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The recent measurements of gene transcription activity at single
cell resolution revealed that genes are often transcribed randomly
and discontinuously. In order to elucidate how the environmental
signals contribute to the stochasticity of gene transcription, a ran-
dom transition model was recently proposed [M. Tang, The mean
and noise of stochastic gene transcription, J. Theor. Biol. 253
(2008) 271–280; M. Tang, The mean frequency of transcriptional
bursting and its variation in single cells, J. Math. Biol. (2009)
doi:10.1007/s00285-009-0258-7, in press; published online: March
10, 2009]. In this model it is assumed that the transcription
system transits randomly between three different functional states,
quantifying the timing and strength of gene transcription by a
sequence of probability functions Pnx(t), coupled in an infinite
differential system of master equations. Here n � 1 are integers
and x specifies each of the three functional states.
In this work we further study this model aiming to understand the
stochastic dynamics of gene transcription. When n � 3, the exact
form of Pnx(t) is found analytically by solving the system of master
equations. For larger n however, it is unfeasible to find Pnx(t)
explicitly, so we explore the properties of probability functions
by analyzing the master operator L that transforms P (n−1)x(t)
to Pnx(t). We prove that L “mollifies” the behavior of P (n−1)x(t)
by increasing its order of differentiability and by flattening its
growth globally. We also show that the n-th cycle of transcription
activity condenses at distinct peak instants, with a decreasing peak
strength with respect to n. The timings of these peak instants
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are estimated and several further open questions toward a general
theory are discussed.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Gene transcription is central to life: it transfers the information stored in DNA to instructions for
the synthesis of RNAs and proteins, and its products in turn execute virtually all important cellular
functions to accomplish life’s feats of surviving, growing, moving and reproducing.

Induced gene transcription is itself the final outcome of a cascade of cellular signaling processes:
In response to an environmental change, a signal transduction network could be turned on to induce
binding of sequence specific transcription factors (TF) to their cognate sites in gene promoters. The
induced binding activity could then facilitate (or impede) assembling of basal transcription machin-
ery to activate (or repress) gene transcription [11,24]. There could be a large number of proteins in
the excited signal transduction and gene regulation network, and even a more astounding number of
interactions between these proteins. The likelihood of a gene being transcribed depends on the suc-
cession of the protein interactions, which are typically random events due to the diffusion of proteins
in the cell [7,12,16,20].

It was widely accepted in biology that genes are transcribed in a deterministic and continuous
manner. This notion has been reversed by recent measurements at single cell resolution, which have
created revealing evidence that, often, individual genes are transcribed randomly and discontinuously
[3,13,14,18,19,23]. The precise counting of nascent transcripts or proteins in single cells is now possi-
ble due to the recent development of RNA and protein detection techniques [1,2,4,17,25]. The counting
revealed that transcripts and proteins are made in a bursting fashion that short periods of quick pro-
duction of multiple molecules are followed by relatively long periods of no production. It has been
proposed that bursting arises from random switching between “gene on” and “gene off” states [8,10,
15,17]. However, this proposition does not address what mechanisms are responsible for the random
toggle between the gene on state and the gene off state.

In order to elucidate how the environmental signals contribute to the stochasticity of gene tran-
scription, a random transition model was recently proposed and studied [21,22]. In the model, it is
assumed that the transcription system transits randomly between the ground state Q, the excited
state Y, and the engaged state E, along the Markov chain Q

κ
⇀ Y

λ
⇀ E

γ
⇀ Q

κ
⇀ · · ·, where each arrow

denotes a Poisson process. The three parameters κ , λ, and γ are called the induction strength, activa-
tion strength, and promoter fragility, respectively. It is unusual that the transition from Q to Y is treated
as an irreversible stochastic process; see [21,22] for detailed discussion for supporting experimental
evidence. As λ and γ are determined by the biochemical properties of the TF and the genetic prop-
erties of the gene, they remain essentially constants in the transcription system. In contrast, when
the induction agents are not stably applied, the parameter κ can inherit their temporal variation and
spatial heterogeneity. In this case, κ becomes a function of time and the spatial variables, and further
transfers the heterogeneities to the gene expression profiles.

In this work we study the stochastic dynamics of gene transcription for the three state model
discussed above. As in the original work [21,22], we assume that the induction agents are applied
stably so that κ is kept as a constant. We aim to generate illuminating insights for the development
of a general theory on the stochastic dynamics of gene transcription for which cellular signals vary
in time and space. Let X = X(t) denote the discrete variable specifying the transcription system state,
with X(t) = q, y, and e if the system is at states Q, Y and E at time t � 0, respectively. Let N(t) be the
variable counting the number of the state transition events. We say that

(
N(t), X(t)

) = (n, x), n ∈ {1,2,3, . . .} and x ∈ {q, y, e},
if the transcription system is at state X with time t , and has visited X exactly n times (including the
current visiting) since time zero. As in most experimental assays, we assume (N(0), X(0)) = (1,q)
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in order to examine how gene transcription responses to the induction signals. As time goes on,
the system could shift to the excited state, and then transfer to the engaged state. Sequentially, the
transition of the variables (N(t), X(t)) is described by the infinite Markov chain

(1,q)
κ
⇀ (1, y)

λ
⇀ (1, e)

γ
⇀ (2,q)

κ
⇀ · · · (n, y)

λ
⇀ (n, e)

γ
⇀ (n + 1,q)

κ
⇀ · · · . (1.1)

Define Pnx(t) = Prob{(N(t), X(t)) = (n, x)} to be the probability that the system is at state X the
n-th time at time t . The related mathematical question is to find the exact form of the three functions
and to determine their analytical properties under the initial condition

P1q(0) = 1 and Pnx(0) = 0 if x �= q. (1.2)

Clearly P1q(t) = exp(−κt), hence it decays exponentially. The rest of Pnx(t) are governed by the sys-
tem of master equations

dPny(t)

dt
= κ Pnq(t) − λPny(t), (1.3)

dPne(t)

dt
= λPny(t) − γ Pne(t), (1.4)

dP (n+1)q(t)

dt
= −κ P (n+1)q(t) + γ Pne(t). (1.5)

The simplicity of these linear equations has persuaded us to compute Pnx(t) directly through iterative
integrations [5,22]. However, our computation in Section 3 clearly shows that it is an unfeasible task
to obtain the exact form of Pnx(t) for all n � 4. We have to rely on indirect methods to investigate the
analytical properties of Pnx(t). For this purpose, we may treat the cyclic transition of the three system
states as a delayed renewal process, and apply the standard renewal theory of stochastic processes [9]
and the Laplace–Stieltjes transform [6]. However, this method does not permit a simple extension to
the general case when κ changes in time and space, for which the transition within the three states
is no longer a delayed renewal process. Therefore, we utilize a different and self-contained approach,
whose extension to the general theory could be less demanding technically.

Our approach relies on the analysis of the master operator L defined as follows: For any given
continuous function f (t), t � 0, we define

L
(

f (t)
) = κλγ

t∫
0

E11(t − s) f (s)ds, (1.6)

where the kernel function E11(t) = P1e(t)/(κλ). For simplicity, we assume throughout all this paper
that the three parameters κ , λ and γ are distinct to each other. In this case

E11(t) = e−κt

(κ − λ)(κ − γ )
+ e−λt

(λ − γ )(λ − κ)
+ e−γ t

(γ − κ)(γ − λ)
.

The prominent importance of the operator L in our study lies on the following property first estab-
lished in [22]:

Pnx(t) = L
(

P (n−1)x(t)
) = · · · = Ln−1(P1x(t)

)
, n > 1, x = q, y, e. (1.7)

By studying how the properties of f (t) is retained or transformed by L, (1.7) allows us to obtain
analytical properties of Pnx(t) in a systematic way.
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Let f (t) be a function of class Cl([0, t0)), l � 0, and 0 < t0 � ∞. In [22] it was shown that
F (t) = L( f (t)) is of class Cl+3([0, t0)), F (0) = F ′(0) = F ′′(0) = 0, and F ′′′(0) = κλγ f (0). Hence L
“mollifies” the behavior of f (t) by increasing its order of differentiability globally and flattening its
growth locally. In Section 2 we investigate the mollification property further and show that L indeed
flattens the growth of f (t) globally.

Theorem 1.1. Let f (t) be a function of class Cl([0, t0)), l � 0, and 0 < t0 < ∞. Let F (t) = L( f (t)). Then there
exists a constant C0 = C0(t0;κ,λ,γ ) < 1 such that the L1 norm and the L∞ norm of the image is reduced
according to

t0∫
0

∣∣F (t)
∣∣dt � C0

t0∫
0

∣∣ f (t)
∣∣dt, and max[0,t0]

∣∣F (t)
∣∣ � C0 max[0,t0]

∣∣ f (t)
∣∣. (1.8)

Consequently, in any compact subset of [0,∞), limn→∞ Ln( f (t)) = 0. Furthermore, zero is the only fixed point
of L in the linear space C0([0,∞)).

For a finite number t0 > 0, this theorem shows that L defines a contraction map in the space
C0([0, t0)) equipped with either L1 or L∞ norm; here the condition t0 < ∞ is essential, because the
L1 norm of F (t) in C0([0,∞)) is not reduced but maintained when f (t) � 0 for t ∈ (0,∞).

In Section 2 we also describe several qualitative properties that are preserved under the operation
of L, including in particular a P-type property. A differentiable function f (t) defined in (0,∞) is of
P -type if it is positive in (0,∞), it vanishes at both zero and infinity, and has a finite L1 norm and a
unique critical point over (0,∞), see Definition 2.1.

Theorem 1.2. (1) The image L( f (t)) is a P-type function as long as f (t) is of P-type.
(2) Each of Pnx(t), except P1q(t), is a P-type function.
(3) Denote the unique positive critical point of Pne(t) by Tne , then T(n−1)e < Tne and the sequence of

maximum values {Pne(Tne)} is decreasing.
(4) For each n > 1 and t > T(n−1)e , denote by tnf the unique number in the interval (0, T(n−1)e) such that

P (n−1)e(tnf ) = P (n−1)e(t). Define Tng to be the largest number t such that E11(t − tnf ) � E11(t − T(n−1)e).
Then Tne > Tng > T(n−1)e .

Tne defines the exact time at which the n-th cycle of mRNA synthesizing process is most likely to be
seen and we called it the peak instant. The value Pne(Tne) determines the largest portion of the cells
in the isogenic cell population that can undergo the n-th cycle of mRNA production concurrently.
A quantitative description of Tne and Pne(Tne) would help to determine the timing and strength
of transcriptional bursts. Theorem 1.2(4) estimates the relocation of Tne with respect to T(n−1)e . It
remains an open question to describe more precisely the time sequence {Tne} in terms of κ , λ and γ .

There are more open questions left for future studies: Theorem 1.2(3) only indicates that the se-
quence {Pne(Tne)} is decreasing, but provides no further information on their corresponding values.
It would be interesting and useful to characterize {Pne(Tne)} in a more quantitative way, but since
Pne(Tne) cannot be found explicitly, this may require innovative ideas. It would also be very impor-
tant to describe how each of κ , λ and γ contributes individually to the timing and strength of gene
transcription activation. The corresponding mathematical question leads naturally to a system of par-
tial differential equations.

We devote Section 3 to the computation of Pnx(t), n � 3. Despite the fact that Eqs. (1.3)–(1.5) are
linear and simple, the computation needs various sophisticated analytical strategies to manipulate
multiple terms as computer softwares provide little help. To write down Pnx(t) in compact forms, we
use the simplification symbols first introduced in [22]. For a pair of real numbers i and j, define

κi j = 1

(κ − λ)i(κ − γ ) j
, λi j = 1

(λ − γ )i(λ − κ) j
, γi j = 1

(γ − κ)i(γ − λ) j
. (1.9)
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Notice that the order κ → λ → γ → κ → λ → ·· · in the Markov chain (1.1) is used in these symbols,
which are not symmetric on i and j. Let

Eij(t) = κi je
−κt + λi je

−λt + γi je
−γ t . (1.10)

Then we have

P1e(t) = κλE11(t), (1.11)

and as presented in Proposition 3.2,

P2e(t) = κ2λ2γ
(
t E22(t) + 2E23(t) + 2E32(t)

)
.

The explicit formula for P3e(t) is also derived and clearly shows that the complexity of Pne(t) in-
creases dramatically as n becomes large. Due to the symmetry of E11(t) on the system parameters κ ,
λ and γ , γ Pne(t) inherits the same symmetry, which makes Pne(t) significantly simpler than Pnq(t)
or Pny(t), which have more fragile expressions. However, even in the analytical expression of P3e(t),
there are a large number of terms that cannot be absorbed by E∗∗ functions. This makes its exact form
still complex, although it is the most compact form we can menage to derive. Our goal in the compu-
tation of these functions is to exhibit the nature and the complexity of Pnx(t), and demonstrates why
we cannot solve master equations (1.3)–(1.5) subject to the initial condition (1.2) completely, even
though these equations appear simple. We also provide a technical hint for the calculation of Pnx(t)
for n � 4, or the analogs of Pnx(t) when more functional states are incorporated in the transcription
system.

2. Properties of the master operator L and Pnx(t)

As in the earlier study [22], our interest in the master operator L is originated by its basic property
(1.7). We are particularly interested in identifying the mathematical properties that are preserved
under the mapping of L to help us deduce properties of Pnx(t) from those of P (n−1)x(t). This is
of primary importance for understanding the dynamical behavior of Pnx(t) as their exact forms are
typically unavailable.

In addition, we point out that the significance of L could be assessed in some more general setting:
First, it can be applied to a much broader class of functions than Pnx(t), since L( f (t)) is well defined
as long as f is integrable. This establishes its mathematical interest independent of the study of
master equations. Second, L can be extended in an obvious fashion to the case when more functional
states, and an equal number of transition parameters, are integrated into the transcription system.
Most of the properties of L proved in this section can be generalized by using similar arguments,
which could provide a feasible approach for studying more complex models in signal transduction or
gene expression networks.

2.1. Mollification property of L

Our first result shows that the master operator L “mollifies” the behavior of f (t) by increasing its
order of differentiability and flattening its growth globally.

Theorem 2.1 (Mollification property). Let f (t) be a function of class Cl([0, t0)), l � 0, and 0 < t0 � ∞. Let
F (t) = L( f (t)). Then

(1) [22] F (t) is of class Cl+3([0, t0)), and

F (0) = F ′(0) = F ′′(0) = 0, F ′′′(0) = κλγ f (0). (2.1)
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(2) For a finite t0 > 0, define the positive constant

C0 = C0(t0;κ,λ,γ ) = (
1 − e−κt0

)(
1 − e−λt0

)(
1 − e−γ t0

)
< 1.

Then the L1 norm of the image is reduced according to

t0∫
0

∣∣F (t)
∣∣dt � C0

t0∫
0

∣∣ f (t)
∣∣dt. (2.2)

Consequently, in any compact subset A of [0,∞), limn→∞
∫

A |Ln( f (t))|dt = 0.
(3) For a finite t0 > 0, the L∞ norm of the image is reduced according to

max[0,t0]
∣∣F (t)

∣∣ � C0 max[0,t0]
∣∣ f (t)

∣∣. (2.3)

Consequently, in any compact subset of [0,∞), limn→∞ Ln( f (t)) = 0. Furthermore, zero is the only fixed
point of L in the linear space C0([0,∞)).

Proof. (1) To make our discussion self-contained, we outline the proof here, although the technical
detail has been given in [22]. For a given function f (t) ∈ Cl([0, t0)), consider the system of equations

x′
1 = κ f (t) − λx1, x′

2 = λx1 − γ x2, x′
3 = γ x2 − κx3, (2.4)

deduced by a modification of (1.3)–(1.5). Then the unique solution of (2.4) subject to

x1(0) = x2(0) = x3(0) = 0 (2.5)

satisfies

x3(t) = F (t) = L
(

f (t)
)
. (2.6)

The conclusion can be obtained by studying the initial value problem (2.4)–(2.5).
(2) Let (x1(t), x2(t), x3(t)) be the unique solution of (2.4) subject to (2.5). Then

t0∫
0

∣∣x1(t)
∣∣dt � κ

t0∫
0

t∫
0

e−λ(t−s)
∣∣ f (s)

∣∣ds dt

= κ

t0∫
0

eλs
∣∣ f (s)

∣∣
t0∫

s

e−λt dt ds

= κ

λ

t0∫
0

∣∣ f (s)
∣∣(1 − e−λ(t0−s))ds

� κ

λ

(
1 − e−λt0

) t0∫ ∣∣ f (t)
∣∣dt. (2.7)
0
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Similar calculation yields

t0∫
0

∣∣x2(t)
∣∣dt � λ

γ

(
1 − e−γ t0

) t0∫
0

∣∣x1(t)
∣∣dt

and

t0∫
0

∣∣x3(t)
∣∣dt � γ

κ

(
1 − e−κt0

) t0∫
0

∣∣x2(t)
∣∣dt.

As x3(t) = F (t) by (2.6), applying these three inequalities iteratively yields (2.2). Denote by t0 an
upper bound of the compact set A so that A ⊂ [0, t0]. Then (2.2) gives

∣∣∣∣
∫
A

Ln( f (t)
)

dt

∣∣∣∣ �
t0∫

0

∣∣Ln( f (t)
)∣∣dt � Cn

0

t0∫
0

∣∣ f (t)
∣∣dt,

which implies the remaining part of the conclusion immediately.
(3) Similar to the proof of (2.7), we have, for any t � t0,

∣∣x1(t)
∣∣ � κ

t∫
0

e−λ(t−s)
∣∣ f (s)

∣∣ds � κ max[0,t0]
∣∣ f (t)

∣∣
t∫

0

e−λ(t−s) ds

= κ

λ
max[0,t0]

∣∣ f (t)
∣∣(1 − e−λt) � κ

λ

(
1 − e−λt0

)
max[0,t0]

∣∣ f (t)
∣∣.

This gives

max[0,t0]
∣∣x1(t)

∣∣ � κ

λ

(
1 − e−λt0

)
max[0,t0]

∣∣ f (t)
∣∣.

Similar estimates hold when x1, x2, x3, and the parameters κ , λ, and γ are interchanged appropriately.
Applying these estimates iteratively we get (2.3). The rest of the conclusion is easily obtained so we
omit its proof. �

For a finite number t0 > 0, Theorem 2.1 shows that L defines a contraction map in the space
C0([0, t0)) equipped with either L1 or L∞ norm. Here t0 being finite is essential since under some
mild condition on f , a slight modification of the proof of (2.2) yields

∞∫
0

F (t)dt =
∞∫

0

f (t)dt. (2.8)

See the proof of (2.7) for detail. In particular, if f (t) � 0 in (0,∞) and
∫ ∞

0 f (t)dt < ∞, then the L1

norm of the image function in C0([0,∞)) is not reduced but preserved.
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Applying (2.8) to the probability functions Pnx(t), x = q, y, e, we derive

∞∫
0

κ Pnq(t)dt =
∞∫

0

λPny(t)dt =
∞∫

0

γ Pne(t)dt = 1, n � 1. (2.9)

These simple identities can be proved by other means: Since Pnx(t) (except P1q(t)) vanishes at both
zero and infinity, integration of Eqs. (1.3)–(1.5) over (0,∞) directly reveals that the three integrals
in (2.9) are equal. They must equal 1 since

∫ ∞
0 κ P1q(t)dt = 1. Alternatively, we can interpret the

integral
∫ t

0 κ Pnq(t)dt as the probability that the transcription system has left the state (n,q) dur-
ing the time interval (0, t), a definite event that occurs sooner or later. It implies immediately that∫ ∞

0 κ Pnq(t)dt = 1, and the same interpretation of the other two integrals establishes (2.9).
The reduction of the L1 norm in the finite interval under the mapping of L, and the retaining

of the norm over (0,∞), demonstrate that the constant C0 characterizes the reduction quite well.
However, at least for a large class of functions that we discuss later, the L∞ norm over (0,∞) is not
maintained but reduced. Thus (2.3) does not provide a sharp estimate of the maximum of the image
function F (t), leaving open the delicate issue of obtaining one.

Next, we discuss the asymptotic behavior of F (t) = L( f (t)). Assuming that f is continuous and
bounded in [0,∞) we would like to ask does L mollify the function at infinity as well, in the sense
that F (∞) = limt→∞ F (t) = 0? To answer this question, we use definitions (1.10) and (1.6) to compute,
for f (t) ≡ 1,

F (t) = κλγ

t∫
0

(
κ11e−κ(t−s) + λ11e−λ(t−s) + γ11e−γ (t−s))ds

= κλγ

(
κ11

κ

(
1 − e−κt) + λ11

λ

(
1 − e−λt) + γ11

γ

(
1 − e−λt))

= 1 − κλγ

(
κ11

κ
e−κt + λ11

λ
e−λt + γ11

γ
e−λt

)
, (2.10)

where in the last step we applied the third equality proved in Lemma 3.1. Apparently, F (∞) = 1, but
�= 0, which furnishes a negative answer to the question.

Therefore, to ensure that F (∞) = 0, some additional condition is needed. We provide one of such
conditions in

Theorem 2.2. Let f (t) ∈ C0([0,∞)) and
∫ ∞

0 | f (t)|dt < ∞. Then limt→∞ L( f (t)) = 0.

Proof. For any given ε > 0, it suffices to show that there exists a number T = T (ε) > 0 such that if
t � 2T , then

t∫
0

E11(t − s)
∣∣ f (s)

∣∣ds < ε. (2.11)

Let 0 < a < min{κ,λ,γ }. Then there exists a constant e0 > 0 such that

E11(t) < e0e−at for all t > 0. (2.12)

Since
∫ ∞

0 | f (t)|dt < ∞, we have, for t � T ,
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t∫
T

E11(t − s)
∣∣ f (s)

∣∣ds � e0

t∫
T

∣∣ f (s)
∣∣ds � e0

∞∫
T

∣∣ f (s)
∣∣ds < ε/2

provided that T is sufficiently large. On the other hand, if t � 2T and T is sufficiently large, then
by (2.12) we derive

T∫
0

E11(t − s)
∣∣ f (s)

∣∣ds � max
{

E11(t); t � T
} T∫

0

∣∣ f (s)
∣∣ds

< e0e−aT

∞∫
0

∣∣ f (s)
∣∣ds < ε/2.

Hence (2.11) follows and the proof is completed. �
We note that under the conditions of Theorem 2.2, it could happen that f (t) itself does not tend

to zero as t → ∞. In this case, the operator L does mollify the asymptotic behavior of f , although
this mollifying impact is much weaker than the one near t = 0.

2.2. Inherited property of L( f (t))

For a given function f (t) with some known analytical properties, it is useful to know if F (t) =
L( f (t)) inherits these properties. For instance, we like to know if the sign or monotonicity of f (t) is
preserved under the mapping of L. This question turns out to be a nontrivial one as we can construct
increasing function f (t) in a finite interval in which its image F (t) is decreasing.

To provide a technical tool for answering this question, we prove a simple lemma asserting that L
and the differentiation operator D commute if and only if f (0) = 0.

Lemma 2.1. Let f (t) ∈ C1
0([0, t0)) with 0 < t0 � ∞, then

d

dt
L
(

f (t)
) = L

(
f ′(t)

) + κλγ f (0)E11(t). (2.13)

Consequently LD = DL if and only if f (0) = 0, where D denotes the derivative with respect to t.

Proof. The proof uses E11(0) = κ11 + λ11 + γ11 = 0 and follows a straightforward calculation; an
integration by parts gives

L
(

f ′(t)
) = κλγ

t∫
0

E11(t − s) f ′(s)ds

= −κλγ f (0)E11(t) − κλγ

t∫
0

f (s)dE11(t − s). (2.14)

On the other hand, by definition (1.6) we find
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d

dt
L
(

f (t)
) = κλγ

d

dt

t∫
0

E11(t − s) f (s)ds

= κλγ E11(0) f (t) + κλγ

t∫
0

d

dt
E11(t − s) f (s)ds

= −κλγ

t∫
0

f (s)dE11(t − s). (2.15)

Clearly, (2.14) and (2.15) imply (2.13) and that LD = DL if and only if f (0) = 0. �
Definition 2.1. A differentiable function f (t) defined in (0,∞) is of P-type if

(1) it is positive in (0,∞) and it vanishes at both zero and infinity;
(2) it has a unique critical point within (0,∞); and
(3) it has a finite L1 norm, i.e.,

∫ ∞
0 f (t)dt < ∞.

It is clear that a P-type function f (t) takes its absolute maximum value at the unique critical
point in (0,∞), and a positive scalar multiple of a P-type function is again a P-type function. By
Theorem 2.3(3), it is easily seen that all probability functions Pnx(t) (except the first one P1q(t)) are
P-type functions, which motivates us to give the name “P-type”. By (2.9), the P-type functions κ Pnq(t)
(n > 1), λPny(t) and γ Pne(t) are probability density functions for some random variables.

Theorem 2.3. Each of the following properties of f (t) is inherited by F (t) = L( f (t)):

(1) f (t) is continuous and nonnegative (or positive) in (0, t0);
(2) f (t) is differentiable and increasing in (0, t0), provided additionally that f (0) � 0;
(3) f (t) is a P-type function.

In the third case, denote by τ f the unique critical point of f in (0,∞), and τF the unique critical point of F .
Then

τ f < τF and max
(0,∞)

f (t) = f (τ f ) > max
(0,∞)

F (t) = F (τF ). (2.16)

Proof. (1) It is a consequence of definition (1.6) and the fact that P1e(t) > 0 and E11(t) for all t > 0,
which is easy to prove. See (1.11).

(2) If f ′(t) > 0 in (0, t0), then so does L( f ′(t)) > 0 by the first part. Hence (2.13) implies that
F ′(t) > 0 in this interval since f (0) � 0.

(3) Let f (t) be a P-type function. Then F (t) > 0 in (0,∞) by part (1) of this theorem; F (t) ∈
C4((0,∞)), and it vanishes at zero by part (1) of Theorem 2.1; and F (t) vanishes at infinity by The-
orem 2.2. Furthermore, by part (2) of Theorem 2.1,

∫ ∞
0 |F (t)|dt < ∞. Hence conditions (1) and (3) of

Definition 2.1 are satisfied.
As F (t) is positive and vanishes at both zero and infinity, it must have critical points within (0,∞).

Let τ > 0 be an arbitrary critical point of F . Since f increases in (0, τ f ), by definition (1.6) it is easy to
see that L( f ′(t)) > 0 for all t ∈ (0, τ f ]. As f (0) = 0 and LD = DL, F ′(t) = L( f ′(t)) > 0 in (0, τ f ]. This
proves τ > τ f . By part (3) of Theorem 2.1, it holds that F (τ ) < f (τ f ). Therefore, if τ is the unique
critical point of F (so that τ = τF ), then (2.16) necessarily follows.

It remains to prove the uniqueness of τ . For this purpose we see that it is enough to show that
F ′′(τ ) < 0, so that F assumes local maximum value at τ and then τ must be unique. We first derive
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an interesting identity on E11(t). For z = κ , λ or γ , define its conjugate to be z̃ = κ + λ + γ − z, that
is,

κ̃ = λ + γ , λ̃ = κ + γ , γ̃ = κ + λ.

These conjugates induce symbols κ̃11, λ̃11 and γ̃11 as defined in (1.9). These symbols are invariant
under conjugate transformation, as shown, for instance, by

κ̃11 = 1

(κ̃ − λ̃)(κ̃ − γ̃ )
= 1

(λ − κ)(γ − κ)
= κ11.

Similar to (1.10), define Ẽ11(t) = κ̃11e−κ̃t + λ̃11e−λ̃t + γ̃11e−γ̃ t . Then we have

E ′′
11(t)E11(t) − E ′2

11(t) = −Ẽ11(t), (2.17)

which can be verified by a straightforward calculation as follows:

E ′′
11(t)E11(t) − E ′2

11(t)

= (
κ2κ11e−κt + λ2λ11e−λt + γ 2γ11e−γ t)(κ11e−κt + λ11e−λt + γ11e−γ t)
− (

κκ11e−κt + λλ11e−λt + γ γ11e−γ t)2

= (
κ2 + λ2)κ11λ11e−(κ+λ)t + (

κ2 + γ 2)κ11γ11e−(κ+γ )t + (
λ2 + γ 2)λ11γ11e−(λ+γ )t

− 2κλκ11λ11e−(κ+λ)t − 2κγ κ11γ11e−(κ+γ )t − 2λγ λ11γ11e−(λ+γ )t

= (κ − λ)2κ11λ11e−(κ+λ)t + (κ − γ )2κ11γ11e−(κ+γ )t + (λ − γ )2λ11γ11e−(λ+γ )t

= −γ11e−(κ+λ)t − λ11e−(κ+γ )t − κ11e−(λ+γ )t

= −γ̃11e−γ̃ t − λ̃11e−λ̃t − κ̃11e−κ̃t = −Ẽ11(t).

It follows from (2.17) that E11(t) is a log concave function for all t > 0, as the second order
derivative of log E11(t) is negative. In other words, the ratio E ′

11(t)/E11(t) is decreasing for all t > 0.
Associated with τ > τ f we define

C f = E ′
11(t)/E11(t)|t=τ−τ f .

Because E11(t) is positive for all positive t , this implies that E ′
11(t) > C f E11(t) for 0 < t < τ − τ f and

E ′
11(t) < C f E11(t) for τ − τ f < t < τ . Setting t = τ − s then gives

−dE11(τ − s)

ds
− C f E11(τ − s) =

{
< 0, for 0 < s < τ f ,

> 0, for τ f < s < τ.
(2.18)

Continuing the computation of (2.15), and noticing that E11(0) = E ′
11(0) = 0 and f (0) = 0, we find

F ′′(t) = κλγ
d

dt

t∫
0

d

dt
E11(t − s) f (s)ds = κλγ

t∫
0

d2

dt2
E11(t − s) f (s)ds

= κλγ

t∫
f (s)d

(
d

ds
E11(t − s)

)
= −κλγ

t∫
f ′(s)

d

ds
E11(t − s)ds. (2.19)
0 0
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Since F ′(τ ) = 0, it holds that

−
τ∫

0

f ′(s)
d

ds
E11(τ − s)ds = −

τ∫
0

f ′(s)
d

ds
E11(τ − s)ds − C f

τ∫
0

f ′(s)E11(τ − s)ds

=
τ∫

0

f ′(s)

(
− d

ds
E11(τ − s) − C f E11(τ − s)

)
ds < 0

by (2.18) and the fact that f ′(s) > 0 for 0 < s < τ f , and f ′(s) < 0 for s > τ f . Combining this
with (2.19), we see that F ′′(τ ) < 0 and the proof is completed. �

We remark that the uniqueness of positive critical points of F (t) can also be proved by investi-
gating the localization of critical points of x1(t), x2(t) and x3(t) = F (t) defined by the initial value
problem (2.4)–(2.5). Our proof given above is preferred because technically it only requires E11(t) to
be log concave.

We also notice that the additional assumption f (0) � 0 is essential for the assertion of part (2)
in Theorem 2.3. Indeed, for any given number ε > 0, we can construct a function f (t) such that
f (0) = −ε , f (t) is strictly increasing in (0,1), and yet F (t) is strictly decreasing in (0,1). The con-
struction of such a function f is simple, in principle, following from (2.13) and having f ′(t) small
compared to ε . However the actual construction is omitted for brevity.

2.3. Reallocation of the peak instant

By Theorem 2.3 and (1.7) we see that all functions Pne(t) are of P-type. Consequently, each of
Pne(t) admits a unique positive critical point where it attains its absolute maximum value. Denote
this unique critical point by Tne , then

0 < T1e < T2e < · · · < Tne < · · · , (2.20)

and the maximum values {Pne(Tne)} constitutes a decreasing sequence by (2.16). For its biological
significance, we call Tne the peak instant as it defines the exact time at which the n-th cycle of mRNA
synthesizing process is most likely to be seen, and Pne(Tne) predicts the largest portion of the cells in
the isogenic cell population that undergo the n-th cycle of mRNA production concurrently.

In applications, it is therefore a very important question to estimate accurately the peak instant
Tne and to determine how it relates to the timing of cell division. As the exact form of Pne(t) is not
known when n > 3, this cannot be done by working with the function Pne(t) directly. Indeed, even
for the cases n = 1,2 and 3, for which Pne(t) have been found analytically, finding the critical point
exactly is very complicated, if not impossible. We turn to the study of the operation of L on a P-type
function f (t), and discuss how the critical point of the image F (t) = L( f (t)) is reallocated.

Let f (t) be a P-type function, and F (t) = L( f (t)). Denote by τ f and τF their unique positive
critical points, respectively, and denote by τe > 0 the unique critical point of E11(t) as it is also a
P-type function. Notice that by (1.11), τe = T1e . If τ f < τe , then by the symmetry of F on f and E11
and Theorem 2.3, it is clear that τF > τe . For this reason and the fact that Tne > τe for n > 1, we shall
only consider the case τ f � τe further.

Lemma 2.2. Let f (t) be a P-type function whose unique positive critical point τ f � τe . For any t � τ f , let t f
be the unique number in (0, τ f ) such that f (t) = f (t f ). Then there exists a unique number T > τ f such that

E11(T − t f ) = E11(T − τ f ). (2.21)
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Proof. Since f (t) is a P-type function that increases in (0, τ f ) and decreases in (τ f ,∞), for each
t > τ f there corresponds a unique number t f ∈ (0, τ f ) such that f (t) = f (t f ). We first consider the
case that t > τ f is sufficiently close to τ f , then it is clear that t f is also close to τ f since f takes its
unique maximum value at τ f . Therefore, both t − τ f > 0 and t − t f > 0 are within the range where
E11 is an increasing function. Because t − τ f < t − t f , we obtain E11(t − t f ) > E11(t − τ f ). Next, we
consider the case when t > τ f is sufficiently large. In this case, t f becomes sufficiently small because
limt→∞ t f = 0 as f vanishes at both zero and infinity. Therefore, both t − τ f > 0 and t − t f > 0
become very large, and must lie within the range where E11 is a decreasing function, implying that
E11(t − t f ) < E11(t −τ f ). Taken together, the continuity of f and E11 we see that there must be some
T satisfying Eq. (2.21).

Now we prove that there is only one T > 0 satisfying (2.21). We do this by showing that (2.21) is
not valid if T is replaced with any t > T . Because T − τ f < T − T f and E11(t) is increasing in (0, τe)

and decreasing in (τe,∞), we see that

T − τ f < τe < T − T f . (2.22)

Now, if (2.21) were valid for some t > T , then (2.22) should hold when T is replaced by t . It follows
that T − τ f < t − τ f < τe , and therefore E11(t − τ f ) > E11(T − τ f ). On the other hand, from t f < T f
it follows that t − t f > T − T f > τe and E11(t − t f ) < E11(T − T f ) as E11 is decreasing in (τe,∞).
Hence by (2.21) one sees clearly that E11(t − t f ) < E11(t − τ f ). Thus there is no numbers larger than
T satisfying (2.21), and the uniqueness of T is proved. �

From the proof of this lemma it is seen that T defined by (2.21) is indeed the largest number t
such that E11(t − t f ) � E11(t − τ f ).

Theorem 2.4. Let f (t) be a P-type function and let τe , τ f and τF be the respective unique positive critical
points of E11(t), f (t) and F (t) = L( f (t)). Assume τ f � τe . If T is the unique value determined by (2.21), then
τF > T and consequently τF > t whenever E11(t − t f ) � E11(t − τ f ).

Proof. We need to show that F ′(t) > 0 for all 0 < t � T . From the discussion in the proof of Theo-
rem 2.3 it is clear that F ′(t) < 0 as long as t > τF . Hence we only have to prove F ′(T ) > 0 which, in
view of f (0) = 0, and Lemma 2.1 is equivalent to

T∫
0

E11(T − s) f ′(s)ds > 0. (2.23)

Decomposing (0, T ) into three subintervals (0, T f ), (T f , τ f ) and (τ f , T ), and noticing that f ′(s) > 0
for 0 < s < τ f and f ′(s) < 0 for s > τ f , we find

T∫
0

E11(T − s) f ′(s)ds >

τ f∫
T f

E11(T − s) f ′(s)ds +
T∫

τ f

E11(T − s) f ′(s)ds

=
f (τ f )∫

f (T f )

E11(T − s)dx +
f (T )∫

f (τ f )

E11(T − s)dx.

For the first integral of the last expression, both T − s and τe belong to the interval (T − τ f , T − t f )

by (2.22). Hence E11 increases first and then decreases, and E11(t − s) > E11(T − t f ) = E11(T − τ f ). It
follows that
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f (τ f )∫
f (T f )

E11(T − s)dx > E11(T − τ f )
(

f (τ f ) − f (T f )
)
.

Similarly, when s ∈ (τ f , T ), E11(T − s) < E11(T − τ f ) and

f (T )∫
f (τ f )

E11(T − s)dx > −E11(T − τ f )
(

f (τ f ) − f (T )
)

= −E11(T − τ f )
(

f (τ f ) − f (T f )
)

since f (T ) = f (T f ). Thus (2.23) follows at once, and the proof is completed. �
2.4. Properties of Pnx(t)

The analytical results we have obtained on the operator L can be readily applied to the study of
the probability functions Pnx(t). We present here some of the properties of Pne(t) to characterize the
random dynamics of gene on state E. In a parallel fashion, we can derive similar results on Pnq(t) and
Pny(t) to characterize the random dynamics of gene induction and gene excitation governed by the
three state model. For simplicity, we only discuss Pne(t) in detail.

Theorem 2.5. (1) Each of Pne(t) is a P-type function. Denote its unique positive critical point by Tne , then
{Tne} is an increasing sequence, and the sequence of maximum values {Pne(Tne)} is decreasing.

(2) In addition to the fact that all Pne(t) vanish at t = 0, their initial dynamics is further quantified by

Pne(0) = P ′
ne(0) = · · · = P (3n−2)

ne (0) = 0, P (3n−1)
ne (0) = (κλ)nγ n−1, n � 1. (2.24)

(3) For each n > 1 and t > T(n−1)e , denote by tnf the unique number in the interval (0, T(n−1)e) such that
P (n−1)e(tnf ) = P (n−1)e(t). Define Tng to be the largest number t such that E11(t − tnf ) � E11(t − T(n−1)e).
Then Tne > Tng > T(n−1)e .

Proof. (1) As we have already mentioned, P1e(t) = κλE11(t) is a P-type function. By Theorem 2.3(3)
all functions Pne(t), n � 1, are of P-type. The remaining assertion of this part follows from (2.16) at
once.

(2) By direct calculation it is easy to find that P1e(0) = P ′
1e(0) = 0 and P ′′

1e(0) = κλ. Applying the
mollification property of L repeatedly we establish (2.24) in general.

(3) Note that T1e , the unique positive critical point of P1e(t) is equal to τe , the unique positive
critical point of E11(t). Therefore, the critical points Tne , n > 1, appear behind τe so that the assertion
follows from Theorem 2.4 immediately. �
3. Calculation of Pnx(t), n = 1,2,3

Even though Eij(t) and the operator L are well-defined when two or three of κ , λ and γ are
identical, our calculation will be presented only for distinct parameters. By taking limits appropriately,
the results can be extended to the degenerate cases when two or more of them are the same.

The functions P1x(t) are simple:

P1q(t) = e−κt, P1y(t) = κ (
e−κt − e−λt), (3.1)
λ − κ



1810 P.L. Felmer et al. / J. Differential Equations 247 (2009) 1796–1816
and P1e(t) is given by (1.11). In what follows, we compute P2x(t) and P3e(t), using the fundamen-
tal property (1.7) of the master operator L. The calculation demonstrates clearly that the analytical
expressions of Pnx(t) are very complicated, complexity dramatically increases with n, n � 3. Finding
P3x(t) is already a highly nontrivial and tedious process. It requires various sophisticated analyti-
cal strategies to manipulate multiple terms, since computer softwares provide little help. We will
not continue our calculation for n � 4 for its enormous technical complexity. As the calculation is
inevitably complex, we try to make the exposition as less tedious, and sometimes even joyful, as
possible.

We begin with some interesting identities of the symbols defined in (1.9).

Lemma 3.1. Let κi j , λi j and γi j be defined in (1.9). Then

κ11 + λ11 + γ11 = 0, κκ11 + λλ11 + γ γ11 = 0, and
κ11

κ
+ λ11

λ
+ γ11

γ
= 1

κλγ
. (3.2)

Proof. These identities can be verified by working with definition (1.9) directly. We prove the third
identity which is slightly harder than the others. By the first equality, we change γ11 to −κ11 − λ11
and convert the left side of the third equality to

κ11

(
1

κ
− 1

γ

)
+ λ11

(
1

λ
− 1

γ

)
= γ − κ

(κ − λ)(κ − γ )κγ
+ γ − λ

(λ − γ )(λ − κ)λγ

= 1

κγ (λ − κ)
+ 1

λγ (κ − λ)

which is evidently 1/(κλγ ). The proof is completed. �
Lemma 3.2. Let κi j , λi j and γi j be defined in (1.9). We also have

λ12 + γ21 = κ12 + κ21, κ12 + λ21 = γ12 + γ21, γ12 + κ21 = λ12 + λ21, (3.3)

−κ(i+1) jλ11 − κi( j+1)γ11 = κ(i+1)( j+2) + κ(i+2)( j+1), (3.4)

and

−κ(i+2) jλ11 − κi( j+2)γ11 = κ(i+3)( j+1) + κ(i+2)( j+2) + κ(i+1)( j+3). (3.5)

The proof of (3.3)–(3.5) is omitted since all equalities can be verified directly. By permutation
symmetry, each of (3.4) and (3.5) has two analogous identities which we do not write out explicitly.
These identities will be needed in simplifying various terms in our calculation of Pnx(t).

Lemma 3.3. The images of exp(−κt), exp(−λt), and exp(−γ t) under the mapping of the master operator L
are

L
(
e−κt) = κλγ

(
κ11te−κt + (κ12 + κ21)e−κt − λ12e−λt − γ21e−γ t), (3.6)

L
(
e−λt) = κλγ

(
λ11te−λt + (λ12 + λ21)e−λt − γ12e−γ t − κ21e−κt), (3.7)

L
(
e−γ t) = κλγ

(
γ11te−γ t + (γ12 + γ21)e−γ t − κ12e−κt − λ21e−λt). (3.8)
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Proof. Applying L to exp(−κt) we find

L
(
e−κt) = κλγ

t∫
0

(
κ11e−κt + λ11e(λ−κ)s−λt + γ11e(γ −κ)s−γ t)ds

= κλγ
(
κ11te−κt + λ12e−κt − λ12e−λt + γ21e−κt − γ21e−γ t).

By the first identity of the three parallel relations (3.3) we can rewrite this as (3.6). By permutation
symmetry we obtain (3.7)–(3.8) from (3.6). �
Proposition 3.1. The probability functions P2q(t) and P2y(t) are provided by

P2q(t) = κλγ
(
κ11te−κt + (κ12 + κ21)e−κt − λ12e−λt − γ21e−γ t), (3.9)

and

− P2y(t)

κ2λγ
= κ21te−κt + (κ22 + 2κ31)e−κt + λ12te−λt + (λ22 + 2λ13)e−λt − γ22e−γ t . (3.10)

Proof. From (1.7) and (3.1) it is seen that P2q(t) is simply the image of e−κt ; hence (3.9) follows from
(3.6) immediately. By (1.7) and (3.1) again we find

P2y(t) = κ

λ − κ
L
(
e−κt − e−λt) = −κ

(
κ10L

(
e−κt) + λ01L

(
e−λt)).

Substituting (3.6) and (3.7) gives

P2y(t) = −κ2λγ
(
κ21te−κt + (κ22 + κ31)e−κt + λ13e−λt − κ10γ21e−γ t

+ λ12te−λt + (λ13 + λ22)e−λt − λ01γ12e−γ t + κ31e−κt),
here we have used the simple relations κ10κi j = κ(i+1) j and λ10λi j = λ(i+1) j . To move on, we note
that

κ10γ10 + λ01γ01 = 1

(κ − λ)(γ − κ)
+ 1

(λ − κ)(γ − λ)
= 1

(γ − κ)(γ − λ)
= γ11

and therefore κ10γ21 + λ01γ12 = γ22. This helps derive (3.10) finally. �
In order to analyze Pne(t) and the power Ln in a more systematic way, we first calculate the

convolution of E11(t) and ti Ei j(t), i = 0,1.

Lemma 3.4. The convolution of Ei j(t) and E11(t) is

t∫
0

Eij(t − s)E11(s)ds = t E(i+1)( j+1)(t) + E(i+1)( j+2)(t) + E(i+2)( j+1)(t)

+ κ11(λi( j+1) + γ(i+1) j)e−κt + λ11(γi( j+1) + κ(i+1) j)e−λt

+ γ11(κi( j+1) + λ(i+1) j)e−γ t .
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When i = j = 1 we have in particular

t∫
0

E11(t − s)E11(s)ds = t E22(t) + 2E23(t) + 2E32(t). (3.11)

The convolution of t Ei j(t) and E11(t) is

t∫
0

(t − s)Eij(t − s)E11(s)ds =
t∫

0

sEi j(s)E11(t − s)ds

= t2

2
E(i+1)( j+1)(t) + t

(
E(i+1)( j+2)(t) + E(i+2)( j+1)(t)

)
+ E(i+1)( j+3)(t) + E(i+2)( j+2)(t) + E(i+3)( j+1)(t)

+ (λi jκ31 + γi jκ13)e−κt + (κi jλ13 + γi jλ31)e−λt

+ (κi jγ31 + λi jγ13)e−γ t .

Proof. Using definition (1.10), we expand the product of Eij(t − s) and E11(s) as

Eij(t − s)E11(s) = E(i+1)( j+1)(t) + κi jλ11e(κ−λ)s−κt + κ11λi je
(λ−κ)s−λt

+ κi jγ11e(κ−γ )s−κt + κ11γi je
(γ −κ)s−γ t + γi jλ11e(γ −λ)s−γ t + γ11λi je

(λ−γ )s−λt .

Integrating both sides gives

t∫
0

Eij(t − s)E11(s)ds = t E(i+1)( j+1)(t) + κ(i+1) jλ11
(
e−λt − e−κt) + κ11λi( j+1)

(
e−κt − e−λt)

+ κi( j+1)γ11
(
e−γ t − e−κt) + κ11γ(i+1) j

(
e−κt − e−γ t)

+ γi( j+1)λ11
(
e−λt − e−γ t) + γ11λ(i+1) j

(
e−γ t − e−λt)

= t E(i+1)( j+1)(t) + (κ(i+1) jλ11 − κ11λi( j+1))
(
e−λt − e−κt)

+ (κi( j+1)γ11 − κ11γ(i+1) j)
(
e−γ t − e−κt)

+ (γi( j+1)λ11 − γ11λ(i+1) j)
(
e−λt − e−γ t).

After multiplication and reorganization of terms this is changed to

t E(i+1)( j+1)(t) − (κ(i+1) jλ11 + κi( j+1)γ11)e−κt − (λ(i+1) jγ11 + λi( j+1)κ11)e−λt

− (γ(i+1) jκ11 + γi( j+1)λ11)e−γ t + κ11(λi( j+1) + γ(i+1) j)e−κt

+ λ11(κ(i+1) j + γi( j+1))e−λt + γ11(κi( j+1) + λ(i+1) j)e−γ t .

Applying (3.4) we replace −κ(i+1) jλ11 − κi( j+1)γ11 by κ(i+1)( j+2) + κ(i+2)( j+1); similarly, by permu-
tation symmetry, we also replace the coefficients of the other two negative terms by λ(i+1)( j+2) +
λ(i+2)( j+1) and γ(i+1)( j+2) + γ(i+2)( j+1) , respectively. It is easy to see that the final result is identical
with the one given in the lemma.
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In the special case when i = j = 1, we have

λi( j+1) + γ(i+1) j = λ12 + γ21 = κ12 + κ21,

by (3.3). Hence

κ11(λi( j+1) + γ(i+1) j) = κ(i+1)( j+2) + κ(i+2)( j+1) for i = j = 1, (3.12)

and similar identities hold when κ , λ and γ are permuted properly. After replacing several terms
appropriately using (3.12) and its analogous identities, the first formula of this lemma is then reduced
to (3.11).

The expansion of sEi j(s) and E11(t − s) follows from the one given at the beginning of the proof
of this lemma. Integrating the expansion yields

t∫
0

sEi j(s)E11(t − s)ds

= t2

2
E(i+1)( j+1)(t) − (κ(i+1) jλ11 + κi( j+1)γ11)te−κt − (λi( j+1)κ11 + λ(i+1) jγ11)te−λt

− (γi( j+1)λ11 + γ(i+1) jκ11)te−γ t + (λi jκ31 + γi jκ13 − κ(i+2) jλ11 − κi( j+2)γ11)e−κt

+ (κi jλ13 + γi jλ31 − λi( j+2)κ11 − λ(i+2) jγ11)e−λt

+ (κi jγ31 + λi jγ13 − γ(i+2) jκ11 − γi( j+2)λ11)e−γ t .

It is seen that the coefficients of t exp(−κt), t exp(−λt) and t exp(−γ t) have already appeared during
the computation of the convolution of Eij(t) and E11(t), so they can be replaced in the same way.
By (3.5), we also replace −κ(i+2) jλ11 − κi( j+2)γ11 by κ(i+3)( j+1) + κ(i+2)( j+2) + κ(i+1)( j+3); similar re-
placements of the rest of the negative coefficients using the permutation symmetry then yield the
final result. �

We remark that the simple relation (3.12) is valid only when i = j = 1, and there is no analogous
relation in other cases, even when i = j = 2. Therefore, except for i = j = 1, the convolution of Eij(t)
and E11(t) always contain several residual terms that cannot be absorbed into the E∗∗ functions as
in (3.11).

By (1.11) and definition (1.6) we find that

L
(

f (t)
) = γ

t∫
0

P1e(t − s) f (s)ds.

This similarity between P1e(t) and L is indeed inherited by Pne(t) and the power Ln for all n > 1.

Proposition 3.2. For any n � 1, it holds that

Ln( f (t)
) = γ

t∫
0

Pne(t − s) f (s)ds. (3.13)
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For n = 2,3, Pne(t) are expressed explicitly by

P2e(t) = κ2λ2γ
(
t E22(t) + 2E23(t) + 2E32(t)

)
, (3.14)

and

P3e(t) = κ3λ3γ 2

t∫
0

(
(t − s)E22(t − s) + 2E23(t − s) + 2E32(t − s)

)
E11(s)ds

= κ3λ3γ 2(t2 E33(t)/2 + 3t
(

E34(t) + E43(t)
) + 3E35(t) + 5E44(t) + 3E53(t)

+ (λ22κ31 + γ22κ13)e−κt + (κ22λ13 + γ22λ31)e−λt + (κ22γ31 + λ22γ13)e−γ t

+ 2κ11(λ24 + γ33)e−κt + 2λ11(γ24 + κ33)e−λt + 2γ11(κ24 + λ33)e−γ t

+ 2κ11(λ33 + γ42)e−κt + 2λ11(γ33 + κ42)e−λt + 2γ11(κ33 + λ42)e−γ t).
Proof. First, (3.13) holds for n = 1 as we mentioned right before the statement of this proposition.
We next prove it for n = 2. By definition (1.6), we have

L2( f (t)
) = κλγ

t∫
0

E11(t − s)L
(

f (s)
)

ds

= (κλγ )2

t∫
0

E11(t − s)

s∫
0

E11(s − r) f (r)dr ds

= (κλγ )2

t∫
0

f (r)

t∫
r

E11(t − s)E11(s − r)ds dr

= (κλγ )2

t∫
0

f (s)

t∫
s

E11(t − r)E11(r − s)dr ds.

On the other hand, by (1.6) and (1.7) we find

P2e(t) = L
(

P1e(t)
) = κλL

(
E11(t)

) = κ2λ2γ

t∫
0

E11(t − s)E11(s)ds. (3.15)

Substituting this into the right hand side of (3.13) we obtain

γ

t∫
0

P2e(t − s) f (s)ds = (κλγ )2

t∫
0

f (s)

t−s∫
0

E11(t − s − x)E11(x)dx ds.
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The substitution r = x + s changes this double integral into the form exactly the same as the one right
above (3.15). This proves (3.13) for n = 2. In general, assume that (3.13) holds for n = N , N � 2, then

LN+1( f (t)
) = κλγ

t∫
0

E11(t − s)LN(
f (s)

)
ds

= κλγ 2

t∫
0

E11(t − s)

s∫
0

P Ne(s − r) f (r)dr ds.

Continuing in a similar way as above, with one of E11 replaced by P Ne , we can show that (3.13) still
holds for n = N + 1. By induction, (3.13) is proved for all n � 1.

The exact form (3.14) follows from (3.11) and (3.15) directly. The exact form of P3e(t) is obtained
by applying Lemma 3.4. The computation is straightforward, and the detail is omitted for simplic-
ity. �

It is interesting to observe that, because the linear operator L is a symmetric form of κ , λ and γ ,
Pne(t) (more precisely, γ Pne(t)) is also a symmetry form of these parameters for each n � 1. This
symmetry is not shared by either Pnq(t) or Pny(t), which have more fragile expressions than Pne(t).
In the analytical expression of P3e(t), there are a large number of terms that cannot be absorbed
by E∗∗ functions. This makes its exact form complex, although it is the most compact form we can
menage to derive. Apparently, it is not encouraging to continue the calculation for n > 3. Basically, it
is impractical to find the exact forms of Pnx(t) in general, so their properties need to be explored by
indirect methods.
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