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ON THE EXISTENCE AND PROFILE OF NODAL SOLUTIONS
FOR A TWO-DIMENSIONAL ELLIPTIC PROBLEM WITH

LARGE EXPONENT IN NONLINEARITY

PIERPAOLO ESPOSITO, MONICA MUSSO and ANGELA PISTOIA

Abstract

We study the existence of nodal solutions to the boundary value problem −Δu = |u|p−1u in a bounded, smooth
domain Ω in R

2, with homogeneous Dirichlet boundary condition, when p is a large exponent. We prove that,
for p large enough, there exist at least two pairs of solutions which change sign exactly once and whose nodal
lines intersect the boundary of Ω.

1. Introduction

We consider the problem {
−Δu = |u|p−1u in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded, smooth domain in R
2 and p > 0 is a large exponent.

In order to state old and new results, we need to recall some well-known definitions. The
Green function of the Dirichlet Laplacian can be decomposed into a singular part and a regular
part, that is,

G(x, y) = H(x, y) +
1
2π

log
1

|x − y| .

The regular part H is a harmonic function with boundary values of opposite sign with respect
to the singular part. The leading term H(x, x) of the regular part of the Green function is
called the Robin function of Ω at x.

Problem (1.1) always has a positive solution up, obtained by minimizing the function

Ip(u) :=
∫
Ω

|∇u|2, for u ∈ H1
0(Ω),

on the sphere

{u ∈ H1
0(Ω) : ‖u‖p+1 = 1}.

Here, ‖u‖r denotes the Lr-norm of u. In [15] and [16], it is proved that, as p goes to infinity,
the solution up develops one interior peak, namely up approaches zero except at one interior
point where it stays bounded and bounded away from zero. More precisely, the authors proved
that, up to a subsequence, the renormalized energy pup+1

p concentrates as a Dirac mass around
a critical point of the Robin function. Successively, in [1] and [11] the authors give a further
description of the asymptotic behaviour of up as p goes to infinity, by identifying a limit profile
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problem of Liouville-type Δu + eu = 0 in R
2,

∫
R2 eu < +∞, and showing that ‖up‖∞ → √

e as
p → +∞.

In [13] it is proved that problem (1.1) can have many other positive solutions which
concentrate, as p goes to infinity, at some different points ξ1, . . . , ξk of Ω, whose location
depends on the geometry of Ω. More precisely, if k is a fixed integer, the authors introduce the
function Ψk : M → R defined by

Ψk(ξ1, . . . , ξk) :=
∑

i=1,...,k

H(ξi, ξi) +
∑

i,j=1,...,k
i�=j

G(ξi, ξj),

where M = Ωk \ Δ and Δ denotes the diagonal in Ωk, that is,

Δ = {(ξ1, . . . , ξk) ∈ Ωk : ξi = ξj for some i �= j}.
They prove that if Ψk has a stable critical value c (according to a definition of stable under
C1-perturbations), then, for p large enough, there exists a positive solution up to problem (1.1)
with k peaks, namely there is a k-tuple ξp = (ξ1p, . . . , ξkp) converging (up to a subsequence)
to a critical point ξ∗ = (ξ1

∗, . . . , ξk
∗) ∈ M of Ψk at level c such that

up → 0 uniformly in Ω \
k⋃

i=1

Bδ(ξip), sup
x∈Bδ(ξip)

up(x) → √
e , for i = 1, . . . , k,

for any δ > 0 and

pup+1
p ⇀ 8πe

(
k∑

i=1

δξ∗
i

)
weakly in the sense of measure in Ω,

as p goes to +∞.
After a detailed study of the existence and properties of positive solutions to problem (1.1),

one is interested in studying the existence and properties of solutions which change sign.
Problem (1.1) is a particular case of the problems treated in [4] and [7], where the authors

study the existence of sign-changing solutions and their properties for a larger class of
nonlinearities. In particular, it is proved that problem (1.1) for any p > 1 has a sequence
of distinct pairs of solutions ±un

p with ‖un
p‖∞ → +∞ as n → +∞, un

p changes sign if n � 2
and it has at most n nodal domains. Moreover, there exists a least energy nodal solution ūp to
(1.1) which has precisely two nodal domains. More precisely, if Jp : H1

0(Ω) → R is defined by

Jp(u) =
1
2

∫
Ω

|∇u|2 dx − 1
p + 1

∫
Ω

|u|p+1 dx

and

Np = {u ∈ H1
0(Ω) : u+ �= 0, u− �= 0, J ′

p(u)(u+) = J ′
p(u)(u−) = 0},

then

Jp(ūp) = min
Np

Jp. (1.2)

In this paper, we are interested in the existence and the profile of sign-changing solutions
which concentrate positively at some different points ξ1, . . . , ξh of Ω and concentrate negatively
at some other different points ξh+1, . . . , ξk of Ω.

First of all, let us state our general result. Let k be a fixed positive integer, let ai ∈ {±1},
for i = 1, . . . , k, with aiaj = −1 for some i �= j, and let Φk : M → R be defined by

Φk(ξ1, . . . , ξk) =
k∑

i=1

H(ξi, ξi) +
∑

i,j=1,...,k
i�=j

aiajG(ξi, ξj). (1.3)
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Theorem 1.1. Assume that Φk has a stable critical level c in M, according to
Definition 2.6. Then there exists p0 > 0 such that, for any p � p0, problem (1.1) has one
sign-changing solution up such that

p|up|p−1up ⇀ 8πe

(
k∑

i=1

aiδξi
∗

)
weakly in the sense of measure in Ω (1.4)

as p → +∞, for some ξ∗ = (ξ∗1 , . . . , ξ∗k) ∈ M such that ϕm(ξ∗1 , . . . , ξ∗k) = c. More precisely, there
is a k-tuple ξp = (ξ1p, . . . , ξkp) converging (up to a subsequence) to ξ∗ such that, for any δ > 0,
as p goes to +∞,

up → 0 uniformly in Ω \
k⋃

i=1

Bδ(ξip) (1.5)

and
sup

x∈Bδ(ξip)

up(x) → ai

√
e. (1.6)

Remark 1.2. In Theorem 1.1 we deal only with critical points of Φk stable with respect
to C0-perturbation according to Definition 2.6. As in [13], we could prove a stronger result
concerning C1-stable critical points by showing that some finite-dimensional functional is
C1-close to Φk. However, all the applications in which we are interested do not need this
generality and, to give a clear idea of our arguments, we will avoid it.

We can specialize the result as far as it concerns the existence and profile of sign-changing
solutions which concentrate positively and negatively at two different points ξ1 and ξ2 of Ω
respectively.

First of all, in this case the function Φ2 : M → R introduced in (1.3) reduces to

Φ(ξ1, ξ2) = H(ξ1, ξ1) + H(ξ2, ξ2) − 2G(ξ1, ξ2). (1.7)

The first result concerns the existence of a ‘least energy’ nodal solution.

Theorem 1.2. There exists p0 > 0 such that, for any p � p0,
(i) problem (1.1) has a pair of sign-changing solutions ±up such that (1.5) and (1.6) hold

and

p|up|p−1up ⇀ 8πe
(
δξ∗

1
− δξ∗

2

)
weakly in the sense of measure in Ω,

as p → +∞, for some ξ∗1 , ξ∗2 ∈ Ω, with ξ∗1 �= ξ∗2 , such that Φ(ξ∗1 , ξ∗2) = maxΩ×Ω Φ;

(ii) the set Ω \ {x ∈ Ω : up(x) = 0} has exactly two connected components;

(iii) the set {x ∈ Ω : up(x) = 0} intersects the boundary of Ω.

We conjecture that the solution found in Theorem 1.2 coincides with the least energy solution
ūp found in (1.2).

The second result is a multiplicity result. In order to state it, let

C2(Ω) = {A ⊂ Ω : #A = 2} = {(x, y) ∈ Ω × Ω : x �= y}/(x, y) ∼ (y, x)

be the configuration space of unordered pairs of elements of Ω.

Theorem 1.3. There exists p0 > 0 such that, for any p � p0,
(i) problem (1.1) has at least cat(C2(Ω)) pairs of sign-changing solutions ±ui

p, with
i = 1, . . . , cat(C2(Ω)), such that (1.5) and (1.6) hold and

p|ui
p|p−1ui

p ⇀ 8πe(δξi
1
− δξi

2
) weakly in the sense of measure in Ω,

as p → +∞, for some ξi
1, ξ

i
2 ∈ Ω, with ξi

1 �= ξi
2;
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(ii) the set Ω \ {x ∈ Ω : ui
p(x) = 0} has exactly two connected components;

(iii) the set {x ∈ Ω : ui
p(x) = 0} intersects the boundary of Ω.

It is easy to see that cat(C2(Ω)) � 2 for any open domain Ω ⊂ R
2 (see, for example, [6]),

so Theorem 1.3 provides at least two pairs of solutions. However, as has been pointed out in
[6], under certain assumptions on the topology of Ω, cat(C2(Ω)) may be larger. We refer the
reader to [5, Section 6] for some recent computations of cat(C2(Ω)).

Section 4 deals with the existence of solutions to (1.1) with more than two nodal zones when
Ω is a ball.

Let us make some comments and remarks. Results similar to those in Theorems 1.2 and 1.3
have been obtained in [6] for the slightly subcritical problem{

−Δu = |u|q−1−εu in Ω,
u = 0 on ∂Ω,

(1.8)

where Ω is a bounded, smooth domain in R
N , q = (N + 2)/(N − 2), N � 3, and ε is a small

positive parameter. In [6] the authors study the existence and the profile of sign-changing
solutions to problem (1.8), which blow up positively at a point ξ1 of Ω and blow up negatively
at a point ξ2 of Ω, with ξ1 �= ξ2, as the parameter ε goes to zero. They introduce the function
ϕ : M → R defined by

ϕ(ξ1, ξ2) = H1/2(ξ1, ξ1)H1/2(ξ2, ξ2) − G(ξ1, ξ2),

where G is the Green function of the Dirichlet Laplacian and H is its regular part, that is,

G(x, y) = αN |x − y|2−N − H(x, y), for x, y ∈ Ω,

where αN = 1/(N − 2)ωN and ωN denotes the surface area of the unit sphere in R
N (note that

in this case H is positive).
They prove that, if ε is small enough then problem (1.8) has at least cat(C2(Ω)) pairs of

sign-changing solutions ±ui
ε, with i = 1, . . . , cat(C2(Ω)), such that, as ε goes to zero, ui

ε blows
up positively at a point ξi

1 and blows up negatively at a point ξi
2, with ξi

1, ξ
i
2 ∈ Ω, ξi

1 �= ξi
2

and (ξi
1, ξ

i
2) a critical point of ϕ. Moreover, the set Ω \ {x ∈ Ω : ui

ε(x) = 0} has exactly two
connected components. Finally, if

H(ξi
1, ξ

i
1) = H(ξi

2, ξ
i
2), (1.9)

then the nodal set {x ∈ Ω : ui
ε(x) = 0} intersects the boundary of Ω. We remark that condition

(1.9) is satisfied when Ω is a ball.
We quote the fact that, as far as problem (1.1) is concerned, we do not need any assumption

such as (1.9) to ensure that nodal lines of solutions found in Theorems 1.2 and 1.3 intersect
the boundary of Ω. We compare this result with the one found in [2], where the authors prove
that the nodal line of a least energy solution to (1.1) intersects the boundary of Ω, provided Ω
is a ball or an annulus.

Finally, we would like to point out that the analogy between the almost critical problem (1.1)
in R

2 and the almost critical problem (1.8) in R
N , with N � 3, is not complete. In fact, only the

‘translation invariance’ plays a role in the study of (1.1), while both the ‘translation invariance’
and the ‘dilation invariance’ are concerned in the study of (1.8). The same phenomenon occurs
in the study of the mean field equation, as has already been observed in [3], [10] and [12].

The paper is organized as follows. In Section 2 we reduce the problem to a finite-dimensional
one and we prove Theorem 1.1. In this section we use some technical computations developed
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in [13], which are contained in Appendices A and B. In Section 3 we study the profile of sign-
changing solutions and we prove Theorems 1.2 and 1.3. In Section 4 we consider the case when
Ω is a ball.

2. Existence of nodal solutions

Let us consider the problem {
−Δu = g(u) in Ω,
u = 0 on ∂Ω,

(2.1)

where g(u) := |u|p−1u. Let us introduce some functions which will be the basic elements for
building sign-changing solutions to (2.1).

Firstly, let us consider the limit profile problem:

−Δu = eu in R
2,

∫
R2

eu < +∞. (2.2)

All the solutions of (2.2) are given by

Uδ,ξ(y) = log
8δ2

(δ2 + |y − ξ|2)2 , where y ∈ R
2, (2.3)

with δ > 0 and ξ ∈ R
2 (see [9]). Let PUδ,ξ denote the projection of Uδ,ξ onto H1

0(Ω), namely
ΔPUδ,ξ = ΔUδ,ξ in Ω, PUδ,ξ = 0 on ∂Ω. Linear combinations of the functions PUδ,ξ will be
used to build up a first approximation for a solution to (2.1). Unfortunately, such a first
approximation happens to be not good enough to solve the problem, because of (2.26). So we
need to improve this first approximation. In order to do so, we introduce the functions w0 and
w1 below.

Let U(y) := U1,0(y). Define w0 and w1 to be radial solutions of

Δw0 + eUw0 = f0 in R
2, f0(y) := 1

2eU(y)U2(y), (2.4)

and

Δw1 + eUw1 = f1 in R
2, (2.5)

f1(y) := eU(y)
(
w0U − 1

2 (w0)2 − 1
3U3 − 1

8U4 + 1
2w0U2

)
(y) (2.6)

with the property that, for all i = 1, 2,

wi(y) = Ci log |y| + O

(
1
|y|

)
as |y| → +∞, (2.7)

where

Ci =
∫+∞

0

t
t2 − 1
t2 + 1

f i(t) dt

(see, for example, [8]). For any δ > 0 and ξ ∈ R
2, we define

w0
δ,ξ(x) := w0

(
x − ξ

δ

)
, w1

δ,ξ(x) := w1

(
x − ξ

δ

)
, for x ∈ Ω.

Let Pw0
δ,ξ and Pw1

δ,ξ denote the projections onto H1
0(Ω) of w0

δ,ξ and w1
δ,ξ, respectively. Define

now

Uξ(x) :=
k∑

i=1

ai

γμ
2/(p−1)
i

(
PUδi,ξi

(x) +
1
p
Pw0

δi,ξi
(x) +

1
p2

Pw1
δi,ξi

(x)
)

(2.8)

where ai ∈ {±1} for any i = 1, . . . , k and

γ := pp/(p−1)e−p/(2(p−1)). (2.9)
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Furthermore, we assume that ξ = (ξ1, . . . , ξk) ∈ Oε for some ε > 0, where

Oε :=
{
ξ ∈ Ωk : (dist ξi, ∂Ω) � 2ε, |ξi − ξj | � 2ε, i, j = 1, . . . , k, i �= j

}
,

and that the parameters δi satisfy the following relation:

δi := δi(p, ξ) = μie
−p/4, (2.10)

with μi := μi(p, ξ), for i = 1, . . . , k, given by

log(8μ4
i ) = 8πH(ξi, ξi)

(
1 − C0

4p
− C1

4p2

)
+

log δi

p

(
C0 +

C1

p

)
+ 8π

∑
j �=i

(aiaj)
μ

2/(p−1)
i

μ
2/(p−1)
j

G(ξi, ξj)
(

1 − C0

4p
− C1

4p2

)
. (2.11)

A direct computation shows that, for p large, μi satisfies

μi = e−3/4 exp

{
2πH(ξi, ξi) + 2π

∑
j �=i

aiajG(ξj , ξi)

}(
1 + O

(
1
p

))
. (2.12)

By Lemmata A.1 and A.2 and by this choice of the parameters μi, we deduce that, if
y = (x − ξi)/δi, then

Uξ(x) =
ai

γμ
2/(p−1)
i

(
p + U(y) +

1
p
w0(y) +

1
p2

w1(y) + O(e−p/4|y| + e−p/4)
)

(2.13)

for |y| � ε/δi.
We will look for solutions to (2.1) of the form u = Uξ + φ, where φ is a higher order term in

the expansion of u. It is useful to rewrite problem (2.1) in terms of φ, namely{
L(φ) = − [R + N(φ)] in Ω,

φ = 0 on ∂Ω,
(2.14)

where

L(φ) := L(p, ξ, φ) = Δφ + g′ (Uξ) , (2.15)
R := R(p, ξ) = ΔUξ + g (Uξ) , (2.16)

N(φ) := N(p, ξ, φ) = [g (Uξ + φ) − g (Uξ) − g′ (Uξ) φ] . (2.17)

A first step towards solving (2.14), or equivalently (2.1), consists in studying the invertibility
properties of the linear operator L. In order to do so, we introduce a weighted L∞-norm
defined as

‖h‖∗ := sup
x∈Ω

∣∣∣∣∣
(

k∑
i=1

δi

(δ2
i + |x − ξi|2)3/2

)−1

h(x)

∣∣∣∣∣ (2.18)

for any h ∈ L∞(Ω). With respect to this norm, the error term R(p, ξ) given in (2.16) can be
estimated in the following way.

Lemma 2.1. Let ε > 0 be fixed. There exist c > 0 and p0 > 0 such that, for any ξ ∈ Oε and
p � p0,

‖ΔUξ + g (Uξ)‖∗ � c

p4
.

Proof. We give a sketch of the proof. We refer the reader to [13] for all the details. A direct
computation of ΔUξ and the estimates given by Lemmata A.1 and A.2 readily imply that,
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far away from the points ξi, namely for |x − ξi| > ε for all i = 1, . . . , k, the following estimate
holds true: ∣∣∣∣∣

(
k∑

j=1

δj

(δ2
j + |x − ξj |2)3/2

)−1

(ΔUξ + g(Uξ)) (x)

∣∣∣∣∣ � Cpe−p/4

for some positive constant C.
Let us now fix the index i in {1, . . . , k}. Taking into account (2.13) and the fact that(

p

γμ
2/(p−1)
i

)p

=
1

γδ2
i μ

2/(p−1)
i

,

we get, for |x − ξi| � ε
√

δi,∣∣∣∣∣
(

k∑
j=1

δj

(δ2
j + |x − ξj |2)3/2

)−1

(ΔUξ + g(Uξ)) (x)

∣∣∣∣∣ � Cp−4

by means of the Taylor expansion(
1 +

a

p
+

b

p2
+

c

p3

)p

= ea

[
1 +

1
p

(
b − a2

2

)
+

1
p2

(
c − ab +

a3

3
+

b2

2
+

a4

8
− a2b

2

)
+ O

(
log6(|y| + 2)

p3

)]
provided that

−4 log(|y| + 2) � a(y) � C and |b(y)| + |c(y)| � C log(|y| + 2).

While, for ε
√

δi � |x − ξi| � ε, we get∣∣∣∣∣
(

k∑
j=1

δj

(δ2
j + |x − ξj |2)3/2

)−1

(ΔUξ + g(Uξ)) (x)

∣∣∣∣∣ � Cpe−p/8.

This concludes the proof.

Next, we will solve the following projected linear problem: given h ∈ C(Ω̄), find a function
φ and constants ci,j , for i = 1, . . . , k and j = 1, 2, such that

L(φ) = h +
∑
i,j

ci,je
Uδi,ξi Zi,j , in Ω, (2.19)

φ = 0, on ∂Ω, (2.20)∫
Ω

eUδi,ξi Zi,jφ = 0, for all j = 1, 2, i = 1, . . . , k. (2.21)

Here, for i = 1, . . . , k and j = 1, 2 we set

Zi,j(x) := zj

(
x − ξi

δi

)
, with zj(y) := − ∂U

∂yj
(y) =

4yj

1 + |y|2 . (2.22)

This linear problem is uniquely solvable, for p sufficiently large, with an L∞-estimate for φ in
terms of ‖h‖∗. This is the content of the next lemma; its proof is given in Appendix B.

Lemma 2.2. Let ε > 0 be fixed. There exist c > 0 and p0 > 0 such that for any p > p0 and
ξ ∈ Oε there is a unique solution φ to problem (2.19)–(2.21) which satisfies

‖φ‖∞ � cp‖h‖∗. (2.23)
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Let us now introduce the following non-linear auxiliary problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δ(Uξ + φ) + g (Uξ + φ) =

∑
i,j

ci,je
Uδi,ξi Zi,j in Ω,

φ = 0 on ∂Ω,∫
Ω

eUδi,ξi Zi,jφ = 0 if i = 1, . . . , k, j = 1, 2,

(2.24)

for some coefficients ci,j . The following result holds.

Proposition 2.3. Let ε > 0 be fixed. There exist c > 0 and p0 > 0 such that for any
p > p0 and ξ ∈ Oε problem (2.24) has a unique solution φξ depending on p which satisfies
‖φξ‖∞ � c/p3. Furthermore, the function ξ → φξ is a C1-function in C(Ω̄) and in H1

0 (Ω).

Proof. Using (2.15)–(2.17) we can rewrite problem (2.24) in the following way:

L(φ) = − (R + N(φ)) +
∑
i,j

ci,je
Uδi,ξi Zi,j .

Let us denote by C∗ the function space C(Ω̄) endowed with the norm ‖ · ‖∗. Lemma 2.2
ensures that the unique solution φ = T (h) of (2.19)–(2.21) defines a continuous linear map
from the Banach space C∗ into C(Ω̄), with a norm bounded by a multiple of p. Then, problem
(2.24) becomes

φ = A(φ) := −T
[
R + N(φ)

]
. (2.25)

Let
Br :=

{
φ ∈ C(Ω) : φ = 0 on ∂Ω, ‖φ‖∞ � r/p3

}
, for some r > 0.

We have the following estimates: there exists a positive constant C such that

‖N(φ)‖∗ � Cp‖φ‖2
∞, ‖N(φ1) − N(φ2)‖∗ � Cp

(
max
i=1,2

‖φi‖∞
)
‖φ1 − φ2‖∞, (2.26)

for any φ, φ1, φ2 ∈ Fγ . In fact, by the Lagrange theorem we have

|N(φ)| � p(p − 1)
(
Uξ + O(1/p3)

)p−2
φ2,

|N(φ1) − N(φ2)| � p(p − 1)
(
Uξ + O(1/p3)

)p−2
(

max
i=1,2

|φi|
)
|φ1 − φ2|

for any x ∈ Ω, and hence, by the fact that

p
∣∣Uξ + O

(
1/p3

)∣∣p−2 � C

m∑
j=1

eUj(x)

we get (2.26) since ‖∑m
j=1 eUj‖∗ = O(1).

By (2.26) and Lemmata 2.1 and 2.2, we easily deduce that A is a contraction mapping on Br

for a suitable r > 0. Finally, a unique fixed point φξ of A exists in Br. As for the regularity of
the map ξ → φξ, we can proceed in a standard way by means of the Implicit Function Theorem.
The proof is now complete.

After problem (2.24) has been solved, we find a solution to problem (2.14) (and hence to the
original problem (2.1)) if we find a point ξ such that coefficients ci,j(ξ) in (2.24) satisfy

ci,j(ξ) = 0 for i = 1, . . . , k, j = 1, 2. (2.27)

Let us introduce the energy functional Jp : H1
0(Ω) → R given by

Jp(u) := 1
2

∫
Ω

|∇u|2 dx − 1
p + 1

∫
Ω

|u|p+1 dx, (2.28)
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whose critical points are solutions to (2.1). We also introduce the finite-dimensional restriction
J̃p : Oε → R given by

J̃p(ξ) := Jp

(
Uξ + φξ

)
. (2.29)

The following result holds.

Lemma 2.4. If ξ is a critical point of J̃p, then Uξ + φξ is a critical point of Jp, namely a
solution to problem (2.1).

Proof. The function J̃p is of class C1 since the map ξ → φξ is a C1-function in H1
0 (Ω).

Then, DξF (ξ) = 0 is equivalent to∑
i,j

ci,j(ξ)
∫
Ω

eUδi,ξi Zi,jDξUξ −
∑
i,j

ci,j(ξ)
∫
Ω

Dξ(eUδi,ξi Zi,j)φξ = 0

taking into account (2.24). Writing DξUξ explicitly, we find that direct computations then show
that, for p large and uniformly in ξ ∈ Oε,

0 =
D

γδiμ
2/(p−1)
i

ci,j(ξ) + O

(
1

pγδi

∑
l,h

|cl,h(ξ)|
)

where D is a given positive constant. This fact implies that ci,j(ξ) = 0 for all i and j.

Next, we need to write the expansion of J̃p as p goes to +∞.

Lemma 2.5. Let ε > 0. Then

J̃p(ξ) = k
A1

p
− 2A1k

log p

p2
+ k

A2

p2
− A3

p2
Φk(ξ) + O

(
log2 p

p3

)
uniformly with respect to ξ ∈ Oε. Here

A1 := 4πe, A2 := 8πe +
e

2

∫
R2

(eUU − Δw0)(y) dy, A3 := 32π2e (2.30)

and the function Φk : M → R is defined by (see (1.3))

Φk(ξ1, . . . , ξk) =
∑

i=1,...,k

H(ξi, ξi) +
∑

i,j=1,...,k
i�=j

aiajG(ξi, ξj).

Proof. Multiplying the equations in (2.24) by Uξ + φξ and integrating by parts, we get

J̃p(ξ) =
(

1
2
− 1

p + 1

) ∫
Ω

|∇(Uξ + φξ)|2 − 1
p + 1

∑
i,j

ci,j(ξ)
∫
Ω

eUδi,ξi Zi,j (Uξ + φξ) .

Now, from equation (B.12) contained in the proof of Lemma 2.2, we have

|ci,j(ξ)| = O

(
‖N(φp) + R‖∗ +

1
p
‖φξ‖∞

)
= O

(
1
p4

)
.

Hence, we have

J̃p(ξ) =
(

1
2
− 1

p + 1

)(∫
Ω

|∇Uξ|2 + 2
∫
Ω

∇Uξ∇φξ +
∫
Ω

|∇φξ|2
)

+ O

(
1
p5

)
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since Uξ is a bounded function. We expand the term
∫
Ω
|∇Uξ|2: in view of (2.13) we have

∫
Ω

|∇Uξ|2 =
k∑

j=1

aj

γμ
2/(p−1)
j

∫
B(ξj ,ε)

(
eUδj,ξj − 1

pδ2
j

Δw0

(
x − ξj

δj

)

− 1
p2δ2

j

Δw1

(
x − ξj

δj

)
+ O(pe−p/2)

)
Uξ + O(pe−p/2)

=
k∑

j=1

a2
j

γ2μ
4/(p−1)
j

∫
B(0,ε/δj)

(
8

(1 + |y|2)2 − 1
p
Δw0 − 1

p2
Δw1 + O(pe−p)

)
×
(

p + U +
1
p
w0 +

1
p2

w1 + O(e−p/4|y| + e−p/4)
)

+ O(pe−p/2)

=
k∑

j=1

1

γ2μ
4/(p−1)
j

(
8πp +

∫
R2

(
8

(1 + |y|2)2 U − Δw0

)
+ O

(
1
p

))

=
8πkp

γ2
− 32π

γ2

k∑
j=1

log μj +
k

γ2

∫
R2

(
8

(1 + |y|2)2 U − Δw0

)
+ O

(
1
p3

)
since μ

−4/(p−1)
j = 1 − (4/p) log μj + O(1/p2). Recalling the expression of μj in (2.11) and

(2.12), we get ∫
Ω

|∇Uξ|2 =
8πkp

γ2
− 64π2

γ2
Φk(ξ1, . . . , ξk) +

24πk

γ2

+
k

γ2

∫
R2

(
8

(1 + |y|2)2 U − Δw0

)
+ O

(
1
p3

)
(2.31)

uniformly for points in Oε. By Lemma 2.1 and Remark B.1 we get

‖φξ‖H1
0(Ω) � C(‖φξ‖∞ + ‖N(φξ)‖∗ + ‖R‖∗) = O(1/p3)

since ‖N(φξ)‖∗ = O(p‖φξ‖2
∞) and ‖R‖∗ = O(1/p4). Hence, by (2.31) we get∫

Ω

∇Uξ∇φξ +
1
2

∫
Ω

|∇φξ|2 = O

(
1
p3

)
. (2.32)

Finally, inserting (2.31) and (2.32) in the expression of J̃p, we get

J̃p(ξ) =
4πkp

γ2
− 32π2

γ2
Φk(ξ1, . . . , ξk) +

4πk

γ2

+
k

2γ2

∫
R2

(
8

(1 + |y|2)2 U − Δw0

)
+ O

(
1
p3

)
uniformly on points in Oε. Since γ = pp/(p−1)e−p/(2(p−1)) we obtain the desired expansion.

Let us introduce now the following definition.

Definition 2.6. We say that c is a stable critical level of Φ in M if there exist an open set
D compactly contained in M, and B and B0 that are closed subsets of D̄, with B connected
and B0 ⊂ B, such that the following conditions hold:

c := inf
γ∈Γ

sup
ξ∈B

Φ(γ(ξ)) > sup
ξ∈B0

Φ(ξ) (2.33)

and
{ξ ∈ ∂D : Φ(ξ) = c} = ∅. (2.34)
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Here, Γ denotes the class of all maps γ ∈ C(B, D̄) such that there exists a homotopy Ψ ∈
C([0, 1] × B, D̄) satisfying

Ψ(0, ·) = IdB , Ψ(1, ·) = γ, Ψ(t, ·)|B0 = IdB0 for all t ∈ [0, 1].

Under these assumptions, a critical point ξ̄ ∈ D of Φ exists at level c, as a standard
deformation argument shows. As an example, taking B = B0 = ∂D, one can easily check that
(2.33) and (2.34) hold if

sup
ξ∈∂D

Φ(ξ) < sup
ξ∈D

Φ(ξ) or inf
ξ∈∂D

Φ(ξ) > inf
ξ∈D

Φ(ξ),

namely the case of (possibly degenerate) local maximum/minimum values of ϕm.
We are now in position to carry out the proof of our main result.

Proof of Theorem 1.1. In view of Lemma 2.4, the function up = Uξp
+ φξp

is a solution to
problem (2.1) if we show that ξp is a critical point of the function J̃p. This is equivalent to
showing that

Fp(ξ) = −p2A−1
3

(
J̃p(ξ) − k

A1

p
+ 2kA1

log p

p2
− k

A2

p2

)
(2.35)

has a critical point ξp. Lemma 2.5 implies that Fp is uniformly close to Φ, as p → ∞, on
compact sets of M. Moreover, assumptions (2.33) and (2.34) are stable with respect to
C0-perturbation and still hold for the function Fp provided p is large enough. Therefore, Fp

has a critical point ξp ∈ D, whose critical value cp approaches c, as p → ∞. By the definition
of Uξ and since ‖φξ‖∞ � c/p3, it is straightforward to show the validity of (1.4)–(1.6) for up.
This proves our claim.

3. The case k = 2

This section is devoted to the problem of finding nodal solutions to problem (1.1) in a general
domain Ω ⊂ R

2 with exactly two nodal regions.
Assume that k = 2, a1 = 1 and a2 = −1. Then the function Φ defined in (1.3) reduces to

(see (1.7))

Φ(ξ) = H(ξ1, ξ1) + H(ξ2, ξ2) − 2G(ξ1, ξ2), with (ξ1, ξ2) ∈ M,

where M = Ω × Ω \ Δ and Δ is the diagonal in Ω × Ω.
First of all, let us prove the existence part (i) in Theorems 1.2 and 1.3.

Proof of Theorem 1.2(i). We point out that c := maxM Φ is finite since Φ(ξ) → −∞ as ξ
approaches ∂M, and it is a stable critical value of the function Φ according to Definition 2.6.
Therefore, the claim follows by Theorem 1.1.

Proof of Theorem 1.3(i). By Lemma 2.4, we need to prove that, if p is large enough, the
function J̃p has at least cat(C2(Ω)) pairs of critical points. In order to prove that J̃p has at
least cat(C2(Ω)) pairs of critical points, it is enough to show that the Fp(ξ) in (2.35) has at
least cat(C2(Ω)) pairs of critical points. From Lemma 2.5 we see that Fp is uniformly close to
Φ on compact sets of M as p → ∞. Moreover, we point out that

Φ(ξ) → −∞ as ξ → ∂M. (3.1)

Now, let M̃ denote the quotient manifold with respect to the equivalence (ξ1, ξ2) ∼ (ξ2, ξ1).
Since through the map (ξ1, ξ2) → (ξ2, ξ1) we have Uξ → −Uξ and φξ → −φξ, the induced
functions F̃p, Φ̃ : M̃ → R are well defined. Setting m := cat(M̃), we see that there exists a
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compact set C ⊂ M̃ such that cat(C) = m. By (3.1) we deduce that there exists an open
bounded set U ⊂ M̃ such that C ⊂ U and sup∂U Φ̃ < minC Φ̃. Therefore, if p is large enough, it
follows that sup∂U F̃p < minC F̃p. Now, for j = 1, . . . , m set

cj
p := sup

{
c : catM̃

(
F̃ c

p ∩ U
)

� j
}

= sup
{

min
A

F̃p : A ⊂ U compact, catM̃A � j
}

,

where F̃ c
p = {ξ ∈ M̃ : F̃p(ξ) � c}. Standard arguments based on the Deformation Lemma show

that cj
p, for j = 1, . . . ,m, are critical levels for F̃p. Finally, since M̃ is homotopy equivalent to

the configuration space C2(Ω), we have m = catM̃ = cat(C2(Ω)). This proves our claim.

Let u be a solution to problem (2.1) found in Theorems 1.2(i) and 1.3(i). We know that

u(x) =
1
γ

[
1

μ1
2/(p−1)
p

(
PUδ1p,ξ1p

(x) +
1
p
Pw0

δ1p,ξ1p

)

− 1

μ2
2/(p−1)
p

(
PUδ2p,ξ2p

(x) +
1
p
Pw0

δ2p,ξ2p

)
+ φ̂ξ(x)

]
, (3.2)

where

γ := pp/(p−1)e−p/(2(p−1)),
γ

p
→ 1√

e
as p → +∞, (3.3)

ξip → ξ∗i as p → +∞, ξ∗1 , ξ∗2 ∈ Ω, ξ∗1 �= ξ∗2 , (3.4)

δip := δi(p, ξp) = μipe
−p/4, (3.5)

μip := μi(p, ξp) → e−3/4e2πH(ξ∗
i ,ξ∗

i )−2πG(ξ∗
1 ,ξ∗

2 ) as p → +∞, (3.6)

‖φ̂ξ‖∞ � C/p. (3.7)

Here,

φ̂ξ :=
1
p2

(
μ1

−2/(p−1)
p Pw1

δ1p,ξ1p
− μ2

−2/(p−1)
p Pw1

δ2p,ξ2p

)
+ γφξ

and the last estimate (3.7) follows by Proposition 2.3 and (A.5) of Lemma A.2. Let us prove
that u changes sign exactly once.

Theorem 3.1. Let u be a solution to (2.1) as in (3.2)–(3.7). Then, if p is large enough,
the set Ω \ {x ∈ Ω : u(x) = 0} has exactly two connected components.

Proof. First of all, by (2.13) we deduce that there exist r > 0 small and p0 > 0 such that,
for any p > p0,

u(x) > 0 for any x ∈ B
(
ξ1p, r

)
(3.8)

and

u(x) < 0 for any x ∈ B
(
ξ2p, r

)
(3.9)

since

U(y) � −p + log
8μ2

i

4r4
and

1
p
w0(y) +

1
p2

w1(y) � −c for |y| � r

δi
.
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Now, let Ωp := Ω \ [B (
ξ1p, r

) ∪ B
(
ξ2p, r

)]
. Formulas (3.4)–(3.7) and Lemma A.2 imply that

‖u‖L∞(Ωp) � 1
γ

⎛⎝∥∥∥∥∥ 1

μ1
2/(p−1)
p

PUδ1p,ξ1p

∥∥∥∥∥
L∞(Ωp)

+

∥∥∥∥∥ 1

μ2
2/(p−1)
p

PUδ2p,ξ2p

∥∥∥∥∥
L∞(Ωp)

⎞⎠
+

1
pγ

(∥∥∥Pw0
δ1p,ξ1p

∥∥∥
L∞(Ωp)

+
∥∥∥Pw0

δ2p,ξ2p

∥∥∥
L∞(Ωp)

)
+

1
γ

∥∥∥φ̂ξ

∥∥∥
L∞(Ωp)

� c

γ
+

c

pγ

(| log δ1p| + | log δ2p|
)

+
c

pγ
� c

p
(3.10)

since by Lemma A.1 we easily deduce that
∥∥PUδip,ξip

∥∥
L∞(Ωp)

� c, for i = 1, 2. Therefore, by
(3.10) we deduce that

lim
p→+∞(p + 1)

∥∥|u|p−1
∥∥

Lp/(p−2)(Ωp)
= 0. (3.11)

Finally, it is clear that Ω \ {x ∈ Ω : u(x) = 0} has at least two connected components

Ω+
p ⊂ {x ∈ Ω : u(x) > 0} and Ω−

p ⊂ {x ∈ Ω : u(x) < 0}.
By (3.8) and (3.9) it follows that B

(
ξ1p, r

) ⊂ Ω+
p and B

(
ξ2p, r

) ⊂ Ω−
p . By contradiction,

we assume that there exists a third connected component ω ⊂ Ωp. Therefore, u solves
−Δu = |u|p−1u in ω, u = 0 on ∂ω, and the weight a := |u|p−1 satisfies (3.12) by means of (3.11).
By Lemma 3.2 below, it follows that u ≡ 0 in ω and a contradiction arises.

Lemma 3.2. Let ω be a bounded domain in R
2 and assume that a : ω → R satisfies

lim sup
p→+∞

(p + 1)‖a‖Lp/(p−2)(ω) < 8πe. (3.12)

Then the problem −Δu = au in ω, for u ∈ H1
0 (ω), has only the trivial solution.

Proof. First of all, we point out that u ∈ Lp(ω) for any p > 1 and

‖u‖2
H1

0(ω) =
∫
ω

au2 � ‖a‖Lp/(p−2)(ω)‖u‖2
Lp(ω) � S2

p‖a‖Lp/(p−2)(ω)‖u‖2
H1

0(ω),

where Sp denotes the best Sobolev constant of the embedding H1
0(ω) ↪→ Lp(ω). Therefore, if u

is a non-trivial solution, the following condition has to be satisfied:

S2
p‖a‖Lp/(p−2)(ω) � 1.

On the other hand, in [15] it was proved that

lim
p→∞

p − 1
S2

p

= 8πe.

Then, by (3.12) a contradiction arises.

In order to prove that the nodal line of u touches the boundary of Ω, it is useful to describe
the asymptotic behaviour of u in a neighbourhood of the boundary, as p goes to +∞.

Proposition 3.3. Let u be a solution to (2.1) as in (3.2)–(3.7). Then

pu(x) → 8π
√

e [G(x, ξ∗1) − G(x, ξ∗2)] in C1
loc

(
Ω \ {ξ∗1 , ξ∗2}

)
(3.13)

as p → +∞.
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Proof. By Lemmata A.1 and A.2, using (3.2)–(3.7), we deduce that estimate (3.13) holds
in C0

loc

(
Ω \ {ξ∗1 , ξ∗2}

)
. We are going to prove that

‖g (u)‖L1(Ω) = ‖u‖p
Lp(Ω) � c/p (3.14)

for some positive constant c and

‖g (u)‖L∞(ω) = ‖u‖p
L∞(ω) � cω/p, (3.15)

for some positive constant cω, for any ω neighbourhood of ∂Ω. By Lemma 3.4, we deduce that
‖∇u‖C0,α(ω′) � c/p and the claim follows by the Ascoli–Arzelá Theorem. Finally, (3.14) follows
since ∫

Ω

|u|p dx � |Ω|1/(p+1)

(∫
Ω

|u|p+1 dx

)p/(p+1)

� c

p
,

because limp→+∞ p
∫
Ω
|u|p+1 = 16πe, and (3.15) follows exactly as (3.10).

We recall the following lemma (see [14, Lemma 2]).

Lemma 3.4. Let u be a solution to −Δu = f in Ω, u = 0 on ∂Ω. If ω is a neighbourhood
of ∂Ω, then

‖∇u‖C0,α(ω′) � c
(‖f‖L1(Ω) + ‖f‖L∞(ω)

)
,

where α ∈ (0, 1) and ω′ ⊂⊂ ω is a neighbourhood of ∂Ω.

Theorem 3.5. Let u be a solution to (2.1) as in (3.2)–(3.7). Then if p is large enough,

{x ∈ Ω : u(x) = 0} ∩ ∂Ω �= ∅.

Proof. First of all, we remark that if {x ∈ Ω : u(x) = 0} ∩ ∂Ω = ∅, then ∂u
∂ν does not change

sign on ∂Ω. On the other hand, the normal derivative
∂

∂ν
[G(·, ξ∗1) − G(·, ξ∗2)]

changes sign on ∂Ω, since ∫
∂Ω

∂

∂ν
[G(x, ξ∗1) − G(x, ξ∗2)] dx = 0.

By Proposition 3.3 we deduce that

pV ∂u∂ν(x) → ∂

∂ν
[G(x, ξ∗1) − G(x, ξ∗2)]

uniformly on ∂Ω as p → ∞. Therefore, if p is large enough, ∂u
∂ν also changes sign on ∂Ω and a

contradiction arises.

Proof of (ii) and (iii) of Theorems 1.2 and 1.3. Part (ii) follows by Theorem 3.1 and (iii)
follows by Theorem 3.5.

4. The symmetric case

In this section we describe three possible symmetric configurations for points of positive and
negative concentration for nodal solutions to problem (1.1) when the domain Ω is the ball
{x ∈ R

2 : |x| < R}. In all cases, we strongly use the symmetry of the problem.
In the first example, we build a solution to (1.1) with h points of positive concentration and

h points of negative concentration located on the vertices of a regular polygon, distributed
with alternating sign.
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Let h � 1 be a fixed integer and let k = 2h. Set

ξ∗i =
(

cos
2π

k
(i − 1), sin

2π

k
(i − 1)

)
for any i = 1, . . . , k. (4.1)

Theorem 4.1. For any even integer k there exist p0 > 0 and ρ∗ ∈ (0, R) such that for any
p � p0 problem (1.1) has a sign-changing solution u such that (1.5) and (1.6) hold and

p|u|p−1u ⇀ 8πe

k∑
i=1

(−1)i+1δρ∗ξ∗
i

weakly in the sense of measure in Ω

as p → +∞.

Proof. We will look for a solution to problem (1.1) as u(x) = Uρ(x) + φ(x), where

Uρ :=
k∑

i=1

(−1)i+1

γμ
2/(p−1)
i

(
PUδi,ξi

+
1
p
Pw0

δi,ξi
+

1
p2

Pw1
δi,ξi

)
, (4.2)

where the δi are given in (2.10) and (2.11) and the concentration points are, for i = 1, . . . , k,

ξi := ξi(ρ) = ρξ∗i =
(

ρ cos
2π

k
(i − 1), ρ sin

2π

k
(i − 1)

)
with ρ ∈ (0, R), (4.3)

and the rest of the term φ is symmetric with respect to the variable x2 and is symmetric with
respect to each line {tξ∗i : t ∈ R} for i = 1, . . . , k.

Using the results obtained in previous sections and taking into account the symmetry of the
domain, we reduce the problem of finding solutions to (1.1) to that of finding critical points of
the function J̃p : (0, R) → R defined as in (2.29) by J̃p(ρ) := Jp (Uρ + φ(ρ)) . It is not difficult
to check that

J̃p(ρ) = k
A1

p
− 2kA1

log p

p2
+ k

A2

p2
− k

A3

p2
Φ(ρ) + O

(
log2 p

p3

)
,

where A1, A2 and A3 are given in (2.30) and

Φ(ρ) := H(ρξ∗1 , ρξ∗1) −
k∑

i=2

(−1)iG(ρξ∗1 , ρξ∗i ), for ρ ∈ (0, R). (4.4)

Since, on a ball Ω centred at 0 of radius R,

G(x, y) =
1
2π

(
log

1
|y − x| − log

R√|x|2|y|2 + R4 − 2R2x · y

)
,

H(x, x) = − 1
2π

log
R

R2 − |x|2 ,

the function Φ reduces to (since k is even)

Φ(ρ) =
1
2π

log
R2 − ρ2

R

+
1
2π

k∑
i=2

(−1)i

[
log ρ|ξ∗1 − ξ∗i | − log

√
ρ4 + R4 − 2ρ2R2ξ∗1 · ξ∗i

R

]

=
1
2π

[
log(R2 − ρ2) + log ρ −

k∑
i=2

(−1)i log

√
ρ4 + R4 − 2ρ2R2 cos

2π

k
(i − 1)

]

+
1
2π

k∑
i=2

(−1)i log |ξ∗1 − ξ∗i |.
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It is easy to check that limρ→0+ Φ(ρ) = limρ→R− Φ(ρ) = −∞. Then there exists ρ∗ ∈ (0, R)
such that Φ(ρ∗) = maxρ∈(0,R) Φ(ρ), which is a critical value which persists under a small
C0-perturbation. This proves our claim.

Our second example is a nodal solution to problem (1.1) with a negative (or positive) point
of concentration at the origin of the ball and again h points of positive concentration and h
points of negative concentration located at the vertices of a regular polygon with alternating
signs.

Theorem 4.2. For any even integer k there exist p0 > 0 and ρ∗ ∈ (0, R) such that for any
p � p0 problem (1.1) has a sign-changing solution u such that (1.5) and (1.6) hold and

p|u|p−1u ⇀ 8πe

(
−δ0 +

k∑
i=1

(−1)i+1δρ∗ξ∗
i

)
weakly in the sense of measure in Ω

as p → +∞.

Proof. Here, we will look for a solution to problem (1.1) as u(x) = Uρ(x) + φ(x), where

Uρ :=
k∑

i=1

(−1)i+1

γμ
2/(p−1)
i

(
PUδi,ξi

+
1
p
Pw0

δi,ξi
+

1
p2

Pw1
δi,ξi

)

− 1

γμ
2/(p−1)
k+1

(
PUδk+1,0 +

1
p
Pw0

δk+1,0 +
1
p2

Pw1
δk+1,0

)
, (4.5)

where the δi are given in (2.10) and (2.11), the concentration points ξi are given in (4.3) for
any i = 1, . . . , k and ξk+1 = 0, and the rest of the term φ is symmetric with respect to the
variable x2 and is symmetric with respect to each line {tξ∗i : t ∈ R} for i = 1, . . . , k.

Using the results obtained in previous sections and taking into account the symmetry of the
domain, we reduce the problem of finding solutions to (1.1) to that of finding critical points of
the function J̃p : (0, R) → R defined as in (2.29) by J̃p(ρ) := Jp (Uρ + φ(ρ)) . It is not difficult
to check that

J̃p(ρ) = k
A1

p
− 2kA1

log p

p2
+ k

A2

p2
− A3

p2
H(0, 0) − k

A3

p2
Φ(ρ) + O

(
log2 p

p3

)
,

where A1, A2 and A3 are given in (2.30) and Φ is defined in (4.4). By the proof of Theorem
4.1, it follows that Φ has a maximum value which persists under a small C0-perturbation. This
proves our claim.

In the last example, we build a solution to problem (1.1) with a positive point of concentration
at the origin of the ball and two antipodal points of negative concentration.

Theorem 4.3. For any even integer k there exist p0 > 0 and ρ∗ ∈ (0, R) such that for any
p � p0 problem (1.1) has a sign-changing solution u such that (1.5) and (1.6) hold and

p|u|p−1u ⇀ 8πe
(
δ0 − δξ(ρ) − δ−ξ(ρ)

)
weakly in the sense of measure in Ω

as p → +∞. Here ξ(ρ) := (ρ, 0).
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Proof. We will look for a solution to problem (1.1) as u(x) = Uρ(x) + φ(x), where

Uρ :=
1

γμ
2/(p−1)
1

(
PUδ1,ξ1 +

1
p
Pw0

δ1,ξ1
+

1
p2

Pw1
δ1,ξ1

)

−
3∑

i=2

1

γμ
2/(p−1)
i

(
PUδi,ξi

+
1
p
Pw0

δi,ξi
+

1
p2

Pw1
δi,ξi

)
, (4.6)

where the δi are given in (2.10) and (2.11) and the concentration points are, for i = 1, 2, 3,

ξ1 := (0, 0), ξ2 := ξ(ρ) = (ρ, 0), ξ3 = ξ(ρ) = (−ρ, 0) with ρ ∈ (0, R), (4.7)

and the rest of the term φ is even with respect to both the variables x2 and x3. Using the
results obtained in previous sections and taking into account the symmetry of the domain, we
reduce the problem of finding solutions to (1.1) to that of finding critical points of the function
J̃p : (0, R) → R defined as in (2.29) by J̃p(ρ) := Jp (Uρ + φ(ρ)) . It is not difficult to check that

J̃p(ρ) = 3
A1

p
− 6A1

log p

p2
+ 3

A2

p2
− A3

p2
Φ(ρ) + O

(
log2 p

p3

)
,

where A1, A2 and A3 are given in (2.30) and

Φ(ρ) := H(0, 0) + 2H(ξ(ρ), ξ(ρ)) − 4G(ξ(ρ), 0) + 2G(ξ(ρ),−ξ(ρ)), with ρ ∈ (0, R). (4.8)

Using the explicit expression for the Green function in a ball, we see that the function Φ reduces
to

Φ(ρ) =
1
2π

log R − 1
π

log
R

R2 − ρ2
− 2

π

(
log

1
ρ
− log

1
R

)
+

1
π

(
log

1
2ρ

− log
R

R2 + ρ2

)
=

1
π

(
log(R2 − ρ2) + log ρ

)− 7
2π

log R +
1
π

log 2 +
1
π

log(R2 + ρ2).

It is easy to check that limρ→0+ Φ(ρ) = limρ→R− Φ(ρ) = −∞. Then there exists ρ∗ ∈ (0, R)
such that Φ(ρ∗) = maxρ∈(0,R) Φ(ρ), which is a critical value which persists under a small
C0-perturbation. This proves our claim.

Appendix A

Let Uδ,ξ be the function defined in (2.3). The following result holds.

Lemma A.1. We have

PUδ,ξ(x) = Uδ,ξ(x) − log 8δ2 + 8πH(x, ξ) + O
(
δ2
)

as δ → 0 (A.1)

in C(Ω̄) and

PUδ,ξ(x) = 8πG(x, ξ) + O
(
δ2
)

as δ → 0 (A.2)

in Cloc(Ω̄ \ {ξ}), uniformly for ξ away from ∂Ω.

Proof. Since

PUδ,ξ(x) − Uδ,ξ(x) + log 8δ2 = −4 log
1

|x − ξ| + O(δ2) as δ → 0

uniformly for x ∈ ∂Ω and ξ away from ∂Ω, by harmonicity and the maximum principle (A.1)
readily follows.

On the other hand, away from ξ, we have

Uδ,ξ(x) − log 8δ2 = 4 log
1

|x − ξ| + O(δ2).

This fact, together with (A.1) gives (A.2).
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Let w0 be a radial solution of (2.4) and w1 be one of (2.5) and (2.6). They are the unique
radial solutions satisfying, respectively,

w0(y) = C0 log |y| + O

(
1
|y|

)
as |y| → +∞, (A.3)

and

w1(y) = C1 log |y| + O

(
1
|y|

)
as |y| → +∞, (A.4)

where

C0 :=
∫+∞

0

t
t2 − 1
t2 + 1

f0(t) = 12 − 4 log 8

and C1 is a suitable constant (see [13]). By (A.3) and (A.4) we deduce the following expansions.

Lemma A.2. For i = 1, 2 we have

Pwi
δ,ξ(x) = wi

δ,ξ(x) − 2πCiH(x, ξ) + Ci log δ + O (δ) as δ → 0

in C(Ω̄) and

Pwi
δ,ξ(x) = −2πCiG(x, ξ) + O (δ) as δ → 0

in Cloc(Ω̄ \ {ξ}), uniformly for ξ away from ∂Ω. In particular, the following global estimate
holds: for any ε > 0 there exists c > 0 such that for any δ small and ξ ∈ Ω with dist(ξ, ∂Ω) � ε
we have ∥∥Pwi

δ,ξ

∥∥
∞ � c| log δ| (A.5)

for i = 1, 2.

Proof. The proof follows from the same arguments as those used to prove Lemma A.1 and
from estimates (A.3) and (A.4).

Appendix B

This appendix is devoted to the proof of Lemma 2.2.
First of all, in order to treat the invertibility properties of the linear operator L, we need to

estimate g′(Uξ)(x). If |x − ξi| � ε then, for some i = 1, . . . , k,

g′(Uξ)(x) = aip

(
p

γμ
2/(p−1)
i

)p−1 (
1 +

1
p
U(y) +

1
p2

w0(y) +
1
p3

w1(y)

+ O

(
e−p/4

p
|y| + e−p/4

p

))p−1

= aiδ
−2
i

(
1 +

1
p
U(y) +

1
p2

w0(y) +
1
p3

w1(y) + O

(
e−p/4

p
|y| + e−p/4

p

))p−1

, (B.1)

where we use the notation y = (x − ξi)/δi. In this region, then we have

|g′(Uξ)(x)| � Cep/2e((p−1)/p)U(y) = O
(
eUδi,ξi

(x)
)
,

since U(y) � −2p. On the other hand, if |x − ξi| � ε then, for any i = 1, . . . , k,

|g′(Uξ)(x)| = O(p(C/p)p−1).
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Summing up, we see that there exist D > 0 and p0 > 0 such that

|g′(Uξ)(x)| � D

k∑
j=1

eUδj,ξj
(x) (B.2)

for any ξ ∈ Oε and p � p0.

Proof of Lemma 2.2. The proof consists of six steps.
Step 1. The operator L satisfies the maximum principle in

Ω̃ := Ω \
m⋃

j=1

B(ξj , Rδj)

for R large (independent of p), namely

if L(ψ) � 0 in Ω̃ and ψ � 0 on ∂Ω̃, then ψ � 0 in Ω̃.

Indeed, let

Z(x) =
m∑

j=1

z0

(
a(x − ξj)

δj

)
,

where

z0(y) =
|y|2 − 1
1 + |y|2 . (B.3)

If a is chosen positive and small and R is chosen large, depending on a but independent of p,
it follows that Z is a positive function in Ω̃ and, taking into account (B.2), we deduce that it
satisfies LZ(x) � 0 for all x ∈ Ω̃, for p sufficiently large. The existence of such a function Z
guarantees that L satisfies the maximum principle in Ω̃.

Step 2. Let R be as before. Define

‖φ‖i = sup
x∈⋃m

j=1 B(ξj ,Rδj)

|φ(x)|.

Then, there is a constant C > 0 such that, if L(φ) = h in Ω and h ∈ C0,α(Ω̄), then

‖φ‖∞ � C[‖φ‖i + ‖h‖∗]. (B.4)

Indeed, consider the solution ψj(x) of the problem⎧⎨⎩−Δψj =
2δj

|x − ξj |3 in Rδj < |x − ξj | < M,

ψj(x) = 0 on |x − ξj | = Rδj and |x − ξj | = M.

Here, M = 2diam Ω. The function ψj(x) is a positive function, which is uniformly bounded
from above for p sufficiently large.

Define now the function

φ̃(x) = 2‖φ‖iZ(x) + ‖h‖∗
k∑

j=1

ψj(x),

where Z was defined in the previous step. From the definition of Z, choosing R larger if
necessary, we see that

φ̃(x) � |φ(x)| for |x − ξj | = Rδj , j = 1, . . . , k,

and, by the positivity of Z(x) and ψj(x),

φ̃(x) � 0 = |φ(x)| for x ∈ ∂Ω.
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Furthermore, direct computation yields

Lφ̃(x) � |Lφ(x)|,
provided p is large enough. Hence, by the maximum principle established in Step 1 we obtain

|φ(x)| � φ̃(x) for x ∈ Ω̃,

and therefore
‖φ‖∞ � C[‖φ‖i + ‖h‖∗].

Step 3. Given h ∈ C0,α(Ω̄), assume that φ is a solution of problem Lφ = h in Ω and φ = 0
on ∂Ω. When φ satisfies (2.21) and, in addition, the orthogonality conditions, we have∫

Ω

eUδj,ξj Zj,0φ = 0, for j = 1, . . . , k, (B.5)

where

Zj,0(x) = z0

(
x − ξj

δj

)
(see (B.3)). We prove that there exists a positive constant C such that, for any ξ ∈ Oε,

‖φ‖∞ � C‖h‖∗, (B.6)

for p sufficiently large.
By contradiction, assume the existence of sequences pn → ∞, points ξn ∈ Oε, functions hn

and associated solutions φn such that ‖hn‖∗ → 0 and ‖φn‖∞ = 1. Since ‖φn‖∞ = 1, Step 2
shows that lim infn→+∞ ‖φn‖i > 0. Let us set

φ̂n
j (y) = φn(δn

j y + ξn
j ).

Elliptic estimates and the fact that lim infn→+∞ ‖φn‖i > 0 readily imply that, for some
j ∈ {1, . . . , n}, φ̂n

j converges uniformly over compact sets to a non-trivial bounded solution
φ̂∞

j of the following equation in R
2:

Δφ +
8

(1 + |y|2)2 φ = 0.

This implies that φ̂∞
j is a linear combination of the functions zi, for i = 0, 1, 2 (see (2.22) and

(B.3)). Since ‖φ̂n
j ‖∞ � 1, by the Lebesgue theorem the orthogonality conditions (2.21) and

(B.5) on φn pass to the limit and yield∫
R2

8
(1 + |y|2)2 zi(y)φ̂∞

j = 0 for any i = 0, 1, 2.

Hence, φ̂∞
j ≡ 0, a contradiction.

Step 4. We prove that there exists a positive constant C > 0 such that any solution φ of
the equation Lφ = h in Ω, with φ = 0 on ∂Ω, satisfies (2.23) when h ∈ C0,α(Ω̄) and we assume
on φ only the orthogonality conditions (2.21).

Proceeding by contradiction as in Step 3, we can suppose further that

pn‖hn‖∗ → 0 as n → +∞ (B.7)

but we lose in the limit the condition∫
R2

8
(1 + |y|2)2 z0(y)φ̂∞

j = 0.

Hence, we have

φ̂n
j → Cj

|y|2 − 1
|y|2 + 1

in C0
loc(R

2) (B.8)
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for some constants Cj . Testing (2.19) against properly chosen test functions and using the
stronger convergence (B.7), one can show that Cj = 0 for any j = 1, . . . , k (the construction of
suitable test functions is the more delicate part in the whole proof of Lemma 2.2; see [13] for
the details).

Step 5. We establish the validity of the a priori estimate (2.23) for h ∈ C0,α(Ω̄). The
previous step yields

‖φ‖∞ � Cp

(
‖h‖∗ +

∑
i,j

|ci,j |
)

(B.9)

since
‖eUδj,ξj Zi,j‖∗ � 2‖eUδj,ξj ‖∗ � C.

Hence, proceeding by contradiction as in Step 3, we can suppose further that

pn‖hn‖∗ → 0, pn

∑
i,j

|cn
i,j | � δ > 0 as n → +∞. (B.10)

We omit the dependence on n. It suffices to estimate the values of the constants cij . Let PZi,j

be the projection on H1
0 (Ω) of the functions Zi,j . Testing equation (2.19) against PZi,j and

integrating by parts one gets

Dci,j + O

(
e−p/2

∑
l,h

|cl,h| + ‖h‖∗
)

=
1
p

∫
B(0,ε/

√
δj)

32yi

(1 + |y|2)3
(
w0 − U − 1

2U2
)
φ̂j + O

(
1
p2

‖φ‖∞
)

(B.11)

where

D = 64
∫

R2

|y|2
(1 + |y|2)4 , φ̂j(y) = φ(δjy + ξj)

and w0 is given by (2.4). Hence, we obtain∑
l,h

|cl,h| = O

(
‖h‖∗ +

1
p
‖φ‖∞

)
. (B.12)

Since
∑

l,h |cl,h| = o(1), as in Step 4 we have

φ̂j → Cj
|y|2 − 1
|y|2 + 1

in C0
loc(R

2) (B.13)

for some constants Cj . Hence, in (B.11) we have a better estimate since by the Lebesgue
theorem the term ∫

B(0,ε/
√

δj)

32yi

(1 + |y|2)3
(
w0 − U − 1

2U2
)
(y)φ̂j(y)

converges to

Cj

∫
R2

32yi(|y|2 − 1)
(1 + |y|2)4

(
w0 − U − 1

2U2
)
(y) = 0.

Therefore, we get ∑
l,h

|cl,h| = O(‖h‖∗) + o(1/p).

This contradicts the assumption that

p
∑
i,j

|ci,j | � δ > 0,

and the claim is established.
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Step 6. We prove the solvability for (2.19)–(2.21). For this purpose, we consider the space

Kξ = span{PZi,j : i = 1, . . . , k, j = 1, 2}
and its orthogonal space

K⊥
ξ =

{
φ ∈ H1

0 (Ω) :
∫
Ω

eUδi,ξi Zi,j φ = 0 for i = 1, . . . , k, j = 1, 2
}

,

endowed with the usual inner product. Let Πξ and Π⊥
ξ be the associated orthogonal projections

in H1
0 (Ω).

Problem (2.19)–(2.21), expressed in weak form, is equivalent to that of finding φ ∈ K⊥
ξ such

that

(φ, ψ)H1
0(Ω) =

∫
Ω

(Wφ − h)ψ dx for all ψ ∈ K⊥
ξ .

With the aid of Riesz’s representation theorem, this equation can be rewritten in K⊥
ξ in the

operator form

(Id − K)φ = h̃, (B.14)

where h̃ = Π⊥
ξ Δ−1h and K(φ) = −Π⊥

ξ Δ−1 (Wφ) is a linear compact operator in K⊥
ξ .

The homogeneous equation φ = K(φ) in K⊥
ξ , which is equivalent to (2.19)–(2.21) with h ≡ 0,

has only the trivial solution in view of the a priori estimate (2.23). Now, Fredholm’s alternative
guarantees unique solvability of (B.14) for any h̃ ∈ K⊥

ξ . Finally, by density we obtain the
validity of (2.23) also for h ∈ C(Ω̄) (not only for h ∈ C0,α(Ω̄)).

Remark B.1. Given h ∈ C(Ω̄), let φ be the solution of (2.19)–(2.21) given by Lemma 2.2.
Multiplying (2.19) by φ and integrating by parts, we get

‖φ‖2
H1

0(Ω) =
∫
Ω

Wφ2 −
∫
Ω

hφ.

Since (B.2) holds true, we get

‖φ‖H1
0(Ω) � C (‖φ‖∞ + ‖h‖∗) .
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