing (ii) is false, let u and wn be solutions of

F (D2u,Du, u, x) + λ−1 u = tϕ+
1 + h in Ω, u = 0 on ∂Ω,

F (D2wn, Dwn, w, x) = hn − h in Ω, wn = 0 on ∂Ω.

Notice that wn → 0 in C1(Ω). Then, for large n, we have vn < 0, λ−1 vn > λnvn,
vn − wn − u < 0 in Ω, and

F [vn − wn − u] + λ−1 (vn − wn − u) ≥ (t1 − t)ϕ+
1 /2 > 0 in Ω,(5.3)

where we used (H3) which implies F [vn −wn − u] ≥ F [vn]− F [wn]− F [u]. Then, by
Theorem 2.1 once more, we have vn − wn − u = knϕ

−
1 for some number kn ≥ 0, in

contradiction with the strict inequality in (5.3).
The next lemma contains statement 3 in Theorem 1.4.
Lemma 5.4. For each compact interval I ⊂ (t∗−,∞), there exists a constant C

such that for all λ ∈ [λ−1 , λ
−
1 + ε) and all t ∈ I, if u is a solution to

F (D2u,Du, u, x) + λv = tϕ+
1 + h in Ω, u = 0 on ∂Ω,

then ‖u‖W 2,p(Ω) ≤ C.
Proof. Recall we already proved in the previous section that the set of solutions

is bounded for t in a bounded interval, provided λ is away from the eigenvalue λ−1 .
Hence, if the statement of Lemma 5.4 is false, then we can find sequences tn → t0 with
t0 > t∗−, λn → λ−1 (λn = λ−1 is allowed), {un} with ‖un‖ → ∞, and un/‖un‖ → ϕ−

1

such that

F [un] +

(
λn +

1

‖un‖2
)
un = t0ϕ

+
1 + h+ (tn − t0)ϕ

+
1 +

1

‖un‖
(

un
‖un‖

)
= t0ϕ

+
1 + hn.

Clearly, hn → h in Lp(Ω), so the existence of such a sequence contradicts the definition
of the number t∗− and t0 > t∗−.

Before continuing, we set up some notation. The set of solutions C found in
Theorem 1.5 will be denoted by C(λ), remembering we work with the equivalent
equation (2.6). We define the function Q : C(Ω) × R → R as Q(u, t) = ‖u‖ for
(u, t) ∈ C(Ω)× R, and we recall that P is the projection P(u, t) = t. In the proof of
Theorem 1.4 the function Q plays a role similar to that of P in the proof of Theorem
1.5. The following lemma will be needed later.

Lemma 5.5. Given t1 > t∗−, there exists N0 ∈ N such that for every λ ∈ (λ−1 , λ
−
1 +

ε) and N > N0,

N ∈ Q(C(λ)[t1,∞)) ∩ Q(C(λ)(−∞,t1]);

that is, for all λ larger than and sufficiently close to λ−1 and all N large, we can find
u′ and u′′ such that

‖u′‖ = ‖u′′‖ = N, and

F [u′] + λu′ = t′ϕ+
1 + h, F [u′′] + λu′′ = t′′ϕ+

1 + h in Ω,
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where t′ ≥ t1 and t′′ ≤ t1.
Proof. Given t1 > t∗−, we let N0 ∈ N be an upper bound of the set C(λ)t1 ,

uniformly in the interval λ ∈ (λ−1 , λ
−
1 + ε)—such a bound exists by the previous

lemma. The conclusion follows from Theorem 1.5, since the set C(λ) is connected
and the sets C(λ)t contain elements whose norms grow arbitrarily as t → ∞ and as
t→ −∞.

Proof of Theorem 1.4. The proof follows an idea similar to the one used in the
proof of Theorem 1.5, but here we take as a parameter the norm of the solution,
instead of t.

Fix t1 > t∗−. We start with a sequence {λn} with λn > λ−1 and λn → λ−1 as
n→ ∞. Then we look at the connected set of solutions C(λn) given by Theorem 1.5,
and we take N ∈ N, N > N0, where N0 is the number from Lemma 5.5.

By an argument similar to the one given in the previous section (using Lemmas
4.3 and 5.5), we find that for each N = n, n − 1, . . . , N0 + 1, N0, there is a closed
connected subset EN

n ⊂ {(u, t) ∈ C(λn) | ‖u‖ ≤ N} such that

Q((EN
n )[t1,∞)) = [N0, N ] and Q((EN

n )(−∞,t1]) = [N0, N ]

for N = n, n − 1, . . . , N0. For each n ∈ N we construct the sets EN
n , starting with

N = n and successively going down to N = N0. Thus, EN
n ⊂ EN+1

n , N = n −
1, . . . , N0 + 1, N0. Then we define

EN = {(u, t) ∈ C(Ω)× R | there exists (u�k , t�k) ∈ EN
�k
,

�k ≥ k for all k ∈ N, (u�k , t�k) → (u, t) as k → ∞}.
We notice that EN is closed,

Q((EN )[t1,∞)) = [N0, N ], and Q((EN )(−∞,t1]) = [N0, N ].

Since the pairs (u, t) ∈ EN
n are solutions of

F (D2u,Du, u, x) + λnu = tϕ+
1 + h in Ω, u = 0 on ∂Ω,

the bounded in L∞(Ω) set EN is made of solutions of such an equation, but with λ−1
instead of λn, and, consequently, E

N is compact. By a similar argument as the one
in the proof of Theorem 1.5, we can prove that EN is connected. Since, according to
our construction, we have that EN

n ⊂ EN+1
n for all n, we see that EN ⊂ EN+1 for all

N ∈ N. Thus, the set C = ∪N∈NE
N is a closed connected set of solutions and

Q(C[t1,∞)) = [N0,∞) and Q(C[−∞,t1]) = [N0,∞).(5.4)

Next we observe that by the definition of t∗− and (5.4), we have P(C[t1,∞)) = [t1,∞).
On the other hand, by Proposition 5.1, we know that

(t∗−, t1] ⊂ P(C[−∞,t1]) ⊂ [t∗−, t1]

so that we also have Q(C[t∗−,t1]) = [N0,∞). This completes the proof of statement 2
and the first statement in 5 of Theorem 1.4.

Let us look at the asymptotic behavior of the set of solutions S as t→ ∞. First, it
is easily proved that if (ut, t) ∈ S, then limt→∞ ‖u‖ = ∞ (if not, we divide the equation
by t and pass to the limit t → ∞, as before). Suppose now that there is a sequence
tn → +∞ such that for some utn ∈ Stn , we have utn ≤ C for some constant C. Then,
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as in the proof of Theorem 1.5(2), either vn := utn/‖utn‖ converges to a nonpositive
solution v of F [v] + λ−1 v = kϕ+

1 > 0, with v = 0 on ∂Ω, which is negative by Hopf’s
lemma, providing a contradiction with Theorem 2.1, or vn converges to a nontrivial
solution of F [v] + λ−1 v = 0, with v = 0 on ∂Ω. In this case vn converges to ϕ−

1 < 0
in C1(Ω), which implies that for some sequence kn → ∞, we have un ≤ −knϕ+

1 in Ω.
Now let w be the solution of F [w] = h in Ω, with w = 0 on ∂Ω. Then by ‖w‖ ≤ C
and the Lipschitz estimates, we have un − w < 0 in Ω if n is sufficiently large, so

F [un − w] + λ−1 (un − w) ≥ F [un] + λ−1 un − (F [w] + λ−1 w)
≥ tnϕ

+
1 − λ−1 w.

However, the last quantity is positive if n is sufficiently large, yielding a contradiction
with Theorem 2.1. This gives statement 4 in Theorem 1.4.

Next, we see that there is R > 0 so that if (u, t) ∈ S, with t ∈ [t∗−, t1] and
‖u‖∞ ≥ R, then u < 0. In fact, if the contrary is true, then there is a sequence
(un, tn) ∈ S, with tn ∈ [t∗−, t1], ‖un‖∞ → ∞, and such that un is positive or zero
somewhere in Ω. But this is impossible since a subsequence of un/‖un‖ converges in
C1(Ω) to ϕ−

1 , which is negative. By the same argument, we have maxK un → −∞
for each (un, tn) ∈ S such that ‖un‖ → ∞ and tn ∈ [t∗−, t1]. This completes the proof
of statement 5 in Theorem 1.4.

We now turn to the proof of statement 6. Assume the equation

F (D2u,Du, u, x) + λ−1 u = t∗−ϕ
+
1 + h in Ω, u = 0 on ∂Ω,

has an unbounded set of solutions; that is, St∗− is unbounded. Let u1, u2 ∈ St∗− ; then

there exists R1 > 0 so that whenever u ∈ St∗− and ‖u‖ ≥ R1, we have u = u1 + k1ϕ
−
1

for some k1 > 0. In fact, we already know that if ‖u‖ is large enough, then u/‖u‖ is
close in C1(Ω) to ϕ−

1 and then ψ = u− u1 < 0 in Ω. Since ψ satisfies

F (D2ψ,Dψ, ψ, x) + λ−1 ψ ≥ 0 in Ω, ψ = 0 on ∂Ω,

Theorem 2.1 implies ψ = k1ϕ
−
1 . In the same way we get u = u2 + k2ϕ

−
1 if ‖u‖ ≥

max{R1, R2} for some R2 > 0, so u1 − u2 = (k2 − k1)ϕ
−
1 .

Finally, we prove that if u+ k1ϕ
−
1 and u+ k2ϕ

−
1 are in St for some k2 > k1 > 0,

then u+kϕ−
1 ∈ St for each k ∈ (k1, k2). This is a simple consequence of the convexity

and the homogeneity of F . Indeed, setting F̃ = F + λ−1 ,

tϕ+
1 + h = F̃ [u∗ + k1ϕ

−
1 ] + (k − k1)F̃ [ϕ

−
1 ] ≥ F̃ [u∗ + k1ϕ

−
1 + (k − k1)ϕ

−
1 ]

= F̃ [u+ kϕ−
1 ]

= F̃ [u∗ + k2ϕ
−
1 − (k2 − k)ϕ−

1 ] ≥ F̃ [u∗ + k2ϕ
−
1 ]− (k2 − k)F̃ [ϕ−

1 ]

= tϕ+
1 + h.

Theorem 1.4 is proved.

6. Proof of Theorem 1.6. The proof of Theorem 1.6 relies on an estimate on
the difference between the first eigenvalue of an operator on a domain and a proper
subset of the domain, which was proved in [4, Theorem 2.4] in the context of general
linear operators. We give here a nonlinear version of this result.

Given a smooth bounded domain A ⊂ Ω, we write λ+1 (A) for the first eigenvalue
of the operator F on A.
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Proposition 6.1. Assume (H0)–(H3). Let Γ be a closed set in Ω such that
|Γ| ≥ α0 > 0. Then there exists a constant α > 0 depending only on λ,Λ, N, γ, δ,Ω, α0

such that for any smooth subdomain A of Ω \ Γ, we have

λ+1 (A) ≥ λ+1 (Ω) + α.

The proof of Proposition 6.1 is very similar to the proof of Theorem 2.4 in [4].
Below we will mention the points where some small changes have to be made, but
before doing that we show how we get the proof of Theorem 1.6, assuming Proposition
6.1.

Proof of Theorem 1.6. We take d0 = α/2, where α is the number from Propo-
sition 6.1, with α0 = |Ω|/2. Suppose for contradiction that we have two different
solutions u1 and u2 of (1.1), with F satisfying the hypothesis of Theorem 1.6. We
distinguish two cases.

First, suppose the function w = u1 − u2 has a constant sign in Ω, say, w ≤ 0
(otherwise we take w = u2 − u1). Then (H3) implies F (w) ≥ 0 in Ω and then w < 0
in Ω, by Hopf’s lemma. The existence of such a function contradicts the definition of
λ−1 (Ω) and the assumption λ−1 (Ω) < 0; see Theorem 2.1.

Second, if w = u1 − u2 changes sign in Ω, then the sets Ω1 = {x ∈ Ω | u1(x) >
u2(x)} and Ω2 = {x ∈ Ω | u2(x) > u1(x)} are not empty. One of these sets, say Ω1,
satisfies |Ω1| ≤ |Ω|/2. Take Ω̃1 to be any connected component of Ω1 and A to be any
smooth subdomain of Ω̃1. Then the choice of d0, Proposition 6.1, and λ+1 (Ω) ≥ −d0
imply

λ+1 (A) ≥ α/2 > 0.

Take a sequence of smooth domains An ⊂ Ω̃1 which converges to Ω̃1. Then λ
+
1 (An) ≥

α/2 > 0, so by applying the ABP inequality (Theorem 2.3) to F (w) ≥ 0 in An, we
get

sup
An

w ≤ C sup
∂An

w.

Letting n → ∞ implies w ≤ 0 in Ω̃1, since w = 0 on ∂Ω̃1. This is a contradiction
with the definition of Ω1 �= ∅ and proves Theorem 1.6.

Proof of Proposition 6.1. We follow the proof of Theorem 2.4 in [4, section 9]. We
write

F (M,p, u, x) = F (M,p, u, x)− δu+ δu =: F0(M,p, u, x) + δu

so that F0 is a proper operator. The operator F plays the role of L in [4], F0 plays
the role of M , δ replaces c, and we let q = 1 + δ as in [4]. As shown in [12], the
ABP inequality holds for F0, with a constant which depends only on λ,Λ, γ, δ, and
diam(Ω).

In what follows we list the results in [4] which lead to Proposition 6.1, and we
only note the changes needed in order to cover the nonlinear case.

Theorem 9.1 in [4] is proved in the same way here, but we have to choose σ > 0 so
that G(D2eσx1 , Deσx1 , eσx1 , x) ≥ 1—recall G is defined in (H3)—which is easily seen
to be possible by (H1), and then we use the inequality F (M − N, p − q, u − v, x) ≤
F (M,p, u, x)−G(N, q, v, x), which follows from hypothesis (H3).

The proof of Lemma 9.1 in [4] is identical in our situation, as is the proof of
Lemma 9.2, provided we have the concavity of λ+1 (F0 + δ,Ω) in δ for any proper
operator F0 satisfying our hypotheses; see below.
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Theorems 9.2 and 9.3 from [4] are well known to hold for strong solutions, which
is actually the only case in which we use them, if the operators in their statements
are replaced by the operator

L[u] = M−
λ,Λ(D

2u)− γ|u| − δ|u|,
which appears in the left-hand side of (H1)—simply because L[u] is equal to a linear
operator acting on u, whose coefficients depend on u but their bounds do not. Ex-
tensions of these theorems to viscosity solutions can be found in [31], [8], and in the
appendix of [25].

Corollary 9.1 from [4] is proved identically here. Further, we need to modify the
proof of Proposition 9.3 in [4] in the following way: we take ν to be the solution of

G(D2ν,Dν, ν, x)− qν = −χΓ in Ω, ν = 0 on ∂Ω,

where Γ is as defined in Proposition 9.3 in [4]. We easily check that G[·]−q· is proper,
G[u]− qu ≤ G[u] ≤ F [u] ≤ 0 in Ω \ Γ,

F [u− tν] ≤ F [u]− tG[ν] ≤ −tG[ν] = −tqν ≤ −tν
in Ω \ Γ, and the rest of the proof of Proposition 9.3 is the same.

Finally, Proposition 6.1 follows from the above in exactly the same way as Theo-
rem 2.4 in [4] follows from Proposition 9.3 in [4].

For completeness we shall briefly sketch the elementary proof of fact that λ+1 (F0+
δ,Ω) is concave in δ. Note that we can repeat exactly the same reasonings as the ones
given on pages 50 and 68 of [4], with the only difference being that here we need to
have the convexity in z of the operator

F(z)(x) = F0(D
2z +Dz ⊗Dz,Dz, 1, x).

This is the content of the following lemma.
Lemma 6.1. Suppose F = F (M,p, u) satisfies (H0), (H1), and (H3), and let

l : RN → MN(R) be a linear map. Then the function

h(p) := F (l(p) + p⊗ p, p, 1) : RN → R

is convex.
Proof. Suppose F depends only on M . Then (H3) implies F (M) − F (N1) −

F (N2) ≤ F (M −N1 −N2), so for any t ∈ [0, 1] and any p1, p2 ∈ R
N ,

h(tp1 + (1− t)p2)− th(p1)− (1 − t)h(p2)
≤ F ((tp1 + (1− t)p2)⊗ (tp1 + (1− t)p2)− tp1 ⊗ p1 − (1 − t)p2 ⊗ p2) .

(6.1)

By the ellipticity of F , it is enough to show that the argument of F in the last
inequality is a seminegative definite matrix. Since p⊗ q is linear in both p and q, this
is trivially seen to be equivalent to the semipositive definiteness of

(t− t2)(p1 ⊗ p1 + p2 ⊗ p2 − p1 ⊗ p2 − p2 ⊗ p1),

that is, of (t− t2)((p1 − p2) ⊗ (p1 − p2)), which is of course true, since t ∈ [0, 1] and
the eigenvalues of q ⊗ q are 0, . . . , 0, |q|2 for each q ∈ R

N .
If F = F (M,p, u), we have exactly the same reasoning, since in (6.1) we get

F (·, 0, 0).
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linéaires, Publications du Laboratoire d’Analyse Numerique, Universite de Paris VI, Paris,
1975.

[27] B. Sirakov, Non Uniqueness for the Dirichlet Problem for Fully Nonlinear Elliptic Op-
erators and the Ambrosetti-Prodi Phenomenon, preprint, 2009, http://hal.archives-
ouvertes.fr/aut/boyan+sirakov.

D
ow

nl
oa

de
d 

01
/0

1/
13

 to
 1

50
.1

08
.1

61
.7

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1024 P. FELMER, A. QUAAS, AND B. SIRAKOV

[28] S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic problems,
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