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Abstract Let � be a smooth bounded domain in R
N with N ≥ 3 and let �k be a closed

smooth submanifold of ∂� of dimension 1 ≤ k ≤ N −2. In this paper we study the weighted
Hardy inequality with weight function singular on �k . In particular we provide necessary
and sufficient conditions for existence of minimizers.

Mathematics Subject Classification 35J20 · 35J57 · 35J75 · 35B33 · 35A01

1 Introduction

Let� be a smooth bounded domain of R
N , N ≥ 2 and let�k be a smooth closed submanifold

of ∂� with dimension 0 ≤ k ≤ N − 1. Here �0 is a single point and �N−1 = ∂�. For
λ ∈ R, consider the problem of finding minimizers for the quotient:

μλ(�,�k) := inf
u∈H1

0 (�)

∫
�

|∇u|2 pdx − λ
∫
�
δ−2|u|2ηdx

∫
�
δ−2|u|2qdx

, (1)

where δ(x) := dist(x, �k) is the distance function to �k and where the weights p, q and η
satisfy

p, q ∈ C2(�), p, q > 0 in �, η > 0 in � \�k, η ∈ Lip(�) (2)
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and

max
�k

q

p
= 1, η = 0 on �k . (3)

We put

Ik =
∫

�k

dσ√
1 − (q(σ )/p(σ ))

, 1 ≤ k ≤ N − 1 and I0 = ∞. (4)

It was shown by Brezis and Marcus [4] that there exists λ∗ such that if λ > λ∗ then
μλ(�,�N−1) <

1
4 and it is attained while for λ ≤ λ∗, μλ(�,�N−1) = 1

4 and it is not
achieved for everyλ < λ∗. The critical caseλ = λ∗ was studied by Brezis, Marcus and Shafrir
[5], where they proved thatμλ∗(�,�N−1) admits a minimizer if and only if IN−1 < ∞. The
case where k = 0 (�0 is reduced to a point on the boundary) was treated by the first author
in [11] and the same conclusions hold true.
Here we obtain the following

Theorem 1.1 Let � be a smooth bounded domain of R
N , N ≥ 3 and let �k ⊂ ∂� be a

closed submanifold of dimension k ∈ [1, N − 2]. Assume that the weight functions p, q and
η satisfy (2) and (3). Then, there exists λ∗ = λ∗(p, q, η,�,�k) such that

μλ(�,�k) = (N − k)2

4
, ∀λ ≤ λ∗,

μλ(�,�k) <
(N − k)2

4
, ∀λ > λ∗.

The infinimum μλ(�,�k) is attained if λ > λ∗ and it is not attained when λ < λ∗.

Concerning the critical case we get

Theorem 1.2 Let λ∗ be given by Theorem 1.1 and consider Ik defined in (4). Then
μλ∗(�,�k) is achieved if and only if Ik < ∞.

By choosing p = q ≡ 1 and η = δ2, we obtain the following consequence of the above
theorems.

Corollary 1.3 Let� be a smooth bounded domain of R
N , N ≥ 3 and�k ⊂ ∂� be a closed

submanifold of dimension k ∈ {1, . . . , N − 2}. For λ ∈ R, put

νλ(�,�k) = inf
u∈H1

0 (�)

∫
�

|∇u|2 dx − λ
∫
�

|u|2 dx
∫
�
δ−2|u|2 dx

.

Then, there exists λ̄ = λ̄(�,�k) such that

νλ(�,�k) = (N − k)2

4
, ∀λ ≤ λ̄,

νλ(�,�k) <
(N − k)2

4
, ∀λ > λ̄.

Moreover νλ(�,�k) is attained if and only if λ > λ̄.
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Weighted Hardy inequality with higher dimensional singularity

The proof of the above theorems are mainly based on the construction of appropriate sharp
H1-subsolution and H1-supersolutions for the corresponding operator

Lλ := −
− (N − k)2

4
qδ−2 + λδ−2η

(with p ≡ 1). These super and sub-solutions are perturbations of an approximate “virtual”

ground-state for the Hardy constant (N−k)2

4 near�k . For that we will consider the projection

distance function δ̃ defined near �k as

δ̃(x) :=
√

|dist∂�(x, �k)|2 + |x − x |2,
where x is the orthogonal projection of x on ∂� and dist∂�(·, �k) is the geodesic distance to
�k on ∂� endowed with the induced metric. While the distances δ and δ̃ are equivalent, 
δ
and
δ̃ differ and δ does not, in general, provide the right approximate solution for k ≤ N −2.
Letting d∂� = dist(·, ∂�), we have

δ̃(x) :=
√

|dist∂�(x, �k)|2 + d∂�(x)2.

Our approximate virtual ground-state near �k reads then as

x �→ d∂�(x) δ̃
k−N

2 (x). (5)

In some appropriate Fermi coordinates y = (y1, y2, . . . , yN−k, yN−k+1, . . . , yN ) =
(ỹ, ȳ) ∈ R

N with ỹ = (y1, y2, . . . , yN−k) ∈ R
N−k and ȳ = (yN−k+1, . . . , yN ) (see

next section for a precise definition), the function in (5) then becomes

y �→ y1|ỹ| k−N
2

which is the “virtual” ground-state for the Hardy constant (N−k)2

4 in the flat case �k = R
k

and � = R
N . We refer to Sect. 2 for more details about the constructions of the super and

sub-solutions.
The proof of the existence part in Theorem 1.2 is inspired from [5]. It amounts to obtain
a uniform control of a specific minimizing sequence for μλ∗(�,�k) near �k via the H1-
super-solution constructed.
We recall that the existence and non-existence of extremals for (1) and related problems were
studied in [1,6–9,12–14,16,19–21] and some references therein. We would like to mention
that some of the results in this paper can be useful in the study of semilinear equations
with a Hardy potential singular at a submanifold of the boundary. We refer to [2,3,10],
where existence and nonexistence for semilinear problems were studied via the method of
super/sub-solutions.

2 Preliminaries and notations

In this section we collect some notations and conventions we are going to use throughout the
paper.

Let U be an open subset of R
N , N ≥ 3, whose boundary M := ∂U is a smooth closed

hypersurface of R
N . Assume that M contains a smooth closed submanifold�k of dimension

1 ≤ k ≤ N − 2. In the following, for x ∈ R
N , we let d(x) be the distance function of M

and δ(x) the distance function of �k . We denote by NM the unit normal vector field of M
pointed into U .
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Given P ∈ �k , the tangent space TPM of M at P splits naturally as

TPM = TP�k ⊕ NP�k,

where TP�k is the tangent space of �k and NP�k stands for the normal space of TP�k

at P . We assume that these subspaces are spanned respectively by
(
Ea

)
a=N−k+1,...,N and

(
Ei

)
i=2,...,N−k . We will assume that NM(P) = E1.

A neighborhood of P in �k can be parameterized via the map

ȳ �→ f P (ȳ) = Exp�k
P

(
N∑

a=N−k+1

ya Ea

)

,

where, ȳ = (yN−k+1, . . . , yN ) and where Exp�k
P is the exponential map at P in�k endowed

with the metric induced by M. Next we extend (Ei )i=2,...,N−k to an orthonormal frame
(Xi )i=2,...,N−k in a neighborhood of P . We can therefore define the parameterization of a
neighborhood of P in M via the mapping

(y̆, ȳ) �→ h P
M(y̆, ȳ) := ExpM

f P (ȳ)

(
N−k∑

i=2

yi Xi

)

,

with y̆ = (y2, . . . , yN−k) and ExpM
Q is the exponential map at Q in M endowed with the

metric induced by R
N . We now have a parameterization of a neighborhood of P in R

N

defined via the above Fermi coordinates by the map

y = (y1, y̆, ȳ) �→ F P
M(y1, y̆, ȳ) = h P

M(y̆, ȳ)+ y1 NM(h P
M(y̆, ȳ)).

Next we denote by g the metric induced by F P
M whose components are defined by

gαβ(y) = 〈∂αF P
M(y), ∂βF P

M(y)〉.
Then we have the following expansions (see for instance [15])

g11(y) = 1 (6)

g1β(y) = 0, for β = 2, . . . , N

gαβ(y) = δαβ + O(|ỹ|), for α, β = 2, . . . , N ,

where ỹ = (y1, y̆) and O(rm) is a smooth function in the variable y which is uniformly
bounded by a constant (depending only M and �k) times rm .

In concordance to the above coordinates, we will consider the “half”-geodesic neighbor-
hood contained in U around �k of radius ρ

Uρ(�k) := {x ∈ U : δ̃(x) < ρ}, (7)

where δ̃ is the projection distance function given by

δ̃(x) :=
√

|distM(x, �k)|2 + |x − x |2,
where x is the orthogonal projection of x on M and distM(·, �k) is the geodesic distance to
�k on M with the induced metric. Observe that

δ̃(F P
M(y)) = |ỹ|, (8)
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Weighted Hardy inequality with higher dimensional singularity

where ỹ = (y1, y̆). We also define σ(x) to be the orthogonal projection of x on �k within
M. Letting

δ̂(x) := distM(x, �k),

one has

x = ExpM
σ(x)(δ̂∇ δ̂) or equivalently σ(x) = ExpM

x (−δ̂∇ δ̂).
Next we observe that

δ̃(x) =
√
δ̂2(x̄)+ d2(x). (9)

In addition it can be easily checked via the implicit function theorem that there exists a
positive constant β0 = β0(�k,�) such that δ̃ ∈ C∞(Uβ0(�k)).

It is clear that for ρ sufficiently small, there exists a finite number of Lipschitz open sets
(Ti )1≤i≤N0 such that

Ti ∩ Tj = ∅ for i �= j and Uρ(�k) =
N0⋃

i=1

Ti .

We may assume that each Ti is chosen, using the above coordinates, so that

Ti = F pi
M(B N−k+ (0, ρ)× Di ) with pi ∈ �k,

where the Di ’s are Lipschitz disjoint open sets of R
k such that

N0⋃

i=1

f pi (Di ) = �k .

In the above setting we have

Lemma 2.1 As δ̃ → 0, the following expansions hold

(1) δ2 = δ̃2(1 + O(δ̃)),
(2) ∇ δ̃ · ∇d = d

δ̃
,

(3) |∇ δ̃| = 1 + O(δ̃),
(4) 
δ̃ = N−k−1

δ̃
+ O(1),

where O(rm) is a function for which there exists a constant C = C(M, �k) such that

|O(rm)| ≤ Crm .

Proof (1) Let P ∈ �k . With an abuse of notation, we write x(y) = F P
M(y) and we set

ϑ(y) := 1

2
δ2(x(y)).

The function ϑ is smooth in a small neighborhood of the origin in R
N and a Taylor

expansion yields

ϑ(y) = ϑ(0, ȳ)ỹ + ∇ϑ(0, ȳ)[ỹ] + 1

2
∇2ϑ(0, ȳ)[ỹ, ỹ] + O(‖ỹ‖3)

= 1

2
∇2ϑ(0, ȳ)[ỹ, ỹ] + O(‖ỹ‖3). (10)
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Here we have used the fact that x(0, ȳ) ∈ �k so that δ(x(0, ȳ)) = 0. We write

∇2ϑ(0, ȳ)[ỹ, ỹ] =
N−k∑

i,l=1

�il yi yl ,

with

�il := ∂2ϑ

∂yi∂yl
/ỹ=0

= ∂

∂yl

(
∂

∂x j

(
1

2
δ2(x)

∂x j

∂yi

))

/ỹ=0

= ∂2

∂xi∂xs

(
1

2
δ2

)

(x)
∂x j

∂yi

∂xs

∂yl
/ỹ=0 + ∂

∂x j
(δ2)(x)

∂2xs

∂yi∂yl
/ỹ=0.

Now using the fact that

∂xs

∂yl
/ỹ=0 = gls = δls and

∂

∂x j
(δ2)(x)/ỹ=0 = 0,

we obtain

�il yi yl = yi ys ∂2

∂xi∂xs

(
1

2
δ2

)

(x)/ỹ=0

= |ỹ|2,
where we have used the fact that the matrix

(
∂2

∂xi ∂xs (
1
2 δ

2)(x)/ỹ=0

)

1≤i,s≤N
is the matrix of

the orthogonal projection onto the normal space of T f P (ȳ)�k . Hence using (10), we get

δ2(x(y)) = |ỹ|2 + O(|ỹ|3).
This together with (8) prove the first expansion.

(2) Thanks to (8) and (6), we infer that

∇ δ̃ · ∇d(x(y)) = ∂δ̃(x(y))

∂y1 = y1

|ỹ| = d(x(y))

δ̃(x(y))

as desired.

(3) We observe that

∂δ̃

∂xτ
∂δ̃

∂xτ
(x(y)) = gτα(y)gτβ(y)

∂δ̃(x(y))

∂yα
∂δ̃(x(y))

∂yβ
,

where gαβ are the entries of the inverse of the matrix (gαβ)α,β=1,...,N . Therefore using again
(6) and (8), we get the desired result.

(4) Finally using the expansion of the Laplace-Beltrami operator
g , see Lemma 3.3 in [18],
applied to (8), we get the last estimate. ��

In the following of – only – this section, the function q : U → R will be such that

q ∈ C2(U), and q ≤ 1 on �k . (11)
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Weighted Hardy inequality with higher dimensional singularity

Let M, a ∈ R, we consider the function

Wa,M,q(x) = Xa(δ̃(x)) eMd(x) d(x) δ̃(x)α(x), (12)

where

Xa(t) = (− log(t))a 0 < t < 1

and

α(x) = k − N

2
+ N − k

2

√
1 − q(σ (x̄))+ δ̃(x).

In the above setting, the following useful result holds.

Lemma 2.2 As the parameter δ → 0, the laplacian of the function Wa,M,q defined in (12)
can be expanded as


Wa,M,q = − (N − k)2

4
q δ−2 Wa,M,q − 2 a

√
α̃ X−1(δ) δ

−2 Wa,M,q

+a(a − 1) X−2(δ) δ
−2 Wa,M,q + h + 2M

d
Wa,M,q + O(| log(δ)| δ− 3

2 )Wa,M,q ,

where α̃(x) = (N−k)2

4

(
1 − q(σ (x))+ δ̃(x)

)
and h = 
d. Here the lower order term

satisfies

|O(r)| ≤ C |r |,
where C is a positive constant only depending on a,M, �k ,U and ‖q‖C2(U).

Proof We put s = (N−k)2

4 . Letw = δ̃(x)α(x) then the following formula can be easily verified


w = w

(


 log(w)+ |∇ log(w)|2
)

. (13)

Since

log(w) = α log(δ̃),

we get


 log(w) = 
α log(δ̃)+ 2∇α · ∇(log(δ̃))+ α
 log(δ̃). (14)

We have


α = 

√
α̃ = √

α̃

(
1

2

 log(α̃)+ 1

4
|∇ log(α̃)|2

)

, (15)

∇ log(α̃) = ∇α̃
α̃

= −s∇(q ◦ σ)+ s∇ δ̃
α̃

and using the formula (13), we obtain


 log(α̃) = 
α̃

α̃
− |∇α̃|2

α̃2

= −s
(q ◦ σ)+ s
δ̃

α̃
− s2|∇(q ◦ σ)|2 + s2|∇ δ̃|2

α̃2 + 2s2 ∇(q ◦ σ) · ∇ δ̃
α̃2 .

123



M. M. Fall, F. Mahmoudi

Putting the above in (15), we deduce that


α = 1

2
√
α̃

{

− s
(q ◦ σ)+ s
δ̃ − 1

2

s2|∇(q ◦ σ)|2 + s2|∇ δ̃|2 − 2s2∇(q ◦ σ) · ∇ δ̃
α̃

}

.

(16)

Using Lemma 2.1 and the fact that q is in C2(U), together with (16) we get


α = O(δ̃−
3
2 ). (17)

On the other hand

∇α = ∇√
α̃ = 1

2

∇α̃√
α̃

= − s

2
√
α̃

∇(q ◦ σ)+ s

2

∇ δ̃√
α̃

so that

∇α · ∇ δ̃ = − s

2
√
α̃

∇(q ◦ σ) · ∇ δ̃ + s

2

|∇ δ̃|2√
α̃

= O(δ̃−
1
2 )

and from which we deduce that

∇α · ∇ log(δ̃) = 1

δ̃
∇α · ∇ δ̃ = O(δ̃−

3
2 ). (18)

By Lemma 2.1 we have that

α
 log(δ̃) = α
N − k − 2

δ̃2
(1 + O(δ̃)).

Taking back the above estimate together with (18) and (17) in (14), we get


 log(w) = α
N − k − 2

δ̃2
(1 + O(δ̃))+ O(| log(δ̃)|δ̃− 3

2 ). (19)

We also have

∇(log(w)) = ∇(α log(δ̃)) = α
∇ δ̃
δ̃

+ log(δ̃)∇α
and thus

|∇(log(w))|2 = α2

δ̃2
+ 2α log(δ̃)

δ̃
∇ δ̃ · ∇α + | log(δ̃)|2|∇α|2 = α2

δ̃2
+ O(| log(δ̃)|δ̃− 3

2 ).

Putting this together with (19) in (13), we conclude that


w

w
= α

N − k − 2

δ̃2
+ α2

δ̃2
+ O(| log(δ̃)| δ̃− 3

2 ). (20)

Now we define the function

v(x) := d(x)w(x),

where we recall that d is the distance function to the boundary of U . It is clear that


v = w
d + d
w + 2∇d · ∇w. (21)

Notice that

∇w = w∇ log(w) = w

(

log(δ̃)∇α + α
∇ δ̃
δ̃

)
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and so

∇d · ∇w = w

(

log(δ̃)∇d · ∇α + α

δ̃
∇d · ∇ δ̃

)

. (22)

Recall the second assertion of Lemma 2.1 that we rewrite as

∇d · ∇ δ̃ = d

δ̃
. (23)

Therefore

∇d · ∇α = ∇d ·
(

− s

2
√
α̃

∇(q ◦ σ)+ s

2

∇ δ̃√
α̃

)

= s

2
√
α̃

d

δ̃
− s

2
√
α̃

∇d · ∇(q ◦ σ). (24)

Notice that if x is in a neighborhood of some point P ∈ �k one has

∇d · ∇(q ◦ σ)(x) = ∂

∂y1 q(σ (x)) = ∂

∂y1 q( f P (y)) = 0.

This with (24) and (23) in (22) give

∇d · ∇w = w

(

O(δ̃−
3
2 | log(δ̃)|) d + α

δ̃2
d

)

= v

(

O(δ̃−
3
2 | log(δ̃)|)+ α

δ̃2

)

. (25)

From (20), (21) and (25) (recalling the expression of α above), we get immediately


v =
(

α
N − k

δ̃2
+ α2

δ̃2

)

v + O(| log(δ̃)| δ̃− 3
2 ) v + h

d
v

=
(

− (N − k)2

4

q(x)

δ̃2
+ O(| log(δ̃)| δ̃− 3

2 )

)

v + h

d
v, (26)

where h = 
d . Here we have used the fact that |q(x) − q(σ (x̄))| ≤ C δ̃(x) for x in a
neighborhood of �k .

Recall the definition of Wa,M,q

Wa,M,q(x) = Xa(δ̃(x)) eMd(x) v(x), with Xa(δ̃(x)) := (− log(δ̃(x)))a,

where M and a are two real numbers. We have


Wa,M,q = Xa(δ̃)
(e
Md v)+ 2∇ Xa(δ̃) · ∇(eMd v)+ eMd v 
Xa(δ̃)

and thus


Wa,M,q = Xa(δ̃)e
Md 
v + Xa(δ̃)
(e

Md) v + 2Xa(δ̃)∇v · ∇(eMd) (27)

+ 2∇ Xa(δ̃) ·
(
v∇(eMd)+ eMd∇v

)
+ eMd v 
Xa(δ̃).

We shall estimate term by term the above expression.
First we have form (26)

Xa(δ̃)e
Md 
v = − (N − k)2

4

q

δ̃2
Wa,M,q + h

d
Wa,M,q + O(| log(δ̃)| δ̃− 3

2 )Wa,M,q . (28)

On the other hand it is plain that

Xa(δ̃)
(e
Md) v = O(1)Wa,M,q . (29)
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It is clear that

∇v = w∇d + d ∇w = w∇d + d

(

log(δ̃)∇α + α
∇ δ̃
δ̃

)

w. (30)

From which and (23) we get

Xa(δ̃)∇v · ∇(eMd) = M Xa(δ̃) eMd w

{

|∇d|2 + d

(

log(δ̃)∇d · ∇α + α

δ̃
∇ δ̃ · ∇d

)}

= M Xa(δ̃) eMd w
{

1 + O(| log(δ̃)| δ̃− 1
2 ) d + O(δ̃−1) d

}

= Wa,M,q

{
M

d
+ O(| log(δ̃)| δ̃−1)

}

. (31)

Observe that

∇(Xa(δ̃)) = −a
∇ δ̃
δ̃

Xa−1(δ̃).

This with (30) and (23) imply that

∇ Xa(δ̃) ·
(
v∇(eMd)+ eMd∇v

)
= −a(α + 1)

δ̃2
X−1 Wa,M,q + O(| log(δ̃)|δ̃− 3

2 )Wa,M,q .

(32)

By Lemma 2.1, we have


(Xa(δ̃)) = a

δ̃2
Xa−1(δ̃){2 + k − N + O(δ̃)} + a(a − 1)

δ̃2
Xa−2(δ̃).

Therefore we obtain

eMdv
(Xa(δ̃)) = a

δ̃2
{2 + k − N + O(δ̃)} X−1 Wa,M,q + a(a − 1)

δ̃2
X−2 Wa,M,q . (33)

Collecting (28), (29), (31), (32) and (33) in the expression (27), we get as δ̃ → 0


Wa,M,q = − (N − k)2

4
q δ̃−2 Wa,M,q − 2 a

√
α̃ X−1(δ̃) δ̃

−2 Wa,M,q

+ a(a − 1) X−2(δ̃) δ̃
−2 Wa,M,q + h + 2M

d
Wa,M,q + O(| log(δ̃)| δ̃− 3

2 )Wa,M,q .

The conclusion of the lemma follows then from the first assertion of Lemma 2.1. ��
2.1 Construction of a subsolution

For λ ∈ R and η ∈ Lip(U) with η = 0 on �k , we define the operator

Lλ := −
− (N − k)2

4
q δ−2 + λ η δ−2, (34)

where q is as in (11). We have the following lemma

Lemma 2.3 There exist two positive constants M0, β0 such that for all β ∈ (0, β0) the
function Vε := W−1,M0,q + W0,M0,q−ε (see (12)) satisfies

LλVε ≤ 0 in Uβ, for all ε ∈ [0, 1). (35)
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Moreover Vε ∈ H1(Uβ) for any ε ∈ (0, 1) and in addition
∫

Uβ

V 2
0

δ2 dx ≥ C
∫

�k

1√
1 − q(σ )

dσ. (36)

Proof Let β1 be a positive small real number so that d is smooth in Uβ1 . We choose

M0 = max
x∈Uβ1

|h(x)| + 1.

Using this and Lemma 2.2, for some β ∈ (0, β1), we have

LλW−1,M0,q ≤
(
−2δ−2 X−2 + C | log(δ)| δ− 3

2 + |λ|ηδ−2
)

W−1,M0,q in Uβ . (37)

Using the fact that the function η vanishes on �k (this implies in particular that |η| ≤ Cδ in
Uβ ), we have

Lλ(W−1,M0,q) ≤ −δ−2 X−2 W−1,M0,q = −δ−2 X−3 W0,M0,q in Uβ,
for β sufficiently small. Again by Lemma 2.2, and similar arguments as above, we have

LλW0,M0,q−ε ≤ C | log(δ)| δ− 3
2 W0,M0,q−ε ≤ C | log(δ)| δ− 3

2 W0,M0,q in Uβ, (38)

for any ε ∈ [0, 1). Therefore we get

Lλ
(
W−1,M0,q + W0,M0,q−ε

) ≤ 0 in Uβ,
if β is small. This proves (35).
The proof of the fact that Wa,M0,q ∈ H1(Uβ), for any a < − 1

2 and W0,M0,q−ε ∈ H1(Uβ),
for ε > 0 can be easily checked using polar coordinates (by assuming without any loss of
generality that M0 = 0 and q ≡ 1), we therefore skip it.
We now prove the last statement of the theorem. Using Lemma 2.1, we have

∫

Uβ

V 2
0

δ2 dx ≥
∫

Uβ

W 2
0,M0,q

δ2 dx

≥ C
∫

Uβ (�k )

d2(x)δ̃(x)2α(x)−2 dx

≥ C
N0∑

i=1

∫

Ti

d2(x)δ̃(x)2α(x)−2 dx

= C
N0∑

i=1

∫

B N−k+ (0,β)×Di

(y1)2 |ỹ|2α(F pi
M(y))−2 |Jac(F pi

M)|(y) dy

≥ C
N0∑

i=1

∫

B N−k+ (0,β)×Di

(y1)2 |ỹ|k−N−2+(N−k)
√

1−q( f pi (ȳ)) |ỹ|−
√|ỹ| dy.

Here we used the fact that |Jac(F pi
M)|(y) ≥ C . Observe that

|ỹ|−
√|ỹ| ≥ C > 0 as |ỹ| → 0.
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Using polar coordinates, the above integral becomes

∫

Uβ

V 2
0

δ2 dx ≥ C
N0∑

i=1

∫

Di

∫

SN−k−1+

(
y1

|ỹ|
)2

dθ

β∫

0

r−1+(N−k)
√

1−q( f pi (ȳ)) d ȳ

≥ C
N0∑

i=1

∫

Di

ri1∫

0

r−1+(N−k)
√

1−q( f pi (ȳ)) |Jac( f pi )|(ȳ) d ȳ.

We therefore obtain

∫

Uβ

V 2
0

δ2 dx ≥ C
∫

�k

β∫

0

r−1+(N−k)
√

1−q(σ ) dr dσ

≥ C
∫

�k

1√
1 − q(σ )

dσ.

This concludes the proof of the lemma. ��
2.2 Construction of a supersolution

In this subsection we provide a supersolution for the operator Lλ defined in (34). We prove

Lemma 2.4 There exist constants β0 > 0, M1 < 0, M0 > 0 (the constant M0 is as in
Lemma 2.3) such that for all β ∈ (0, β0) the function U := W0,M1,q − W−1,M0,q > 0 in Uβ
and satisfies

LλUa ≥ 0 in Uβ . (39)

Moreover U ∈ H1(Uβ) provided
∫

�k

1√
1 − q(σ )

dσ < +∞. (40)

Proof We consider β1 as in the beginning of the proof of Lemma 2.3 and we define

M1 = −1

2
max

x∈Uβ1

|h(x)| − 1. (41)

Since

U (x) = (eM1d(x) − eM0d(x)X−1(δ̃(x)))d(x)δ̃(x)
α(x),

it follows that U > 0 in Uβ for β > 0 sufficiently small. By (41) and Lemma 2.2, we get

LλW0,M1,q ≥
(
−C | log(δ)| δ− 3

2 − |λ|ηδ−2
)

W0,M1,q .

Using (37) we have

Lλ(−W−1,M0,q) ≥
(

2δ−2 X−2 − C | log(δ)| δ− 3
2 − |λ|ηδ−2

)
W−1,M0,q .
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Weighted Hardy inequality with higher dimensional singularity

Taking the sum of the two above inequalities, we obtain

LλU ≥ 0 in Uβ,
which holds true because |η| ≤ Cδ in Uβ . Hence we get readily (39).
Our next task is to prove that U ∈ H1(Uβ) provided (40) holds, to do so it is enough to show
that W0,M1,q ∈ H1(Uβ) provided (40) holds.
We argue as in the proof of Lemma 2.3. We have
∫

Uβ

|∇W0,M1,q |2 ≤ C
∫

Uβ

d2(x)δ̃(x)2α(x)−2 dx

≤ C
N0∑

i=1

∫

B N−k+ (0,β)×Di

d2(F pi
M(y))δ̃(F pi

M(y))2α(F
pi
M(y))−2|Jac(F pi

M)|(y)dy

≤ C
N0∑

i=1

∫

B N−k+ (0,β)×Di

(y1)2 |ỹ|2α(F pi
M(y))−2 |Jac(F pi

M)|(y) dy

≤ C
N0∑

i=1

∫

B N−k+ (0,β)×Di

(y1)2 |ỹ|k−N−2+(N−k)
√

1−q( f pi (ȳ)) |ỹ|−
√|ỹ| dy.

Here we used the fact that |Jac(F pi
M)|(y) ≤ C . Note that

|ỹ|−
√|ỹ| ≤ C as |ỹ| → 0.

Using polar coordinates, it follows that

∫

Uβ

|∇W0,M1,q |2 ≤ C
N0∑

i=1

∫

Di

∫

SN−k−1+

(
y1

|ỹ|
)2

dθ

β∫

0

r−1+(N−k)
√

1−q( f pi (ȳ)) dr d ȳ

≤ C
N0∑

i=1

∫

Di

1√
1 − q( f pi (ȳ))

d ȳ.

Recalling that |Jac( f pi )|(ȳ) = 1 + O(|ȳ|), we deduce that

N0∑

i=1

∫

Di

1√
1 − q( f pi (ȳ))

d ȳ ≤ C
N0∑

i=1

∫

Di

1√
1 − q( f pi (ȳ))

|Jac( f )|(ȳ) d ȳ

= C
∫

�k

1√
1 − q(σ )

dσ.

Therefore
∫

Uβ

|∇W0,M1,q |2 dx ≤ C
∫

�k

1√
1 − q(σ )

dσ

and the lemma follows at once. ��
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3 Existence of λ∗

We start with the following local improved Hardy inequality.

Lemma 3.1 Let � be a smooth domain and assume that ∂� contains a smooth closed
submanifold �k of dimension 1 ≤ k ≤ N − 2. Assume that p, q and η satisfy (2) and (3).
Then there exist constants β0 > 0 and c > 0 depending only on�,�k, q, η and p such that
for all β ∈ (0, β0) the inequality

∫

�β

p|∇u|2 dx − (N − k)2

4

∫

�β

q
|u|2
δ2 dx ≥ c

∫

�β

|u|2
δ2| log(δ)|2 dx

holds for all u ∈ H1
0 (�β).

Proof We use the notations in Sect. 2 with U = � and M = ∂�.
Fix β1 > 0 small and

M2 = −1

2
max

x∈�β1

(|h(x)| + |∇ p · ∇d|)− 1. (42)

Since p
q ∈ C1(�), there exists C > 0 such that

∣
∣
∣
∣

p(x)

q(x)
− p(σ (x̄))

q(σ (x̄))

∣
∣
∣
∣ ≤ Cδ(x) ∀x ∈ �β, (43)

for small β > 0. Hence by (3) there exits a constant C ′ > 0 such that

p(x) ≥ q(x)− C ′δ(x) ∀x ∈ �β. (44)

Consider W 1
2 ,M2,1

(in Lemma 2.2 with q ≡ 1). For all β > 0 small, we set

w̃(x) = W 1
2 ,M2,1

(x), ∀x ∈ �β. (45)

Notice that div(p∇w̃) = p
w̃ + ∇ p · ∇w̃. By Lemma 2.2, we have

−div(p∇w̃)
w̃

≥ (N − k)2

4
pδ−2 + p

4
δ−2 X−2(δ)+ O(| log(δ)|δ− 3

2 ) in �β.

This together with (44) yields

−div(p∇w̃)
w̃

≥ (N − k)2

4
qδ−2 + c0

4
δ−2 X−2(δ)+ O(| log(δ)|δ− 3

2 ) in �β,

with c0 = min�β1
p > 0. Therefore

− div(p∇w̃)
w̃

≥ (N − k)2

4
qδ−2 + c δ−2 X−2(δ) in �β, (46)

for some positive constant c depending only on �,�k, q, η and p.
Let u ∈ C∞

c (�β) and put ψ = u
w̃

. Then one has |∇u|2 = |w̃∇ψ |2 + |ψ∇w̃|2 + ∇(ψ2) ·
w̃∇w̃. Therefore |∇u|2 p = |w̃∇ψ |2 p + p∇w̃ · ∇(w̃ψ2). Integrating by parts, we get

∫

�β

|∇u|2 p dx =
∫

�β

|w̃∇ψ |2 p dx +
∫

�β

(

−div(p∇w̃)
w̃

)

u2 dx .

Putting (46) in the above equality, we get the desired result. ��
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We next prove the following result

Lemma 3.2 Let � be a smooth bounded domain and assume that ∂� contains a smooth
closed submanifold �k of dimension 1 ≤ k ≤ N − 2. Assume that (2) and (3) hold. Then
there exists λ∗ = λ∗(�,�k, p, q, η) ∈ R such that

μλ(�,�k) = (N − k)2

4
, ∀λ ≤ λ∗,

μλ(�,�k) <
(N − k)2

4
, ∀λ > λ∗.

Proof We device the proof in two steps
Step 1: We claim that:

sup
λ∈R

μλ(�,�k) ≤ (N − k)2

4
. (47)

Indeed, we know that ν0(R
N+ ,Rk) = (N−k)2

4 , see [17] for instance. Given τ > 0, we let
uτ ∈ C∞

c (R
N+) be such that

∫

R
N+

|∇uτ |2 dy ≤
(
(N − k)2

4
+ τ

) ∫

R
N+

|ỹ|−2u2
τ dy. (48)

By (3), we can let σ0 ∈ �k be such that

q(σ0) = p(σ0).

Now, given r > 0, we let ρr > 0 such that for all x ∈ B(σ0, ρr ) ∩�
p(x) ≤ (1 + r)q(σ0), q(x) ≥ (1 − r)q(σ0) and η(x) ≤ r. (49)

We choose Fermi coordinates near σ0 ∈ �k given by the map Fσ0
∂� (as in Sect. 2) and we

choose ε0 > 0 small such that, for all ε ∈ (0, ε0),

�ε,ρ,r,τ := Fσ0
∂�(ε Supp(uτ )) ⊂ B(σ0, ρr ) ∩�

and we define the following test function

v(x) = ε
2−N

2 uτ
(
ε−1(Fσ0

∂�)
−1(x)

)
, x ∈ �ε,ρ,r,τ .

Clearly, for every ε ∈ (0, ε0), we have that v ∈ C∞
c (�) and thus by a change of variable,

(49) and Lemma 2.1, we have

μλ(�,�k) ≤
∫
�

p|∇v|2 dx + λ
∫
�
δ−2ηv2 dx

∫
�

q(x) δ−2 v2 dx

≤
(1 + r)

∫
�ε,ρ,r,τ

|∇v|2 dx

(1 − r)
∫
�ε,ρ,r,τ

δ−2 v2 dx
+ r |λ|
(1 − r)q(σ0)

≤
(1 + r)

∫
�ε,ρ,r,τ

|∇v|2 dx

(1 − cr)
∫
�ε,ρ,r,τ

δ̃−2 v2 dx
+ r |λ|
(1 − r)q(σ0)

≤
(1 + r)ε2−N

∫
R

N+ ε
−2(gε)i j∂i uτ ∂ j uτ

√|gε|(y) dy

(1 − cr)
∫

R
N+ ε

2−N |ε ỹ|−2 u2
τ

√|gε|(ỹ) dy
+ cr

1 − r
,
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where gε is the scaled metric with components

gεαβ(y) = ε−2〈∂αFσ0
∂�(εy), ∂βFσ0

∂�(εy)〉
for α, β = 1, . . . , N and where we have used the fact that δ̃(Fσ0

∂�(εy)) = |ε ỹ|2 for every ỹ
in the support of uτ . Since the scaled metric gε expands a gε = I + O(ε) on the support of
uτ , we deduce that

μλ(�,�k) ≤ 1 + r

1 − cr

1 + cε

1 − cε

∫
R

N+ |∇uτ |2 dy
∫

R
N+ |ỹ|−2 u2

τ dy
+ cr

1 − r
,

where c is a positive constant depending only on �, p, q, η and �k . Hence by (48) we
conclude

μλ(�,�k) ≤ 1 + r

1 − cr

1 + cε

1 − cε

(
(N − k)2

4
+ τ

)

+ cr

1 − r
.

Taking the limit in ε, then in r and then in τ , the claim follows.

Step 2: We claim that there exists λ̃ ∈ R such that μλ̃(�,�k) ≥ (N−k)2

4 .
Thanks to Lemma 3.1, the proof uses a standard argument of cut-off function and integration
by parts (see [4]) and we can obtain

∫

�

δ−2u2q dx ≤
∫

�

|∇u|2 p dx + C
∫

�

δ−2u2η dx ∀u ∈ C∞
c (�),

for some constant C > 0. We skip the details. The claim now follows by choosing λ̃ = −C

Finally, noticing that μλ(�,�k) is decreasing in λ, we can set

λ∗ := sup

{

λ ∈ R : μλ(�,�k) = (N − k)2

4

}

(50)

so that μλ(�,�k) <
(N−k)2

4 for all λ > λ∗. ��

4 Non-existence result

Lemma 4.1 Let � be a smooth bounded domain of R
N , N ≥ 3, and let �k be a smooth

closed submanifold of ∂� of dimension k with 1 ≤ k ≤ N − 2. Then, there exist bounded
smooth domains �± such that �+ ⊂ � ⊂ �− and

∂�+ ∩ ∂� = ∂�− ∩ ∂� = �k .

Proof For β > 0 small, let �β be a neighborhood of�k in R
N . Define�±

β by�+
β := �β ∩�

and �−
β := �β ∩ (RN \�). Consider the maps defined in �±

β by

x �→ g±(x) := d̄∂�(x)∓ 1

2
δ̂2(x̄),

where d̄∂� is the signed distance function to ∂� and we recall the notations in Sect. 2. We
observe that for a point P ∈ �k , recalling once again the local coordinates defined in Sect. 2,
we can see that

g+(F P
∂�(y

1, y̆, ȳ)) = y1 − 1

2
|y̆|2,
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for y1 > 0 and also

g−(F P
∂�(y

1, y̆, ȳ))) = y1 + 1

2
|y̆|2,

for y1 < 0. It is clear that for small β, we have |∇g±| ≥ C > 0 in �±
β . Therefore the sets

{
x ∈ �±

β : g± = 0
}
,

containing �k , are smooth (N − 1)-dimensional submanifolds of R
N .In addition, by con-

struction, they can be taken to be part of the boundaries of smooth bounded domains �±
with �+ ⊂ � ⊂ �− and such that

∂�+ ∩ ∂� = ∂�− ∩ ∂� = �k .

The proof then follows at once. ��
Now, we prove the following non-existence result.

Theorem 4.2 Let � be a smooth bounded domain of R
N and let �k be a smooth closed

submanifold of ∂� of dimension k with 1 ≤ k ≤ N − 2 and let λ ≥ 0. Assume that p, q and
η satisfy (2) and (3). Suppose that u ∈ H1

0 (�) ∩ C(�) is a non-negative function satisfying

− div(p∇u)− (N − k)2

4
qδ−2u ≥ −ληδ−2u in �. (51)

If
∫
�k

1√
1−p(σ )/q(σ )

dσ = +∞ then u ≡ 0.

Proof We first assume that p ≡ 1. Let �+ be the set given by Lemma 4.1. We will use the
notations in Sect. 2 with U = �+ and M = ∂�+. For β > 0 small we define

�+
β := {x ∈ �+ : δ(x) < β}.

We suppose by contradiction that u does not vanish identically near �k and satisfies (51) so
that u > 0 in �β by the maximum principle, for some β > 0 small.
Consider the subsolution Vε defined in Lemma 2.3 which satisfies

Lλ Vε ≤ 0 in �+
β , ∀ε ∈ (0, 1). (52)

Notice that ∂�+
β ∩�+ ⊂ � thus, for β > 0 small, we can choose R > 0 (independent on

ε) so that

R Vε ≤ R V0 ≤ u on ∂�+
β ∩�+ ∀ε ∈ (0, 1).

Again by Lemma 2.3, setting vε = R Vε − u, it turns out that v+
ε = max(vε, 0) ∈ H1

0 (�
+
β )

because Vε = 0 on ∂�+
β \ ∂�+

β ∩�+. Moreover by (51) and (52),

Lλ vε ≤ 0 in �+
β , ∀ε ∈ (0, 1).

Multiplying the above inequality by v+
ε and integrating by parts yields

∫

�+
β

|∇v+
ε |2 dx − (N − k)2

4

∫

�+
β

δ−2q|v+
ε |2 dx + λ

∫

�+
β

ηδ−2|v+
ε |2 dx ≤ 0.
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But then Lemma 3.1 implies that v+
ε = 0 in �+

β provided β small enough because |η| ≤ Cδ
near �k . Therefore u ≥ R Vε for every ε ∈ (0, 1). In particular u ≥ R V0. Hence we obtain
from Lemma 2.3 that

∞ >

∫

�+
β

u2

δ2 ≥ R2
∫

�+
β

V 2
0

δ2 ≥
∫

�k

1√
1 − q(σ )

dσ

which leads to a contradiction. We deduce that u ≡ 0 in�+
β . Thus by the maximum principle

u ≡ 0 in �.
For the general case p �= 1, we argue as in [5] by setting

ũ = √
pu. (53)

This function satisfies

−
ũ − (N − k)2

4

q

p
δ−2ũ ≥ −λ η

p
δ−2ũ +

(

−
p

2p
+ |∇ p|2

4p2

)

ũ in �.

Hence since p ∈ C2(�) and p > 0 in �, we get the same conclusions as in the case p ≡ 1
and q replaced by q/p. ��

5 Existence of minimizers for μλ(�,�k)

Theorem 5.1 Let � be a smooth bounded domain of R
N and let �k be a smooth closed

submanifold of ∂� of dimension k with 1 ≤ k ≤ N − 2. Assume that p, q and η satisfy (2)
and (3). Then μλ(�,�k) is achieved for every λ < λ∗.

Proof The proof follows the same argument of [4] by taking into account the fact that η = 0
on �k so we skip it. ��

Next, we prove the existence of minimizers in the critical case λ = λ∗.

Theorem 5.2 Let � be a smooth bounded domain of R
N and let �k be a smooth closed

submanifold of ∂� of dimension k with 1 ≤ k ≤ N − 2. Assume that p, q and η satisfy (2)
and (3). If

∫
�k

1√
1−p(σ )/q(σ )

dσ < ∞ then μλ∗ = μλ∗(�,�k) is achieved.

Proof We first consider the case p ≡ 1.
Let λn be a sequence of real numbers decreasing to λ∗. By Theorem 5.1, there exits un

minimizers for μλn = μλn (�,�k) so that

−
un − μλn δ
−2qun = −λnδ

−2ηun in �. (54)

We may assume that un ≥ 0 in�. We may also assume that ‖∇un‖L2(�) = 1. Hence un ⇀ u
in H1

0 (�) and un → u in L2(�) and pointwise. Let �− ⊃ � be the set given by Lemma
4.1. We will use the notations in Sect. 2 with U = �− and M = ∂�−. It will be understood
that q is extended to a function in C2(�−). For β > 0 small we define

�−
β := {x ∈ �− : δ(x) < β}.

We have that


un + bn(x) un = 0 in �,
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with |bn | ≤ C in � \�−
β
2

for all integer n. Thus by standard elliptic regularity theory,

un ≤ C in � \�−
β
2

. (55)

We consider the supersolution U in Lemma 2.4. We shall show that there exits a constant
C > 0 such that for all n ∈ N

un ≤ CU in �−
β . (56)

Notice that � ∩ ∂�−
β ⊂ �− thus by (55), we can choose C > 0 so that for any n

un ≤ C U on � ∩ ∂�−
β .

Again by Lemma 2.4, setting vn = un − C U , it turns out that v+
n = max(vn, 0) ∈ H1

0 (�
−
β )

because un = 0 on ∂� ∩�−
β . Hence we have

Lλn vn ≤ −C(μλ∗ − μn)qU − C(λ∗ − λn)ηU ≤ 0 in �−
β ∩�.

Multiplying the above inequality by v+
n and integrating by parts yields

∫

�−
β

|∇v+
n |2 dx − μλn

∫

�−
β

δ−2q|v+
n |2 dx + λn

∫

�−
β

ηδ−2|v+
n |2 dx ≤ 0.

Hence Lemma 3.1 implies that

C
∫

�−
β

δ−2 X−2|v+
n |2 dx + λn

∫

�−
β

ηδ−2|v+
n |2 dx ≤ 0.

Since λn is bounded, we can choose β > 0 small (independent of n) such that v+
n ≡ 0 on

�−
β (recall that |η| ≤ Cδ). Thus we obtain (56).

Now since un → u in L2(�), we get by the dominated convergence theorem and (56), that

δ−1un → δ−1u in L2(�).

Since un satisfies

1 =
∫

�

|∇un |2 = μλn

∫

�

δ−2qu2
n + λn

∫

�

δ−2ηu2
n,

taking the limit, we have 1 = μλ∗
∫
�
δ−2qu2 + λ∗ ∫

�
δ−2ηu2. Hence u �= 0 and it is a

minimizer for μλ∗ = (N−k)2

4 .
For the general case p �= 1, we can use the same transformation as in (53). So (56) holds and
the same argument as a above carries over. ��

6 Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1 Combining Lemma 3.2 and Theorem 5.1, it remains only to check the
case λ < λ∗. But this is an easy consequence of the definition of λ∗ and of μλ(�,�k), see
[4, Section 3].
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Proof of Theorem 1.2 Existence is proved in Theorem 5.2 for Ik < ∞. Since the absolute
value of any minimizer for μλ(�,�k) is also a minimizer, we can apply Theorem 4.2 to
infer that μλ∗(�,�k) is never achieved as soon as Ik = ∞.
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