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Abstract Let © be a smooth bounded domain in RY with N > 3 and let & be a closed
smooth submanifold of 92 of dimension 1 < k < N —2. In this paper we study the weighted
Hardy inequality with weight function singular on X. In particular we provide necessary
and sufficient conditions for existence of minimizers.
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1 Introduction

Let 2 be a smooth bounded domain of RY, N > 2 and let =4 be a smooth closed submanifold
of 92 with dimension 0 < k < N — 1. Here X is a single point and Xy_1; = 9. For
A € R, consider the problem of finding minimizers for the quotient:

Vul>pdx — & [, 872 |ul’ndx
(2, Xg) ==  inf Jo|Vulp _ {Q lu|“n
ueHy () Jo 872 luPqdx

, (1

where 6(x) := dist(x, X) is the distance function to X and where the weights p, g and n
satisfy

p.q € Cz(ﬁ), p.qg >0 in Q, n>0 inﬁ\ Xk, n e Lip(ﬁ) 2)
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and
q
max — =1, n=0 on 2. 3)
ps P
We put
d
]k:/ a , 1<k<N-1 and Iy=oo. 4)
4 1 —(q(0)/p(0))
k

It was shown by Brezis and Marcus [4] that there exists A* such that if A > A* then
ua(2, Ty—1) < i and it is attained while for A < A*, u; (2, Xy_1) = % and it is not
achieved forevery A < A*. The critical case A = 1* was studied by Brezis, Marcus and Shafrir
[5], where they proved that p= (2, £ y_1) admits a minimizer if and only if /y_; < oco. The
case where k = 0 (X is reduced to a point on the boundary) was treated by the first author
in [11] and the same conclusions hold true.

Here we obtain the following

Theorem 1.1 Let Q2 be a smooth bounded domain of RN, N >3 andlet ) C 9Q be a
closed submanifold of dimension k € [1, N — 2]. Assume that the weight functions p, q and
n satisfy (2) and (3). Then, there exists A* = A*(p, q, n, Q, Xx) such that

w(Q, T = M Vi < A%,
MAQZQ<Q&;f,VA>ﬁ.
The infinimum ) (2, Xi) is attained if . > A* and it is not attained when . < \*.
Concerning the critical case we get

Theorem 1.2 Let A* be given by Theorem 1.1 and consider I defined in (4). Then
W (2, Zy) is achieved if and only if Iy < oo.

By choosing p = g = 1 and 5 = 82, we obtain the following consequence of the above
theorems.

Corollary 1.3 Let Q2 be a smooth bounded domain of RN, N > 3 and % C 92 be a closed
submanifold of dimension k € {1, ..., N —2}. For . € R, put

Vul? dx — ul? dx
v(Q, T) = inf Jo| '722k||
ueH! (Q) Jo 872 ul? dx

Then, there exists . = A(S2, =) such that

N —k)? -
vi(€2, X)) = %, YA <A,

(N — k)? :
V)»(Q5 Ek) < 4 . VA > A.

Moreover vy (2, £y is attained if and only if A > .
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Weighted Hardy inequality with higher dimensional singularity

The proof of the above theorems are mainly based on the construction of appropriate sharp
H'-subsolution and H !-supersolutions for the corresponding operator

N —k)?
E)L =—A— %qa—z + )\.8_27]
(with p = 1). These super and sub-solutions are perturbations of an approximate “virtual”
2
ground-state for the Hardy constant % near 2. For that we will consider the projection

distance function § defined near Y as

S(x) := \/|dist39(f, O + |x — X2,

where X is the orthogonal projection of x on 92 and dist??(-, Zy) is the geodesic distance to
Y on 082 endowed with the induced metric. While the distances § and $ are equivalent, A§
and A§ differ and § does not, in general, provide the right approximate solution fork < N —2.
Letting dyq = dist(-, 9L2), we have

§(x) = \/|dist89(f, SO + dya(x)2.

Our approximate virtual ground-state near X reads then as

X > dyg(x) 57 (x). )

In some appropriate Fermi coordinates y = (y!, y2, ..., yN=k yN=k+1 Ny —
(3.5 € RV with 5 = (', % ... 9") e RY Fand 7 = N1 9N (see

next section for a precise definition), the function in (5) then becomes

1~ k=N

y=y vz
which is the “virtual” ground-state for the Hardy constant ul Zk)z in the flat case &; = R¥
and = RV . We refer to Sect. 2 for more details about the constructions of the super and
sub-solutions.
The proof of the existence part in Theorem 1.2 is inspired from [5]. It amounts to obtain
a uniform control of a specific minimizing sequence for u;= (2, Xx) near X via the H'-
super-solution constructed.
We recall that the existence and non-existence of extremals for (1) and related problems were
studied in [1,6-9,12-14,16,19-21] and some references therein. We would like to mention
that some of the results in this paper can be useful in the study of semilinear equations
with a Hardy potential singular at a submanifold of the boundary. We refer to [2,3,10],
where existence and nonexistence for semilinear problems were studied via the method of
super/sub-solutions.

2 Preliminaries and notations

In this section we collect some notations and conventions we are going to use throughout the
paper.

Let U be an open subset of RN, N > 3, whose boundary M := 90U is a smooth closed
hypersurface of RV. Assume that M contains a smooth closed submanifold X of dimension
1 <k < N — 2. In the following, for x € RV, we let d(x) be the distance function of M
and §(x) the distance function of ¥;. We denote by N o4 the unit normal vector field of M
pointed into U.
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Given P € Xy, the tangent space Tp M of M at P splits naturally as
TpM =TpZ; & NpXy,

where Tp Xy is the tangent space of ¥; and Np X stands for the normal space of Tp X
at P. We assume that these subspaces are spanned respectively by (Ea) and

a=N—k+1,...,.N
(E,')l.:2 g We will assume that N (P) = Ej.
A neighborhood of P in ; can be parameterized via the map

N
> £7(5) = Expp* ( >, yE)
a=N—k+1
where, j = (yV %1, ..., y"V) and where Expgk is the exponential map at P in X; endowed
with the metric induced by M. Next we extend (E;);=2 .. ny—k to an orthonormal frame
(Xi)i=2,...N—k in a neighborhood of P. We can therefore define the parameterization of a
neighborhood of P in M via the mapping

N—k
TR 309 )
=2

with y = (2, ..., yV %) and Expg’1 is the exponential map at Q in M endowed with the

metric induced by RY. We now have a parameterization of a neighborhood of P in RV
defined via the above Fermi coordinates by the map

y=0L5 9 FLGL 55 = kG, 9 + 3 N3, ).
Next we denote by g the metric induced by F /Ct whose components are defined by
2ap (V) = (0 F4 (), 3p FAq (1))
Then we have the following expansions (see for instance [15])
gn(y) =1 (6)

g18(y) =0, forp=2,...,N
gup(y) = 8ap + O(|y]),  fora,f=2,...,N,

where ¥ = (y', §) and O(™) is a smooth function in the variable y which is uniformly
bounded by a constant (depending only M and Xj) times r'™.

In concordance to the above coordinates, we will consider the “half”’-geodesic neighbor-
hood contained in &/ around X of radius p

Up(Zp) i ={xel: S(X) < p}, )

where § is the projection distance function given by

5(x) 1=y distM (F., TP + b — P,

where ¥ is the orthogonal projection of x on M and dist™ (-, X;) is the geodesic distance to
;. on M with the induced metric. Observe that

S(Fri(») =171, ®)
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Weighted Hardy inequality with higher dimensional singularity

where 5 = (y!, ¥). We also define o (X) to be the orthogonal projection of X on ¥; within
M. Letting

$(@) == distM(x, Zp),
one has

X

§(x) = /82(%) + d2(x). )

In addition it can be easily checked via the implicit function theorem that there exists a
positive constant By = Bo(Zk, 2) such that § € C™> Up, ().

It is clear that for p sufficiently small, there exists a finite number of Lipschitz open sets
(Ti)1<i<N, such that

X = Exp) (8 V&) orequivalently o (X) = Exp2 (=4 Vé).

Next we observe that

No
T,NTj =0 fori#j and Uy(Zp) =T
i=1

We may assume that each 7; is chosen, using the above coordinates, so that
T; = FR(BY 750, p) x D;) with p; € &,
where the D;’s are Lipschitz disjoint open sets of R such that

No
U 77 = =k

i=1

In the above setting we have

Lemma 2.1 As§ — 0, the following expansions hold

(1) 82 =521+ 0@)),
(2) V§-Vd = g

(3) V8| =14 0(),
@) As === o),

where O(r'™) is a function for which there exists a constant C = C (M, Xy) such that

o™ < cr’™.
Proof (1) Let P € Xj. With an abuse of notation, we write x(y) = F/C( (v) and we set
1o
H(y) == 55 (x(y)).

The function ¢ is smooth in a small neighborhood of the origin in R" and a Taylor
expansion yields

1
?(y) =90, )y + VIO, )yl + §V20(0, DT 31+ oI

1
= Ev%no, P, 51+ o5 13- (10)
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Here we have used the fact that x (0, y) € X so that §(x (0, y)) = 0. We write

N—k
V200, DI, 5= D Auy'y,
i,/=1
with
329

M iy i

a (a (1 2(x) dx/ )
= —|— |0 - 5=
ayl \axi \2 ayi ) ) 7=0

32 o ( )ij axS/ L2 ) 3%x* /
= n - X - — [/ $—i —_— X)————/3=0-
axiaxs \2 ayl oyl Y0 gy dyigyl =0

Now using the fact that

ox* d
Wwﬂzﬁz%am5;Wmmﬂza

we obtain
, . 2 (1
JNY 2 A 2 e2 -
Ay y =yy PEE (25 )(x)/y=o
=15I%.
where we have used the fact that the matrix ( Bx?;\, (%62)(x) / 5,:0) i is the matrix of

the orthogonal projection onto the normal space of 7 yr 5 Z. Hence_uéiﬁg (10), we get
8 x () =131 + 0051

This together with (8) prove the first expansion.

(2) Thanks to (8) and (6), we infer that

5 1
Vs - Vd(x(y)) = By _y _dx(y)

ay! 151 S(x(y)

as desired.

(3) We observe that

38 38 ra g f
ar 9t TN =87 eT M)
xT ox

ay« dyP

)

where g"‘ﬁ are the entries of the inverse of the matrix (g4g)a,p=1,..., N Therefore using again

(6) and (8), we get the desired result.

ey

(4) Finally using the expansion of the Laplace-Beltrami operator Ag, see Lemma 3.3 in [18],
applied to (8), we get the last estimate. O

In the following of — only — this section, the function g : &/ — R will be such that

geC?*WU), and g<1 onX. an
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Weighted Hardy inequality with higher dimensional singularity

Let M, a € R, we consider the function
Wam.q(¥) = Xa(5(x)) M0 d(x) §(x)*™, (12)
where
Xa(t) = (=log()* 0<t<1

and

k _ -
a(x) = 74—7\/1 q(o(x)) + 8(x).
In the above setting, the following useful result holds.

Lemma 2.2 As the parameter § — 0, the laplacian of the function W, y 4 defined in (12)
can be expanded as

(N —k)?
4

tata—1)X_2(8) 87> Wa g +

AWarg = — G8 2 Warmg —2aNaX_1(8)8 > Wamy
h+2M

d

3
Wa,m.q + O(|log(8)672) Wa,m.q»
- _ (N—k)? — g —
where a(x) = —5— (1—q(0(X)) +8(x)) and h = Ad. Here the lower order term
satisfies
[0 < Clrl,

where C is a positive constant only depending on a, M, Ty, U and ||q || c2yy)-

Proof Weputs = %.Letw = 5(x)*™ then the following formula can be easily verified
Aw = w(A log(w) + |v1og(w)|2). (13)
Since
log(w) =« log(g),
we get
Alog(w) = Aalog(8) + 2Va - V(log(8)) + a A log(3). (14)
We have
A = AVa =Va ( Alog(@) + 7|V10g(a)|2) (15)
& —sV %)
V log(@) = a_ s (qoo)+s

a a

and using the formula (13), we obtain

5 Aa  |Val?
Alog(e) = — — =
o o
B —sA(qoa)+sAS s2|V(q o 0)|> + s2|V§|? 22V(qoo) v5
o a a2 a?

@ Springer



M. M. Fall, F. Mahmoudi

Putting the above in (15), we deduce that

1 - 1s3V 2 4 52| VE|? — 252V - V§
Aa:f[—sA(qoa)—i—sAS—fsl (qoo)l” +57] ~| V(g oo) ]
2a 2 @
(16)
Using Lemma 2.1 and the fact that g is in C 2, together with (16) we get
Ao = 0G5 3). 17)
On the other hand
1 V& s V8
Va = VVa = = V(‘]°“)+
2Va zf 2Va
so that
Va-Vi=——"_V(goo)- v5+s IvaP — 067 %)
o - = — oo — =
2f I 2 Va
and from which we deduce that
- 1 ~ ~ 3
Vo - Viog($) = gv(x VE=002). (18)
By Lemma 2.1 we have that
- N—k-2 -
aAlog(d) =« T 1+ 0©)).
Taking back the above estimate together with (18) and (17) in (14), we get
N—k—-2 - -~ 3
Alog(w) =« % 1+ 0(@)) + O(|1og(8)|6™2). (19)
We also have
N v§ N
V(log(w)) = V(x log()) = a? + log(8)Va
and thus
2 o2
o 2 log(s . .3
Vo) = 5+ %” V3 - Va +[log®)PIVal = 5 + 0( log)i5 ).
Putting this together with (19) in (13), we conclude that
Aw N k=2 o2
e me——— t =+ 0(|10g(5)l57) (20)
w 52 82
Now we define the function
v(x) :=dx) wx),
where we recall that d is the distance function to the boundary of /. It is clear that
Av =wAd +dAw + 2Vd - Vw. 21

Notice that

- Vé
Vw = w Vlog(w) = w (log(S)Voc + ag)
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and so
Vd-Vw=uw (1og(S)Vd Va + %Vd . vé) . (22)
Recall the second assertion of Lemma 2.1 that we rewrite as
- d
Vd-V§ = 3 (23)
Therefore
Vd -Va = Vd ' v( )+sVg S 4 S G4.Vgeo). 4)
. o = . - qu = = :7_(?—7_‘ . qu'.
N 2Va) 2Wads 2V

Notice that if x is in a neighborhood of some point P € ¥; one has
d _ el _
Vd V(g oo)x) = —q(0®) =—q(f () =0.
dy dy
This with (24) and (23) in (22) give

Vd -V = w (O(S—%|1og(5)|)d+ %d)

~ 3 ~ o
v (0(8‘7 [log(8)]) + S—z) . (25)
From (20), (21) and (25) (recalling the expression of o above), we get immediately

PR (PR S PSP 3F = S
V= |\« 5 +57 v+ O(|log(8)] )U+EU

_ (_ (N —k)* g(x)
_ P

+ 0(log(3)| S—%)) v+ g v, (26)
where h = Ad. Here we have used the fact that |g(x) — g(o(x))| < Cg(x) for x in a
neighborhood of .
Recall the definition of W, 4
Wa,p.q(x) = Xa(6(x) M@ v(x),  with  X,(5(x)) := (—log(§(x)))“,
where M and a are two real numbers. We have
AWartg = Xa(8) AMv) +2VX,(5) - V(eM v) 4+ M v AX,(5)

and thus

AWartg = Xa(@)eM? Av+ X, (§) Ay v +2X,(5)Vu - V(M) (27)

F2V X, () - (v V(M) + eMdvU) + My AX, ().

We shall estimate term by term the above expression.
First we have form (26)

< Md (N—k?q h o
Xa@®)eM v = === Waisrg + 5 Wty + 01021572 Warng- (28)
On the other hand it is plain that
Xa(@®) Ay v =0(1) Wapq. (29)
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It is clear that
- \Z3
Vv:de—I—de:de—}—d(log(S)Voz—i—aS) w. (30)
From which and (23) we get
Xo(®) V- V(M = M X, (8) M w [lVd|2 +d (1og(5) Vd - Va + %VS : Vd)]
= M X,(3) My {1 +0(log3)|5%)d + O(S‘l)d]
M a1 R—1
= Wamg 17 + O(|log(®)|67 )¢ - (31)
Observe that
N \Z3 .
V(X4(8)) = —a 7Xa—1(5)-

This with (30) and (23) imply that

_a(ot +1)

o =3
52 X Wa,M,q + O(|log(8)|672) Wa,M,q~

(32)

VX, (3 - (v V(eMd) 4+ eMdVv) -

By Lemma 2.1, we have

AXq(8)) = ;—zxaq(S){z +k=N+0@)}+ %xmz@.

Therefore we obtain

~ a = a(a—1)
MIVA(X,(8) = 52Tk =N+ 0@ Xt Wanrg + =5 X2 Wapg. (33)

Collecting (28), (29), (31), (32) and (33) in the expression (27), we get as §—>0

N —k? - Xz
_Wok G Wamg —2aNaX_1(8) 572 Wam,

h+2M
d
The conclusion of the lemma follows then from the first assertion of Lemma 2.1. ]

AW m,q =

R Ty R3
+at@—1)X_208)82 Wang+ Wam.g + O(|10g(8)|872) Wam.4-

2.1 Construction of a subsolution

For A € Rand n € Lip(U) with n = 0 on Xy, we define the operator

_W=k?
4

where ¢ is as in (11). We have the following lemma

Ly = —A g8 24+ ans2, (34)

Lemma 2.3 There exist two positive constants My, Bo such that for all B € (0, Bo) the
Sunction Ve := W_1 a4 + Wo,my.q—e (see (12)) satisfies

L, Ve =0 inlUg, forall ¢ €][0,1). 35)
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Moreover V, € Hl(uﬁ)for any ¢ € (0, 1) and in addition

1
—dx > / ——=do (36)
/ J V1—q(o)
k
Proof Let B be a positive small real number so that d is smooth in Ug, . We choose

My = max |h(x)| + 1.
X€eUp,

Using this and Lemma 2.2, for some 8 € (0, 81), we have
3
LW g < (—25—2 X_5+Cllog(8)] 672 + |x|n3—2) W_impq in Us. (7)

Using the fact that the function 7 vanishes on % (this implies in particular that |n| < C§ in
Ug), we have

L (W_1 My,q) < —872X W_imyqg = —872X 3 Wo,mo,q 1n Ug,
for g sufficiently small. Again by Lemma 2.2, and similar arguments as above, we have
3 3 .
L. Wo,My,g—¢ = C[10g(8)| 872 Wo,mp,g—¢ = C[10g(8)[872 Wo,me,q 1n U, (38)
for any ¢ € [0, 1). Therefore we get
Ly (W=iMo.q + WoMpg—s) <0 in Up,

if B is small. This proves (35).

The proof of the fact that W, p,,4 € Hl(uﬂ), forany a < —5 and Wo,My,q—¢ € H! Up),
for ¢ > 0 can be easily checked using polar coordinates (by assumlng without any loss of
generality that My = 0 and ¢ = 1), we therefore skip it.

We now prove the last statement of the theorem. Using Lemma 2.1, we have

/Vod / OMO(Id
52

>C / d? ()8 ()%™ =2 gy
M,s(Ek)

> CZ /dz(x)é(x)za(x) 2 dx

llT

B Pi vy ;
—c> [ oM e i) dy

2y [ oDV 5y,
~ YR %Dy

Here we used the fact that IJac(F/’\’ﬁ[)l(y) > C. Observe that

151VPl > € >0 as |5] - 0.
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Using polar coordinates, the above integral becomes
V2 No N B
/ngx . Z/ / (IyTI) de/,—1+<N—k>\/1—q<fﬂi<y>> 45
s =1y gyke Y 0

.

No gl

=C 2 / / P VOV e (£79)](5) d.
=lp, o

We therefore obtain

B
2
‘;—gdx >C //r*”(N*W*‘f(“) drdo

Upg X 0
|
>C | ———=do.
J V1—=4(o)
k
This concludes the proof of the lemma. O

2.2 Construction of a supersolution
In this subsection we provide a supersolution for the operator £; defined in (34). We prove
Lemma 2.4 There exist constants By > 0, M1 < 0, My > O (the constant My is as in

Lemma 2.3) such that for all B € (0, Bo) the function U := Wo pm, g — W1 My, > 0inlUg
and satisfies

LUy =0 inlUg. (39)
Moreover U € H! (Up) provided
/ ! d + (40)
——————do < +o0.
E V1—=gq(0)
k
Proof We consider $; as in the beginning of the proof of Lemma 2.3 and we define
1
M; = —— max |h(x)| — 1. 41)
2 X€eUpg,

Since
U(x) = (M40 — eMdD X (5(x)))d (x)8(x)* ™,
it follows that U > 0 in Ug for B > O sufficiently small. By (41) and Lemma 2.2, we get
3 _
L3 Wonq = (~Cl1og®)1673 = [1n67%) Wo.un.q-
Using (37) we have

3 _
L(=W-tmo.g) = (2672X 2 = Cllog®)] 673 = [un6™) Wot -
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Taking the sum of the two above inequalities, we obtain
LU >0 in Ug,

which holds true because || < C§ in Ug. Hence we get readily (39).

Our next task is to prove that U € H! (Up) provided (40) holds, to do so it is enough to show
that Wo p1,,4 € H ! (Ug) provided (40) holds.

We argue as in the proof of Lemma 2.3. We have

/|vvvo,Ml,q|2 < c/d2(x)(§(x)2“<“—2 dx

Up Up

No _

<cy’ / A (F R ONSEL ()2 FMO =2 Jac(FR) (y)dy
= BNk, p)xD;
No _

<c> / (V)2 15PN 1ac(F R | () dy
=Nk pyxD;
No

=C2, / (VD2 [FEN AWV (515 gy,
BY7%0.8)xD;
Here we used the fact that |Jac(F/’\7jl)|(y) < C. Note that
57V < C as I —o.
Using polar coordinates, it follows that

No 1N\ 2 B _
/IVWo,M.,qI2 =C Z/ / (%ﬂ) dg/,flwv—k) 1=a(f""OD gy 4y
Up 0

i=lp, Skt
No |
<C /—_ dy.
l._z] VT=4(77 ()
=1 p,
Recalling that [Jac(f?))|(y) = 1 + O(]y|), we deduce that

No No
E ! 1
—————=—=dy=C -5 5\ d3

1
= C/ido'.
E v1—q(o)
k
Therefore
1
IVWom, .| dx < C/ido
/ B VT=4(0)
Up Tk
and the lemma follows at once. O
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3 Existence of A*

We start with the following local improved Hardy inequality.

Lemma 3.1 Let Q be a smooth domain and assume that Q2 contains a smooth closed
submanifold Xy of dimension 1 < k < N — 2. Assume that p, q and n satisfy (2) and (3).
Then there exist constants By > 0 and ¢ > 0 depending only on Q, X, q, n and p such that
Jorall B € (0, Bo) the inequality

[ Ly L Py iy
u B e — — axX C ————= ax
p 4 T2 = | 52 10g) 2
Qp Qp Qp
holds for all u € HO1 (2p).

Proof We use the notations in Sect. 2 with i/ = Q and M = Q.
Fix f; > 0 small and

1
My =~ max ()| +[Vp - Vd]) = 1. (42)

X€Qg,

Since g e C1(Q), there exists C > 0 such that

P PO _ sy vx e @p, (43)
q(x)  q(o(Xx))
for small 8 > 0. Hence by (3) there exits a constant C’ > 0 such that

p(x) > qx) —C'8(x) Vx € Q. (44)

Consider W%,Mz,l (in Lemma 2.2 with ¢ = 1). For all 8 > 0 small, we set
wx) = W%’Mz,l(x), Vx € Qp. (45)

Notice that div(pVw) = pAw + Vp - Vw. By Lemma 2.2, we have
div(pVi N —k)?
_dvpvm) N =BT 52 a5+ 0 log@®ls ) in .
w 4 4
This together with (44) yields
div(pVi) _ (N —k)?
w - 4

with ¢op = minw p > 0. Therefore
1

2, €02 _3 .
qé +Z(S X 2(8) + O(]log(8)1672) in g,

_div(pvi) (N - k)2
w - 4
for some positive constant ¢ depending only on 2, ¥, ¢, n and p.
Letu € C2°(2p) and put y = . Then one has |Vu|?> = [#Vy|? + [y Vi[> + V(y?) -
V. Therefore |Vu|?>p = |0V |?p + pVib - V(yr?). Integrating by parts, we get

div(pVi
/|Vu|2pdx:/|ﬁ)VW|2pdx+/(—M) W dx.
w

Qp Qp Qp

g8 >+ 872X _5(8) in Qp, (46)

Putting (46) in the above equality, we get the desired result. O
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‘We next prove the following result

Lemma 3.2 Let Q be a smooth bounded domain and assume that 02 contains a smooth
closed submanifold ¥y of dimension 1 < k < N — 2. Assume that (2) and (3) hold. Then
there exists \* = A*(2, Zk, p, ¢, n) € R such that

(N —k)?
(€2, X)) = 1 VA < A%,
(N —k)?
(2, Xp) < — VA > A%,
Proof We device the proof in two steps
Step 1: We claim that:
(N — k)?
sup p (€2, ) < — (47
reR

2
Indeed, we know that vo(RY, RF) = W Zk) , see [17] for instance. Given 7 > 0, we let
ur € C(RY) be such that

N —k)? .
/IVurlzdyS (%H)/wrzu%dy. 48)
RY RY

By (3), we can let og € X be such that
q(00) = p(00).
Now, given r > 0, we let p, > 0 such that for all x € B(op, pr) N 2
px) = (1 +r)q(oo), q(x)=(1—-r)glop) and n(x) <r. (49)

We choose Fermi coordinates near og € X given by the map Fggz (as in Sect. 2) and we
choose &y > 0 small such that, for all ¢ € (0, &),

Neprr = F(;Tgoy(e Supp(u;)) C B(oyp, pr) N2
and we define the following test function
2-N _ _
v) = 7 ur (7 () TN ) L x € Avpne

Clearly, for every ¢ € (0, &9), we have that v € CZ°(€2) and thus by a change of variable,
(49) and Lemma 2.1, we have

Jo PIVVUPdx + A [, §72nv? dx

Q, o) <
#al W= qu()c)S—2 v2dx
) (1+r)war |Vv|?dx Al
“(d-r fAEpHS_z vZdx (1 —r)g(op)
(1+7) fAW_T V| dx riAl

< =

T (1 —cr) fASpr18_2v2dx (I = r)g(oo)

) (e fon e72(8)Y diurdjur /1871(y) dy Lo
ST A eV ig G dy 1

)
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where g is the scaled metric with components
8t () = & 2 (3u Fyg(ey). 9p Fyg ()

fora, B = 1,..., N and where we have used the fact that 8(F (ey)) = |e¥|? for every y
in the support of u. Since the scaled metric g° expands a g° = I 4+ O(e) on the support of
u;, we deduce that

14+7r 1+ce fRNlV”fl dy cr
(82, Xy) <
l—crl—ce [

)

y 15172 2aly 1—r

where ¢ is a positive constant depending only on 2, p, g, n and ¥;. Hence by (48) we

conclude
14+r 1+ce N — k)2 cr
1 (2, 50) < W07 )+
l—cr 1—ce 4 1—r

Taking the limit in ¢, then in r and then in 7, the claim follows.

Step 2: We claim that there exists X € R such that mi (2, Zg) = %.
Thanks to Lemma 3.1, the proof uses a standard argument of cut-off function and integration
by parts (see [4]) and we can obtain

/8’2u2qu E/qulzpdx+C/572M277dx Vu € C(Q),
Q Q Q@

for some constant C > 0. We skip the details. The claim now follows by choosing r=—-C

Finally, noticing that u; (2, ¥) is decreasing in A, we can set

(N—k)2]

7] (50)

A* = sup [A ER : (R, %) =

so that uy (2, ¥x) < % for all A > A*. O

4 Non-existence result

Lemma 4.1 Let Q be a smooth bounded domain of RN, N > 3, and let Ty be a smooth
closed submanifold of 02 of dimension k with 1 < k < N — 2. Then, there exist bounded
smooth domains QF such that QT c Q C Q™ and

INT NI =02 NIQ = 4.
Proof For B > 0 small, let I'g be a neighborhood of X in RY . Define Q;,F by QF = FgNQ
and Q4 :=TpN (RN \ Q). Consider the maps defined in Q;F by
x> g5 () = da () F %32@,

where ciag is the signed distance function to €2 and we recall the notations in Sect. 2. We
observe that for a point P € ¥, recalling once again the local coordinates defined in Sect. 2,
we can see that

. - 1.
§T(Flo0", 3,9 =y' - Elylz,
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for y! > 0 and also
R0 59 =y 4 5151,
for y! < 0. It is clear that for small 8, we have |[Vg*| > C > 0in Qg Therefore the sets
{er;;E : gizo],

containing X, are smooth (N — 1)-dimensional submanifolds of R In addition, by con-
struction, they can be taken to be part of the boundaries of smooth bounded domains Q%
with QT € © C Q~ and such that

INT NI =02 NIQ = 4.
The proof then follows at once. O

Now, we prove the following non-existence result.

Theorem 4.2 Let 2 be a smooth bounded domain of RN and let Sy be a smooth closed
submanifold of Q2 of dimension k with 1 <k < N — 2 and let ). > 0. Assume that p, q and
n satisfy (2) and (3). Suppose that u € HOl (2) N C(R2) is a non-negative function satisfying

. (N—Kk? _, o
—div(pVu) — Tqé u>—ind “u in 2. (28]

. | B B
Iffzk Wdﬁ = 400 thenu = 0.

Proof We first assume that p = 1. Let Q% be the set given by Lemma 4.1. We will use the
notations in Sect. 2 with &/ = Q and M = dQ™T. For 8 > 0 small we define

sz; ={xeQt: §(x) <Bp).

We suppose by contradiction that u does not vanish identically near ¥; and satisfies (51) so
that u > 0 in Qg by the maximum principle, for some g > 0 small.
Consider the subsolution V, defined in Lemma 2.3 which satisfies

L, Ve <0 inQf, Vee(0,1). (52)

ﬁ ’

Notice that BQ; N Q+T C Q thus, for 8 > 0 small, we can choose R > 0 (independent on
&) so that

RV.<RVy<u onasz;mm Ve € (0, 1).

Again by Lemma 2.3, setting v = R V; — u, it turns out that v;' = max(vg, 0) € H(} (Q;r)
because V, = 0 on asz; \ asz; N QF. Moreover by (51) and (52),

L5v: <0 in Qg, Ve € (0, 1).
Multiplying the above inequality by v and integrating by parts yields

N —k)?
/|ij|2dx—%/6_2q|vj|2dx+)\/né_zlvﬂzdx50.

+ + +
S S 2
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But then Lemma 3.1 implies that v = 0 in Q7 provided 8 small enough because || < C§
near 2. Therefore u > RV, for every ¢ € (0, 1). In particular u > R V. Hence we obtain
from Lemma 2.3 that

/u2>R2/V02>/ 1 J

o> [ = - ————do

82~ 82— ) JT=¢q()
Q; Q; g

which leads to a contradiction. We deduce that u = 0 in Q; Thus by the maximum principle
u =0in Q.

For the general case p # 1, we argue as in [5] by setting

This function satisfies

N —k)? Ap |Vpl?
_Ag_gz(gﬁgz_)\ﬁyzg_y _l+| Il i in Q.
4 p 14 2p 4p?

Hence since p € C>(RQ) and p > 0 in , we get the same conclusions as in the case p = 1
and ¢ replaced by ¢/ p. O

5 Existence of minimizers for u) (2, X;)

Theorem 5.1 Let Q2 be a smooth bounded domain of RY and let 3} be a smooth closed
submanifold of 02 of dimension k with 1 < k < N — 2. Assume that p, q and n satisfy (2)
and (3). Then u; (2, i) is achieved for every A < A*.

Proof The proof follows the same argument of [4] by taking into account the fact thatn = 0
on X so we skip it. O

Next, we prove the existence of minimizers in the critical case A = A,.

Theorem 5.2 Let Q2 be a smooth bounded domain of RY and let Ty be a smooth closed
submanifold of 02 of dimension k with 1 < k < N — 2. Assume that p, q and n satisfy (2)

and (3). Iffzk Wda < 00 then w)x = (2, Xy) is achieved.

Proof We first consider the case p = 1.
Let A, be a sequence of real numbers decreasing to A*. By Theorem 5.1, there exits u,
minimizers for uy, = wua, (82, X) so that

— Auy, — u)wé_zqun = —}\,,8_27714,1 in Q. 54)

We may assume that u,, > 01in €2. We may also assume that | Vuy, || 12(q) = 1. Hence u, — u
in HO1 () and u,, — u in L%(Q) and pointwise. Let 2~ D € be the set given by Lemma
4.1. We will use the notations in Sect. 2 with &/ = Q7 and M = 9dQ~. It will be understood
that ¢ is extended to a function in C%(Q™). For B > 0 small we define

ng ={xeQ : §kx) < B}
We have that

Auy + by (x)u, =0 in 2,
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with |b,| < Cin Q\ 527; for all integer n. Thus by standard elliptic regularity theory,
z

u, <C inQ\Q;. (55)
2

We consider the supersolution U in Lemma 2.4. We shall show that there exits a constant
C > Osuch thatforalln e N

Uy < CU  in Q. (56)
Notice that 2 N 89; C Q7 thus by (55), we can choose C > 0 so that for any n
u, <CU onQﬁaﬂg.

Again by Lemma 2.4, setting v, = u,, — C U, it turns out that v,J[ = max(v,, 0) € HO1 (Q;)
because u,, = 0on I N QE Hence we have

Ly, vn < —C(upx — pn)qU — CA" —A)nU =0 inQy NQ.

Multiplying the above inequality by v;" and integrating by parts yields

/|an+|2dx—mn/5*2q|un+|2dx+xn/ns*2|un+|2dx <0.

2 2 2

Hence Lemma 3.1 implies that

C/5—2X,2|v;r|2dx+An/n5—2|v;|2dx <0.
Q5 2

Since A, is bounded, we can choose 8 > 0 small (independent of n) such that v;l" = (O on
ng (recall that |n| < C§). Thus we obtain (56).

Now since u, — u in L%(Q2), we get by the dominated convergence theorem and (56), that

s luy, - 87w in LA2(Q).

V= [Vl = o, 5% 0 [ 5720,
Q

Q Q

Since u,, satisfies

taking the limit, we have 1 = ju;+ [, 8 2qu? + A* [, 6 2nu®. Hence u # 0 and it is a
minimizer for p» = %.
For the general case p # 1, we can use the same transformation as in (53). So (56) holds and

the same argument as a above carries over. O

6 Proof of Theorem 1.1 and Theorem 1.2
Proof of Theorem 1.1 Combining Lemma 3.2 and Theorem 5.1, it remains only to check the

case A < A*. But this is an easy consequence of the definition of A* and of w; (2, Xi), see
[4, Section 3].
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Proof of Theorem 1.2 Existence is proved in Theorem 5.2 for Iy < oo. Since the absolute
value of any minimizer for w; (2, ) is also a minimizer, we can apply Theorem 4.2 to
infer that w;+ (2, i) is never achieved as soon as Iy = oo.
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