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Abstract. In this article we review some recent results on equations involving
the Pucci’s extremal operators. We discuss the existence of eigenvalues and
applications to bifurcation analysis. Then we turn to the study of critical ex-
ponents for positive solutions, reviewing some results for general solutions and
for radially symmetric solutions. Then, some consequences for the existence
of solutions for some semilinear equations are obtained. We finally indicate
some open problems.
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1. Introduction

In this article we review some recent results in the theory of existence of solutions
for some nonlinear equations involving the Pucci’s extremal operators. These op-
erators are prototypes for fully nonlinear second order differential operators and
they are obtained as perturbations of the Laplacian. While retaining many prop-
erties of the Laplacian, they lose some crucial ones, opening many interesting and
challenging questions regarding the existence of solutions.

In this respect let us remark that the theory of viscosity solutions provides a
very general and flexible theory for the study of a large class of partial differential
equations. While originally developed to understand first order equations, it was
successfully extended to cover fully nonlinear second order elliptic and parabolic
equations. Very general existence results are combined with regularity theory to
obtain a complete theory. We refer to Crandall, Ishii and Lions [11] and, Cabré
and Caffarelli [7] for the basic elements of the theory. For this theory to be ap-
plicable the fully nonlinear operator has to satisfy some structural hypotheses,
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deeply linked to the Perron’s method of super and sub-solutions: maximum and
comparison principles.

On the other hand, when the second order differential operator has divergence
form, again there are many methods to study existence of solutions. These methods
will take for granted the possibility of testing functions by integration, providing
so a rich tool for the analysis. In this direction, this structural hypothesis allows
to construct an associated functional, whose critical points provide the solutions
one is looking for.

The hypotheses on the equation we are about to describe do not include
maximum and comparison principles nor varational structure. Then we realize
that there are few techniques available and the attempt to solve some seemingly
simple and standard problems leads to some difficult questions.

Let us first recall the definition of the Pucci’s extremal operators. Given two
parameters 0 < λ ≤ Λ, the matrix operators M+

λ,Λ and M−
λ,Λ are defined as

follows: if M is a symmetric N ×N matrix

M+
λ,Λ(M) = Λ

∑
ei>0

ei + λ
∑
ei<0

ei

and

M−
λ,Λ(M) = λ

∑
ei>0

ei + Λ
∑
ei<0

ei,

where ei = ei(M), i = 1, ..., N, are the eigenvalues of M . The Pucci’s operators are
obtained applyingM+

λ,Λ orM−
λ,Λ to the Hessian D2u of the scalar function u. We

observe that when λ = Λ then both Pucci’s operators become equal to a multiple
of the Laplacian. These two operators have many properties in common, but they
are not equivalent. For more details and equivalent definitions see the monograph
of Caffarelli and Cabré [7].

We start in Section §2 with the basic eigenvalues problems for the Pucci’s
operatorM+

λ,Λ, namely

−M+
λ,Λ(D2u) = μu in Ω,

u = 0 on ∂Ω.
(1.1)

One first question is the existence of a positive eigenfunction. It is addressed by
Felmer and Quaas in [21] in the radial case and by Quaas in [44] for the case of
a bounded domain using general Krein-Rutman’s Theorem in positive cones as
in [48]. These results are related with a general result for positive homogeneous
fully nonlinear elliptic operators by Rouy [49]. The method used there is due to
P.L. Lions who proved results for the Bellman operator in [34] and for the Monge-
Ampère operator in [35].

When the analysis is restricted to radially symmetric functions, then the full
spectrum for (1.1) can be obtained and nice properties of complementarity among
the spectra are disclosed in [6].
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Once the spectra of the Pucci’s operator is understood, Busca, Esteban and
Quaas in [6] made a bifurcation analysis as developed by Rabinowitz in [47] and
[48]. In this direction, several existence results are obtained in [6] for the equation

−M+
λ,Λ(D2u) = μu + f(u, μ) in Ω,

u = 0 on ∂Ω.
(1.2)

where f is continuous, f(s, μ) = o(|s|) near s = 0, uniformly for μ ∈ IR, and Ω is
a general bounded domain.

The second main question we address in this review has to do with the so-
called Liouville type theorems and is started in Section §4. In general terms the
problem consists in determining the range for p > 1 for which the nonlinear elliptic
equation

M+
λ,Λ(D2u) + up = 0, u ≥ 0 in IRN , (1.3)

does not have a non-trivial solution. Here N ≥ 3.
The non-existence of positive solutions for (1.3) is evidently complementary

to the question of existence and is related to the problem of existence in a bounded
domain, via degree theory. This approach requires a priori bounds for the solu-
tions that can be obtained via blow-up technique once a Liouville type theorem is
available. This is the crucial importance of these non-existence results.

The first result in this direction is due to Cutri and Leoni [12] who obtained a
general non-existence result for (1.3) whenever 1 < p ≤ ps

+ := Ñ+/(Ñ+−2), where
the dimension-like number Ñ+ is given by Ñ+ = λ

Λ(N − 1) + 1. This remarkable
result is actually true for supersolutions of (1.3), even in the viscosity sense.

One important open question is to obtain the full range of exponents for
the general Liouville theorem. In the case of radial solutions, this problem was ad-
dressed by Felmer and Quaas in [19] and [20]. The existence of a critical number p∗+
is proved by means of a phase plane analysis after an Emden-Fowler transforma-
tion. This existence result is complemented by a uniqueness analysis resembling
the study of uniqueness of ground states. The result in [20] clarifies the whole
range of exponents, however it only gives an estimate of the critical exponent,
whose value is between (N + 2)/(N − 2) and (Ñ+ + 2)/(Ñ+ − 2), remaining open
to find a formula, in terms of the values of N , λ and Λ. It is important to mention
the existence of an intermediate range of supercritical exponents where positive
solutions in RN exist, but their behavior differs from those of the usual Laplacian.

Strongly related to Liouville type theorems in RN and also crucial for ex-
istence theory in bounded domains, are the non-existence results in half space.
Here we will review a recent result of Quaas and Sirakov [45], where a dimension
reduction approach in combination with Cutri and Leoni result is taken. In this
way, a Liouville theorem is proved for general functions in the half space if the
exponent is smaller than (N̄)/(N̄ − 2), where N̄ = λ

Λ(N − 2) + 1.
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The third theme of this review is the existence theory for nonlinear equations
with general form

M+
λ,Λ(D2u) + f(u) = 0 in Ω,

u = 0 on ∂Ω.
(1.4)

The results obtained so far are bounded by available Liouville type theorems.
The idea used in all results is originated in a paper by de Figueiredo, Lions and
Nussbaum [14], where a related problem for the Laplacian is considered. Through
an ingenious homotopy it is possible to prove that the degree of a large set not
including the origin is non-trivial, thus providing an existence theorem.

Using these techniques, Felmer and Quaas [21] proved the existence of a
radially symmetric ground state for the equation

M+
λ,Λ(D2u)− γu + up = 0 in RN ,

limr→∞ u = 0,
(1.5)

if the exponent p is subcritical for the operator M+
λ,Λ. In a recent paper Felmer,

Quaas and Tang in [26] have proved that this equation has actually only one
solution. However, a second look at the problem reveals another open question.
While solutions for (1.5) exists for all 1 < p < p∗+ we do not know if this exponent
is optimal.

We will see also some recent existence results for equation (1.4), when Ω is
a bounded domain in RN . In [18] Esteban, Felmer and Quaas obtain existence of
positive solutions for the equation (1.3) for domains which are perturbations of
a ball. These results provide with evidence that the critical exponent p+

∗ , whose
validity so far is confined to radially symmetric functions, is also a critical exponent
for general domains. In [18] other related operators are also considered.

Finally we want to point out that all results discussed above can also be
obtained for the operator M−

λ,Λ, without substantial changes. For other results
concerning singular solutions for the Pucci’s operators, we refer the reader to the
work of Labutin in [32] and [33].

2. Eigenvalues for the Pucci’s operator

As already mentioned in the introduction, the solvability of fully nonlinear elliptic
equations of the form

F (x, u, Du, D2u) = 0 (2.1)

is very well understood for coercive uniformly elliptic operators F . On the contrary,
little is known when coercivity (that is, monotonicity in u) is dropped. The aim is
to study the model problem (1.4) when Ω is a bounded regular domain. In relation
to (1.4) it is convenient to consider an eigenvalue problem that could provide some
information on the general case. Since M+

λ,Λ is homogeneous of degree one, it is
natural to consider the “eigenvalue problem” (1.1).
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Before continuing with our analysis we want to mention that Pucci’s extremal
operators appear in the context of stochastic control when the diffusion coefficient
is a control variable, see the book of Bensoussan and J.L. Lions [1] or the papers
of P.L. Lions [37], [38], [39] for the relation beetween a general Hamilton-Jacobi-
Bellman and stochastic control. They also provide natural extremal equations in
the sense that if F in (2.1) is uniformly elliptic, with ellipticity constants λ, Λ,
and depends only on the Hessian D2u, then

M−
λ,Λ(M) ≤ F (M) ≤M+

λ,Λ(M) (2.2)

for any symmetric matrix M . When λ = Λ = 1, (1.1) simply reduces to

−Δu = μu in Ω,
u = 0 on ∂Ω.

(2.3)

It is a very well known fact that there exists a sequence of solutions

{(μn, ϕn)}n≥1

to (2.3) such that:
i) The eigenvalues {μn}n≥1 are real, with μn > 0 and μn →∞ as n→∞.
ii) The set of all eigenfunctions {ϕn}n≥1 is a basis of L2(Ω).

Building on these eigenvalues, the classical Rabinowitz bifurcation theory [47], [48]
allows to give general answers on existence of solutions to semilinear problems for
the Laplacian.

When λ < Λ, problems (1.1) and (1.4) are fully nonlinear and it is interest-
ing to know to which extent the known results about the Laplace operator can be
generalized to this context. A few partial results in this direction have been estab-
lished in the recent years. In [6] the authors provide a bifurcation result for general
nonlinearities from the first two “half-eigenvalues” in general bounded domains.
And in the radial case a complete description of the spectrum and the bifurcation
branches for a general nonlinearity from any point in the spectrum.

Let us mention that besides the fact that (1.1)-(1.4) appears to be a favorable
case from which one might hope to address general problems like (2.1), there are
other reasons why one should be interested in Pucci’s extremal operators or, more
generally, in Hamilton-Jacobi-Bellman operators, which are envelopes of linear
operators. The Pucci’s operators are related to the Fuč́ık operator as we describe
next. Let u be a solution of nonlinear elliptic equation

−Δu = μu+ − αμu−,

where α is a fixed positive number. One easily checks that if α ≥ 1, then u satisfies

max{−Δu ,
−1
α

Δu} = μu,

whereas if α ≤ 1, u satisfies

min{−Δu ,
−1
α

Δu} = μu.
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These relations mean that the Fuč́ık spectrum can be seen as the spectrum of
the maximum or minimum of two linear operators, whereas (1.1)-(1.4) deal the
maximum or minimum of an infinite family of operators.

We recall here that understanding the “spectrum” the Fuč́ık operator, even
in dimension N = 2, is still largely an open question. Only partial results are
known and, in general, they refer to a region near the usual spectrum, (that is for
α near 1). For a further discussion of this topic, we refer the interested reader to
the works of de Figueiredo and Gossez [24], H. Berestycki [2], E.N. Dancer [13], S.
Fuč́ık [27], P. Drábek [17], T.Gallouet and O. Kavian [28], M. Schechter [50] and
the references therein.

The first result in [6] deals with the existence and characterizations of the
two first “half-eigenvalues” forM+

λ,Λ.

Theorem 2.1. Let Ω be a regular domain, then there exist two positive constants
μ+

1 , μ−
1 , that we call first half-eigenvalues such that:

i) There exist two functions ϕ+
1 , ϕ−

1 ∈ C2(Ω) ∩ C(Ω̄) such that (μ+
1 , ϕ+

1 ),
(μ−

1 , ϕ−
1 ) are solutions to (1.1) and ϕ+

1 > 0, ϕ−
1 < 0 in Ω. Moreover,

these two half-eigenvalues are simple, that is, all positive solutions to (1.1)
are of the form (μ+

1 , αϕ+
1 ), with α > 0. The same holds for the negative

solutions.
ii) The two first half-eigenvalues satisfy

μ+
1 = inf

A∈A
μ1(A), μ−

1 = sup
A∈A

μ1(A),

where A is the set of all symmetric measurable matrices such that 0 < λI ≤
A(x) ≤ ΛI and μ1(A) is the principal eigenvalue of the nondivergent second
order linear elliptic operator associated to A.

iii) The two half-eigenvalues have the following characterization

μ+
1 = sup

u>0
essinf

Ω
(−
M+

λ,Λ(D2u)
u

), μ−
1 = sup

u<0
essinf

Ω
(−
M−

λ,Λ(D2u)
u

).

The supremum is taken over all functions u ∈ W 2,N

loc (Ω) ∩ C(Ω̄).
iv) The first half-eigenvalues can be also characterized by

μ+
1 = sup{μ | there exists φ > 0 in Ω satisfying M+

λ,Λ(D2φ) + μφ ≤ 0}
and

μ−
1 = sup{μ | there exists φ < 0 in Ω satisfying M+

λ,Λ(D2φ) + μφ ≥ 0}.

The above existence result, that is part i) of Theorem 2.1, is proved using a
modified version, for convex (or concave) operators, of Krein-Rutman’s Theorem
in positive cones (see [21] in the radial symmetric case and see [44] in the case of
a regular bounded domain).

This existence result has been also proved in the case of general positive
homogeneous fully nonlinear elliptic operators in the paper by Rouy [49]. The
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method used there is due to P.L. Lions who proved the result i) of Theorem 2.1
for the Bellman operator in [34] and for the Monge-Ampère operator in [35].

Properties ii) of Theorem 2.1 can be generalized to any fully nonlinear elliptic
operator F that is positively homogeneous of degree one, with ellipticity constants
λ, Λ. This follows by the proof of ii) and (2.2). These properties were established
by C. Pucci in [42], for related extremal operators.

The characterization of the form iii) and iv) for the first eigenvalue, was
introduced by Berestycki, Nirenberg and Varadhan for second order linear elliptic
operators in [5]. From iv) it follows that

μ+
1 (Ω) ≤ μ+

1 (Ω′) and μ−
1 (Ω) ≤ μ−

1 (Ω′) if Ω′ ⊂ Ω.

In [6] many other properties for the two first half-eigenvalues are deduced
from Theorem 2.1. For example, whenever λ 	= Λ, we have μ+

1 < μ−
1 , since

μ+
1 ≤ λμ1(−Δ) ≤ Λ μ1(−Δ) ≤ μ−

1 . Another interesting and useful property is
the following maximum principle.

Theorem 2.2. The next two maximum principles hold:

a) Let u ∈W 2,N

loc (Ω) ∩ C(Ω̄) satisfy

M+
λ,Λ(D2u) + μu ≥ 0 in Ω,

u ≤ 0 on ∂Ω.
(2.4)

If μ < μ+
1 , then u ≤ 0 in Ω.

b) Let u ∈W 2,N

loc (Ω) ∩ C(Ω̄) satisfy

M−
λ,Λ(D2u) + μu ≤ 0 in Ω,

u ≥ 0 on ∂Ω.
(2.5)

If μ < μ−
1 , then u ≥ 0 in Ω.

The study of higher eigenvalues for the Pucci’s operator in a general domain
is wide open, as for general second order linear operators. However, in the radial
case a complete description of the whole “spectrum” is given in [6]. This result
may shed some light on the general case. More precisely, we have the following
theorem.

Theorem 2.3. Let Ω = B1. The set of all the scalars μ such that (1.1) admits a
nontrivial radial solution, consists of two unbounded increasing sequences

0 < μ+
1 < μ+

2 < · · · < μ+
k < · · ·,

0 < μ−
1 < μ−

2 < · · · < μ−
k < · · ·.

Moreover, the set of radial solutions of (1.1) for μ = μ+
k is positively spanned by a

function ϕ+
k , which is positive at the origin and has exactly k-1 zeros in (0, 1), all

these zeros being simple. The same holds for μ = μ−
k , but considering ϕ−

k negative
at the origin.
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This theorem is proved solving an appropriate initial value problem and a
corresponding scaling. All nodal eigenfunction are generated in this way. There
are many interesting questions left open in [6] regarding the distribution of these
eigenvalues. For example: is it true that μ+

k ≤ μ−
k ?

3. Bifurcation Analysis for the Pucci’s operator

In this section we describe the results obtained in [6] regarding bifurcation of
solutions that can be obtained now that we know spectral properties of the ex-
tremal Pucci’s operator. In precise terms we consider (1.2) when f is continuous,
f(s, μ) = o(|s|) near s = 0, uniformly for μ ∈ IR, and Ω is a general bounded
domain. Concerning this problem we have the following theorem

Theorem 3.1. The pair (μ+
1 , 0) (resp. (μ−

1 , 0)) is a bifurcation point of positive
(resp. negative) solutions to (1.2). Moreover, the set of nontrivial solutions of (1.2)
whose closure contains (μ+

1 , 0) (resp. (μ−
1 , 0)), is either unbounded or contains a

pair (μ̄, 0) for some μ̄, eigenvalue of (1.1) with μ̄ 	= μ+
1 (resp. μ̄ 	= μ−

1 ).

For the Laplacian this result is well known, see [46], [47] and [48]. In this
case the “half-branches” become connected. Therefore, we observe a symmetry
breaking phenomena when λ < Λ.

For the p-Laplacian the result is also known, in the general case, see the
paper of del Pino and Manásevich [16]. See also the paper of del Pino, Elgueta and
Manásevich [15], for the case N = 1. In this case the branches are also connected.
The proof of these results uses an invariance under homotopy with respect to p for
the Leray-Schauder degree. In the proof of Theorem 3.1 homotopy invariance with
respect to the ellipticity constant λ is used instead, having to deal with a delicate
region in which the degree is equal to zero.

A bifurcation result in the particular case f(u, μ) = −μ|u|p−1u can be found
in the paper by P.L. Lions for the Bellman equation [34]. For the problem

−M+
λ,Λ(D2u) = μg(x, u) in Ω, u = 0 on ∂Ω

with the following assumption on g:

(g0) u→ g(x, u) is nondecreasing and g(x, 0) = 0,

(g1) u→ g(x,u)
u decreasing, and

(g2) lim
u→0

g(x, u)
u

= 1, lim
u→∞

g(x, u)
u

= 0,

a similar result was proved by E. Rouy [49]. In [34] and [49] the assumptions on g
play a crucial role to construct sub and super-solutions. By contrast, in [6] the use
of a Leray-Schauder degree argument allows to treat more general nonlinearities.

In the radially symmetric case the authors obtain a more complete result.
Their proof again is based on the invariance of the Leray-Schauder degree under
homotopy.
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Theorem 3.2. Let Ω = B1. For each k ∈ IN , k ≥ 1 there are two connected
components S±

k of nontrivial solutions to (1.2), whose closures contains (μ±
k , 0).

Moreover, S±
k are unbounded and (μ, u) ∈ S±

k implies that u possesses exactly k−1
zeros in (0, 1).

Remark 3.1. S+
k (resp. S−

k ) denotes the set of solutions that are positive (resp.
negative) at the origin.

For the Laplacian this result is well known. In this case, for all k ≥ 1, μ+
k = μ−

k

and the “half-branches” connect each other at the bifurcation point.

4. Critical Exponents for the Pucci’s Operators

In this section we consider the study of solutions to the nonlinear elliptic equation
(1.3) where N ≥ 3, p > 1. When λ = Λ = 1 (1.3) becomes

Δu + up = 0, u ≥ 0 in IRN . (4.1)

This very well known equation has a solution set whose structure depends on
the exponent p. When 1 < p < p∗ := (N + 2)/(N − 2) then equation (4.1) has
no nontrivial solution vanishing at infinity, as can be proved using the celebrated
Pohozaev identity [43]. If p = p∗ then it is shown by Caffarelli, Gidas and Spruck in
[9] that, up to scaling, equation (4.1) possesses exactly one solution. This solution
behaves like C|x|2−N near infinity. When p > p∗ then equation (4.1) admits radial
solutions behaving like C|x|−α near infinity, where α = 2/(p− 1). The critical
character of p∗ is enhanced by the fact that it intervenes in compactness properties
of Sobolev spaces, a reason for being known as critical Sobolev exponent.

It is interesting to mention that the nonexistence of solutions to (4.1) when
1 < p < p∗ holds even if we do not assume a given behavior at infinity. This
Liouville type theorem was proved by Gidas and Spruck in [23]. When 1 < p ≤
N/(N − 2) := ps, then a Liouville type theorem is known for supersolutions of
(4.1).

This number ps is called sometimes the second critical exponent or Serrin
exponent for (4.1). In a recent paper [12], Cutri and Leoni extend this result for
the Pucci’s extremal operators. They consider the inequality

M+
λ,Λ(D2u) + up ≤ 0, u ≥ 0 in IRN , (4.2)

and define the dimension-like number Ñ+ = λ
Λ(N − 1) + 1. Then they prove that

for 1 < p ≤ ps
+ := Ñ+/(Ñ+ − 2) equation (4.2) has only the trivial solution.

In view of the results for the semilinear equation (4.1) that we have discussed
above and the new results for inequality (4.2) just mentioned, it is natural to ask
about the existence of critical exponents of the Sobolev type for (1.3). In particular
it would be interesting to understand the structure of solutions for equation (1.3)
in terms for different values of p > 1. It would also be interesting to prove Liouville
type theorems for positive solutions in IRN and to understand the mechanisms for
existence of positive solutions in general bounded domains.
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In [19] Felmer and Quaas obtained some results in the case of radially sym-
metric solutions. Before we state the results we give a definition to classify the
possible radial solutions of equation (4.1).

Definition 4.1. Assume u is a radial solution of (1.3) then we say that:
i) u is a pseudo-slow decaying solution if there exist constants C2 > C1 > 0

such that C1 = lim infr→∞ rαu(r) < lim supr→∞ rαu(r) = C2.
ii) u is a slow decaying solution if there exists c∗ > 0 such that

limr→∞ rαu(r) = c∗.
iii) u is a fast decaying solution if there exists C > 0 such that

limr→∞ rÑ−2u(r) = C.

The main results in [19] are summarized in the following theorem.

Theorem 4.1. Suppose that Ñ+ > 2. Then there are critical exponents 1 < ps
+ <

p∗+ < pp
+, with ps

+ = Ñ+/(Ñ+ − 2) , pp
+ = (Ñ+ + 2)/(Ñ+ − 2) and max{ps

+, p∗} <
p∗+ < pp

+, that satisfy:
i) If 1 < p < p∗+ then there is no nontrivial radial solution of (1.3).
ii) If p = p∗+ then there is a unique fast decaying radial solution of (1.3).
iii) If p∗ < p ≤ pp

+ then there is a unique pseudo-slow decaying radial solution to
(1.3).

iv) If pp
+ < p then there is a unique slow decaying radial solution to (1.3).

Here uniqueness is understood up to scaling. The approach in [19] consists in a
combination of the Emden-Fowler phase plane analysis with the Coffman-Kolodner
technique. We start considering the classical Emden-Fowler transformation that
allows to view the problem in the phase plane. With the aid of suitable energy
functions much of the behavior of the solutions is understood. Their asymptotic
behavior is obtained in some cases using the Poincaré-Bendixon theorem. This
phase plane analysis has been used in related problems by Clemons and Jones
[10], Kajikiya [29] and Erbe and Tang [26] among many others.

On the other hand we use the Coffman-Kolodner technique which consists in
differentiating the solution with respect to a parameter. The function so obtained
possesses valuable information on the problem. This idea has been used by several
authors in dealing with uniqueness questions differentiating with respect to the
initial value. In particular, see the work by Kwong [30], Kwong and Zhang [31]
and Erbe and Tang [26]. However in [20] the authors do not differentiate with
respect to the initial value, which is kept fixed, but with respect to the power p.
Thus the variation function satisfies a non-homogeneous equation, in contrast with
the situations treated earlier.

When the Pucci’s extremal operators is considered on radially symmetric
functions, it takes a very simple form so we can consider the following initial value
problem

u′′ = M

(
−λ(N − 1)

r
u′ − up

)
, r > 0, u(0) = γ, u′(0) = 0, (4.3)
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where γ > 0 and M(s) = s/Λ if s ≥ 0 and M(s) = s/λ if s < 0. We notice that
this equation possesses a unique solution that we denote by u(r, p, γ) and that non-
negative solutions of (4.3) correspond to radially symmetric solutions of (1.3). It
can be proved that the solutions of (4.3) are decreasing, while they remain positive
and that they have the following scaling property: γu(γ1/αr, p, γ0) = u(r, p, γ0γ),
for all γ0, γ > 0.

In the next definition we classify the exponent p according to the behavior
of the solution of the initial value problem (4.3) according to Definition 4.1. We
define:

C = {p | p > 1, u(r, p, γ) has a finite zero}.
P = {p | p > 1, u(r, p, γ) > 0 and is pseudo-slow decaying}
S = {p | p > 1, u(r, p, γ) > 0 and is slow decaying}
F = {p | p > 1, u(r, p, γ) > 0 and is fast decaying}.

In view of the scaling property, we notice that these sets do not depend on the
particular value of γ > 0.

An important step in the proof is to perform the classical Emden-Fowler
change of variables x(t) = rαu(r), r = et. This allows to use phase plane analysis.
We have that the initial value problem (4.3) reduces to the autonomous differential
equation

x′′ = −α(α + 1)x + (1 + 2α)x′ + M(λ(N − 1)(αx− x′)− xp)), (4.4)

with boundary condition x(−∞) = 0, x′(−∞) = 0. Studying this dynamical
system one can obtain the following basic properties:

a) If p > Ñ+2
Ñ−2

then p ∈ S.

b) If p ≤ max{ Ñ
Ñ−2

, N+2
N−2}} then p ∈ C.

c) Ñ+2
Ñ−2

∈ P and if p ≤ Ñ+2
Ñ−2

, then p 	∈ S.

d) P \ { Ñ+2
Ñ−2
} is open.

In the proof of these propositions we use two energy like functions

e(t) =
(x′)2

2
+

αxp+1

2λ(N − 1)
− (αx)2

2
, E(t) =

(x′)2

2
+

xp+1

Λ(p + 1)
− b̃x2

2
,

in order to understand the behavior of the trajectories. The Poincaré-Bendixon
theorem is also used. It is interesting to note that in the range of p where the
solution is pseudo-slow decaying, the periodic orbit of the dynamical system cor-
responds to a singular solution to M+

λ,Λ(D2u) + up = 0, which change infinitely
many times its concavity. These solutions are not present in the case of the Lapla-
cian and appear in trying to compensate the fact that λ < Λ.

The second main step in the proof of the main theorem in [20] is to under-
stand the nature of the solutions obtained near a fast decaying solution. The goal
is to prove that F is a Singleton. As we mentioned, the idea is to differentiate the
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solution of (4.3) with respect to p. The resulting function ϕ has valuable informa-
tion on the solutions near the fast decaying one. By analyzing ϕ one can prove the
following crucial proposition.

Proposition 4.1. a) If q ∈ F , then for p < q close to q we have p ∈ C.
b) If q ∈ F , then for p > q close to q we have p ∈ S ∪ P.

In order to understand the asymptotic behavior of ϕ it is convenient to study
the function w = wθ(r) = rθu(r, q), for θ > 0 chosen so that θ = (Ñ − 1)/2 if
Ñ > 3 and θ = (Ñ − 2)/2 if 2 < Ñ ≤ 3. This function was introduced by Erbe
and Tang in [26], for a related problem. Defining y(r) = ∂w(r)

∂p = rθϕ, when Ñ > 3,
y satisfies the equation

y′′ + (
(Ñ − 1)(3− Ñ)

4r2
+

quq−1

Λ
)y + rθ uq

Λ
log u = 0 if r > r0. (4.5)

Using the fact that u is a fast decaying solution we find that the coefficient in
the second term of (4.5) is negative for r large. A similar situation occurs when
2 < Ñ ≤ 3. The following lemma on the asymptotic behavior of y is crucial in
proving Proposition 4.1.

Lemma 4.1. The function y defined above satisfies y(r) > 0 and y′(r) > 0 for r
large.

Finally, the proof of Theorem 4.1 is a direct consequence of previous Propo-
sitions, the openness of C and P \ { Ñ++2

Ñ+−2
}.

5. Semi-linear equations and Liouville type Theorems

Having proved the existence of the critical exponents for (1.3) one can look for
solutions for similar equations but in a bounded domain. Consider (1.4) when
Ω = BR is the ball of radius R in IRN and f is an appropriate nonlinearity. When
λ = Λ = 1, (Laplace operator case) (1.4) has been studied by many authors, not
only in a ball, but on general domains. We refer the reader to the review paper by
P.L. Lions [36] and the references therein.

Continuing with the description of the results, let us introduce the precise
assumptions on the nonlinearity f :
(f0) f(u) = −γu + g(u), g ∈ C([0, +∞)) and is locally Lipschitz.
(f1) g(s) ≥ 0 and there is 1 < p < p∗+ and a constant C∗ > 0 such that

lim
s→+∞

g(s)
sp

= C∗.

(f2) There is a constant c∗ ≥ 0 such that c∗ − γ < μ+
1 and

lim
s→0

f(s)
s

= c∗,

where μ+
1 is the first half eigenvalue forM+

λ,Λ in BR.
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The first model problem is f(s) = −u+sp, 1 < p < p∗+. The second model problem
is f(s) = αs + sp, 1 < p < p∗+ and 0 ≤ α < μ+

1 .
Now we are in a position to state the main theorem by Felmer and Quaas in

[21]

Theorem 5.1. Assume N ≥ 3 and f satisfies the hypotheses (f0), (f1) and (f2).
Then there exist a positive radially symmetric C2 solution of (1.4).

In case of the first model problem, Theorem 5.1 can be extended for positive
solutions in IRN . Precisely we have

Theorem 5.2. Assume N ≥ 3 and 1 < p < p∗+. Then there is a positive radially
symmetric C2 solution of the equation

M+
λ,Λ(D2u)− u + up = 0 in IRN . (5.1)

In order to prove Theorem 5.1 the author use degree theory on positive cones
as presented in the work by de Fugueiredo, Lions and Nussbaum in [14]. A priori
bounds for solutions are obtained by blow up method introduced by Gidas and
Spruck [23] in combination with the Liouville type Theorem 4.1.

Following in this direction and in view of Cutri and Leoni theorem in [12], it
is interesting to ask if the theory of viscosity solutiuons allows to use a degree ar-
gument. Consider the existence of positive solutions for the equation (1.4) when Ω
is a convex domain in IRN with boundary ∂Ω of clase C2,α and f is an appropriate
nonlinearity.

On the nonlinearity f we consider the hypotheses (f0), (f1) and (f2). With
the difference that in (f1) we assume 1 < p < ps

+ and in (f2) μ+
1 is the first half

eigenvalue forM+
λ,Λ in Ω, as given in Section §2.

Now we are in a position to state the main theorem in [44]

Theorem 5.3. Assume N ≥ 3, Ω is convex and f satisfies the hypotheses (f0), (f1)
and (f2). Then there exist a positive C2(Ω) solution of (1.4).

Remark 5.1. The missing piece to cover all 1 < p < p∗+ in (f1) is the Louville type
theorem in the general case, which remains open.

In order to prove our main theorem the author uses the Liouville type Theo-
rem of Cutri and Leoni. At this point the convexity of the domain plays a crucial
role. In fact, the convexity Ω allows to prove, via moving planes, that the blow-up
point always converges to the interior of Ω. As we see in what follows the convexity
of Ω can be lifted as proved by Quaas and Sirakov in [45].

Theorem 5.4. Suppose N ≥ 3 and set

p̃+ =
Λ(N − 2) + λ

Λ(N − 2)− λ
.

Then the problem

M+
λ,Λ(D2u) + up = 0 in R+,

u = 0 on ∂R+
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does not have a positive nontrivial bounded solution, provided 1 < p ≤ p̃+. Observe
that p̃+ > ps

+.

A Theorem of this type for the equation −Δu + f(u) = 0 was first obtained
by Dancer in [13]. Theorem 5.4 is proved by using a (simplified) version of the
proof of Berestycki, Caffarelli and Nirenberg [3], who showed that solutions of
Δu + f(u) = 0 in a half space which are at most exponential at infinity are
necessarily monotone in xN . Once this is proved it is possible to pass to the limit
as xN → ∞, and this leads to a solution of the same problem in RN−1, which
permits the use of Liouville Theorems of Cutri and Leoni in the whole space.

The following existence result is a consequence.

Theorem 5.5. Assume N ≥ 3 and f satisfies the same condition as Theorem 5.3.
Then for any bounded regular domain Ω there exists a positive C2(Ω) solution of
(1.4).

Remark 5.2. The missing part to cover the range ps
+ < p < p∗+ in (f1) is the

general Liouville type theorem in IRN which is still open. In fact, a Liouville type
Theorem in all space would imply a Liouville type Theorem in the half space for a
larger range of p.

6. Further questions and open problems

For any linear second order uniformly elliptic operator with C1 coefficients, say
Lu =

∑
i

∑
j aij

∂u2

∂xi∂xj
with aij ∈ C1, the semilinear problem

Lu + up = 0, in Ω (6.1)
u = 0, on ∂Ω, (6.2)

has a positive solution for the same range of values of p as for the Laplacian. That
is, the existence property of the Sobolev exponent remains valid for all operators
in this class.

In [18] Esteban, Felmer and Quaas consider two classes of uniformly second
order elliptic operators for which the critical exponents in the radially symmetric
case are drastically changed with respect to the Sobolev exponent p∗. The main
point in [18] is to prove that the corresponding existence property for these critical
exponents persists when the domain is perturbed, away from the ball.

The first class of operators corresponds to the Pucci’s extremal ones, that is,
M+

λ,Λ(D2u) andM−
λ,Λ(D2u), already discussed in this paper. We recall that these

are extremal operators in the class defined by (2.2) and we notice that given any
number s ∈ [λ, Λ] the operator sΔ belongs to the class defined by (2.2).

The second family of operators that are considered in [18] are defined as

Q+
λ,Λu = λΔu + (Λ− λ)Q0u, (6.3)



Pucci’s Extremal Operators 277

where Q0 is the second order linear operator

Q0u =
N∑

i=1

N∑
j=1

xixj

|x|2
∂2u

∂xi∂xj
.

These operators are also considered by Pucci [42], being extremal with respect
to some spectral properties. We notice that these operators belong to the class
defined by (2.2) and when λ = Λ they also become a multiple of the Laplacian. If
we interchange the role of λ by Λ in definition (6.3) then we obtain the operator
Q−

λ,Λ, which is also considered later.
The operators M±

λ,Λ are autonomous, but not linear, even if they enjoy
some properties of the Laplacian. The operators Q±

λ,Λ are still linear, but their
coefficients are not continuous at the origin. When one considers a ball and the set
of radially symmetric functions on it, there are critical exponents for the operators
M+ and Q+ which are greater than the Sobolev exponet p∗. On the contrary,
for the operators Q−

λ,Λ and M−
λ,Λ, the critical exponents for radially symmetric

solutions in a ball are smaller than the Sobolev exponet p∗. We recall

Ñ− + 2

Ñ− − 2
< p∗− < p∗ < p∗+ <

Ñ+ + 2

Ñ+ − 2
,

where the numbers in the extreme are the critical exponents of Q− and Q+ ,
respectively. The numbers p∗+ and p∗− depend on λ, Λ and the dimension N .

Open problem 1. Determine an explicit formula for the numbers p∗+ and p∗−, or at
least describe in more precise terms the dependence with respect to the parameters.

The existense results in [18] are for domains which are close to the unit ball.
More precisely it is assumed that there is a sequence of domains {Ωn} such that
for all 0 < r < 1 < R there exists n0 ∈ N such that

B(0, r) ⊂ Ωn ⊂ B(0, R), for all n ≥ n0.

Then the main theorem is

Theorem 6.1. Assume Ñ+ > 2 and that 1 < p < (Ñ+ + 2)/(Ñ+ − 2). Then there
is n0 ∈ N so that for all n ≥ n0, the equation

Qu + up = 0 in Ωn, (6.4)
u = 0 on ∂Ωn, (6.5)

possesses at least one nontrivial solution.

A second theorem states a similar result replacing Q+ byM+
λ,Λ. Correspond-

ing theorems for Q− andM−
λ,Λ are also considered.

Thus, in this work it is proved that the phenomenon of critical exponent
increase (or decrease) does not appear only in the radially symmetric case, but
persists when the ball is perturbed not necessarily in a radial manner. This result
is proved by a perturbation argument, based on a work by Dancer [13]. It provides
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evidence that the critical exponents for these operators, obtained in radial versions,
are also the critical exponents in the general case.

At this point we would like to stress some surprising properties of the critical
exponents of operators in the class given by (2.2). For the first property we consider
all linear elliptic operators with bounded coefficients and belonging to the class
defined by (2.2). If we take the L∞ topology for the coefficients of these operators,
we see that the critical exponent is not a continuous function of the operator. In
particular, as shown in Section §2, the operators Q−

λ,Λ can be “approximated” in
L∞ (the coefficients) by a sequence of operators with C∞ coefficients, for which
the critical exponent in the radially symmetric case is p∗.

The second property is related to the non-monotonicity of the critical expo-
nents. Notice the following inequality for operators holds,

λΔ ≤M+
λ,Λ and Q+

λ,Λ ≤M
+
λ,Λ,

while for the corresponding critical exponents we have

p∗ < p∗+ and
Ñ+ + 2

Ñ+ − 2
> p∗+.

Open problem 2. Is there a natural order in the operators that is compatible with
the order of the critical exponents?

We finally observe that all operators of the formM±
s,S and Q±

s,S , with s, S ∈
[λ, Λ], have critical exponents in the interval[

Ñ− + 2

Ñ− − 2
,

Ñ+ + 2

Ñ+ − 2

]
.

Open problem 3. Prove that in the class of operators defined by (2.2), all the critical
exponents are in the same interval, that is, the operators Q±

λ,Λ are extremal for
critical exponents.
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