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In this paper we present an elementary theory about the existence of eigenvalues for
fully nonlinear radially symmetric 1-homogeneous operators. A general theory for first
eigenvalues and eigenfunctions of 1-homogeneous fully nonlinear operators exists in the
framework of viscosity solutions. Here we want to show that for the radially symmetric
operators or in the one dimensional case amuch simpler theory, based on ode and degree
theory arguments, can be established. We obtain the complete set of eigenvalues and
eigenfunctions characterized by the number of zeroes.

Keywords Fully nonlinear equation; Fully nonlinear operator; Multiple
eigenvalues; Principal eigenvalue; Radially symmetric solutions.

Mathematics Subject Classification 35P30; 34B15; 35J15.

1. Introduction

A fundamental step in the analysis of nonlinear equations is the understanding of
the associated eigenvalue problem. In the case of our interest the question is the
existence of nontrivial solutions ��� u� of the boundary value problem

F�D2u�Du� u� x� = −� u in � (1.1)

u = 0 on ��� (1.2)

for a positively homogeneous elliptic operator F and a bounded smooth domain �
in �N , N ≥ 1.
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Eigenvalues for Nonlinear Operators 1717

There is a well established theory for the first eigenvalue and eigenfunction for
this problem in the framework of viscosity solutions. The first result in this direction
is due to P.L. Lions who proved existence of a first eigenvalue and eigenfunction for
the Bellman equation in [12] and for the Monge–Ampère equation in [11] by means
of probabilistic arguments. More recently Quaas and Sirakov addressed, by purely
partial differential equations arguments, the general case in [14] for the existence
and qualitative theory and for the existence of solutions to the associated non-
homogeneous Dirichlet problem when � stays below the first eigenvalue. Results in
this direction were also obtained by Armstrong [2] and Ishii and Yoshimura [9].
While in [14] convexity of F is required, in [2, 9] this hypothesis is not necessary.
Earlier partial results were obtained by Felmer and Quaas [7] and Quaas [13], see
also the detailed bibliography contained in [14]. Based on the eigenvalue theory just
discussed, it is possible to build on the existence of positive (or negative) solution of
the equation

F�D2u�Du� u� x� = −� u+ f�x� u� in � (1.3)

u = 0 on ��� (1.4)

by means of bifurcation theory, using the ideas of Rabinowitz [16–18]. See also [8].
A better understanding of the structure of the set of solutions of equations

(1.3)–(1.4) can be obtained if further eigenvalues and eigenfunctions are known
for (1.1)–(1.2), however this has been elusive in this general fully nonlinear setting,
except in some particular cases in presence of radial symmetry as in the work by
Berestycki [4], Arias and Campos [3] for the Fucik operator, by Busca et al. [5] for
the Pucci operator and more recently for a more general class of extremal operators
by Allendes and Quaas [1]. More precisely, in [1, 3, 5] a sequence of eigenvalues and
eigenfunctions characterized by their number of zeroes is constructed and a global
bifurcation theory is obtained upon them. In [1, 5] the problem is autonomous
and has a variational structure, so that scale invariance and integration by parts
techniques can be used. In order to find eigenvalues and eigenfunctions with a
prescribed number of nodal points in an interval, the authors prove that the solution
of the initial value problem is oscillatory. Then, a simple scaling argument allows
to adjust the Dirichlet boundary condition. However, in the general case considered
here, the problem is not necessarily autonomous and is not variational, so that the
methods used in [1, 5] cannot be used, and we have to introduce new arguments to
prove the existence of the eigenvalues and eigenfunctions.

The aim of this article is to prove the existence of a sequence of eigenvalues and
eigenfunctions for a general fully nonlinear operator in the radially symmetric case,
based on elementary arguments and in a self contained fashion. This construction is
based on the existence of two semi-eigenvalues associated to positive and negative
eigenfunctions in the ball and in concentric annuli, put together via degree theory
through a Nehari type approach [15]. While the spectral theory for a ball and
annuli can be obtained as particular cases of the general results in [2, 9, 14], the
arguments needed to obtain the existence of semi-eigenvalues and positive (negative)
eigenfunctions are quite sophisticated, based on the whole viscosity solutions theory.
When dealing with the radially symmetric problem in the ball or an annulus,
much simpler arguments can be given, based on a combination of purely ordinary
differential equations and degree theory. It is our purpose to provide a simple, self
contained spectral theory in the one dimensional and radially symmetric cases.
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1718 Esteban et al.

Now we present in precise terms our main theorem. On the operator F we
assume the same general hypotheses as in [14], except for the convexity assumption.
Namely, we assume that F � SN ×�N ×�× BR → �, is a continuous function,
where BR is the ball of radius R, centered at the origin and SN is the set of all
symmetric N × N matrices and

(F1) F is positively homogeneous of degree 1, that is, for all s ≥ 0 and for all
�M� p� u� x� ∈ SN ×�N ×�×�,

F�sM� sp� su� x� = sF�M� p� u� x��

(F2) There exist numbers 	 ≥ � > 0 and 
� � > 0 such that for all M�N ∈ SN , p� q ∈
�N , u� v ∈ �, x ∈ �

�−
��	�M − N�− 
�p− q� − ��u− v� ≤ F�M� p� u� x�

−F�N� q� v� x� ≤ �+
��	�M − N�+ 
�p− q� + ��u− v��

Here �+
��	 and �−

��	 are the maximal and minimal Pucci operators with
parameters � and 	, respectively.
In this article we consider the extra assumption that the operator is radially
invariant. For stating this, consider a smooth radially symmetric function
u= u�r�, then we have

Du�x� = x

r
u′�r� and D2u�x� = u′�r�

r
I +

(
u′′�r�− u′�r�

r

)
x⊗ x

r2
�

Writing m = u′′�r� and p = u′�r�, we assume
(F3) The operator F is radially invariant, that is,

F

(
p

r
I +

(
m− p

r

)
x⊗ x

r2
�
p

r
x� u� x

)

depends on x only through r.

Now we can state our main theorem.

Theorem 1.1. Under assumptions (F1)–(F3), the eigenvalue problem (1.1)–(1.2) in the
ball BR possesses sequences of classical radially symmetric solutions ���±n � u

±
n �, both

u+
n and u−

n with n interior zeros 0 < r1 < · · · < rn < R and u+
n (respectively u−

n ) is
positive (respectively negative) in the interval �0� r1�. Moreover the sequences ��±n  are
increasing and the sequences ���±n � u

±
n � are complete in the sense that there are no

other radially symmetric eigenpairs of (1.1)–(1.2).

As we already mentioned, we prove this theorem relying on ordinary differential
equations arguments in combination of degree theory. As a first step we study the
eigenvalues in an annulus which becomes a regular ordinary differential equations
problem. In doing so we prove a one dimensional version of our main theorem
whose precise statement is given in Theorem 4.1. The proof of the theorem uses
the classical existence theory for the initial value problem together with maximum
and comparison principles obtained by means of the Alexandrov–Bakelman–Pucci
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Eigenvalues for Nonlinear Operators 1719

(ABP) inequality. This allows us to prove an existence and uniqueness theorem for a
Dirichlet boundary value problem upon which we set up a parameterized fixed point
problem. We solve this fixed point problem via degree theory, through a version
of the Krein Rutman theorem due to Rabinowitz [18]. Thus we obtain a spectral
theory for the first positive and negative eigenvalues in an interval, which applies
also to the annulus in the radially symmetric N -dimensional case.

In order to obtain the whole set of eigenvalues and eigenfunctions we consider
a Nehari type argument. We emphasize that a crucial qualitative property needed
in this approach is the monotonicity of the positive and negative semi-eigenvalues
with respect to the domain (interval). When there is an underlying variational
structure, this property is an easy consequence of the min–max characterization of
the eigenvalues. But here the eigenvalues are obtained through nonlinear bifurcation
theory and a new argument has to be used to prove their monotonicity. See
Corollary 3.1.

As a second step in the proof of Theorem 1.1 we study the eigenvalue problem
in a ball, following an approach similar to the one dimensional case, but studying
in detail the singularity at the origin. Regularity and compactness properties
are proved for solutions of this ordinary differential equation using elementary
arguments.

The paper is organized as follows. After we prove some auxiliary results in
Section 2, we treat the case of the principal eigenvalue for 1-dimensional problems in
Section 3 and we prove some qualitative properties of the eigenvalues. In Section 4
we prove the existence of a complete sequence of eigenvalues and eigenfunctions in
the one dimensional case. Finally, in Section 5 we extend the results to the radially
symmetric multidimensional case.

2. The One-Dimensional Case: Preliminaries

In this section we assume that the operator F satisfies hypotheses (F1) and (F2) with
N = 1 and we prove a preliminary result that essentially says that we can isolate
the second derivative from the equations, allowing us to use ordinary differential
equation arguments. We end the section with the maximum and comparison
principles in this one dimensional setting.

Before continuing let us observe that, in particular, we are assuming that F �
�3 × �a� b� → � is a continuous function that satisfies

(F2) There are constants 	 ≥ � > 0, 
 > 0 and � > 0 so that for all
�m� p� u� t�� �m′� p′� u′� t� ∈ �3 × �a� b�,

−��u− u′� − 
�p− p′� + ��m−m′�+ −	�m−m′�−

≤ F�m� p� u� t�− F�m′� p′� u′� t�

≤ 	�m−m′�+ − ��m−m′�− + 
�p− p′� + ��u− u′��

Here and in what follows we write x+ = max�x� 0� x− = max�−x� 0 so that x =
x+ − x−.

In the one dimensional setting the main goal of this paper is to study the
eigenvalue problem

F�u′′� u′� u� t� = −�u� in �a� b�� u�a� = u�b� = 0 (2.1)
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1720 Esteban et al.

and the auxiliary Dirichlet problem

F�u′′� u′� u� t� = f�t�� in �a� b�� u�a� = u�b� = 0� (2.2)

In what follows we denote by C2�a� b� the space C2�a� b� ∩ C1��a� b�� and we say
that u is a solution of problems (2.1) and (2.2) if u ∈ C2�a� b� and if it satisfies
the corresponding equation in �a� b�, together with the boundary conditions. We
notice that with our definition, a solution always has well defined derivatives at the
extremes of the interval �a� b�.

Our first result allows us to isolate u′′ in equations (2.1) and (2.2), a very
convenient fact for existence and regularity analysis.

Lemma 2.1. If (F2) holds, there is a continuous function G � �3 × �a� b� → � so that

F�m� p� u� t� = q if and only if m = G�p� u� q� t��

G having the Lipschitz property in �p� u� q� and being monotone increasing in q.

Proof. Using (F2), we see that

�m+ −	m− ≤ F�m� p� u� t�− F�0� p� u� t� ≤ 	m+ − �m−� (2.3)

from which it follows that, for every �p� u� t� fixed, F�·� p� u� t� is onto �. Indeed,
(2.3) implies that F is not bounded. This, together with the continuity property,
proves our claim. On the other hand, if there are m�m′ so that

F�m� p� u� t� = F�m′� p� u� t��

then, from (F2) again,

��m−m′�+ −	�m−m′�− ≤ 0 ≤ 	�m−m′�+ − ��m−m′�−

from where it follows that m = m′. Thus, given �p� u� q� t�, there is a unique m
so that F�m� p� u� t� = q, we denote by G�p� u� q� t� such m. This function G is
continuous. We also prove that it has the Lipschitz property in the first three
variables. Assume that

q = F�m� p� u� t� and q′ = F�m′� p′� u′� t�

then from (F2) we have, in case m ≥ m′,

q − q′ ≥ ��m−m′�− 
�p− p′� − ��u− u′��

so that

0 ≤ G�p� u� q� t�−G�p′� u′� q′� t� ≤ 1
�
�q − q′� + 


�
�p− p′� + �

�
�u− u′��

and if m < m′, then

q − q′ ≤ −��m−m′�− + 
�p− p′� + ��u− u′��
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Eigenvalues for Nonlinear Operators 1721

so that

0 ≤ G�p′� u′� q′� t�−G�p� u� q� t� ≤ 1
�
�q − q′� + 


�
�p− p′� + �

�
�u− u′��

Thus, G has the Lipschitz property in �p� u� q�.
Finally, let q ≤ q′ and m�m′ such that m = G�p� u� q� t� and m′ = G�p� u� q′� t�.

Then, F�m� p� u� t� = q ≤ q′ = F�m′� p� u� t�, so that from (F2), we have

−	�m−m′�− + ��m−m′�+ ≤ F�m� p� u� t�− F�m′� p� u� t� = q − q′ ≤ 0�

which implies that m ≤ m′, proving that G�p� u� q� t� ≤ G�p� u� q′� t�. �

The following is a direct consequence of Lemma 2.1 and the standard
uniqueness theorem for Cauchy problem for ordinary differential equations.

Corollary 2.1. Assume that F satisfies (F1) and (F2) and that u ∈ C2�a� b� is a
nontrivial solution of

F�u′′� u′� u� t� = −�u� in �a� b�� u�a� = 0

then u′�a� 	= 0.

An important ingredient in the study of fully nonlinear problems is the
maximum and comparison principles as expressed by the ABP inequalities. Here we
present a one dimensional version:

Proposition 2.1 (ABP). Assume that u ∈ C2�a� b� is a solution of

	�u′′�+ − ��u′′�− + 
�u′� ≥ −f− in �u > 0�

with u�a�� u�b� ≤ 0, then

sup
�a�b�

u+ ≤ B 
f−
L1�a�b�� (2.4)

On the other hand, if u is a solution of

��u′′�+ −	�u′′�− − 
�u′� ≤ f+ in �u < 0

with u�a�� u�b� ≥ 0, then

sup
�a�b�

u− ≤ B 
f+
L1�a�b�� (2.5)

The constant B depends on �� 
 and is linear in b − a. Moreover, by positivity, B is
increasing in b − a.

The proof of this proposition can be obtained from the general N -dimensional
case, see [6] for example, however in Section 5 we present a simplified proof adapted
to this situation, including also the radial case. Some direct corollaries that follow
from Proposition 2.1 are:
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1722 Esteban et al.

Corollary 2.2. Assume that F satisfies (F2), F�m� p� u� t� is nonincreasing in u and
u ∈ C2. If u satisfies F�u′′� u′� u� t� ≥ −f− and u�a�� u�b� ≤ 0, then (2.4) holds, and if
u satisfies F�u′′� u′� u� t� ≤ f+ and u�a�� u�b� ≥ 0, then (2.5) holds.

And the comparison principle:

Corollary 2.3. Assume that F satisfies (F2) and F is nonincreasing in u. If u� v ∈ C2

satisfy

F�u′′� u′� u� t� ≥ F�v′′� v′� v� t� in �a� b��

and u�a� ≤ v�a�, u�b� ≤ v�b�, then, u ≤ v in �a� b�.

Proof. Suppose by contradiction that Z �= �x ∈ �a� b� � u > v is not empty. Since
F is nonincreasing we have

F�u′′� u′� u� t� ≥ F�v′′� v′� u� t� in Z�

Let now Z∗ be a connected component of Z. Then, using (F2) and the (ABP)
estimate in Z∗ for z = u− v, we get

sup
Z∗

z ≤ 0�

which is a contradiction. Thus Z = ∅. �

Next corollary is a strong maximum principle type of result.

Corollary 2.4. Assume that F satisfies (F2). If u� v ∈ C2 satisfy

F�u′′� u′� u� t� ≥ F�v′′� v′� v� t� in �a� b��

and u ≤ v in �a� b� and for some t0 ∈ �a� b�, u�t0� = v�t0�, then, either u = v in �a� b�
or u′�t0� 	= v′�t0�.

Proof. Define z = u− v ≤ 0 then by (F2), z satisfies

H�z� �= 	�z′′�+ − ��z′′�− + 
�z′� − �z ≥ 0 in �a� b��

Now we assume that z 	≡ 0. then there exists a point t1 ∈ �a� b� such that z�t1� = 0
and z < 0 in an interval to the left or to the right of t1. Let us assume that the
interval is to the left of t1 and denote it by �t2� t1�. Define now w�t�= − e−A�t−t1� + 1.
For large A, the function w satisfies H�w� ≤ 0 in �t2� t1�. Take now � > 0 such
that �w�t2� = z�t2�. Then, by comparison (Corollary 2.3), we get �w ≥ z in �t2� t1�.
But w′�t1� > 0, so that z′�t1� > 0, thus proving the result. The argument when the
interval is to the right is similar. �

Remark 2.1. The above result can be made more precise : let � > 0. If u < v in an
interval �t0 − �� t0�, then u′�t0� > v′�t0�, while if u < v in an interval �t0� t0 + ��, then
u′�t0� < v′�t0�.
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Eigenvalues for Nonlinear Operators 1723

Corollary 2.5. Assume that F satisfies (F2) and F is nonincreasing in u. If u� v ∈ C2

satisfy

F�u′′� u′� u� t� ≥ F�v′′� v′� v� t� in �a� b��

and either u′�a� ≥ v′�a�, u�b� ≤ v�b�, or u�a� ≤ v�a�, u′�b� ≤ v′�b�, then, u ≤ v
in �a� b�.

Proof. We start with the case u′�a� ≥ v′�a�, u�b� ≤ v�b�. If u�a� ≤ v�a� we conclude
by comparison (Corollary 2.3). If u�a� > v�a� we define ṽ�t� = v�t�+ u�a�− v�a�,
so that

F�u′′� u′� u� t� ≥ F�ṽ′′� ṽ′� ṽ� t� in �a� b��

and then again by comparison for u and ṽ we conclude that u ≤ ṽ, which is a
contradiction with the strong maximum principle (Corollary 2.4 and Remark 2.1).
The other case is similar. �

3. A Theory for the First Eigenvalue and Eigenfunction

The purpose of this section is to present a simplified version of the first eigenvalue
theory in the one-dimensional case. We start with an existence theorem for the
Dirichlet problem in a finite interval.

Theorem 3.1. Assume that F satisfies (F1) and (F2). Then, for any � > �, for any
f ∈C0�a� b�, the equation

F�u′′� u′� u� t�− �u = f�t�� in �a� b�� u�a� = u�b� = 0 (3.1)

has a unique solution u ∈ C2�a� b�.

Proof. First, for a given d ∈ �, we consider the initial value problem

F�u′′� u′� u� t�− �u = f� for t ∈ �a� b��

u′�a� = d� u�a� = 0�

which has a unique solution since, by Lemma 2.1 this equation is equivalent to

u′′ = G�u′� u� f�t�+ �u� t�� for t ∈ �a� b�� (3.2)

u′�a� = d� u�a� = 0� (3.3)

with G having the Lipschitz property. We observe that the solution can be extended
for all t ∈ �a� b� because of the Lipschitz property of G. If we denote by u�d� t� the
corresponding solution, we see that the map d �→ u�d� b� is continuous.

Let A > 0 be a large constant and set v�t� = eA�t−a� − 1, then by (F2) we have

F�v′′� v′� v� t�− �v ≥ ��A2 − 
A− �− ��eA�t−a� ≥ f�t� for t ∈ �a� b��
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1724 Esteban et al.

Next we observe that u�d1� t�, with d1 > v′�a� = A, satisfies u�d1� b� > v�b� > 0
by the assumption � > � and Corollary 2.5. In a similar way, one finds d2 < 0
such that the solution u�d2� t� satisfies u�d2� b� < 0. Finally, using the continuity of
d→ u�d� b� we conclude to the existence of a solution of (3.1). The uniqueness is a
consequence of Corollary 2.5. �

Now we state a compactness lemma.

Lemma 3.1. If (F1)–(F2) hold true, let un be the solution of equation (3.1) with right
hand side fn, where �fn is a uniformly bounded sequence of continuous functions in the
interval �a� b�. Then, there is a constant C, independent of n, such that

�un�t�� ≤ C� �u′
n�t�� ≤ C and �u′′

n�t�� < C� for all t ∈ �a� b��

Proof. Suppose first �n �= 
un
� + 
u′
n
� is unbounded. Define vn�r� = un�r�/�n.

Then �vn and �v′n are bounded and vn satisfies

F�v′′n� v
′
n� v

′
n� vn� t�− �vn =

fn
�n

in �a� b�� (3.4)

vn�a� = vn�b� = 0� (3.5)

Thus we conclude from (3.4) that for a positive constant C

�v′′n�t�� < C� for all t ∈ �a� b��

Now we use the Arzela–Ascoli theorem, and find a sequence vnk → v uniformly
in C1��a� b�� and v ∈ C2�0� R� is a solution of (3.1) with right-hand side equal to
0. At this point we may use the (ABP) inequality, to obtain v ≡ 0. But this is
impossible since 
vn
� + 
v′n
� = 1 for all n. Thus there exists C > 0 such that
�un�t�� ≤ C� �u′

n�t�� ≤ C for all t ∈ �a� b� and so from (3.4)

�u′′
n�t�� < C� for all t ∈ �a� b��

Next we present an existence result that will be used in an approximation
procedure in the multidimensional radial case in Section 5.

Theorem 3.2. Assume that F satisfies (F1) and (F2). Then, for every � > �, c ∈ �a� b�
and f ∈ C0�a� b�, the equation

F�u′′� u′� u� t�− �u = f�t�� in �a� b�� u′�c� = u�b� = 0 (3.6)

has a unique solution u ∈ C2�a� b�.

Proof. For a given d ∈ �, we consider the initial value problem

u′′ = G�u′� u� f�t�+ �u� t�� for t ∈ �a� b��

u′�c� = 0� u�c� = d�
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Eigenvalues for Nonlinear Operators 1725

We denote by u�d� t� the corresponding solution and we observe that the map
d �→ u�d� b� is continuous. Let A > 0 be a large constant and set v�t� = −eA�t−b� + 1,
then by (F2) we have

F�v′′� v′� v� t�− �v ≤ f�t� for t ∈ �c� b��

Next we observe that u�d1� t� with d1 = v�c� satisfies u�d1� b� ≥ v�b� = 0, by the
assumption � > � and Corollary 2.3. In a similar way, one finds d2 < 0 such that the
solution u�d2� t� satisfies u�d2� b� < 0. Finally, using the continuity of d → u�d� b�
we conclude to the existence of a solution of (3.6). The uniqueness is a consequence
of Corollary 2.5. �

Now that we have completed the basic existence theory for (3.1) we address
the existence of the first eigenvalue and eigenfunction as an application of global
bifurcation theory. We follow the ideas of Rabinowitz [18], where global bifurcation
theory is used to give a proof of a version of Krein–Rutman theorem in the linear
case (Theorem VIII.3 in [18]). Here we adapt this result to our nonlinear setting. See
also [7]. This approach will also allow us to obtain a monotonicity property of the
first eigenvalues with respect to the domain (interval).

More precisely we will use Corollary 1 of Theorem VIII.1 in [18] that is:

Theorem 3.3. Let E be a Banach space and K be a closed cone in E with a vertex at 0.
Let T � �+ × K → K be a compact operator such that T�0� u� = 0 for all u ∈ E, then
there exists an unbounded connected component � ⊂ �+ × K of solution of u = T��� u�
containing �0� 0�.

Theorem 3.4. Under assumptions (F1) and (F2), the eigenvalue problem

F�u′′� u′� u� t� = −�u� in �a� b�� u�a� = u�b� = 0 (3.7)

has a solution �u+� �+�, with u+ > 0 in �a� b� and another solution �u−� �−� with u− < 0
in �a� b�. Moreover, every positive (resp. negative) solution of equation (3.7) is a
multiple of u+ (resp. u−).

Proof. We define K = �u ∈ C�a� b�/u ≥ 0� u�a� = u�b� = 0 and fix a � > �. Then,
we use Theorem 3.1 to solve the Dirichlet problem

F�u′′� u′� u� t�− �u = −g�t�� in �a� b�� u�a� = u�b� = 0 (3.8)

for g ∈ K. We denote this solution by ��g� and define the operator T � �+ ×
K → K as T��� f� = ���f�. The operator T is well defined and, as a consequence
of Corollaries 2.4 and 2.3, T��� f� > 0 for every f ∈ K\�0, � > 0. Moreover T
is compact by Lemma 3.1 and T�0� g� = 0 for every g ∈ K. Thus T satisfies the
hypothesis of Theorem 3.3. Take u0 ∈ K\�0, then there exists M > 0 such that
M��u0� ≥ u0 as a consequence of Corollary 2.4. Define now �� � �

+ × K → K
as ����� u� = ���u+ �u0�� for � > 0. Then, from Theorem 3.3 there exists an
unbounded connected component �� of solutions to ����� u� = u, moreover �� ⊂
�0�M�× K. To see this fact, let ��� u� ∈ ��, then

u = ���u+ �u0� �
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1726 Esteban et al.

Hence by comparison u ≥ ����u0� ≥ �

M
�u0� If we apply � we get

��u� ≥ �

M
���u0� ≥

�

M2
�u0�

But u ≥ ���u�, then u ≥ (
�

M

)2
�u0. By recurrence we get

u ≥
(
�

M

)n

�u0 for all n ≥ 2

and we conclude that � ≤ M . This and the fact that �� is unbounded implies that
there exists ���� u�� ∈ �� such that 
u�
� = 1. This and Lemma 3.1 imply a uniform
bound in C2�a� b�, allowing us to pass to the limit as � → 0 to find �+ ∈ �0�M� and
u+ > 0 such that u+ = �+��u+�. From here we also deduce that �+ > 0 and then
we define �+ = −� + �+. The isolation of the eigenvalue is a direct consequence of
Lemma 2.1. For the simplicity assume by contradiction that the exists h ∈ K\�0
and � a solution to

F�h′′� h′� h� t� = −�h� in �a� b�� u�a� = u�b� = 0 (3.9)

By Corollary 2.1 there exists a constant such that h < su+. Define now

� = inf�s > 0 � h ≤ su+ in �a� b�

Suppose that � ≤ �+. Then by Corollary 2.4 h = �u+ and � = �+ or h < �u+, this
last fact is a contradiction the definition of � and Corollary 2.4. The case � > �+ is
similar. �

In what follows we denote by �+�t1� t2� the first eigenvalue associated
to a positive eigenfunction, and �−�t1� t2� the first eigenvalue associated to a
negative eigenfunction, given in Theorem 3.4 for the problem (3.7) in the interval
�t1� t2�⊂ �a� b�.

Corollary 3.1. If �a1� b1� ⊂ �a� b� and �a1� b1� 	= �a� b� then

�±�a1� b1� > �±�a� b��

Proof. We consider the eigenpair ��+1 � u
+
1 �, �

+
1 = � + �+1 , given by Theorem 3.4 on

the interval �a1� b1� ⊂ �a� b�, so that

F��u+
1 �

′′� �u+
1 �

′� u+
1 � t� = −�+1 u

+
1 in �a1� b1��

If u is the function obtained by extending u+
1 by zero to the whole interval �a� b�,

we define ũ as the unique solution of

F�ũ′′� ũ′� ũ� t�− �ũ = −�+
1 u in �a� b�� u�a� = u�b� = 0�
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Eigenvalues for Nonlinear Operators 1727

Then, using Comparison and Strong Maximum Principle in the interval �a1� b1� we
see that ũ > u+

1 in �a1� b1� and consequently ũ > u in �a� b�. If we define w = ��u�
and v = ��ũ�, then

F�w′′� w′� w� t�− �w = −u > −ũ = F�v′′� v′� v� t�− �v�

so, again by Comparison and Strong Maximum Principle, w < v, which implies ũ =
�+
1 ��u� < �+

1 ��ũ�. Here we may replace �+
1 by a slightly smaller value M < �+

1 ,
without changing the strict inequality. Now we repeat the arguments of the proof of
Theorem 3.4, with u0 = ũ and M < �+

1 , to obtain that �+ �= �+�a� b�+ � ≤ M < �+
1 ,

thus completing the proof for �+. The proof for �− is similar. �

Corollary 3.2. The functions �+� �− � ��t1� t2�/a ≤ t1 < t2 ≤ b → � are continuous
and

lim
t2−t1→0+

�+�t1� t2� = lim
t2−t1→0+

�−�t1� t2� = ��

Proof. The continuity of these functions is a consequence of the uniqueness of the
eigenvalues for positive (negative) eigenfunctions. While the limit is a consequence
of Proposition 2.1, in fact denoting �+ = �+ �, with � as in Theorem 3.1, from (2.4)
we obtain that

sup
�t1�t2�

u+ ≤ B�+
u+
L1�t1�t2�
≤ B�+�t2 − t1� sup

�t1�t2�

u+�

which completes the proof. �

4. Multiple Eigenvalues and Eigenfunctions in the One-Dimensional Case

In this section we consider the existence of higher eigenvalues, associated to
changing-sign eigenfunctions in the general setting already defined in Section 2.
More precisely, we prove the following theorem

Theorem 4.1. Under assumptions (F1) and (F2) the eigenvalue problem

F�u′′� u′� u� t� = −�u� in �a� b�� u�a� = u�b� = 0 (4.10)

has two sequences of solutions ���±n � u
±
n � such that u±

n have both n interior zeros t1 <
· · · < tn and u+

n (resp. u−
n ) is positive (resp. negative) in the interval �a� t1�, negative

(resp. positive) on �t1� t2�. Moreover the sequence ��±n  is increasing and the sequence
���±n � u

±
n � is complete in the sense that there are no eigenpairs of (4.10) outside these

sequences.

We devote this section to the proof of this theorem using degree theory.
We start with a given n ∈ �, n ≥ 1 and we define

�n = ��t1� � � � � tn�/a < t1 < t2 < · · · < tn < b�
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1728 Esteban et al.

t0 = a and tn+1 = b and the function V � �n → �n as

Vi��t� = ��−1�i �ti−1� ti�− ��−1�i+1
�ti� ti+1�� i = 1� � � � � n�

whereby ��±1� we mean �±. We observe that under our assumptions, Corollary 3.2
implies that the function V is continuous in �n. We have the following

Theorem 4.2. Under assumptions (F1) and (F2), for every n ∈ � there is �t ∈ �n

such that

V��t� = 0� (4.11)

Proof. Let us consider a point �t ∈ ��n, then there are 0 ≤ k < � ≤ n+ 1 such that
tk = tk+1 = · · · = t�, such that they additionally satisfy k = 0 or tk−1 < tk and � =
n+ 1 or t� < t�+1. We further assume that k is the smallest integer for which the
situation described occur. We observe that simultaneously we cannot have k = 0
and � = n+ 1.

In what follows we denote by e1� e2� � � � � en the canonical basis of �n. If k = 0
then we have t� < t�+1 and we define T��t� = −e�. If 0 < k < � < n+ 1 then we define
T��t� = ek − e�. And if 0 < k and � = n+ 1 then we define T��t� = ek. In this way
we have defined T � ��n → �n as a function. We observe that T defines a ‘normal
vector field’, which is not continuous on the edges of ��n.

Assume now that we have a sequence ��tm ⊂ �n such that �tm →�t ∈ ��n, as
m→�. Then we have

lim
m→�V

(�tm) · T��t� = −�� (4.12)

In order to prove (4.12) we have three cases, according to the numbers k < �
associated to �t ∈ ��n. First, if k = 0 and � < n+ 1, then

(�tm)� − (�tm)�−1
→ 0 and

(�tm)�+1
− (�tm)� > c > 0�

so that V�

(�tm) → � as m goes to +�, proving (4.12). Second, if k > 0 and � < n+ 1
then we have

(�tm)� − (�tm)�−1
→ 0 and

(�tm)�+1
− (�tm)� > c > 0

and also

(�tm)k+1
− (�tm)k → 0 and

(�tm)k − (�tm)k−1
> c > 0�

Thus, by definition of V we have V���tm� → � and Vk��tm� → −� as m goes to +�,
proving (4.12). The third case, when k > 0 and � = n+ 1 is similar. This completes
the proof of (4.12).

Now we consider the point �t0 defined as

��t0�i =
�n− i+ 1�a+ ib

n+ 1
for i = 1� � � � � n�
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Eigenvalues for Nonlinear Operators 1729

Note that �t0 ∈ �n is the average of the vertices of �n. Next we define the field F �
�n → �n as F��t� = −�t +�t0 and we claim that

F��t� · T��t� < 0 for all �t ∈ ��n� (4.13)

In fact, given the numbers k < � associated to �t we have three cases. First, if k = 0
and � < n+ 1, then

F��t� · T��t� = ��t −�t0�� = a− �n− �+ 1�a+ �b

n+ 1
= ��a− b�

n+ 1
< 0�

Second, if k > 0 and � < n+ 1 then we have

F��t� · T��t� = ��t −�t0�� − ��t −�t0�k =
��− k��a− b�

n+ 1
< 0�

The third case, when k > 0 and � = n+ 1 is again similar to the previous one. This
completes the proof of (4.13).

Now we define the (continuous) homotopy H � �n × �0� 1� → �n as H��t� s� =
sV��t�+ �1− s�F��t�. Then we claim that there is � > 0 so that for all s ∈ �0� 1� and
all �t ∈ �n satisfying dist��t� ��n� < �, we have

H��t� s� 	= 0�

Assuming that the above claim is true, we apply homotopy invariance of the degree,
together with deg �F��n� 0� = �−1�n, to get the existence of a zero for V .

In order to prove the claim we assume the contrary. Then there is a sequence
��tm� sm� such that �tm →�t ∈ ��n and sm → s ∈ �0� 1� as m → � and such that
H��tm� sm� = 0 for all m. Thus we have

lim
m→�H��tm� sm� · T��t� = 0�

contradicting (4.12) and (4.13).
If we observe the definition of V we see that the first component V1 is

associated to �−�t0� t1� and �+�t1� t2�, so that the eigenfunction that we can construct
out of solutions of equation (4.11) will start being negative. For eigenfunctions
starting with positive values in the first interval �t0� t1� we need to define the above
arguments to the slightly modified function

Ṽi��t� = ��−1�i+1
�ti−1� ti�− ��−1�i �ti� ti+1�� i = 1� � � � � n� �

Proof of Theorem 4.1. Given a solution �t ∈ �n of (4.11) we proceed to construct
an eigenfunction as follows. On the interval �a� t1� we define u−

n as u−�a� t1�. Then,
on �t1� t2� the function u−

n will be equal to �1u
+�t1� t2�, where �1 is chosen so

that �u−�′�a� t1��t1� = �1�u
+�′�t1� t2��t1�. The existence of �1 is a consequence of

Corollary 2.1. Here we denote by u±�t� s� the corresponding positive or negative
eigenfunction on the interval �t� s�. Repeating this argument we will finally arrive to
the function u−

n , which is of class C1�a� b� and of class C2 in the interior of every
interval of the form �ti� ti+1�. Then we use the equation satisfied by each partial
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1730 Esteban et al.

eigenfunction and the continuity of F , rather than that of G, to find that u−
n is of

class C2�a� b�. The associated eigenvalue is simply �−n = �−�a� t1�.
For proving uniqueness, we assume that we have a second eigenpair ��� v�

associated with n such that there exist values a < s1 < s2 < · · · < sn < b and v
changes sign at those points, starting with negative values in the interval �a� s1�. If
� = �−n then by Corollary 3.1, we necessarily have si = ti for all i = 1� 2� � � � � n and
then the simplicity and isolation of the first eigenfunctions proved in Theorem 3.4
completes the argument.

Now we assume that � > �−n , then by Corollary 3.1 we have s1 < t1 and then

� > �−�a� t1�� (4.14)

We either have 1 ≤ i ≤ n− 1 such that �ti� ti+1� ⊂ �si� si+1� or sn ≤ tn. In the first
case, if i is odd �+�ti� ti+1� ≥ � and if i is even �−�ti� ti+1� ≥ �, contradicting (4.14) in
both cases. In the second case, � ≤ �+�tn� b�, if n is odd, contradicting (4.14) again
and similarly if i is even. �

5. The Eigenvalue and Eigenfunction Theory in the Radial Case

We devote this section to proving our main theorem. We assume that N > 1 and
that the operator F satisfies (F1), (F2) and it is radially invariant, that is, it satisfies
also (F3). Our purpose is to study the eigenvalue problem (1.1)–(1.2) where � = BR,
is the ball of radius R centered at the origin.

We start with some notation. Given our operator F we define � � �4 ×
�0� R�→� as

� �m� �� p� u� r� = F��I + �m− ��e1 ⊗ e1� pe1� u� re1�

and consider the operators

P+�a� b� = 	�a+ + �N − 1�b+�− ��a− + �N − 1�b−�

and

P−�a� b� = ��a+ + �N − 1�b+�−	�a− + �N − 1�b−��

Here m stands for u′′�r�, p for u′�r� and � for u′�r�
r
. Under assumption (F3), we may

write the equivalent of Hypothesis (F2) in this radially symmetric setting as follows

(F2′) There exist 
� � > 0 such that for all m�m′� �� �′� p� p′� u� u′ ∈ �, r ∈ �0� R�,

P−�m−m′� �− �′�− 
�p− p′� − ��u− u′� ≤ � �m� �� p� u� r�

−� �m′� �′� p′� u′� r� ≤ P+�m−m′� �− �′�+ 
�p− p′� + ��u− u′�

The proof of Theorem 1.1 follows the general lines of that of Theorem 4.1.
The new difficulty here is the singularity at r = 0. We deal with it by using an
approximation procedure: in the interval ��� R� we apply the results of the previous
sections. Then we obtain uniform estimates on the approximated solutions and their
derivatives in order to pass to the limit. In the rest of this section we do this and
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Eigenvalues for Nonlinear Operators 1731

then we complete the proof of Theorem 1.1. We also prove the (ABP) inequality for
the multidimensional radial case, and thus also that of Proposition 2.1.

The next lemma is the analogue of Lemma 2.1 and it can be proved following
the same arguments.

Lemma 5.1. If (F1), (F2′) and (F3) hold true, then,

1. There is a continuous function � � �4 × �0� R� → � so that

� �m� �� p� u� r� = q if and only if m = ���� p� u� q� r�

and � has the Lipschitz property in ��� p� u� q�.
2. There is a continuous function �1 � �

3 × �0� R� → � such that

� ��� �� p� u� r� = q if and only if � = �1�p� u� q� r�

and �1 has the Lipschitz property in �p� u� q�.

The following is a regularity result, extending the second derivative of a solution
to the origin, the only point in the domain that makes a difference with the one
dimensional case.

Lemma 5.2. Assume that (F1), (F2′) and (F3) hold true and assume also that f is a
continuous function in �0� R� and u � �0� R� → � is a solution of

�
(
u′′�

u′

r
� u′� u� r

)
= f�r� in �0� R� (5.1)

with boundary conditions

u′�0� = 0� u�R� = 0� (5.2)

If the functions �u′′�r�� and ∣∣ u′�r�
r

∣∣ are bounded in �0� R� then:

1. The limit

lim
r→0

u′�r�
r

exists and consequently u′′�0� is well defined.
2. The function u�x� = u��x�� is a C2�BR�-solution to the partial differential equation

F�D2u�Du� u� x� = f in BR� (5.3)

with boundary condition

u = 0 on �BR� (5.4)

Proof. We use Lemma 5.1 to write

u′′ = �
(
u′

r
� u′� u� f� r

)
�
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1732 Esteban et al.

and then, using the boundary condition and writing � = u′
r
, we find

r� =
∫ r

0
���� u′� u� f� s�ds�

Differentiating the above functional equality, we get

r�′ + � = ���� u′� u� f� r��

Assume, by contradiction, that � does not converge as r → 0+. Then there are two
numbers a < b and two sequences �r+n , �r

−
n  such that

lim
n→� r+n = lim

n→� r−n = 0�

and

�′�r+n � = �′�r−n � = 0� lim
n→� ��r+n � = b� lim

n→� ��r−n � = a�

Then we have

��r±n � = ����rn±�� u′�r±n �� u�r
±
n �� f�r

±
n �� r

±
n �

and also,

��r±n � = �1�u
′�r±n �� u�r

±
n �� f�r

±
n �� r

±
n ��

Since f� u and u′ are continuous at r = 0 as well as �1 we have that

lim
n→� ��r+n � = lim

n→� ��r−n ��

which is a contradiction. Regarding assertion 2, we notice that by the above facts
and Lemma 5.1, u�x� = u��x�� is a C2�BR� function and by (F3), u is a solution to
(5.3) and (5.4). �

Next we prove the (ABP) inequality in the multidimensional radial case.

Proposition 5.1. Assume that u ∈ C2�0� R� is a solution of

P+
(
u′′�

u′

r

)
+ 
�u′� ≥ −f− in �u > 0�

with u�R� ≤ 0 and u′�0� = 0, then

sup
�0�R�

u+ ≤ B
f−
LN �BR�
� (5.5)

On the other hand, if u is a solution of

P−
(
u′′�

u′

r

)
− 
�u′� ≤ f+ in �u < 0
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with u�R� ≥ 0 and u′�0� = 0, then

sup
�0�R�

u− ≤ B
f+
LN �BR�
� (5.6)

The constant B depends on N� �� 
 and R. Moreover, by positivity, B is increasing in R.

Proof. Assume that sup�0�R� u > 0 and define l0 = sup�0�R� u

R
and denote by r0 a

maximum point of u in �0� R�. There exists a point r− ∈ �0� R� such that −u′�r−�= l0
and −u′�r� ≤ l0 in the interval �r0� r−�. Moreover, we can find a set I (union of
intervals) in �r0� r−� so that u′′ ≤ 0 in I and −u′�I� = �0� l0�. We observe that on I
both u′′ and u′ are non-positive and then

P+
(
u′′�

u′

r

)
= �

(
u′′ + �N − 1�

u′

r

)
for all r ∈ I�

Then, for any k > 0, making a change of variables we find

ln
(
1+ lN0

k

)
=

∫ lN0

0

dz

z+ k

≤
∫
I

−N�−u′�r��N−1u′′�r� dr
�−u′�r��N + k

�

where the inequality holds because −u′ is not necessarily injective in I . Following
the inequality we have

ln
(
1+ lN0

k

)
≤ N

∫
I

(−u′�r�
r

)N−1

�−u′′�r��
rN−1dr

�−u′�r��N + k

≤ N 1−N
∫
I

(
−u′′�r�− �N − 1�

u′�r�
r

)N
rN−1dr

�−u′�r��N + k

≤ �N/2�1−N

�N

∫
I

( �f−�N
k

+ 
N
)
rN−1dr

≤ �N/2�1−N

�N

(
1

k�N


f−
NLN �BR�
+ �
R�N

N

)
�

Here we have used comparison between the arithmetic and geometric mean and the
inequality �a+ b�N ≤ 2N−1�aN + bN �. We denoted by �N the measure of the sphere
SN−1. We observe that the above inequality implies that 
f−
LN �BR�

> 0, since k is
arbitrary, then we may choose k = 
f−
N

LN �BR�
, and find l0 ≤ C
f−
LN �BR�

, for some
constant C > 0 depending on N� �� 
 and R. �

Remark 5.1. When N = 1 the proof just presented reduces to a proof of
Proposition 2.1 with the obvious change in the domain in order to consider a general
interval �a� b�.

Next corollaries follow from Proposition 5.1.

Corollary 5.1. Assume that hypotheses (F1)–(F2′)–(F3) hold and additionally that
� �m� �� p� u� r� is nonincreasing in u. If u ∈ C2�0� R� satisfies � �u′′� u′/r� u′� u� r� ≥
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1734 Esteban et al.

−f− and u�R� ≤ 0, u′�0� = 0, then (5.5) holds, and if u ∈ C2�0� R� satisfies
� �u′′� u′/r� u′� u� r� ≤ f+ and u�R� ≥ 0, u′�0� = 0, then (5.6) holds.

The following comparison principle also follows from Proposition 5.1:

Corollary 5.2. Assume that hypotheses (F1)–(F2′)–(F3) hold and additionally that
� �m� �� p� u� r� is decreasing in u. If u� v ∈ C2�0� R� satisfy

� �u′′� u′/r� u′� u� t� ≥ � �v′′� v′/r� v′� v� t� in �0� R��

and u�R� ≤ v�R�, u′�0� = v′�0� = 0, then, u ≤ v in �0� R�.

As in Section 3, before proving the existence of eigenvalues and eigenfunctions,
we prove the existence of solutions for a related Dirichlet problem, as follows.

Theorem 5.1. Assume that (F1)–(F2′)–(F3) hold true. There is � > 0 so that the
equation

�
(
u′′�

u′

r
� u′� u� r

)
− �u = f in �0� R�� (5.7)

u′�0� = 0� u�R� = 0� (5.8)

possesses a unique solution for any given continuous function f .

The proof of this theorem can be done through an approximation procedure
and using only elementary ODE arguments. In this direction we have the following
two results.

Lemma 5.3. Assume assumptions (F1)–(F2′)–(F3). There is � > 0 (independent of �)
so that for any given f ∈ C0�0� R� and � > 0, there exists a unique solution u� of

�
(
u′′�

u′

r
� u′� u� r

)
− �u = f in ��� R�� (5.9)

u′��� = 0� u�R� = 0� (5.10)

The proof of this proposition is completely similar to that of Theorem 3.2 so
we omit it. The following lemma provides estimates for the solution u�, independent
of � and its proof is inspired of that of Lemma 2.2 in [7].

Lemma 5.4. Assume that (F1)–(F2′)–(F3) hold true and let u� be the solution to
(5.9)–(5.10) given by Lemma 5.3. Then there is a constant C, independent of �, such
that ∣∣∣∣u′

��r�

r

∣∣∣∣ ≤ C and �u′′
��r�� < C� for all � > 0� r ∈ ��� R��
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Proof. We first claim that if u��r� and u′
��r� are uniformly bounded in ��� R�, then

u′
��r�/r and u′′

��r� are uniformly bounded in ��� R�. By contradiction, suppose the
existence of two sequences �n → 0 and rn ∈ ��n� R� such that

lim
n→+�

u′
n�rn�

rn
= −��

where we write un = u�n
. From (5.9), (F2′) and our assumption on u��r� and u′

��r�,
we have that u′′

n�rn� → +� as n → +�.
If u′′

n�r� > 0 for all r ∈ ��n� rn�, then u′
n�rn� > 0, which is impossible. Thus, for

all n there exists r̄n ∈ ��n� rn� such that u′′�r̄n� = 0 and u′′
n�r� > 0 for all r ∈ �r̄n� rn�.

Hence u′�r̄n� < u′�rn�, which implies that

lim
n→+�

u′�r̄n�
r̄n

= −� and u′′�r̄n� = 0�

which is again impossible by (5.9), (F2′) and our assumption on u��r� and u′
��r�.

Suppose next that for a sequence of points rn ∈ ��n� R� we have

lim
n→+�

u′
n�rn�

rn
= +��

then with a similar argument we also get a contradiction. Thus, we have that
�u′

��r�/r is bounded and as before we conclude that �u′′
��r� is bounded, proving the

claim.
Suppose now that ��� is unbounded with �� = 
u�
� + 
u′

�
�. Define v��r� =
u��r�/��. Then �v� and �v′� are bounded and v� satisfies

�
(
v′′��

v′�
r
� v′�� v�� r

)
− �v� =

f

��

in ��� R�� (5.11)

v′���� = 0� v��R� = 0� (5.12)

Using the claim again, we conclude that for a positive constant C∣∣∣∣v′��r�r

∣∣∣∣ < C� �v′′��r�� < C� for all r ∈ ��� R��

To proceed with the proof now we use the Arzela–Ascoli theorem, and find a
sequence v�n → v uniformly in C1��0� R�� to a solution v ∈ C2�0� R� of (5.7)–(5.8)
with right-hand side equal to 0. At this point we may use (ABP) inequality as
given in Proposition 5.1, to obtain that this equation has a unique solution by the
comparison principle given in Corollary 5.2, so v ≡ 0. But this is impossible since

v�
� + 
v′�
� = 1 for all �. �

Remark 5.2. If we use the claim given in the first part of the proof of Lemma 5.4
we see that for the function v defined as the limit of v�, there is a constant C so that∣∣∣∣v′�r�r

∣∣∣∣ ≤ C and �v′′�r�� < C� for all r ∈ �0� R��
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1736 Esteban et al.

Then we may apply Lemma 5.2 to find that v′′�0� is well defined and thus v is a
solution to the corresponding partial differential equation in the ball with zero right
hand side.

Proof of Theorem 5.1. Using Proposition 5.1 we obtain a sequence of
approximating solutions for (5.7)–(5.8). Then we use Lemma 5.4 to obtain estimates
that allows us to use the Arzela–Ascoli theorem as at the end of the proof of
Lemma 5.4 to obtain a solution of the problem. �

Finally we state a compactness lemma, whose proof is similar to those of
Lemmas 5.2 and 5.4 which are necessary to use Krein–Rutman theory to find the
first eigenvalues.

Lemma 5.5. If (F1)–(F2′)–(F3) hold true, let un be the solution of equation (5.7)–
(5.8) with right hand side fn, where �fn is a uniformly bounded sequence of continuous
functions in the interval �0� R�. Then, there is a constant C, independent of n, such that

�un�r�� ≤ C�

∣∣∣∣u′
n�r�

r

∣∣∣∣ ≤ C and �u′′
n�r�� < C� for all r ∈ �0� R��

Next we have the existence of the first eigenvalues in the ball. This theorem is a
particular case of the general eigenvalue theory for fully nonlinear equations. Here
we have provided a proof which relies on elementary arguments.

Theorem 5.2. Under assumptions (F1), (F2′) and (F3), the radially symmetric
eigenvalue problem (1.1)–(1.2) in � = BR has a solution ��+� u+�, with u+ > 0 and
radially symmetric in BR and another solution ��−� u−� with u− < 0 and radially
symmetric in BR. Moreover

i) �+ ≤ �−.
ii) Every positive (resp. negative) solution of equation (3.7) is a multiple of u+ (resp.

u−).
iii) If �±�R� denotes the eigenvalue in BR then �±�R� < �±�R′� if R > R′.
iv) �±�R� → � if R → 0.

Proof. With the aid of Theorem 5.1 and Lemma 5.5 we can follow step by step
the arguments given in the proof of Theorem 3.4 to obtain the existence of the
eigenvalues and eigenfunctions. The qualitative properties are proved similarly as in
the one dimensional case shown in Section 3. �

Proof of Theorem 1.1. The arguments are the same as those given in the proof of
Theorem 4.1. �
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