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FUNDAMENTAL SOLUTIONS AND TWO PROPERTIES

OF ELLIPTIC MAXIMAL AND MINIMAL OPERATORS

PATRICIO L. FELMER AND ALEXANDER QUAAS

Abstract. For a large class of nonlinear second order elliptic differential op-
erators, we define a concept of dimension, upon which we construct a fun-
damental solution. This allows us to prove two properties associated to these
operators, which are generalizations of properties for the Laplacian and Pucci’s
operators. If M denotes such an operator, the first property deals with the
possibility of removing singularities of solutions to the equation

M(D2u)− up = 0, in B \ {0},
where B is a ball in R

N . The second property has to do with existence or
nonexistence of solutions in RN to the inequality

M(D2u) + up ≤ 0, in R
N .

In both cases a common critical exponent defined upon the dimension number
is obtained, which plays the role of N/(N − 2) for the Laplacian.

1. Introduction

In the study of the semi-linear elliptic partial differential equation

(1.1) ∆u+ f(u) = 0 in Ω ⊂ R
N ,

enormous effort has been directed towards the understanding of the role of the
nonlinearity of f in its interaction with the Laplacian. The case of a simple power
f(s) = ±|s|p−1s is very important in itself and as a model for more general f ; thus
much attention has been directed to the critical values of the exponent p, where
changes in the structure of (1.1) take place. For p > 1 and N ≥ 3, the value

(1.2) p∗ =
N

N − 2

is critical regarding two different properties of solutions to (1.1). First, concerning
solutions in a punctured ball, BR \ {0}, with singularities at the origin and its
possible removability, we have the following theorem proved by Brezis and Veron
in [4].

Theorem 1.1. Assume p > 1 and N ≥ 3. Then the singularities of a solution to
the equation

(1.3) ∆u− |u|p−1u = 0, in B(0, R) \ {0}, R > 0,
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are removable if and only if

(1.4) p ≥ N

N − 2
.

Removability of singularities of solutions to partial differential equations of el-
liptic type has attracted the attention of many authors. We mention in particular
the classical work of Serrin [22], [23], Bers [2], and De Giorgi and Stampacchia [10].
We refer the reader to the monograph by Véron [25] and the paper by Labutin [18]
for further references.

Second, following with the exponent p∗ given in (1.2), we have a result concerning
the existence of super-solutions in R

N , which have been proved by Gidas in [13],

Theorem 1.2. Assume p > 1 and N ≥ 3. Then there are no nontrivial supersolu-
tions for

(1.5) ∆u+ up−1 = 0, u ≥ 0, in R
N

if and only if

p ≤ N

N − 2
.

Keeping the power nonlinearity in equations (1.3) and (1.5) we may consider
a more general operator instead of the Laplacian. Let us consider two numbers
0 < λ ≤ Λ and define the Pucci maximal operator as

(1.6) M+
λ,Λ(M) = sup

a∈[λ,Λ]N

N∑
i=1

aiλi(M),

where M is a symmetric matrix and

λ1(M) ≤ λ2(M) ≤ ... ≤ λN (M)

are the ordered eigenvalues of M . When applied to a twice differentiable function
u, M+

λ,Λ(D
2u) is a differential operator that generalizes the Laplacian; actually,

it becomes the Laplacian when λ = Λ = 1. Associated to M+
λ,Λ there is the

dimension-like number

(1.7) N+
λ,Λ =

λ

Λ
(N − 1) + 1,

whose role in critical exponents for equations such as (1.3) and (1.5) was recently
disclosed. Labutin proved in [18] a result similar to Theorem 1.1, where the Lapla-
cian in (1.3) is replaced by the Pucci operator and the critical exponent (1.2) by

(1.8) p∗(λ,Λ) =
N+

λ,Λ

N+
λ,Λ − 2

.

On the other hand, it was proved by Cutri and Leoni [9] that a result like Theorem
1.2 holds for the Pucci operator instead of the Laplacian and with a critical exponent
such as (1.8).

In view of Theorem 1.1, Theorem 1.2 and its extensions to the Pucci maximal
operator discussed above, it is natural to ask for a larger class of operators so that
these two theorems remain valid. In this article we find a much larger class of
operators for which a fundamental solution can be constructed once an appropriate
notion of dimension is defined. With these ingredients we can prove theorems
generalizing Theorem 1.1 and Theorem 1.2.
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As mentioned above, the main feature of the operators we are considering in this
article is that they have an associated dimension number with which we define a
fundamental solution. Given a closed, convex, bounded subset C of RN

+ , we define,
for every symmetric matrix M , the operator

M+
C (M) = sup

a∈C

N∑
i=1

aiλi(M).

Associated to such an operator, in Section 2 we define a dimension-like number
N+

∞ = N+
∞(C). Now we can write our main theorems, which are extensions of the

corresponding results of Brézis and Véron [4] and Labutin [18], and Gidas [13] and
Cutri and Leoni [9], respectively.

Theorem 1.3. If C is a closed, convex, bounded subset of RN
+ and N+

∞ > 2, then
the singularities of a solution to the equation

(1.9) M+
C (D

2u)− |u|p−1u = 0 in B(0, R) \ {0}
are removable if and only if

(1.10) p ≥ N+
∞

N+
∞ − 2

.

Theorem 1.4. If C is a closed, convex, bounded subset of RN
+ , N+

∞ > 2 and p > 1,
then there are no nontrivial supersolutions for

(1.11) M+
C (D

2u) + up = 0, u ≥ 0, in R
N

if and only if

p ≤ N+
∞

N+
∞ − 2

.

We will see below that the operator M+
C is not necessarily convex and so full

regularity theory for (1.9) and (1.11) is not available. Consequently we consider
solutions (or supersolutions) in the viscosity sense. Theorem 1.3 and Theorem 1.4
may also be stated and proved for the minimal operators M−

C , which are defined

as M+
C , but with the infimum instead of the supremum.

At this point we would like to discuss the relation between the results obtained
in this article and those recently obtained by the authors in [12]. If we consider the
existence of nonnegative solutions (not supersolutions) to (1.11), then the range of
p for nonexistence increases. In particular, if we consider the Laplacian operator,
then it is well known that the range for nonexistence is determined by the Sobolev
critical exponent

p∗ =
N + 2

N − 2
,

as has been proved by Caffarelli, Gidas and Spruck in [6] and Chen and Li [7]. See
also Gidas and Spruck [14] and Serrin and Zou [24]. In view of the role of N+

∞ in
Theorem 1.3 and Theorem 1.4 one may think that the quotient (N+

∞ + 2)/(N+
∞ − 2)

would play the role of the Sobolev critical exponent; however this is not the case.
In fact, we proved in [12] that there is a critical number p∗ satisfying

N+
∞

N+
∞ − 2

< p∗ <
N+

∞ + 2

N+
∞ − 2
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which separates the existence and nonexistence range for p > 1, in the nontrivial
case. In [12] we gave the definition of the dimension number N+

∞ in a slightly
different but equivalent manner. We also mention the earlier article [11], where we
obtained such results for the Pucci operators.

We devote the rest of this article to proving Theorems 1.3 and 1.4. In Section 2
we define in a precise manner the class of the maximal and minimal operators we
consider in the rest of the article. We see the relation between our class and other
natural classes of operators. Then we define the dimension number N+

∞ and we
find fundamental solutions for the maximal (and minimal) operators. In Section
3 we provide a proof of Theorem 1.3. Following the basic approach of [18] we
obtained the removability property using a series of estimates. Here we observe
that our operator is not convex, so only C1,α regularity is available. In Section 4,
we provide a proof of Theorem 1.4; there we use ideas of [9] . In the Appendix we
give a proof of a version of the Strong Maximum Principle, which suits our needs.

2. About extremal operators, dimension and fundamental solutions

In this section we discuss in more detail the class of operators we consider. Let C
be a closed, convex, bounded subset of RN

+ . We denote by SN the set of all N ×N

symmetric matrices and for M ∈ SN we let

λ1(M) ≤ λ2(M) ≤ ... ≤ λN (M)

be the ordered eigenvalues of M . Then we define the extremal operators

M+
C (M) = sup

a∈C

N∑
i=1

aiλi(M) and M−
C (M) = inf

a∈C

N∑
i=1

aiλi(M).

We say that the set C is symmetric if

a = (a1, a2, ..., aN ) ∈ C if and only if a = (aπ(1), aπ(2), ..., aπ(N)) ∈ C,

for all permutations π. The Pucci operators correspond to the class of operators,
where the set C is symmetric. For the operators M+

λ,Λ and M−
λ,Λ we define C =

[λ,Λ]N , while for the second class of Pucci operators, we consider c ∈ [λ,Λ] and

C = {a ∈ [λ,Λ]N /
∑N

i=1 ai = cN}. See [20] and [21].
The class of operators defined above includes operators constructed upon a gen-

eral set of symmetric matrices. More precisely, let A ⊂ SN be such that

(A1) There exist numbers 0 < λ ≤ Λ such that

λI ≤ A ≤ ΛI, ∀A ∈ A,

(A2) A ∈ A if and only if P tAP ∈ A, for all orthogonal matrices P .

For such a class of matrices A we define the extremal operators

P+
A(M) = sup

A∈A
tr(AM) and P−

A (M) = inf
A∈A

tr(AM).

The following lemma connects these two classes of operators.

Lemma 2.1. For every set of symmetric matrices A satisfying (A1) and (A2) there
exists a convex, bounded, symmetric set C such that

(2.1) M+
C = P+

A and M−
C = P−

A .
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Proof. Given a set A satisfying (A1) and (A2), we define the set C in the following
way:

C = {(a11, a22, ..., ann) /A = (aij) ∈ A}.
Then we observe that

P+
A(M) = sup

A∈A
tr(AM)

= sup
A∈A

tr(P tAPD),(2.2)

where M = PDP t, with D diagonal and P orthogonal. Since A = P tAP we see
then that

P+
A(M) = sup

A∈A
tr(AD) = sup

a∈C

N∑
i=1

aiλi(M).

We observe that the set C is symmetric and that we can always consider the convex
envelope of C, without changing the optimal value. �

Still we want to discuss the relation between a class of fully nonlinear operators
and the classes defined above. Let F : SN → R be a function satisfying

(F1) F is convex and positively homogeneous of degree 1.
(F2) There exist numbers 0 < λ ≤ Λ such that

M−
λ,Λ(M) ≤ F (M) ≤ M+

λ,Λ(M),

for all matrices M ∈ SN .
(F3) F (A) = F (P tAP ), for all orthogonal matrices P .

We have the following representation lemma for the function F satisfying the three
properties just given above.

Lemma 2.2. If F is a function satisfying (F1) − (F3), then there exists a set
A ⊂ SN satisfying (A1)− (A2) such that

F (M) = P+
A(M) ∀M ∈ SN .

Proof. Let

A = {A ∈ SN / tr(AB) ≤ F (B), ∀B ∈ SN}.
We see that A satisfies (A1)−(A2) thanks to (F1)−(F2). Then, since F is convex,
we also have

F (M) = sup{tr(AM) /A ∈ A}.
We observe that the homogeneity of F implies that in recovering F from affine
functions, we only need linear functions. �

Related to property (F2) and the convexity of F we have the property called
uniform ellipticity which says: F is uniformly elliptic if

(2.3) M−
λ,Λ(B) ≤ F (M +B)− F (M) ≤ M+

λ,Λ(B), ∀B ∈ SN .

It is not hard to see that in (2.3) it is enough to consider only positively semi-defined
matrices B ∈ SN .

We can see that the operators P+
A , for any given A satisfying (A1)− (A2), are

uniformly elliptic and, consequently, so are the operators in the class of F satisfying
(F1) − (F3). We can also prove that the operators M+

C and M−
C are uniformly
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elliptic. In fact, let 0 < λ ≤ Λ such that C ⊂ [λ,Λ]N , M and B symmetric matrices
such that B ≥ 0, and let ā ∈ C such that

M+
C (M +B) = sup

a∈C

N∑
i=1

aiλi(M + B) =
N∑
i=1

āiλi(M +B).

Then we have

M+
C (M +B)−

N∑
i=1

āiλi(M) =
N∑
i=1

āi(λi(M +B)− λi(M)) ≤ Λ tr(B),

from which it follows that

M+
C (M + B)−M+

C (M) ≤ Λ tr(B).

Proceeding in a similar form we also obtain

M+
C (M +B)−M+

C (M) ≥ λ tr(B),

and then (2.3) follows. Similarly, we can prove that the operatorsM−
C are uniformly

elliptic. Here and in what follows we denote by tr(M) the trace of the matrix M .
On the other hand, the operators M+

C and M−
C are not convex in general. In

order to prove this we provide a simple example. We consider the matrices

M =

(
m 0
0 0

)
and B =

(
0 0
0 n

)
,

where m > n > 0. We also consider the set C = [1, 8]× [1, 2]. Then we have

M+
C (M) = 2m, M+

C (B) = 2n and M+
C (M +B) = 2m+ 8n,

and so the inequality

M+
C (M +B) ≤ M+

C (M) +M+
C (B),

which is a consequence of convexity, does not hold.
We conclude this section by discussing the concept of dimension associated to

the operators M+
C and M−

C . Define

(2.4) c(α) = max
a∈C

−
N−1∑
i=1

ai + (α− 1)aN .

We assume from now on that the set C is such that c(2) < 0. We see that the
function c is continuous, strictly increasing and it satisfies c(α) > 0 for large α.
Thus, there exists a unique number, which we call N+

∞, such that c(N+
∞) = 0. This

number is the dimension associated to M+
C .

If we define

(2.5) b(α) = min
a∈C

−
N−1∑
i=1

ai + (α− 1)aN ,

then we see that b(2) ≤ c(2) < 0. Thus, there exists a unique number, which we
call N−

∞, such that b(N−
∞) = 0. This number N−

∞ is the dimension associated to
M−

C .
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Remark 2.1. We observe that N+
∞ ≤ N−

∞. We also see that

N+
∞ − 1 ≤

∑N−1
i=1 ai
aN

, ∀a ∈ C

and

N−
∞ − 1 ≥

∑N−1
i=1 ai
aN

, ∀a ∈ C.

Remark 2.2. In case c(2) ≥ 0, we can also define dimension-like numbers, but then
N+

∞ ≤ 2. Throughout the paper we will always assume that c(2) < 0 and that
2 < N+

∞ ≤ N−
∞.

The motivation for defining the dimension numbers comes from the definition of
fundamental solutions. When N+

∞ > 2 we define the fundamental solutions of M+
C

and M−
C , respectively, as

φ+(x) =
1

|x|N+
∞−2

and φ−(x) =
1

|x|N−
∞−2

,

and see that

M+
C (D

2φ+) = 0 and M−
C (D

2φ−) = 0.

We also see that

M−
C (D

2(−φ+)) = 0 and M+
C (D

2(−φ−)) = 0.

See [18], [19] and [9] for further discussion on the fundamental solutions for the
Pucci operators M+

λ,Λ and M−
λ,Λ.

3. Proof of Theorem 1.3

In this section we provide a proof of Theorem 1.3, which is a consequence of a
more general theorem that involves more general nonlinearities. But before going
to that, we state a Comparison Principle due to Ishi and Lions [16], which will be
used repeatedely in the proof of our results. See also Jensen [17].

Theorem 3.1. Assume Ω is a bounded domain in R
N . Let F : SN × R → R be a

continuous function satisfying the following two conditions:

(1) There is a positive constant c0 such that

F (M +B, t)− F (M, t) ≥ c0 tr(B),

for all M,B ∈ SN , N ≥ 0 and t ∈ R.
(2)

F (M, t) ≤ F (M, s) ∀t ≥ s,M ∈ SN .

If u, v ∈ C(Ω̄) are the subsolution and the supersolution of

F (D2u, u) = 0 in Ω,

respectively, such that u(x) ≤ v(x) for all x ∈ ∂Ω, then u(x) ≤ v(x) for all x ∈ Ω.

Remark 3.1. In Theorem 3.1 we may assume that F depends also on x. Specifically
we may assume that F : SN × R : Ω → R is a continuous function satisfying x
dependent versions of (1) and (2) and also satisfying

|F (M, t, x)− F (M, t, y)| ≤ c|x− y|, ∀x, y ∈ Ω.
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Then the comparison result holds for the equation

F (D2u, u, x) = 0 in Ω.

Now we consider a more general version of Theorem 3.1.

Theorem 3.2. Let F : SN → R be a continuous function such that, for some
closed, convex, bounded subset C of RN

+ ,

(3.1) M−
C (M) ≤ F (M)− F (0) ≤ M+

C (M),

for all M ∈ SN . Assume that N+
∞ > 2 and also that f : R → R is a continuous

function satisfying

(3.2) lim sup
t→∞

f(t)

tN
+
∞/(N+

∞−2)
< 0 and lim inf

t→−∞

f(t)

|t|N+
∞/(N+

∞−2)
> 0.

If u ∈ Cloc(BR \ {0}) is a solution of the equation

(3.3) F (D2u) + f(u) = 0 in BR \ {0},
then u can be extended continuously to 0 as a solution of (3.3) in BR.

We will prove Theorem 3.2 following the main ideas developed by Labutin in
[18]. We prove first that u can be defined as a continuous function at the origin.

Lemma 3.1. Under the hypotheses of Theorem 3.2, the function u satisfies

lim
x→0

u(x) = u0,

for some u0 in R.

Proof. We consider u = u+ + u−, where u+ = max{u, 0} and u− = min{u, 0}, and
we write p∗ = N+

∞/(N+
∞ − 2). We start by proving that there is a constant β such

that

(3.4) u+(x)rN
+
∞−2 ≤ β, ∀x ∈ BR/2 \ {0}.

Using assumptions (3.1), (3.2) and the definition of a viscosity solution, after proper
scaling, we find that

(3.5) M+
C (D

2u+)− (u+)p∗ + b ≥ 0, ∀x ∈ BR/2 \ {0},
where b ≥ 0 depends on (3.2). We consider the comparison function

U(x) =
µ

(ρ2 − r2)N
+
∞−2

+ ν, x ∈ Bρ,

where the constants ρ, µ and ν are chosen so that U satisfies

(3.6) M+
C (D

2U)− Up∗ + b ≤ 0 ∀x ∈ Bρ,

and limr→ρ U(x) = ∞. See Brézis and Véron [4]. In order to see this, we notice
that the ordered eigenvalues of D2U are

λ1 = ... = λN−1 =
U ′

r
=

2µ(N+
∞ − 2)

(ρ2 − r2)N
+
∞−1

and

λN = U ′′ =
2µ(N+

∞ − 2)(ρ2 + (2N+
∞ − 3)r2)

(ρ2 − r2)N
+
∞

.
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Considering x ∈ Bρ we get from here that

λ1 = ... = λN−1 ≤ 2µρ2(N+
∞ − 2)

(ρ2 − r2)N
+
∞

, λN ≤ 4µρ2(N+
∞ − 2)(N+

∞ − 1)

(ρ2 − r2)N
+
∞

and then

M+
C (D

2U) = max
a∈C

N−1∑
i=1

ai
U ′

r
+ aNU ′′

≤ 2µρ2Λ
(N+

∞ − 2)(N − 1) + 2(N+
∞ − 2)(N+

∞ − 1)

(ρ2 − r2)N
+
∞

,(3.7)

where the numbers 0 < λ ≤ Λ are such that C ⊂ [λ,Λ]N . On the other hand, we
have that

(3.8) UN+
∞/(N+

∞−2) ≥ 1

2

µN+
∞/(N+

∞−2)

(ρ2 − r2)N
+
∞

+
1

2
νN

+
∞/(N+

∞−2).

If we choose

µ =
(
4Λρ2{(N+

∞ − 2)(N − 1) + 2(N+
∞ − 2)(N+

∞ − 1)}
)(N+

∞−2)/2

and

ν = (2b)(N
+
∞−2)/N+

∞ ,

then, from (3.7) and (3.8), we obtain (3.6). Next we consider x0 ∈ BR/4 and ρ =

|x0|/2. We use Theorem 3.1 in order to compare u+ and U(x−x0) in B(x0, |x0|/2)
and we obtain u+(x0) ≤ U(0). From here (3.4) follows.

Next we prove an improved version of (3.4), that is,

(3.9) lim
x→0

u+(x)rN
+
∞−2 = 0.

We assume, for contradiction, that there is a constant K > 0 such that

lim sup
x→0

u+(x)rN
+
∞−2 = K.

For comparison, we define the function

v(x) =
K

rN
+
∞−2

+ max
∂BR/2

u+ + b+ 1, x ∈ BR/2 \ {0}

and we notice that

M+
C (D

2v)− vp∗ + b ≤ 0 in BR/2 \ {0}.

Using the comparison Theorem 3.1 we obtain that

(3.10) u+ ≤ v in BR/2 \ {0}.

This requires some discussion: we replace K by K + ε in the definition of v above
and we apply the comparison theorem in the domain BR/2 \Bρε

, for some ρε > 0,
such that ρε → 0 as ε → 0. Taking the limit we obtain the result.

Next we obtain a sequence of points {xi} satisfying xi → 0 and

lim
i→∞

u+(xi)

v(xi)
= 1.
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Defining δi = |xi| and Ωi = B2δi \ B̄δi/2 we consider the boundary value problem

M+
C (D

2wi)− |wi|p∗−1wi + b = 0 in Ωi,(3.11)

wi = u+ on ∂Ωi.(3.12)

We see that u+ is a C(Ω̄i) viscosity subsolution of equation (3.11)-(3.12). On the
other hand, the function v is a C(Ω̄i) viscosity supersolution of (3.11)-(3.12). The
operator F (M, t) = M+

C (M) − |t|p∗−1t + b satisfies the properties of Theorem 3.1
so that by Perron’s method we can construct a continuous viscosity solution wi to
(3.11)-(3.12), which additionally satisfies

u+ ≤ wi ≤ v in Ωi.

Now we use a rescaling argument as in [18]. Consider Ω = B2 \ B̄1/2 and for every
i define

vδi(x) = δ
N+

∞−2
i v(δix) and wδi(x) = δ

N+
∞−2

i wi(δix), x ∈ Ω.

By definition, it is clear that vδi converges uniformly to Kr−N+
∞+2 over Ω. We also

see that wδi is uniformly bounded in Ω and satisfies

M+
C (D

2wδi)− |wδi |p∗−1wδi + δ
N+

∞
i b = 0 in Ω.

Here we may use the Cα regularity estimates, see for example Cabré and Caffarelli
[5], to obtain that ‖wδi‖Cα(Ω̄) is bounded, for α ∈ (0, 1). This implies that, up to

a subsequence, {wδi} converges uniformly to a w ∈ C(Ω̄) satisfying

M+
C (D

2w)− |w|p∗−1w = 0 in Ω,

and 0 ≤ w(x) ≤ Kr−N+
∞+2 in Ω. Moreover, there exists x0 ∈ Ω such that w(x0) =

K|x0|−N+
∞+2, so that, by the Strong Maximum Principle (see Appendix) w(x) =

Kr−N+
∞+2 + C in Ω, which implies K = 0, a contradiction.

Once we have (3.9) we may compare again u+ with

vε(x) =
ε

rN
+
∞−2

+ max
∂BR/2

u+ + b+ 1, x ∈ BR/2 \ {0},

and take ε → 0, to obtain u+ ∈ L∞(BR/2).

Using similar arguments we obtain u− ∈ L∞(BR/2). Here we start the argument
by proving the existence of β ≥ 0 such that, instead of (3.4),

−β ≤ u−(x)rN
+
∞−2.

We notice that −r−N+
∞+2 is a fundamental solution for M−

C .
We can conclude then that u ∈ L∞(BR/2). To complete the proof we observe

that for some 0 < λ ≤ Λ such that C ⊂ [λ,Λ]N we have

M+
λ,Λ(D

2u) ≥ −|g(x)| and M−
λ,Λ(D

2u) ≤ |g(x)| in Ω,

where g(x) = f(u(x))− F (0) is continuous. Consequently we may use the Krylov-
Safonov-Harnarck inequality and the Alexandrof-Bakelman-Pucci estimate as in
[18] to obtain the continuity of u at 0, by defining u(0) properly. �

Proof of Theorem 3.2. Once we have the continuity of u at the origin, we just need
to prove that the function u is a viscosity solution in 0. For this purpose we may
follow step-by-step the arguments in [18], only changing the Pucci operator by M+

C
and using the function r−N+

∞+2 instead of E+. �
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Finally, we complete the proof of Theorem 1.3 by exhibiting a solution u of (1.9),
which is singular at 0, for every p ∈ (1, p∗).

Proof of Theorem 1.3. Assume N+
∞ > 2 and that p ∈ (1, p∗). We consider the

function
u(x) = a|x|−2/(p−1),

where a is chosen below. We observe that α := 2p/(p− 1) > p∗ > 2, so that

M+
C (D

2u(x)) = r−2p/(p−1)a(α− 2)c(α),

where c(α) > 0. Since up = apr−2p/(p−1), we may choose a so that

ap−1 = (α− 2)c(α)

and then we obtain a solution of

M+
C (D

2u)− up = 0,

with a singularity at the origin. Similarly we can construct a singular solution for
the operator M−

C . �

4. Proof of Theorem 1.4

We devote this section to prove Theorem 1.4, a Liouville-type theorem for super-
solutions for the maximal operators M+

C .
A version of Theorem 1.4 can be proved for the minimal operator and M−

C ,
replacing N+

∞ by N−
∞. We notice that this version of Theorem 1.4 for M−

C implies
a Liouville-type theorem for super-solutions of

F (D2u) + up = 0, u ≥ 0, in R
N ,

if M−
C (M) ≤ F (M) for any symmetric matrix M and p ≤ N−

∞/(N−
∞ − 2).

We start our discussion with a version of the Hadamard Three Spheres Theorem
for the extremal operators. Given u ∈ C(BR), let us define m(r) = min

|x|≤r
u(x), for

0 ≤ r < R.

Theorem 4.1. Assume that N+
∞ > 2. If u ∈ C(BR) is a positive viscosity solution

of

(4.1) M+
C (D

2u) ≤ 0, in BR,

then for any 0 < r1 < r < r2 < R we have

(4.2) m(r) ≥ m(r1)(r
2−N+

∞ − r
2−N+

∞
2 ) +m(r2)(r

2−N+
∞

1 − r2−N+
∞)

r2−N+
∞

1 − r2−N+
∞

2

.

A similar result holds for M−
C , replacing N+

∞ by N−
∞.

Proof. Let us define φ(x) = C1|x|2−N+
∞ + C2, where C1 and C2 are such that

φ(x) = m(r1) on ∂Br1 and φ(x) = m(r2) on ∂Br2 . Since M+
C (D

2φ) = 0 in
Br2 \ Br1 , using comparison Theorem 3.1 we get u(x) ≥ φ(x) in Br2 \ Br1 which
implies the result. �

Remark 4.1. By the Strong Maximum Principle, Theorem A.1 in the Appendix,
given u ∈ C(BR) satisfying (4.1), we have

m(r) = min
|x|≤r

u(x) = min
|x|=r

u(x).
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Corollary 4.1. If u ∈ C(RN ) is a positive viscosity solution of

M+
C (D

2u) ≤ 0, in R
N ,

then the function rN
+
∞−2m(r) is increasing.

A similar result holds for M−
C , replacing N+

∞ by N−
∞.

Proof. First, we observe that u(x) > 0 everywhere, by the Strong Maximum Prin-
ciple, Theorem A.1 in the Appendix. Since the inequality (4.2) holds for all r2,
we may take r2 → ∞. Then, using the positivity of m(r) and that N+

∞ > 2, we
conclude the proof. �

Proof of Theorem 1.4. Assume, for contradiction, that u is a nontrivial super-solu-
tion to equation (1.11). For given r1 > 0 fixed, we consider the function

g(r) = m(r1/2)(1− [(r − r1/2)
+]3/(r1/2)

3),

as in [9]. If we define φ(x) = g(|x|), then the minimum of u−φ in R
N is nonpositive

and it is achieved at a point x̄ = x(r1), such that r1/2 ≤ |x̄| < r1. Thus we can use
φ as a test function of (1.11) at x̄ and get

M+
C (D

2φ(x̄)) + u(x̄)p ≤ 0.

Then

u(x̄)p ≤ 3m(r1/2)

(r1/2)3

[
aN + â

(|x̄| − r1/2)
+

|x̄|

]
(|x̄| − r1/2)

+,

where a = (a1, ..., aN ) is some point in C and â :=
N−1∑
i=1

ai. If |x̄| = r1/2, then we

have u(|x̄|) = 0, which is impossible. Thus, we necessarily have r1/2 < x̄ < r1.
Since m(r1) ≤ u(x̄) ≤ m(r1/2), we get

m(r1) ≤ C
m(r1/2)

1/p

(r1/2)2/p
,

for some positive C. Now we use Corollary 4.1 to obtain

m(r1) ≤ C
1

(r1)2/(p−1)
,

where C is possibly different, but independent of r1. Hence

(4.3) r
N+

∞−2
1 m(r1) ≤ C

1

(r1)2/(p−1)−N+
∞+2

.

If p < N+
∞/(N+

∞−2), then the increasing function r
N+

∞−2
1 m(r1) goes to 0 as r1 → ∞,

providing a contradiction.
In case p = N+

∞/(N+
∞ − 2) we need an extra logarithmic lower bound. Define,

for fixed 0 < r1 < r2,

h(r) = c1
log(1 + r)

rN
+
∞−2

+ c2,

where c1 > 0 and c2 ∈ R are such that h(r1) ≤ m(r1) and h(r2) = m(r2). We
may choose r1 large enough so that h′′(r) > 0 and h′(r) < 0, for r > r1. Let
w(x) = h(|x|). Then

M+
C (D

2w(x)) = aNh′′(r) + â
h′(r)

r
, r1 ≤ r ≤ r2,
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for some a ∈ C. Then, using the maximal character of the operator, we obtain

(4.4) M+
C (D

2w(x)) ≥ a∞N (h′′(r) + (N+
∞ − 1)

h′(r)

r
) ≥ −C

c1

|x|N+
∞
,

where a∞ = (a∞1 , ..., a∞N ) ∈ C is such that â∞/a∞N = N+
∞ − 1, and C is a positive

constant.
On the other hand, using Corollary 4.1, we have

u(x) ≥ m(r1)r
N+

∞−2
1

|x|N+
∞−2

,

for |x| ≥ r1, and then from equation (1.11) we obtain

M+
C (D

2u(x)) ≤ − C1

|x|N+
∞
,

for some positive C1. Therefore, we can use comparison Theorem 3.1, choosing c1
smaller if necessary, to conclude that w(x) ≤ u(x) in Br2 \ Br1 . Letting r2 → ∞
we finally conclude that c2 = 0 and

u(x) ≥ C log(1 + |x|)
|x|N+

∞−2
,

for |x| large and positive C. This is a contradiction with the previous estimate
(4.3).

We notice that the arguments in the case of M−
C are similar, just replacing N+

∞
by N−

∞, except for those leading to (4.4). Here, we consider Remark 2.1 to get

aNh′′(r) + â
h′(r)

r
≥ aN (h′′ + (N−

∞ − 1)
h′(r)

r
),

from which

(4.5) M−
C (D

2w(x)) ≥ −C
c1

|x|N−
∞

follows.
To complete the proof we will construct a supersolution of (1.11), when p >

N+
∞/(N+

∞ − 2). We let q be such that

1

p− 1
< q <

N+
∞ − 2

2

and we define u(r) = Cq(1 + r2)−q. We prove that u is a radial supersolution, for
an appropriate choice of Cq. We first observe that u′′(r) ≥ u′(r)/r for all r > 0.
Then for the function v(x) = u(|x|) we have

M+
C (D

2v(x)) = aN (u′′(r) +
â

aN

u′(r)

r
),

for some a ∈ C. Next we notice that u′′(r) + â
aN

u′(r)/r ≤ 0 for all r. In fact, using
Remark 2.1 and after some calculations, we have

u′′(r) +
â

aN
u′(r)/r ≤ u′′(r) + (N+

∞ − 1)u′(r)/r ≤ −2C̄q(N
+
∞ − 2(q + 1))

(1 + r2)q+1
≤ 0.

Next we define ām = min
a∈C

aN and we obtain

M+
C (D

2v(x)) ≤ ām(u′′(r) + (N+
∞ − 1)

u′(r)

r
),
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since â
aN

≥ N+
∞ − 1 and u′ ≤ 0. Thus

M+
C (D

2v) + vp ≤ −2āmCq(N
+
∞ − 2(q + 1))

(1 + r2)q+1
+

Cp
q

(1 + r2)pq
.

Therefore by the definition of q, we may choose Cq small enough such that the right
hand side is always nonpositive. Thus, we have obtained

M+
C (D

2v(x)) + vp(x) ≤ 0 in R
N .

For the operator M−
C and N−

∞ the last argument follows just from the minimal
character of the operator. �

Appendix: The Strong Maximum Principle

Here we present a form of the Strong Maximum Principle, which is needed in
our arguments. Its proof is essentially given by Birindelli and Demengel [3], but we
present it here for completeness.

Theorem A.1. Let Ω be a domain, c ≥ 0, p ≥ 1 and u, v continuous functions in
Ω. Assume u is a subsolution of

(4.6) M+
C (D

2u)− c|u|p−1u = 0,

and that v is a supersolution of (4.6). Moreover, assume that v(x) ≥ u(x), for all
x ∈ Ω, and that for some x0 ∈ Ω it follows that u(x0) = v(x0). If either u or v is
of class C2(Ω), then u(x) = v(x) for all x ∈ Ω.

Proof. Let us assume, without loss of generality, that u is of class C2(Ω). If u 	= v,
then there is a point x1 ∈ Ω and R > 0 such that B(x1, 3R/2) ⊂ Ω, |x0 − x1| = R
and x0 is the only point in B̄(x1, R) such that u(x0) = v(x0). We assume from now
on that x1 = 0, by performing a proper translation.

Since M+
C is uniformly elliptic, say with ellipticity constants 0 < λ ≤ Λ, and

since u is of class C2(Ω), we can see that w = v − u is a viscosity supersolution of

(4.7) M+
λ,Λ(D

2w)− c(x)w = 0,

where c(x) = c(vp(x)− up(x))/(u(x)− v(x)) if u(x) 	= v(x) and c(x) = 1 whenever
u(x) = v(x). We observe that c(x) is bounded and that c(x) ≥ 0 for all x ∈ Ω.

Let w1 = inf |x|=R/2 w(x). By continuity of w we see that w1 > 0. Next we
construct an appropriate subsolution in the annulus AR = {x /R/2 < |x| < 3R/2}
by considering φ(x) = ae−αr, with r = |x| and α a constant chosen so that

M+
λ,Λ(D

2φ(x))− c(x)φ(x) > 0, for all x ∈ AR.

Next we choose a so that the function ϕ(x) = a(e−αr − e−αR) satisfies ϕ(x) ≤ w1

in |x| = R/2. We observe that

M+
λ,Λ(D

2ϕ(x))− c(x)ϕ(x) > 0, for all x ∈ AR

and ϕ(x) ≤ w(x) on ∂AR. Using the comparison principle we find that ϕ(x) ≤ w(x)
in AR. Since ϕ(x0) = w(x0) = 0, ϕ can be viewed as a test function for equation
(4.7) at x0. Since w is a supersolution we find that

M+
λ,Λ(D

2ϕ(x0))− c(x0)ϕ(x0) ≤ 0,

which is impossible. This completes the proof. �
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