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Abstract

We consider the boundary value problem Δu + up = 0 in a bounded, smooth domain Ω in R
2 with

homogeneous Dirichlet boundary condition and p a large exponent. We find topological conditions on Ω

which ensure the existence of a positive solution up concentrating at exactly m points as p → ∞. In
particular, for a nonsimply connected domain such a solution exists for any given m � 1.
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1. Introduction and statement of main results

This paper is concerned with analysis of solutions to the boundary value problem:⎧⎨⎩
Δu + up = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)
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where Ω is a smooth bounded domain in R
2 and p is a large exponent. Let us consider the

Rayleigh quotient

IP (u) =
∫
Ω

|∇u|2
(
∫
Ω

|u|p+1)2/(p+1)
, u ∈ H 1

0 (Ω) \ {0},

and set

Sp = inf
u∈H 1

0 (Ω)\{0}
Ip(u).

Since H 1
0 (Ω) is compactly embedded in Lp+1(Ω) for any p > 0, standard variational methods

show that Sp is achieved by a positive function up which solves problem (1.1). The function up

is known as least energy solution.
In [27,28] the authors show that the least energy solution has L∞-norm bounded and bounded

away from zero uniformly in p, for p large. Furthermore, up to subsequence, the renormalized
energy density p|∇up|2 concentrates as a Dirac delta around a critical point of the Robin function
H(x,x), where H is the regular part of Green function of the Laplacian in Ω with homogeneous
Dirichlet boundary condition. Namely, the Green function G(x,y) is the solution of the problem

{−ΔxG(x, y) = δy(x) x ∈ Ω,

G(x, y) = 0 x ∈ ∂Ω,

and H(x,y) is the regular part defined as

H(x,y) = G(x,y) − 1

2π
log

1

|x − y| .

In [1,16] the authors give a further description of the asymptotic behaviour of up , as p → ∞, by
identifying a limit profile problem of Liouville type:

{
Δu + eu = 0 in R

2,∫
R2 eu < ∞,

(1.2)

and showing that ‖up‖∞ → √
e as p → +∞.

Problem (1.2) possesses exactly a three-parameters family of solutions

Uδ,ξ x = log
8δ2

(δ2 + |x − ξ |2)2
, (1.3)

where δ is a positive number and ξ ∈ R
2 (see [6]).

The aim of this paper is to build solutions for problem (1.1) that, up to a suitable normal-
ization, look like a sum of concentrated solutions for the limit profile problem (1.2) centered at
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several points ξ1, . . . , ξm, as p → ∞. In this case, when m is possibly greater than 1, the func-
tion responsible to locate the concentration points ξ1, . . . , ξm is more involved than the Robin
function. In fact, location of such points is related to critical points of the function

ϕm(ξ1, . . . , ξm) =
m∑

j=1

H(ξj , ξj ) +
m∑

i,j=1
i 	=j

G(ξi, ξj ).

Let us mention that the same function ϕm is responsible for the location of the points of con-
centration for solutions to the mean field equation in bounded domains Ω ⊂ R

2 (see [3,12,14]).
Our main result reads as follows.

Theorem 1.1. Assume that Ω is not simply connected. Then given any m � 1 there exists pm > 0
such that for any p � pm problem (1.1) has a solution up which concentrates at m different
points in Ω , according to (1.6), (1.7) and (1.8), as p goes to +∞.

This result is consequence of a more general theorem, which we state below, that ensures the
existence of solutions to problem (1.1) which concentrate at m different points of Ω , under the
assumption that the function ϕm has a nontrivial critical value.

Let Ωm be Ω × Ω × · · · × Ω m times. We define

ϕm(x1, . . . , xm) = +∞ if xi = xj for some i 	= j.

Let D be an open set compactly contained in Ωm with smooth boundary. We recall that ϕm

links in D at critical level C relative to B and B0 if B and B0 are closed subsets of D with B

connected and B0 ⊂ B such that the following conditions hold: Let us set Γ to be the class of all
maps Φ ∈ C(B,D) with the property that there exists a function Ψ ∈ C([0,1]×B,D) such that:

Ψ (0, ·) = IdB, Ψ (1, ·) = Φ, Ψ (T , ·)|B0 = IdB0 for all t ∈ [0,1].

We assume

sup
y∈B0

ϕm(y) < C ≡ inf
Φ∈Γ

sup
y∈B

ϕm

(
Φ(y)

)
, (1.4)

and for all y ∈ ∂D such that ϕm(y) = C, there exists a vector τy tangent to ∂D at y such that

∇ϕm(y) · τy 	= 0. (1.5)

Under these conditions a critical point ȳ ∈ D of ϕm with ϕm(ȳ) = C exists, as a standard defor-
mation argument involving the negative gradient flow of ϕm shows. It is easy to check that the
above conditions hold if

inf
x∈D

ϕm(x) < inf
x∈∂D

ϕm(x), or sup
x∈D

ϕm(x) > sup
x∈∂D

ϕm(x),

namely the case of (possibly degenerate) local minimum or maximum points of ϕm. We call C a
nontrivial critical level of ϕm in D.
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Theorem 1.2. Let m � 1 and assume that there is an open set D compactly contained in Ωm,
where ϕm has a nontrivial critical level C. Then, there exists pm > 0 such that for any p � pm

problem (1.1) has a solution up which concentrates at m different points of Ω , i.e., as p goes
to +∞

pu
p+1
p ⇀ 8πe

m∑
i=1

δξj
weakly in the sense of measure in Ω (1.6)

for some ξ ∈ D such that ϕm(ξ1, . . . , ξm) = C and ∇ϕm(ξ1, . . . , ξm) = 0. More precisely, there
is an m-tuple ξp = (ξ

p

1 , . . . , , ξ
p
m) ∈ D converging (up to subsequence) to ξ such that, for any

δ > 0, as p goes to +∞

up → 0 uniformly in Ω
∖ m⋃

j=1

Bδ

(
ξ

p
i

)
and (1.7)

sup
x∈Bδ(ξ

p
i )

up(x) → √
e. (1.8)

The detailed proof of how Theorem 1.2 implies the result contained in Theorem 1.1 can be
found in [12].

As already mentioned, the case of a (possibly degenerate) local maximum or minimum for
ϕm is included. This simple fact allows us to obtain an existence result for solutions to problem
(1.1) also when Ω is simply connected. Indeed, we can construct simply connected domains of
dumbbell-type, where a large number of concentrating solutions can be found.

Let h be an integer. By h-dumbbell domain with thin handles we mean the following: let
Ω0 = Ω1 ∪ · · · ∪ Ωh, with Ω1, . . . ,Ωh smooth bounded domains in R

2 such that Ωi ∩ Ωj = ∅
if i 	= j . Assume that

Ωi ⊂ {
(x1, x2) ∈ R

2: ai � x1 � bi

}
, Ωi ∩ {x2 = 0} 	= ∅,

for some bi < ai+1 and i = 1, . . . , h. Let

Cε = {
(x1, x2) ∈ R

2: |x2| � ε, x1 ∈ (a1, bh)
}
, for some ε > 0.

We say that Ωε is a h-dumbbell with thin handles if Ωε is a smooth simply connected domain
such that Ω0 ⊂ Ωε ⊂ Ω0 ∪ Cε , for some ε > 0.

The following result holds true.

Theorem 1.3. There exist εh > 0 and ph > 0 such that for any ε ∈ (0, εh) and p � ph prob-
lem (1.1) in Ωε has at least 2h − 1 families of solutions which concentrate at different points
of Ωε , according to (1.6), (1.7) and (1.8), as p goes to +∞. More precisely, for any integer
1 � m � h there exist

(
h
m

)
families of solutions of (1.1) which concentrate at m different points

of Ωε .

The detailed proof of how Theorem 1.2 implies the result contained in Theorem 1.3 can be
found in [14]. We also refer the reader to [4,7], where domains like dumbbells with thin handles
are considered.
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The proof of all our results relies on a Lyapunov–Schmidt procedure, based on a proper choice
of the ansatz for the solution we are looking for. Usually, in other related problems of asymptotic
analysis, the ansatz for the solution is built as the sum of a main term, which is a solution (prop-
erly modified or projected) of the associated limit problem, and a lower order term, which can be
determined by a fixed point argument. In our problem, this is not enough. Indeed, in order to per-
form the fix point argument to find the lower order term in the ansatz (see Lemma 4.1), we need
to improve substantially the main term in the ansatz, adding two other terms in the expansion of
the solution (see Section 2). This fact is basically due to estimate (4.7).

By performing a finite-dimensional reduction, we find an actual solution to our problem ad-
justing points ξ inside Ω to be critical points of a certain function F(ξ) (see (5.2)). It is quite
standard to show that this function F(ξ) is a perturbation of ϕm(ξ) in a C0-sense. On the other
hand, it is not at all trivial to show the C1 closeness between F and ϕm. This difficulty is re-
lated to the difference between the exponential decay of the concentration parameters δ ∼ e−p/4

(see (2.3)) and the polynomial decay 1
p4 of the error term ‖ΔUξ + U

p
ξ ‖∗ of our approximating

function Uξ (see Proposition 2.1). We are able to overcome this difficulty (see Lemma 5.3) using
a Pohozaev-type identity.

Now, we would like to compare problem (1.1) with some widely studied problems which have
some analogies with it.

In higher dimension the problem equivalent to problem (1.1) is the slightly subcritical problem

⎧⎨⎩Δu + u
N+2
N−2 −ε = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.9)

where Ω is a smooth bounded domain in R
N , N � 3, and ε is a positive parameter. Indeed, in

dimension N � 3, the embedding of H 1
0 (Ω) in Lp+1(Ω) is compact for every p < N+2

N−2 . Hence
the minimum of the Rayleigh quotient corresponding to problem (1.9) is achieved by a positive
function uε , called least energy solution, which, after a multiplication by a suitable positive
constant, is a solution to (1.9).

It is well known that, as ε goes to 0, the least energy solution uε concentrates around a point,
which is a critical point of the Robin function of the corresponding Green function (see [2,17,
19,25]). Also the converse is true: around any stable critical point of the Robin function one can
build a family of solutions for (1.9) concentrating precisely there (see [23,25,26]).

In [2,21] the authors showed that also for problem (1.9) there exist solutions with concentra-
tion in multiple points and, as in the problem that we are considering in the present paper, the
points of concentration are given by critical points of a certain function defined in terms of both
the Green function and Robin function.

The analogies between problems (1.1) and (1.9) break down here. Indeed, while for (1.1) one
can find solutions with an arbitrarily large number of condensation points in any given not simply
connected domain Ω , in [2] the authors proved that solutions to (1.9) can have at most a finite
number of peaks which depends on Ω (see, also, [15,21]).

The property of problem (1.1) to have a solution with an arbitrarily large number of points of
condensation is what one expects to happen in the slightly supercritical version of problem (1.9),
namely
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⎧⎨⎩Δu + u
N+2
N−2 +ε = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.10)

Indeed, a conjecture for (1.10) is that, given any domain Ω with a hole, one can see solutions
with an arbitrarily large number of peaks (see [9,10,24]). For this fact, despite of being compact
and hence subcritical in dimension 2, problem (1.1) shares patterns similar to the ones associated
to slightly supercritical problem (1.10) in higher dimension.

However, again the analogies between (1.1) and (1.10) in higher dimension break down here.
Indeed, the dilation invariance, which is crucial in the study of problem (1.10), does not play
a role in finding solutions to problem (1.1), as already observed for a similar two-dimensional
problem in [12,14] (see, also, [3]): only translation invariance is concerned in the study of (1.1).

The only translation invariance is the crucial key which allows to find solutions to the sub-
critical problem (see [11,18,20,22,29])

⎧⎨⎩−ε2Δu + u = up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.11)

where Ω is a bounded open domain in R
N , p > 1 if N = 2 and 1 < p < N+2

N−2 if N � 3, ε is a
positive parameter.

Moreover, the property of problem (1.1) to have solution with an arbitrarily large number
of points of condensation is what happens in the subcritical problem (1.11). In fact, in [8] the
authors prove that if the reduced cohomology of Ω is not trivial, then for any integer k such a
problem has at least one k-peaks solution, provided the parameter ε is small enough.

However, again the analogies between (1.1) and (1.11) break down here. Indeed, problem (1.1)
is somehow almost critical in R

2, since the limit problem as p goes to +∞ is (1.2) which is
critical in R

2, while the limit problem of (1.11) as ε goes to 0 is the subcritical problem⎧⎨⎩−Δu + u = up in R
N,

u > 0 in R
N,

u ∈ H 1(RN).

The paper is organized as follows. In Section 2 we describe exactly the ansatz for the solution we
are searching for. We rewrite the problem in term of a linear operator L for which a solvability
theory is performed in Section 3. In Section 4 we solve an auxiliary nonlinear problem. We
reduce (1.1) to solve a finite system cij = 0, as we will see in Section 5. Section 5 contains also
the proof of Theorem 1.2.

2. A first approximation of the solution

In this section we will provide an ansatz for solutions of problem (1.1). A useful observation
is that u satisfies Eq. (1.1) if and only if

v(y) = δ
2

p−1 u(δy + ξ), y ∈ Ωξ,δ
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satisfies {
Δv + vp = 0 in Ωξ,δ,

v � 0 in Ωξ,δ, v = 0 on ∂Ωξ,δ,
(2.1)

where ξ is a given point in Ω , δ is a positive number with δ → 0, and Ωξ,δ is the expanding
domain defined by Ω−ξ

δ
.

In this section we will show that the basic elements for the construction of an approximate
solution to problem (1.1) which exhibits one point of concentration (or equivalently of prob-
lem (2.1)) are the radially symmetric solutions of problem (1.2) given by Uδ,ξ defined in (1.3).

For Uδ,ξ (x) defined in (1.3), we denote by PUδ,ξ (x) its projection on the space H 1
0 (Ω),

namely PUδ,ξ (x) is the unique solution of{
ΔPUδ,ξ = ΔUδ,ξ in Ω,

PUδ,ξ (x) = 0 on ∂Ω.

Since PUδ,ξ (x) − Uδ,ξ (x) + log(8δ2) + 4 log 1
|x−ξ | = O(δ2) uniformly on x ∈ ∂Ω as δ → 0

(together with any boundary derivatives), by harmonicity we get

PUδ,ξ (x) = Uδ,ξ (x) − log
(
8δ2

)+ 8πH(x, ξ) + O
(
δ2
)

in C1(Ω),

PUδ,ξ (x) = 8πG(x, ξ) + O
(
δ2
)

in C1
loc

(
Ω \ {ξ}), (2.2)

provided ξ is bounded away from ∂Ω .
Assume now that

δ = μe− p
4 ,

1

C
� μ � C, (2.3)

and define

u(x) = e
p

2(p−1)

pp/(p−1)μ2/(p−1)
PUδ,ξ (x), x ∈ Ω. (2.4)

Observe that, as p → ∞,

u(ξ) → √
e and u(x) = O

(
1

p

)
for x 	= ξ.

Furthermore, under the extra assumption that the parameter μ is defined by the relation

log
(
8μ4)= 8πH(ξ, ξ),

a direct computation shows that a good first approximation for a solution to problem (1.1) ex-
hibiting only one point of concentration is given by a perturbation of the function u defined
in (2.4).

Indeed, in the expanded variable y = x−ξ
δ

∈ Ω−ξ
δ

, if we define v(y) = δ2/(p−1)u(δy + ξ), then
our first approximation (2.4) looks like
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1

pp/(p−1)

(
p + U1,0(y) + O

(
e− p

4 |y| + e− p
4
))

(2.5)

and hence

Δv + vp ∼ 1

pp/(p−1)

[
−eU1,0(y) +

(
1 + U1,0(y)

p

)p]
,

which, roughly speaking, implies that the error for u to be a solution of (1.1) exhibiting one point
of concentration, or equivalently for v to be a solution of (2.1), is of order 1

p2 .
However, as we will see below, this is not enough to build an actual solution to (1.1) starting

from u(x). We need to refine this first approximation, or equivalently, according to (2.5), we need
to go further in the expansion of v̄(y) = p +U1,0(y)+o(1), by identifying first and second order
terms in v̄ − p − U1,0.

Let us call

v∞(y) = U1,0(y)

and consider

v̄(y) = v∞(y) + 1

p
w0(y) + 1

p2
w1(y),

where w0,w1 solve

Δwi + 8

(1 + |y|2)2
wi = 1

(1 + |y|2)2
fi(y) in R

2, i = 1,2,

where

f0 = 4v2∞, f1 = 8

(
w0v∞ − 1

3
v3∞ − 1

2
w2

0 − 1

8
v4∞ + 1

2
w0v

2∞
)

. (2.6)

According to [5], for a radial function f (y) = f (|y|) there exists a radial solution

w(r) = 1 − r2

1 + r2

( r∫
0

φf (s) − φf (1)

(s − 1)2
ds + φf (1)

r

1 − r

)

for the equation

Δw + 8

(1 + |y|2)2
w = f (y),

where

φf (s) =
(

s2 + 1

s2 − 1

)2
(s − 1)2

s

s∫
t
1 − t2

1 + t2
f (t) dt for s 	= 1
0
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and φf (1) = lims→1 φf (s). It is a straightforward computation to show that

w(r) = Cf log r + Df + O

( +∞∫
r

s| log s||f |(s) ds + | log r|
r2

)
as r → +∞,

where

Cf =
+∞∫
0

t
t2 − 1

t2 + 1
f (t) dt, provided

+∞∫
0

t |f |(t) dt < +∞.

Therefore, up to replacing w(r) with w(r) − Df
r2−1
r2+1

, we have shown:

Lemma 2.1. Let f ∈ C1([0,+∞)) such that
∫ +∞

0 t | log t ||f |(t) dt < +∞. There exists a C2

radial solution w(r) of equation

Δw + 8

(1 + |y|2)2
w = f

(|y|) in R
2

such that as r → +∞

w(r) =
( +∞∫

0

t
t2 − 1

t2 + 1
f (t) dt

)
log r + O

( +∞∫
r

s| log s||f |(s) ds + | log r|
r2

)
and

∂rw(r) =
( +∞∫

0

t
t2 − 1

t2 + 1
f (t) dt

)
1

t
+ O

(
1

r

+∞∫
r

s|f |(s) ds + | log r|
r3

)
.

By means of Lemma 2.1, since f0 has at most logarithmic growth at infinity (see (2.6)), we
can define w0(r) as a radial function satisfying

w0(y) = C0 log |y| + O

(
1

|y|
)

as |y| → +∞, (2.7)

where

C0 = 4

+∞∫
0

t
t2 − 1

(t2 + 1)3
log2

(
8

(1 + t2)2

)
= 12 − 4 log 8.

More precisely, since we will need the exact expression of w0, we have that

w0(y) = 1
v2∞(y) + 6 log

(|y|2 + 1
)+ 2 log 8 − 10

2
2 |y| + 1
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+ |y|2 − 1

|y|2 + 1

(
2 log2(|y|2 + 1

)− 1

2
log2 8 + 4

+∞∫
|y|2

ds

s + 1
log

s + 1

s

− 8 log |y| log
(|y|2 + 1

))
, (2.8)

as we can see by direct inspection. From (2.7) we get that also f1 grows at most logarithmically
at infinity and w1 can be defined as a radial function satisfying

w1(y) = C1 log |y| + O

(
1

|y|
)

as |y| → +∞, (2.9)

for a suitable constant C1.
We will see now that the profile 1

pp/(p−1) (p + v∞(y)+ 1
p
w0(y)+ 1

p2 w1(y)) is a better approx-
imation for a solution to the equation

Δv + vp = 0

in the region |y| � Cep/8. Indeed, by Taylor expansions of exponential and logarithmic function,
we have that, for |y| � Cep/8,(

1 + a

p
+ b

p2
+ c

p3

)p

= ea

[
1 + 1

p

(
b − a2

2

)
+ 1

p2

(
c − ab + a3

3
+ b2

2
+ a4

8
− a2b

2

)
+ O

(
log6(|y| + 2)

p3

)]
(2.10)

provided −4 log(|y| + 2) � a(y) � C and |b(y)| + |c(y)| � C log(|y| + 2).
Observe that in our case 2C � a + b

p
+ c

p2 � − 3
4p for |y| � Cep/8. Hence, by the choice of

v∞, w0 and w1 and expansion (2.10), we obtain that

Δv + vp = O

(
1

p4

log6(|y| + 2)

(1 + |y|2)2

)
in |y| � Ce

p
8 .

As before, we will see now that a proper choice of the parameter μ will automatically imply that
this approximation for v is also good for the boundary condition to be satisfied. Indeed, observe
that by (2.7), (2.9) and Lemma 2.1 we get for i = 1,2

P

(
wi

(
x − ξ

δ

))
= wi

(
x − ξ

δ

)
− 2πCiH(x, ξ) + Ci log δ + O(δ) in C1(Ω)

P

(
wi

(
x − ξ

δ

))
= −2πCiG(x, ξ) + O(δ) in C1

loc

(
Ω \ {ξ}), (2.11)

provided ξ is bounded away from ∂Ω . If we take μ as a solution of

log
(
8μ4)= 8πH(ξ, ξ)

(
1 − C0 − C1

2

)
+ log δ

(
C0 + C1

)
,

4p 4p p p
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we get that

u(x) = e
p

2(p−1)

pp/(p−1)μ2/(p−1)

[
PUδ,ξ (x) + 1

p
P

(
w0

(
x − ξ

δ

))
+ 1

p2
P

(
w1

(
x − ξ

δ

))]
is a good first approximation in order to construct a solution for (1.1) with just one concentration
point.

Let us remark that μ bifurcates, as p gets large, by μ̄ = e−3/4e2πH(ξ,ξ), solution of equation

log
(
8μ4)= 8πH(ξ, ξ) − C0

4
= 8πH(ξ, ξ) − 3 + log 8.

More precisely,

μ = e− 3
4 e2πH(ξ,ξ)

(
1 + O

(
1

p

))
.

Let us see now how things generalize if we want to construct a solution to problem (1.1) which
exhibits m points of concentration. Let ε > 0 fixed and take an m-tuple ξ = (ξ1, . . . , ξm) ∈ Oε ,
where

Oε = {
ξ = (ξ1, . . . , ξm) ∈ Ωm: dist(ξi, ∂Ω) � 2ε, |ξi − ξj | � 2ε, i 	= j

}
.

Define

Uξ (x) =
m∑

j=1

1

γμ
2/(p−1)
j

[
PUδj ,ξj

(x) + 1

p
P

(
w0

(
x − ξj

δj

))
+ 1

p2
P

(
w1

(
x − ξj

δj

))]
,

where

γ = p
p

p−1 e
− p

2(p−1) and δj = μje
− p

4 ,
1

C
� μj � C. (2.12)

The parameters μj will be chosen later. Observe that for any j 	= i and x = δiy + ξi

1

γμ
2/(p−1)
j

[
PUδj ,ξj

(x) + 1

p
P

(
w0

(
x − ξj

δj

))
+ 1

p2
P

(
w1

(
x − ξj

δj

))]

= 8π

γμ
2/(p−1)
j

G(ξi, ξj )

[
1 − C0

4p
− C1

4p2

]
+ O

(
e− p

4 + |x − ξi |
γ

)
.

Hence, we get that the function Uξ(x) is a good approximation for a solution to problem (1.1)
exhibiting m points of concentration provided

log
(
8μ4

i

)= 8πH(ξi, ξi)

(
1 − C0

4p
− C1

4p2

)
+ log δi

p

(
C0 + C1

p

)

+ 8π
∑ μ

2/(p−1)
i

μ
2/(p−1)

G(ξj , ξi)

[
1 − C0

4p
− C1

4p2

]
.

j 	=i j
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A direct computation shows that, for p large, μ satisfies

μi = e− 3
4 e

2πH(ξi ,ξi )+2π
∑

j 	=i G(ξj ,ξi )

(
1 + O

(
1

p

))
. (2.13)

Indeed, with this choice of the parameters μi , we have that

m∑
j=1

1

γμ
2/(p−1)
j

[
PUδj ,ξj

(x) + 1

p
P

(
w0

(
x − ξj

δj

))
+ 1

p2
P

(
w1

(
x − ξj

δj

))]

= 1

γμ
2/(p−1)
i

(
p + v∞(y) + 1

p
w0(y) + 1

p2
w1(y) + O

(
e− p

4 |y| + e− p
4
))

(2.14)

for x = δiy + ξi .

Remark 2.1. Let us remark that Uξ is a positive function. Since |v∞ + 1
p
w0 + 1

p2 w1| � C in

|y| � ε
δi

, by (2.14) we get that Uξ is positive in B(ξi, ε) for any i = 1, . . . ,m. Moreover, by
(2.11) we get that

P

(
wi

(
x − ξj

δj

))
→ −2πCiG(·, ξj )

in C1-norm on |x − ξj | � ε, i = 0,1, and then

PUδj ,ξj
+ 1

p
P

(
w0

(
x − ξj

δj

))
+ 1

p2
P

(
w1

(
x − ξj

δj

))
→ 8πG(·, ξj )

in C1-norm on |x − ξj | � ε. Hence, since ∂G
∂n

(·, ξj ) < 0 on ∂Ω , Uξ is a positive function in Ω .

We will look for solutions u of problem (1.1) in the form u = Uξ + φ, where φ will represent
an higher-order term in the expansion of u. Let us set

Wξ(x) = pU
p−1
ξ (x).

In terms of φ, problem (1.1) becomes{
L(φ) = −[

R + N(φ)
]

in Ω,

φ = 0 on ∂Ω,
(2.15)

where

L(φ) := Δφ + Wξφ and (2.16)

Rξ := ΔUξ + U
p
ξ , N(φ) = [

(Uξ + φ)p − U
p
ξ − pU

p−1
ξ φ

]
. (2.17)

The main step in solving problem (2.15) for small φ, under a suitable choice of the points ξi , is
that of a solvability theory for the linear operator L. In developing this theory, we will take into
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account the invariance, under translations and dilations, of the problem Δv + ev = 0 in R
2. We

will perform the solvability theory for the linear operator L in weighted L∞ spaces, following
[12]. For any h ∈ L∞(Ω), define

‖h‖∗ = sup
x∈Ω

∣∣∣∣∣
(

m∑
j=1

δj

(δ2
j + |x − ξj |2)3/2

)−1

h(x)

∣∣∣∣∣. (2.18)

We conclude this section by proving an estimate of R in ‖ · ‖∗.

Proposition 2.1. For fixed ε > 0, there exist C > 0 and p0 > 0 such that for any ξ ∈ Oε and
p � p0

∥∥ΔUξ + U
p
ξ

∥∥∗ � C

p4
. (2.19)

Proof. Observe that

ΔUξ =
m∑

j=1

1

γμ
2/(p−1)
j

(
−eUj + 1

pδ2
j

Δw0

(
x − ξj

δj

)
+ 1

p2δ2
j

Δw1

(
x − ξj

δj

))

=
m∑

j=1

1

γμ
2/(p−1)
j

(
−eUj + 1

pδ2
j

f̃0

(
x − ξj

δj

)
+ 1

p2δ2
j

f̃1

(
x − ξj

δj

)

− 1

p
eUj w0

(
x − ξj

δj

)
− 1

p2
eUj w1

(
x − ξj

δj

))
, (2.20)

where for j = 1, . . . ,m, Uj = Uδj ,ξj
and for i = 0,1, f̃i (y) = 1

(1+|y|2)2 fi(y) with f0, f1 given
in (2.6). By (2.2) and (2.11), formula (2.20) gives that, if |x − ξj | � ε for any j = 1, . . . ,m,∣∣∣∣∣

(
m∑

j=1

δj

(δ2
j + |x − ξj |2)3/2

)−1(
ΔUξ + U

p
ξ

)
(x)

∣∣∣∣∣� Ce
p
4

((
C

p

)p

+ pe− p
2

)
= O

(
pe− p

4
)
,

(2.21)

and, if |x − ξi | � ε for some i = 1, . . . ,m,

∣∣ΔUξ + U
p
ξ

∣∣= ∣∣∣∣ 1

γ δ2
i μ

2/(p−1)
i

(
− 8

(1 + |y|2)2
+ 1

p
f̃0(y) + 1

p2
f̃1(y) − 1

p

8

(1 + |y|2)2
w0(y)

− 1

p2

8

(1 + |y|2)2
w1(y)

)
+ U

p
ξ (δiy + ξi) + O

(
pe− p

2
)∣∣∣∣, (2.22)

where we denote y = x−ξi

δi
. By (2.14) we deduce that for x = δiy + ξi ,

U
p
ξ (x) =

(
p

γμ
2/(p−1)

)p(
1 + 1

p
v∞(y) + 1

p2
w0(y) + 1

p3
w1(y) + O

(
e− p

4

p
|y| + e− p

4

p

))p

.

i
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Since (
p

γμ
2/(p−1)
i

)p = 1
γ δ2

i μ
2/(p−1)
i

, by (2.10) we get for |x − ξi | � ε
√

δi

U
p
ξ (x) = 1

γ δ2
i μ

2/(p−1)
i

8

(1 + |y|2)2

[
1 + 1

p

(
w0(y) − 1

2
log2

(
8

(1 + |y|2)2

))
1

p2

(
w1 − log

(
8

(1 + |y|2)2

)
w0 + 1

3
log3

(
8

(1 + |y|2)2

)

+ w2
0

2
+ 1

8
log4

(
8

(1 + |y|2)2

)
− w0

2
log2

(
8

(1 + |y|2)2

))
+ O

(
log6(|y| + 2)

p3
+ p2e− p

4 y + p2e− p
4

)]
, y = x − ξi

δi

.

Hence, in this region we obtain that

∣∣∣∣∣
(

m∑
j=1

δj

(δ2
j + |x − ξj |2)3/2

)−1(
ΔUξ + U

p
ξ

)
(x)

∣∣∣∣∣
�
∣∣∣∣ (δ2

i + |x − ξi |2) 3
2

δi

(
ΔUξ + U

p
ξ

)
(x)

∣∣∣∣
� C

γ

(
1 + |y|2) 3

2 O

(
1

p3

log6(|y| + 2)

(1 + |y|2)2

)
� C

p4
, y = x − ξi

δi

. (2.23)

On the other hand, if ε
√

δi � |x − ξi | � ε we have that

U
p
ξ (x) = O

(
e

p
2

γ

1

(1 + |y|2)2

)
, y = x − ξi

δi

,

since (1 + s
p
)p � es . Thus, in this region

∣∣∣∣∣
(

m∑
j=1

δj

(δ2
j + |x − ξj |2)3/2

)−1(
ΔUξ + U

p
ξ

)
(x)

∣∣∣∣∣
= O

(
p

(1 + |y|2)1/2

)
� Cpe− p

8 , y = x − ξi

δi

. (2.24)

By (2.21), (2.23) and (2.24) we obtain the desired result. �
3. Analysis of the linearized operator

In this section, we prove bounded invertibility of the operator L, uniformly on ξ ∈ Oε , by
using L∞-norms introduced in (2.18). Let us recall that L(φ) = Δφ + Wξφ, where Wξ(x) =
pU

p−1
(x). For simplicity of notation, we will omit the dependence of Wξ on ξ .
ξ
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As in Proposition 2.1, we have for the potential W(x) the following expansions. If |x −ξi | � ε

for some i = 1, . . . ,m

W(x) = p

(
p

γμ
2/(p−1)
i

)p−1

×
(

1 + 1

p
v∞(y) + 1

p2
w0(y) + 1

p3
w1(y) + O

(
e− p

4

p
|y| + e− p

4

p

))p−1

= δ−2
i

(
1 + 1

p
v∞(y) + 1

p2
w0(y) + 1

p3
w1(y) + O

(
e− p

4

p
|y| + e− p

4

p

))p−1

, (3.1)

where again we use the notation y = x−ξi

δi
. In this region, we have that

W(x) � C

δ2
i

ev∞(y)e
− 1

p
v∞(y) = O

(
eUi(x)

)
,

since v∞(y) � −2p. Indeed, by Taylor expansions of exponential and logarithmic functions as
in (2.10), we obtain that, if |x − ξi | � ε

√
δi (and |y| � ε√

δi
),

W(x) = δ−2
i

(
1 + 1

p
v∞(y) + 1

p2
w0(y) + 1

p3
w1(y) + O

(
e− p

4

p
|y| + e− p

4

p

))p−1

= 8

δ2
i (1 + |y|2)2

(
1 + 1

p

(
w0 − v∞ − 1

2
v2∞

)
+ O

(
log4(|y| + 2)

p2

))
.

If |x − ξi | � ε for any i = 1, . . . ,m,

W(x) = O

(
p

(
C

p

)p−1)
.

Summing up, we have:

Lemma 3.1. Let ε > 0 be fixed. There exist D0 > 0 and p0 > 0 such that

W(x) � D0

m∑
j=1

eUj (x)

for any ξ ∈Oε and p � p0. Furthermore,

W(x) = 8

δ2
i (1 + |y|2)2

(
1 + 1

p

(
w0 − v∞ − 1

2
v2∞

)
+ O

(
log4(|y| + 2)

p2

))

for any |x − ξi | � ε
√

δi , where y = x−ξi

δi
.
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Remark 3.1. As for W , let us point out that, if |x − ξi | � ε for some i = 1, . . . ,m, there holds

p

(
Uξ + O

(
1

p3

))p−2

� Cp

(
p

γμ
2/(p−1)
i

)p−2

e
p−2
p

v∞(
x−ξi

δi
) = O

(
eUi(x)

)
.

Since this estimate is true if |x − ξi | � ε for any i = 1, . . . ,m, we have that

p

(
Uξ + O

(
1

p3

))p−2

� C

m∑
j=1

eUj (x). (3.2)

In an heuristic way, the operator L is close to L̃ defined by

L̃(φ) = Δφ +
(

m∑
i=1

eUi

)
φ.

The operator L̃ is “essentially” a superposition of linear operators which, after a dilation and
translation, approach, as p → ∞, the linear operator in R

2,

φ → Δφ + 8

(1 + |y|2)2
φ,

namely, equation Δv + ev = 0 linearized around the radial solution log 8
(1+|y|2)2 . Set

z0(y) = |y|2 − 1

|y|2 + 1
, zi(y) = 4

yi

1 + |y|2 , i = 1,2.

The first ingredient to develop the desired solvability theory for L is the well-known fact that any
bounded solution of L(φ) = 0 in R

2 is precisely a linear combination of the zi , i = 0,1,2, see
[3] for a proof.

The second ingredient is a detailed analysis of L − L̃. It has been proved in [12,14] that the
operator L̃ is invertible in the set of functions which, roughly speaking, are orthogonal to the
functions zi for i = 1,2, and the operatorial norm of L̃−1 behaves like p as p → +∞. Since
L is close to L̃ up to terms of order at least 1

p
(see Lemma 3.1), the invertibility of L becomes

delicate and non trivial.
In [12,14] there were established a priori estimates respectively in weighted L∞-norms and

in H 1
0 (Ω)-norms. We will follow the approach in [12] since the estimates there are stronger and

in this context very helpful.
Given h ∈ C(Ω), we consider the linear problem of finding a function φ ∈ W 2,2(Ω) such that

L(φ) = h +
2∑

i=1

m∑
j=1

cij e
Uj Zij in Ω, (3.3)

φ = 0 on ∂Ω, (3.4)∫
eUj Zijφ = 0 for all i = 1,2, j = 1, . . . ,m, (3.5)
Ω
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for some coefficients cij , i = 1,2 and j = 1, . . . ,m. Here and in the sequel, for any i = 0,1,2
and j = 1, . . . ,m we denote

Zij (x) := zi

(
x − ξj

δj

)
=

⎧⎪⎨⎪⎩
|x−ξj |2−δ2

j

δ2
j +|x−ξj |2 if i = 0,

4δj (x−ξj )i

δ2
j +|x−ξj |2 if i = 1,2.

The main result of this section is the following:

Proposition 3.1. Let ε > 0 be fixed. There exist p0 > 0 and C > 0 such that, for h ∈ C(Ω) there
is a unique solution to problem (3.3)–(3.5), for any p > p0 and ξ ∈ Oε , which satisfies

‖φ‖∞ � Cp‖h‖∗. (3.6)

Proof. The proof of this result consists of six steps.
Step 1. The operator L satisfies the maximum principle in Ω̃ := Ω \⋃m

j=1 B(ξj ,Rδj ) for R

large, independent on p. Namely,

if L(ψ) � 0 in Ω̃ and ψ � 0 on ∂Ω̃, then ψ � 0 in Ω̃.

In order to prove this fact, we show the existence of a positive function Z in Ω̃ satisfying
L(Z) < 0. We define Z to be

Z(x) =
m∑

j=1

z0

(
a(x − ξj )

δj

)
, a > 0.

First, observe that, if |x − ξj | � Rδj for R > 1
a

, then Z(x) > 0. On the other hand, we have

W(x)Z(x) � D0

(
m∑

j=1

eUj (x)

)
Z(x) � D0Z(x)

m∑
j=1

8δ2
j

|x − ξj |4 ,

where D0 is the constant in Lemma 3.1. Further, by definition of z0,

−ΔZ(x) =
m∑

j=1

a2
8δ2

j (a
2|x − ξj |2 − δ2

j )

(a2|x − ξj |2 + δ2
j )

3
� 1

3

m∑
j=1

8a2δ2
j

(a2|x − ξj |2 + δ2
j )

2
� 4

27

m∑
j=1

8δ2
j

a2|x − ξj |4

provided R >
√

2
a

. Hence

LZ(x) �
(

− 4

27

1

a2
+ D0

) m∑
j=1

8δ2
j

|x − ξj |4 < 0

provided that a is chosen sufficiently small, but independent of p. The function Z(x) is what we
are looking for.
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Step 2. Let R be as before. Let us define the “inner norm” of φ in the following way

‖φ‖i = sup
x∈⋃m

j=1 B(ξj ,Rδj )

|φ|(x).

We claim that there is a constant C > 0 such that, if L(φ) = h in Ω , h ∈ C0,α(Ω), then

‖φ‖∞ � C
[‖φ‖i + ‖h‖∗

]
,

for any h ∈ C0,α(Ω). We will establish this estimate with the use of suitable barriers. Let M =
2 diamΩ . Consider the solution ψj (x) of the problem:{

−Δψj = 2δj

|x−ξj |3 in Rδj < |x − ξj | < M,

ψj (x) = 0 on |x − ξj | = Rδj and |x − ξj | = M.

Namely, the function ψj (x) is the positive function defined by

ψj(x) = − 2δj

|x − ξj | + A + B log |x − ξj |,

where

B = 2

(
δj

M
− 1

R

)
1

log
(

M
Rδj

) < 0

and

A = 2δj

M
− B logM.

Hence, the function ψ − j (x) is uniformly bounded from above by a constant independent of p,
since we have that, for Rδj � |x − ξj | � M ,

ψj(x) � A + B log(Rδj ) = 2δj

M
− B log

M

Rδj

= 2

R
.

Define now the function

φ̃(x) = 2‖φ‖iZ(x) + ‖h‖∗
m∑

j=1

ψj(x),

where Z was defined in the previous step. First of all, observe that by the definition of Z, choos-
ing R larger if necessary,

φ̃(x) � 2‖φ‖iZ(x) � ‖φ‖i � |φ|(x) for |x − ξj | = Rδj , j = 1, . . . ,m,
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and, by the positivity of Z(x) and ψj (x),

φ̃(x) � 0 = |φ|(x) for x ∈ ∂Ω.

Since by definition of ‖ · ‖∗ we have that

(
m∑

j=1

δj

(δ2
j + |x − ξj |2)3/2

)
‖h‖∗ �

∣∣h(x)
∣∣, (3.7)

finally, we obtain that

Lφ̃ � ‖h‖∗
m∑

j=1

Lψj(x) = ‖h‖∗
m∑

j=1

(
− 2δj

|x − ξj |3 + W(x)ψj (x)

)

� ‖h‖∗
m∑

j=1

(
− 2δj

|x − ξj |3 + 2mD0

R
eUj (x)

)

� −‖h‖∗

(
m∑

j=1

δj

(δ2
j + |x − ξj |2)3/2

)
� −∣∣h(x)

∣∣� |Lφ|(x)

provided R > 16mD0 and p large enough. Hence, by the maximum principle in step 1 we obtain
that

|φ|(x) � φ̃(x) for x ∈ Ω̃,

and therefore, since Z(x) � 1 and ψj(x) � 2
R

,

‖φ‖∞ � C
[‖φ‖i + ‖h‖∗

]
.

Step 3. We prove uniform a priori estimates for solutions φ of problem Lφ = h in Ω , φ = 0
on ∂Ω , when h ∈ C0,α(Ω) and φ satisfies (3.5) and in addition the orthogonality conditions:

∫
Ω

eUj Z0j φ = 0 for j = 1, . . . ,m. (3.8)

Namely, we prove that there exists a positive constant C such that for any ξ ∈ Oε and
h ∈ C0,α(Ω)

‖φ‖∞ � C‖h‖∗,

for p sufficiently large. By contradiction, assume the existence of sequences pn → ∞, points
ξn ∈Oε , functions hn and associated solutions φn such that ‖hn‖∗ → 0 and ‖φn‖∞ = 1.
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Since ‖φn‖∞ = 1, step 2 shows that lim infn→+∞ ‖φn‖i > 0. Let us set φ̂n
j (y) = φn(δ

n
j y +ξn

j )

for j = 1, . . . ,m. By Lemma 3.1 and (3.7), elliptic estimates readily imply that φ̂n
j converges

uniformly over compact sets to a bounded solution φ̂∞
j of the equation in R

2:

Δφ + 8

(1 + |y|2)2
φ = 0.

This implies that φ̂∞
j is a linear combination of the functions zi , i = 0,1,2. Since ‖φ̂n

j ‖∞ � 1,
by Lebesgue theorem the orthogonality conditions (3.5) and (3.8) on φn pass to the limit and give∫

R2

8

(1 + |y|2)2
zi(y)φ̂∞

j = 0 for any i = 0,1,2.

Hence, φ̂∞
j ≡ 0 for any j = 1, . . . ,m contradicting lim infn→+∞ ‖φn‖i > 0.

Step 4. We prove that there exists a positive constant C > 0 such that any solution φ of equa-
tion Lφ = h in Ω , φ = 0 on ∂Ω , satisfies

‖φ‖∞ � Cp‖h‖∗,

when h ∈ C0,α(Ω) and we assume on φ only the orthogonality conditions (3.5). Proceeding by
contradiction as in step 3, we can suppose further that

pn‖hn‖∗ → 0 as n → +∞, (3.9)

but we loss in the limit the condition
∫

R2
8

(1+|y|2)2 z0(y)φ̂∞
j = 0. Hence, we have that

φ̂n
j → Cj

|y|2 − 1

|y|2 + 1
in C0

loc

(
R

2) (3.10)

for some constants Cj . To reach a contradiction, we have to show that Cj = 0 for any j =
1, . . . ,m. We will obtain it from the stronger condition (3.9) on hn.

To this end, we perform the following construction. By Lemma 2.1, we find radial solutions
w and t respectively of equations

Δw + 8

(1 + |y|2)2
w = 8

(1 + |y|2)2
z0(y) and Δt + 8

(1 + |y|2)2
t = 8

(1 + |y|2)2
in R

2,

such that as |y| → +∞

w(y) = 4

3
log |y| + O

(
1

|y|
)

, t (y) = O

(
1

|y|
)

,

since 8
∫ +∞

0 t
(t2−1)2

(t2+1)4 dt = 4
3 and 8

∫ +∞
0 t t2−1

(t2+1)3 dt = 0.
For simplicity, from now on we will omit the dependence on n. For j = 1, . . . ,m, define now

uj (x) = w

(
x − ξj

δ

)
+ 4

3
(log δj )Z0j (x) + 8π

3
H(ξj , ξj )t

(
x − ξj

δ

)

j j
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and denote by Puj the projection of uj onto H
j

0 (Ω). Since uj − Puj + 4
3 log 1

|·−ξj | = O(δj ) on
∂Ω (together with boundary derivatives), by harmonicity we get

Puj = uj − 8π

3
H(·, ξj ) + O

(
e− p

4
)

in C1(Ω),

Puj = −8π

3
G(·, ξj ) + O

(
e− p

4
)

in C1
loc

(
Ω \ {ξj }

)
.

(3.11)

The function Puj solves

ΔPuj + W(x)Puj = eUj Z0j + (
W(x) − eUj

)
Puj + Rj , (3.12)

where

Rj (x) =
(

Puj − uj + 8π

3
H(ξj , ξj )

)
eUj .

Multiply (3.12) by φ and integrate by parts to obtain∫
Ω

eUj Z0jφ +
∫
Ω

(
W(x) − eUj

)
Pujφ =

∫
Ω

Pujh −
∫
Ω

Rjφ. (3.13)

First of all, by Lebesgue theorem and (3.10) we get that

∫
Ω

eUj Z0j φ → Cj

∫
R2

8(|y|2 − 1)2

(1 + |y|2)4
= 8π

3
Cj . (3.14)

The more delicate term is
∫
Ω

(W(x) − eUj )Pujφ. By Lemma 3.1 and (3.11) we have that∫
Ω

(
W(x) − eUj

)
Pujφ

=
∫

B(ξj ,ε
√

δj )

(
W(x) − eUj

)
Pujφ − 8π

3

∑
k 	=j

G(ξk, ξj )

∫
B(ξk,ε

√
δk )

W(x)φ − O
(
e− p

8
)

= 4

3

log δj

p

∫
B(0,ε/

√
δj )

8

(1 + |y|2)2

(
w0 − v∞ − 1

2
v2∞

)
z0(y)φ̂j

− 8π

3

∑
k 	=j

G(ξk, ξj )

∫
B(0,ε/

√
δk )

8

(1 + |y|2)2
φ̂k + O

(
1

p

)

= −Cj

3

∫
2

8(|y|2 − 1)2

(1 + |y|2)4

(
w0 − v∞ − 1

2
v2∞

)
(y) − o(1)
R
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since Lebesgue theorem and (3.10) imply:

∫
B(0,ε/

√
δj )

8

(1 + |y|2)2

(
w0 − v∞ − 1

2
v2∞

)
z0(y)φ̂j → Cj

∫
R2

8(|y|2 − 1)2

(1 + |y|2)4

(
w0 − v∞ − 1

2
v2∞

)

and ∫
B(0,ε/

√
δk )

8

(1 + |y|2)2
φ̂k → Ck

∫
R2

8

(1 + |y|2)2

|y|2 − 1

|y|2 + 1
= 0.

In a straightforward but tedious way, by (2.8) we can compute:∫
R2

8(|y|2 − 1)2

(1 + |y|2)4

(
w0 − v∞ − 1

2
v2∞

)
(y) = −8π,

so that we obtain ∫
Ω

(
W(x) − eUj

)
Pujφ = 8π

3
Cj + o(1). (3.15)

As far as the R.H.S. in (3.13), we have that by (3.11)

∣∣∣∣∫
Ω

Pujh

∣∣∣∣= O

(
‖h‖∗

∫
Ω

(
m∑

k=1

δk

(δ2
k + |x − ξk|2)3/2

)
|Puj |

)
= O

(
p‖h‖∗

)
(3.16)

since
∫
Ω

|Puj | = O(| log δj |) = O(p) and∫
B(ξj ,ε)

δj

(δ2
j + |x − ξj |2)3/2

|uj | �
∫
R2

1

(1 + |y|2)3/2
|uj |(δj y + ξj ) = O(p).

Finally, by (3.11) ∫
Ω

Rjφ = O

(∫
Ω

eUj
(|x − ξj | + e− p

4
))= O

(
e− p

4
)
. (3.17)

Hence, inserting (3.14)–(3.17) in (3.13) we obtain that

16π

3
Cj = o(1)

for any j = 1, . . . ,m. Necessarily, Cj = 0 and the claim is proved.



P. Esposito et al. / J. Differential Equations 227 (2006) 29–68 51
Step 5. We establish the validity of the a priori estimate:

‖φ‖∞ � Cp‖h‖∗ (3.18)

for solutions of problem (3.3)–(3.5) and h ∈ C0,α(Ω). The previous step gives

‖φ‖∞ � Cp

(
‖h‖∗ +

2∑
i=1

m∑
j=1

|cij |
)

since
∥∥eUj Zij

∥∥∗ � 2
∥∥eUj

∥∥∗ � 16.

Hence, arguing by contradiction of (3.18), we can proceed as in step 3 and suppose further that

pn‖hn‖∗ → 0, pn

2∑
i=1

m∑
j=1

∣∣cn
ij

∣∣� δ > 0 as n → +∞.

We omit the dependence on n. It suffices to estimate the values of the constants cij . For i = 1,2
and j = 1, . . . ,m, multiply (3.3) by PZij and, integrating by parts, get:

2∑
l=1

m∑
h=1

clh(PZlh,PZij )H 1
0

+
∫
Ω

hPZij =
∫
Ω

W(x)φPZij −
∫
Ω

eUj Zijφ, (3.19)

since ΔPZij = ΔZij = −eUj Zij . For i = 1,2 and j = 1, . . . ,m we have the following expan-
sions:

PZij = Zij − 8πδj

∂H

∂(ξj )i
(·, ξj ) + O

(
δ3
j

)
, PZ0j = Z0j − 1 + O

(
δ2
j

)
(3.20)

in C1(Ω) and

PZij = −8πδj

∂G

∂(ξj )i
(·, ξj ) + O

(
δ3
j

)
, PZ0j = O

(
δ2
j

)
(3.21)

in C1
loc(Ω \ {ξj }). By (3.20), (3.21) we deduce the following “orthogonality” relations: for i, l =

1,2 and j,h = 1, . . . ,m with j 	= h,

(PZij ,PZlj )H 1
0 (Ω) =

(
64

∫
R2

|y|2
(1 + |y|2)4

)
δij + O

(
δ2
j

)
, (PZij ,PZlh)H 1

0 (Ω) = O(δj δh)

(3.22)

and

(PZ0j ,PZlj )H 1
0 (Ω) = O

(
δ2
j

)
, (PZ0j ,PZlh)H 1

0 (Ω) = O(δj δh) (3.23)

uniformly on ξ ∈ Oε , where δil denotes the Kronecker’s symbol. In fact, we have that
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(PZij ,PZlj )H 1
0 (Ω) =

∫
Ω

eUj Zij PZlj

=
∫

B(ξj ,ε)

eUj Zij

(
Zij − 8πδj

∂H

∂(ξj )l
(ξj , ξj ) + O

(
δj |x − ξj | + δ3

j

))+ O
(
δ4
j

)

= 128
∫
R2

yiyl

(1 + |y|2)4
+ O

(
δ2
j

)=
(

64
∫
R2

|y|2
(1 + |y|2)4

)
δij + O

(
δ2
j

)
,

(PZij ,PZlh)H 1
0 (Ω) =

∫
Ω

eUj Zij PZlh

=
∫

B(ξj ,ε)

eUj Zij

(
−8πδh

∂G

∂(ξh)l
(ξj , ξh) + O

(
δh|x − ξj | + δ3

h

))+ O
(
δ3
j

)
= O

(
δj δh

)
,

(PZ0j ,PZlj )H 1
0 (Ω) =

∫
Ω

eUj Z0j PZlj

=
∫

B(ξj ,ε)

eUj Z0j

(
Zlj − 8πδj

∂H

∂(ξj )l
(ξj , ξj ) + O

(
δj |x − ξj | + δ3

j

))+ O
(
δ3
j

)
= O

(
δ2
j

)
and

(PZ0j ,PZlh)H 1
0 (Ω) =

∫
Ω

eUj Z0j PZlh

=
∫

B(ξj ,ε)

eUj Z0j

(
−8πδh

∂G

∂(ξh)l
(ξj , ξh) + O

(
δh|x − ξj | + δ3

h

))+ O
(
δ2
j

)
= O

(
δj δh

)
.

Now, since ∣∣∣∣∫
Ω

hPZij

∣∣∣∣� C′
∫
Ω

|h| � C‖h‖∗,

by (3.22) the L.H.S. of (3.19) is estimated as follows:

L.H.S. = Dcij + O

(
e− p

2

2∑ m∑
|clh|

)
+ O

(‖h‖∗
)
, (3.24)
l=1 h=1
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where D = 64
∫

R2
|y|2

(1+|y|2)4 . Moreover, by Lemma 3.1 the R.H.S. of (3.19) takes the form:

L.H.S. =
∫

B(ξj ,ε
√

δj )

W(x)φPZij −
∫
Ω

eUj φZij + O
(√

δj‖φ‖∞
)

=
∫

B(ξj ,ε
√

δj )

(
W(x) − eUj

)
φPZij +

∫
Ω

eUj φ(PZij − Zij ) + O
(√

δj‖φ‖∞
)

= 1

p

∫
B(ξj ,ε/

√
δj )

32yi

(1 + |y|2)3

(
w0 − v∞ − v2∞

2

)
φ̂j + O

(
1

p2
‖φ‖∞

)
(3.25)

in view of (3.20), where φ̂j (y) = φ(δj y + ξj ). Inserting the estimates (3.24) and (3.25) into
(3.19), we deduce that

Dcij + O

(
e− p

2

2∑
l=1

m∑
h=1

|clh|
)

= O

(
‖h‖∗ + 1

p
‖φ‖∞

)
.

Hence, we obtain that

2∑
l=1

m∑
h=1

|clh| = O

(
‖h‖∗ + 1

p
‖φ‖∞

)
. (3.26)

Since
∑2

l=1
∑m

h=1 |clh| = o(1), as in step 4 we have that

φ̂j → Cj

|y|2 − 1

|y|2 + 1
in C0

loc

(
R

2)
for some constant Cj , j = 1, . . . ,m. Hence, in (3.25) we have a better estimate since by Lebesgue
theorem the term ∫

B(0,ε/
√

δj )

32yi

(1 + |y|2)3

(
w0 − v∞ − 1

2
v2∞

)
(y)φ̂j (y)

converges to

Cj

∫
2

32yi(|y|2 − 1)

(1 + |y|2)4

(
w0 − v∞ − 1

2
v2∞

)
(y) = 0.
R
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Therefore, we get that the R.H.S. in (3.19) satisfies: R.H.S. = o( 1
p
), and in turn,

∑2
l=1

∑m
h=1 |clh|

= O(‖h‖∗) + o( 1
p
). This contradicts

p

2∑
i=1

m∑
j=1

|cij | � δ > 0,

and the claim is established.
Step 6. We prove the solvability of (3.3)–(3.5). To this purpose, we consider the spaces:

Kξ =
{

2∑
i=1

m∑
j=1

cij PZij : cij ∈ R for i = 1,2, j = 1, . . . ,m

}
and

K⊥
ξ =

{
φ ∈ L2(Ω):

∫
Ω

eUj Zijφ = 0 for i = 1,2, j = 1, . . . ,m

}
.

Let Πξ :L2(Ω) → Kξ defined as

Πξφ =
2∑

i=1

m∑
j=1

cij PZij ,

where cij are uniquely determined (as it follows by (3.22), (3.23)) by the system:

∫
Ω

eUhZlh

(
φ −

2∑
i=1

m∑
j=1

cij PZij

)
= 0 for any l = 1,2, h = 1, . . . ,m.

Let Π⊥
ξ = Id−Πξ :L2(Ω) → K⊥

ξ . Problem (3.3)–(3.5), expressed in a weak form, is equivalent

to find φ ∈ K⊥
ξ ∩ H 1

0 (Ω) such that

(φ,ψ)H 1
0 (Ω) =

∫
Ω

(Wφ − h)ψ dx for all ψ ∈ K⊥
ξ ∩ H 1

0 (Ω).

With the aid of Riesz’s representation theorem, this equation gets rewritten in K⊥
ξ ∩ H 1

0 (Ω) in
the operatorial form

(Id−K)φ = h̃, (3.27)

where h̃ = Π⊥
ξ Δ−1h and K(φ) = −Π⊥

ξ Δ−1(Wφ) is a linear compact operator in K⊥
ξ ∩H 1

0 (Ω).

The homogeneous equation φ = K(φ) in K⊥
ξ ∩ H 1

0 (Ω), which is equivalent to (3.3)–(3.5) with
h ≡ 0, has only the trivial solution in view of the a priori estimate (3.18). Now, Fredholm’s al-
ternative guarantees unique solvability of (3.27) for any h̃ ∈ K⊥

ξ . Moreover, by elliptic regularity

theory this solution is in W 2,2(Ω).
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At p > p0 fixed, by density of C0,α(Ω) in (C(Ω),‖ · ‖∞), we can approximate h ∈ C(Ω) by
smooth functions and, by (3.18) and elliptic regularity theory, we can show that (3.6) holds for
any h ∈ C(Ω). The proof is complete. �
Remark 3.2. Given h ∈ C(Ω), let φ̄ be the solution of (3.3)–(3.5) given by Proposition 3.1.
Multiplying (3.3) by φ and integrating by parts, we get

‖φ‖2
H 1

0 (Ω)
=
∫
Ω

Wφ2 −
∫
Ω

hφ.

By Lemma 3.1 we get

‖φ‖H 1
0 (Ω) � C

(‖φ‖∞ + ‖h‖∗
)
.

4. The nonlinear problem

We want to solve the nonlinear auxiliary problem

Δ(Uξ + φ) + (Uξ + φ)p =
2∑

i=1

m∑
j=1

cij e
Uj Zij in Ω, (4.1)

Uξ + φ > 0 in Ω, (4.2)

φ = 0 on ∂Ω, (4.3)∫
Ω

eUj Zijφ = 0 for all i = 1,2, j = 1, . . . ,m, (4.4)

for some coefficients cij , i = 1,2 and j = 1, . . . ,m, which depend on ξ . Recalling that

N(φ) = |Uξ + φ|p − U
p
ξ − pU

p−1
ξ φ, R = ΔUξ + U

p
ξ ,

we can rewrite (4.1) in the form

L(φ) = −(
R + N(φ)

)+
2∑

i=1

m∑
j=1

cij e
Uj Zij .

Using the theory developed in the previous section for the linear operator L, we prove the fol-
lowing result:

Lemma 4.1. Let ε > 0 be fixed. There exist C > 0 and p0 > 0 such that, for any p > p0 and
ξ ∈Oε , problem (4.1)–(4.4) has a unique solution φξ which satisfies

‖φξ‖∞ � C

p3
. (4.5)

Further, there holds:
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2∑
i=1

m∑
j=1

∣∣cij (ξ)
∣∣� C

p4
, ‖φξ‖H 1

0 (Ω) � C

p3
. (4.6)

Proof. Let us denote by C∗ the function space C(Ω) endowed with the norm ‖ · ‖∗. Proposi-
tion 3.1 implies that the unique solution φ = T (h) of (3.3)–(3.5) defines a continuous linear
map from the Banach space C∗ into C0(Ω), with norm bounded by a multiple of p. Problem
(4.1)–(4.4) becomes

φ = A(φ) := −T
(
R + N(φ)

)
.

For a given number γ > 0, let us consider the region

Fγ :=
{
φ ∈ C0(Ω): ‖φ‖∞ � γ

p3

}
.

We have the following estimates:

∥∥N(φ)
∥∥∗ � Cp‖φ‖2∞,

∥∥N(φ1) − N(φ2)
∥∥∗ � Cp

(
max
i=1,2

‖φi‖∞
)
‖φ1 − φ2‖∞, (4.7)

for any φ,φ1, φ2 ∈Fγ . In fact, by Lagrange’s theorem we have that

∣∣N(φ)
∣∣� p(p − 1)

(
Uξ + O

(
1

p3

))p−2

φ2,

∣∣N(φ1) − N(φ2)
∣∣� p(p − 1)

(
Uξ + O

(
1

p3

))p−2(
max
i=1,2

|φi |
)
|φ1 − φ2|

for any x ∈ Ω , and hence, by (3.2) we get (4.7) since ‖∑m
j=1 eUj ‖∗ = O(1). By (4.7), Proposi-

tions 2.1 and 3.1 imply that

∥∥A(φ)
∥∥∞ � D′p

(∥∥N(φ)
∥∥∗ + ‖R‖∗

)
� O

(
p2‖φ‖2∞

)+ D

p3
and

∥∥A(φ1) − A(φ2)
∥∥∞ � C′p

∥∥N(φ1) − N(φ2)
∥∥∗ � Cp2

(
max
i=1,2

‖φi‖∞
)
‖φ1 − φ2‖∞

for any φ,φ1, φ2 ∈Fγ , where D is independent of γ . Hence, if ‖φ‖∞ � 2D

p3 , we have that

∥∥A(φ)
∥∥∞ = O

(
1

p
‖φ‖∞

)
+ D

p3
� 2D

p3
.

Choose γ = 2D. Then, A is a contraction mapping of Fγ since

∥∥A(φ1) − A(φ2)
∥∥∞ � 1‖φ1 − φ2‖∞
2
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for any φ1, φ2 ∈Fγ . Therefore, a unique fixed point φξ of A exists in Fγ . By (3.26), we get that

2∑
i=1

m∑
j=1

∣∣cij (ξ)
∣∣= O

(∥∥N(φξ )
∥∥∗ + ‖R‖∗ + 1

p
‖φξ‖∞

)
� C

p4

and by Remark 3.2 we deduce that

‖φξ‖H 1
0 (Ω) = O

(‖φξ‖∞ + N
∥∥N(φξ )

∥∥∗ + ‖R‖)� C

p3
.

The proof is now complete since φξ solves (4.1)–(4.4): in order to show the validity of (4.2),
let us remark that p|φξ | → 0 in C(Ω) and by elliptic regularity theory p|φξ | → 0 in C1(Ω \⋃m

j=1 B(ξj , ε)) and so, we can proceed as in Remark 2.1 to show that Uξ + φξ > 0 in Ω . �
Let ξ1, ξ2 ∈ Oε . Since

Δ(φξ1 − φξ2) + pU
p−1
ξ1

(φξ1 − φξ2)

= (
(Uξ2 + φξ2)

p − (Uξ1 + φξ2)
p
)+ (

(Uξ1 + φξ2)
p − (Uξ1 + φξ2)

p − pU
p−1
ξ1

(φξ2 − φξ1)
)

+ Δ(Uξ2 − Uξ1) +
2∑

i=1

m∑
j=1

(
cij (ξ1) − cij (ξ2)

)
eUj (ξ1)Zij (ξ1)

+
2∑

i=1

m∑
j=1

cij (ξ2)
(
eUj (ξ1)Zij (ξ1) − eUj (ξ2)Zij (ξ2)

)
and by (3.2)∥∥((Uξ1 + φξ2)

p − (Uξ1 + φξ1)
p − pU

p−1
ξ1

(φξ2 − φξ1)
)∥∥∗

� C

p2

∥∥φξ1 − φξ2

∥∥∞

∥∥∥∥p(Uξ1 + O

(
1

p3

))p−2∥∥∥∥∗
= o

(
1

p
‖φξ1 − φξ2‖∞

)
uniformly in Oε , by Proposition 3.1 and (4.6) we get

‖φξ1 − φξ2‖∞ � Cp
∥∥(Uξ2 + φξ2)

p − (Uξ1 + φξ2)
p
∥∥∗

+ C

p3

2∑
i=1

m∑
j=1

∥∥eUj (ξ1)Zij (ξ1) − eUj (ξ2)Zij (ξ2)
∥∥∗ + Cp

∥∥Δ(Uξ2 − Uξ1)
∥∥∗,

for any p � p0 and ξ1, ξ2 ∈ Oε (here, ‖ · ‖∗ is considered with respect to ξ1). Hence, for fixed
p � p0, the map ξ → φξ is continuous in C0(Ω) and, in view of Remark 3.2, in H 1

0 (Ω). Further,
this map is a C1-function in C0(Ω) as it follows by the Implicit Function Theorem applied to the
equation:

G(ξ,φ) := Π⊥
ξ

[
Uξ + Π⊥

ξ φ + Δ−1(Uξ + Π⊥
ξ φ

)p]+ Πξφ = 0, φ ∈ C0(Ω),
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where Πξ , Π⊥
ξ are the maps from L2(Ω) respectively onto

Kξ =
{

2∑
i=1

m∑
j=1

cij PZij : cij ∈ R for i = 1,2, j = 1, . . . ,m

}
and

K⊥
ξ =

{
φ ∈ L2(Ω):

∫
Ω

eUj Zijφ = 0 for i = 1,2, j = 1, . . . ,m

}

(see the notations in step 6 in the proof of Proposition 3.1). Let us remark that Πξφ ∈ Ck
0 (Ω),

for any k � 0. Indeed, G(ξ,φξ ) = 0 and the linearized operator:

∂G

∂φ
(ξ,φξ ) = Π⊥

ξ

[
id+pΔ−1((Uξ + φξ )

p−1Π⊥
ξ

)]+ Πξ

is invertible for p large. In fact, easily we reduce the invertibility property to uniquely solve the
equation ∂G

∂φ
(ξ,φξ )[φ] = h in K⊥

ξ for any h ∈ K⊥
ξ ∩ C0(Ω). By Fredholm’s alternative, we need

to show that in K⊥
ξ ∩ C0(Ω) there is only the trivial solution for the equation ∂G

∂φ
(ξ,φξ )[φ] = 0,

or equivalently for

Lφ = p
(
U

p−1
ξ − (Uξ + φξ )

p−1)φ +
2∑

i=1

m∑
j=1

cij e
Uj Zij ,

for any choice of the coefficients cij , since by elliptic regularity theory φ ∈ C2
0(Ω). By Proposi-

tion 3.1 and (3.2), we derive that

‖φ‖∞ � C′p
∥∥p(Up−1

ξ − (Uξ + φξ )
p−1)φ∥∥∗

� C′p2‖φ‖∞‖φξ‖∞
∥∥∥∥p(Uξ + O

(
1

p3

))p−2∥∥∥∥∗
< ‖φ‖∗

and hence, φ = 0. Similarly, we have also that ξ → φξ is a C1-function in H 1
0 (Ω).

5. Variational reduction

After problem (4.1)–(4.4) has been solved, we find a solution of (2.15) (and hence for (1.1))
if ξ is such that

cij (ξ) = 0 for all i = 1,2, j = 1, . . . ,m, (5.1)

where cij (ξ) are the coefficients in (4.1). Problem (5.1) has a variational structure. Associated to
(1.1), let us consider the energy functional Jp given by

JP (u) = 1

2

∫
|∇u|2 dx − 1

p + 1

∫
|u|p+1 dx, u ∈ H 1

0 (Ω),
Ω Ω
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and the finite-dimensional restriction

F(ξ) := Jp(Uξ + φξ ), (5.2)

where φξ is the unique solution to problem (4.1)–(4.4) given by Lemma 4.1. Critical points of F

correspond to solutions of (5.1) for large p, as the following result states:

Lemma 5.1. The functional F(ξ) is of class C1. Moreover, for all p sufficiently large, if
DξF(ξ) = 0 then ξ satisfies (5.1).

Proof. We have already shown that the map ξ → φξ is a C1-map into H 1
0 (Ω) and then, F(ξ) is

a C1-function of ξ .
Since DξF(ξ) = 0, we have that

0 = −
∫
Ω

(
Δ(Uξ + φξ ) + (Uξ + φξ )

p
)
(DξUξ + Dξφξ )

= −
2∑

i=1

m∑
j=1

cij (ξ)

∫
Ω

eUj Zij (DξUξ + Dξφξ )

= −
2∑

i=1

m∑
j=1

cij (ξ)

∫
Ω

eUj ZijDξUξ +
2∑

i=1

m∑
j=1

cij (ξ)

∫
Ω

Dξ

(
eUj Zij

)
φξ

since
∫
Ω

eUj Zijφξ = 0. By the expression of Uξ , we have that

∂(ξj )i Uξ = −
m∑

s=1

1

γμ
2/(p−1)
s

P

[
2

p − 1
Uδs,ξs − 2Z0s +

(
2

p(p − 1)
w0 + 2

p2(p − 1)
w1

+ 1

p
∇w0 · y + 1

p2
∇w1 · y

)∣∣∣∣
y= x−ξs

δs

]
∂(ξj )i logμs

+ 1

γ δjμ
2/(p−1)
j

P

(
Zij − 1

p
∂iw0

(
x − ξj

δj

)
− 1

p2
∂iw1

(
x − ξj

δj

))

= 1

γ δjμ
2/(p−1)
j

P

(
Zij − 1

p
∂iw0

(
x − ξj

δj

)
− 1

p2
∂iw1

(
x − ξj

δj

))
+ O

(
1

γ

)
, (5.3)

since P :L∞(Ω) → L∞(Ω) is a continuous operator (apply to 1
p−1Uδs,ξs , Z0s , 1

p
wj (

x−ξs

δs
),

∇wj(
x−ξs

δs
) · ( x−ξs

δs
) for j = 0,1 which are bounded in Ω in view of Lemma 2.1), and

∂(ξj )i

(
eUhZlh

)= −4δhe
Uh

(
δil

δ2
h + |x − ξh|2

− 6
(x − ξh)l(x − ξj )i

(δ2
h + |x − ξh|2)2

)
δhj

+ 3eUhZ0hZlh∂(ξj )i logμh, (5.4)
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where δhj denotes the Kronecker’s symbol. Hence, by (5.3), (5.4) for i = 1,2 and j = 1, . . . ,m,
we get that

0 = ∂(ξj )i F (ξ) = − 1

γ δjμ
2/(p−1)
j

2∑
l=1

m∑
h=1

clh(ξ)(PZij ,PZlh)H 1
0 (Ω)

+ O

(
1

pγ δj

+ ‖φξ‖∞
∫
Ω

∣∣∂(ξj )i

(
eUhZlh

)∣∣) 2∑
l=1

m∑
h=1

∣∣clh(ξ)
∣∣

since ∂iwj (
x−ξs

δs
) is bounded in Ω , j = 0,1, in view of Lemma 2.1. Taking into account (3.22),

(3.23), (4.5) and (5.4) we get

0 = 64

γ δjμ
2/(p−1)
j

( ∫
R2

|y|2
(1 + |y|2)4

dy

)
cij (ξ) + O

(
1

pγ δj

2∑
l=1

m∑
h,s=1

∣∣clh(ξ)
∣∣)

which implies for p large (independent of ξ ∈ Oε) that cij (ξ) = 0 for any i = 1,2 and j =
1, . . . ,m. �

Next lemma shows that the leading term of the function F(ξ) is given by ϕm(ξ).

Lemma 5.2. Let ε > 0. The following expansion holds:

F(ξ) = 4πmp

γ 2
− 32π2

γ 2
ϕm(ξ1, . . . , ξm) + 4πm

γ 2
+ m

2γ 2

∫
R2

(
8

(1 + |y|2)2
v∞ − Δw0

)
+ O

(
1

p3

)

uniformly for ξ ∈Oε .

Proof. First of all, multiply (4.1) by Uξ + φξ and integrate by parts to get:

∫
Ω

(Uξ + φξ )
p+1 =

∫
Ω

∣∣∇(Uξ + φξ )
∣∣2 +

2∑
i=1

m∑
j=1

cij

∫
Ω

eUj Zij (Uξ + φξ )

=
∫
Ω

∣∣∇(Uξ + φξ )
∣∣2 +

2∑
i=1

m∑
j=1

cij

∫
Ω

eUj ZijUξ

in view of (4.4). Since Uξ is a bounded function, by (4.6) we get that∫
Ω

(Uξ + φξ )
p+1 =

∫
Ω

∣∣∇(Uξ + φξ )
∣∣2 + O

(
1

p4

)

uniformly for ξ ∈ Oε . We can write
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F(ξ) =
(

1

2
− 1

p + 1

)∫
Ω

∣∣∇(Uξ + φξ )
∣∣2 + O

(
1

p4

)

=
(

1

2
− 1

p + 1

)(∫
Ω

|∇Uξ |2 + 2
∫
Ω

∇Uξ∇φξ +
∫
Ω

|∇φξ |2
)

+ O

(
1

p4

)
. (5.5)

We expand the term
∫
Ω

|∇Uξ |2: in view of (2.14) and (2.20) we have that

∫
Ω

|∇Uξ |2 =
m∑

j=1

1

γμ
2/(p−1)
j

∫
B(ξj ,ε)

(
eUj − 1

pδ2
j

Δw0

(
x − ξj

δj

)

− 1

p2δ2
j

Δw1

(
x − ξj

δj

)
+ O

(
p2e− p

2
))

Uξ + O
(
e− p

2
)

=
m∑

j=1

1

γ 2μ
4/(p−1)
j

∫
B(0,ε/δj )

(
8

(1 + |y|2)2
− 1

p
Δw0 − 1

p2
Δw1 + O

(
p2e−p

))

×
(

p + v∞ + 1

p
w0 + 1

p2
w1 + O

(
e− p

4 |y| + e− p
4
))+ O

(
e− p

2
)

=
m∑

j=1

1

γ 2μ
4/(p−1)
j

(
8πp +

∫
R2

(
8

(1 + |y|2)2
v∞ − Δw0

)
+ O

(
1

p

))

= 8πmp

γ 2
− 32π

γ 2

m∑
j=1

logμj + m

γ 2

∫
R2

(
8

(1 + |y|2)2
v∞ − Δw0

)
+ O

(
1

p3

)

since μ
− 4

p−1
j = 1 − 4

p
logμj + O( 1

p2 ). Recalling property (2.13) of μi , then we get that:

∫
Ω

|∇Uξ |2 = 8πmp

γ 2
− 64π2

γ 2
ϕm(ξ1, . . . , ξm) + 24πm

γ 2

+ m

γ 2

∫
R2

(
8

(1 + |y|2)2
v∞ − Δw0

)
+ O

(
1

p3

)
(5.6)

uniformly for ξ ∈ Oε . Hence, using (4.6) and (5.6) we get that

∫
Ω

∇Uξ∇φξ + 1

2

∫
Ω

|∇φξ |2 = O

(
1

p7/2

)
. (5.7)

Finally, inserting (5.6), (5.7) in (5.5), we get that
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F(ξ) = 4πmp

γ 2
− 32π2

γ 2
ϕm(ξ1, . . . , ξm) + 4πm

γ 2
+ m

2γ 2

∫
R2

(
8

(1 + |y|2)2
v∞ − Δw0

)
+ O

(
1

p3

)

uniformly for ξ ∈ Oε . �
Now, we want to show that the expansion of F(ξ) in terms of ϕm(ξ) holds in a C1-sense.

Lemma 5.3. Let ε > 0. The following expansion holds:

∇(ξj )i F (ξ) = −32π2

γ 2
∇(ξj )i ϕm(ξ1, . . . , ξm) + o

(
1

p2

)
uniformly for ξ ∈Oε , for any j = 1, . . . ,m and i = 1,2.

Proof. Let j ∈ {1, . . . ,m} and i ∈ {1,2} be fixed. We want to expand the derivatives of F(ξ)

in ξ :

∂(ξj )i F (ξ) = −
∫
Ω

(
Δuξ + u

p
ξ

)
∂(ξj )i uξ ,

where uξ = Uξ + φξ . Let us remark that it is very difficult to show directly that the expansion of
F(ξ) holds in a C1-sense since there is a difference between the exponential decay of the concen-
tration parameters δi = μie

− p
4 and the polynomial decay 1

p4 of ‖Rξ‖∗ (see Proposition 2.1). As
usual in similar contexts (also in higher dimensions), we should be able to show that ‖∂ξφξ‖∞ is

of order ‖φξ ‖∞
δi

. Unfortunately, since ‖φξ‖∞ is only of order 1
p3 , ∂ξφξ is not a small function and,

at a first glance, there is no hope for a C1-expansion of F(ξ). To overcome the problem, the idea
is the following: first, we replace the term ∂(ξj )i uξ with ∂xi

uξ in the expression of ∂(ξj )i F (ξ) in
a neighborhood of ξj , up to higher order terms, and afterwards we use a Pohozaev-type identity
based on integration by parts.

To this purpose, let η be a radial smooth cut-off function such that 0 � η � 1, η ≡ 1 for |x| � ε

and η ≡ 0 for |x| � 2ε. In view of (4.1) and (4.4), we can write∫
Ω

(
Δuξ + u

p
ξ

)
∂(ξj )i φξ

=
2∑

k=1

m∑
l=1

ckl

∫
Ω

eUlZkl∂(ξj )i φξ = −
2∑

k=1

m∑
l=1

ckl

∫
Ω

∂(ξj )i

(
eUlZkl

)
φξ

=
2∑

k=1

m∑
l=1

ckl

∫
Ω

∂xi

(
eUlZkl

)
η(x − ξj )φξ

−
2∑

k=1

m∑
l=1

ckl

∫ [
∂(ξj )i

(
eUlZkl

)+ η(x − ξj )∂xi

(
eUlZkl

)]
φξ
Ω
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= −
2∑

k=1

m∑
l=1

ckl

∫
Ω

eUlZkl∂xi

(
η(x − ξj )φξ

)

−
2∑

k=1

m∑
l=1

ckl

∫
Ω

[
∂(ξj )i

(
eUlZkl

)+ η(x − ξj )∂xi

(
eUlZkl

)]
φξ (5.8)

by an integration by parts of the derivative in xi . As for (5.4), we get that

∂(ξj )i

(
eUlZkl

)+ η(x − ξj )∂xi

(
eUlZkl

)
= 4δle

Ul
η(x − ξj ) − δlj

δ2
l + |x − ξl |2

δik + 24δle
Ul

(x − ξl)k(x − ξl)i

(δ2
l + |x − ξl |2)2

(
δlj − η(x − ξj )

)
+ 3eUlZ0lZkl∂(ξj )i logμl

= 3eUlZ0lZkl∂(ξj )i logμl + O
(
e− 3

4 p
)
,

where δlj denotes the Kronecker’s symbol, and hence, we get that

∣∣∣∣∣
2∑

k=1

m∑
l=1

ckl

∫
Ω

[
∂(ξj )i

(
eUlZkl

)+ η(x − ξj )∂xi

(
eUlZkl

)]
φξ

∣∣∣∣∣
� C‖φξ‖∞ max

k,l
|ckl |

∫
Ω

(
eUl + O

(
e− 3

4 p
))= O

(
1

p7

)

in view of |Z0lZkl | � 2, (4.5), (4.6). Inserting in (5.8), we get that

∫
Ω

(
Δuξ + u

p
ξ

)
∂(ξj )i φξ = −

2∑
k=1

m∑
l=1

ckl

∫
Ω

eUlZkl∂xi

(
η(x − ξj )φξ

)+ O

(
1

p7

)
. (5.9)

Since pφξ → 0 in C1-norm away from ξ1, . . . , ξm, (5.9) gives that

∫
Ω

(
Δuξ + u

p
ξ

)
∂(ξj )i φξ = −

2∑
k=1

m∑
l=1

ckl

∫
B(ξj ,ε)

eUlZkl∂xi
φξ + O

(
1

p7

)

= −
∫

B(ξj ,ε)

(
Δuξ + u

p
ξ

)
∂xi

φξ + O

(
1

p7

)
(5.10)

always in view of (4.1), (4.5) and (4.6).
Now, by Lemma 2.1 we get that | 1

δs
∂xi

wl(
x−δs

δs
)| � C for any l = 1,2 and for x away from ξs .

Hence, by the expression of Uξ and (2.2), (2.11) we get that for |x − ξj | � 2ε:
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∂xi
Uξ =

m∑
s=1

1

γμ
2/(p−1)
s

(
∂xi

PUδs ,ξs + 1

p
∂xi

P

(
w0

(
x − ξs

δs

))
+ 1

p2
∂xi

P

(
w1

(
x − ξs

δs

)))

=
m∑

s=1

1

γμ
2/(p−1)
s

(
∂xi

Uδs,ξs + 1

pδs

∂xi
w0

(
x − ξs

δs

)
+ 1

p2δs

∂xi
w1

(
x − ξs

δs

))
+ O

(
1

γ

)

= − 1

γ δjμ
2/(p−1)
j

(
Zij − 1

p
∂xi

w0

(
x − ξj

δj

)
− 1

p2
∂xi

w1

(
x − ξj

δj

))
+ O

(
1

γ

)
, (5.11)

since ∂xi
Uδs,ξs = − 1

δs
Zis . Since, as already observed, ∂xi

wl(
x−ξj

δj
) = O(δj ) uniformly away

from ξj , l = 1,2, by (5.11), in particular, we get

∂xi
Uξ = O

(
1

γ

)
, (5.12)

for ε � |x − ξj | � 2ε. Moreover, the maximum principle and Lemma 2.1 imply that

P

(
∂xi

wl

(
x − ξj

δj

))
− ∂xi

wl

(
x − ξj

δj

)
= O(δj )

in C(Ω) for any l = 1,2, and hence, by (5.3) and (5.11) we get that

∂(ξj )i Uξ + η(x − ξj )∂xi
Uξ = 1

γ δjμ
2/(p−1)
j

(PZij − Zij ) + O

(
1

γ

)
= O

(
1

γ

)
(5.13)

in view of (3.20). Now, by (5.12), (5.13) we can write that:

∫
Ω

(
Δuξ + u

p
ξ

)
∂(ξj )i Uξ

= −
2∑

k=1

m∑
l=1

ckl

∫
Ω

eUlZklη(x − ξj )∂xi
Uξ

+
2∑

k=1

m∑
l=1

ckl

∫
Ω

eUlZkl

(
∂(ξj )i Uξ + η(x − ξj )∂xi

Uξ

)

= −
2∑

k=1

m∑
l=1

ckl

∫
B(ξj ,ε)

eUlZkl∂xi
Uξ + O

(
1

p5

)
= −

∫
B(ξj ,ε)

(
Δuξ + u

p
ξ

)
∂xi

Uξ + O

(
1

p5

)
(5.14)
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in view of (4.1) and (4.6). Resuming, by (5.10) and (5.14) we have:

∂(ξj )i F (ξ) = −
∫
Ω

(
Δuξ + u

p
ξ

)
(∂(ξj )i Uξ + ∂(ξj )i φξ )

=
∫

B(ξj ,ε)

(
Δuξ + u

p
ξ

)
(∂xi

Uξ + ∂xi
φξ ) + O

(
1

p5

)

=
∫

B(ξj ,ε)

(
Δuξ + u

p
ξ

)
∂xi

uξ + O

(
1

p5

)
. (5.15)

Now, the role of ∇ϕm(ξ) becomes clear by means of the following Pohozaev-type identity (we
follow some arguments of [13]): for any B ⊂ Ω and for any function u

∫
B

Δu∇u =
∫
∂B

(
∂nu∇u − 1

2
|∇u|2n

)
,

∫
B

up∇u = 1

1 + p

∫
∂B

up+1n, (5.16)

where n(x) is the unit outer normal vector of ∂B at x ∈ ∂B . Let

ϕj (x) = H(x, ξj ) +
∑
l 	=j

G(x, ξl)

for any j = 1, . . . ,m. Since, as already observed, pφξ → 0 in C1-norm away from ξ1, . . . , ξm,
for our function uξ by (2.2) and (2.11) we have the following asymptotic property:

puξ (x) → 8π
√

e

m∑
l=1

G(x, ξl) in C1
loc

(
Ω \ {ξ1, . . . , ξm}). (5.17)

Apply now (5.16) on B = B(ξj , ε), j = 1, . . . ,m, and use (5.17) to obtain as p → +∞
∫
B

(
Δuξ + u

p
ξ

)∇uξ =
∫
∂B

(
∂nuξ∇uξ − 1

2
|∇uξ |2n + 1

1 + p
u

p+1
ξ n

)

= 64π2e

p2

∫
∂B

[(
− 1

2πε
+ ∂nϕj

)(
− 1

2π

x − ξj

|x − ξj |2 + ∇ϕj

)

− 1

2

∣∣∣∣− 1

2π

x − ξj

|x − ξj |2 + ∇ϕj

∣∣∣∣2n]+ o

(
1

p2

)

= −64π2e

2
∇ϕj (ξj ) + o

(
1
2

)
,

p p
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since we decompose
∑m

l=1 G(x, ξl) = − 1
2π

ln |x − ξj | + ϕj (x) with ϕj (x) a harmonic function
near ξj . In fact, we have used that

1

2πε

∫
∂B

∇ϕj = ∇ϕj (ξj )

since ∇ϕj is harmonic near ξj , and by (5.16)∫
∂B

(
∂nϕj∇ϕj − 1

2
|∇ϕj |2n

)
=
∫
B

Δϕj∇ϕj = 0.

Combining with (5.15), finally, we get

∂(ξj )i F (ξ) = −32π2e

p2
∂(ξj )i ϕm(ξ) + o

(
1

p2

)
= −32π2

γ 2
∂(ξj )i ϕm(ξ) + o

(
1

p2

)
since ∇ϕj (ξj ) = 1

2∇ξj
ϕm(ξ). The proof is now complete. �

Finally, we carry out the proof of our main result.

Proof of Theorem 1.2. Let us consider the set D as in the statement of the theorem, C the
associated critical value and ξ ∈D. According to Lemma 5.1, we have a solution of problem (1.1)
if we adjust ξ so that it is a critical point of F(ξ) defined by (5.2). This is equivalent to finding a
critical point of

F̃ (ξ) = γ 2

32π2

[
F(ξ) − 4πmp

γ 2
− 4πm

γ 2
− m

2γ 2

∫
R2

(
8

(1 + |y|2)2
v∞ − Δw0

)]
.

On the other hand, from Lemmata 5.2 and 5.3, we have that for ξ ∈D ∩Oε ,

F̃ (ξ) = ϕm(ξ) + o(1)Θp(ξ),

where Θp and ∇ξΘp are uniformly bounded in the considered region as p → ∞.
Let us observe that if M > C, then assumptions (1.4), (1.5) still hold for the function

min{M,ϕm(ξ)} as well as for min{M,ϕm(ξ) + o(1)Θp(ξ)}. It follows that the function
min{M,F̃ (ξ)} satisfies for all p large assumptions (1.4), (1.5) in D and therefore has a criti-
cal value Cp < M which is close to C in this region. If ξp ∈ D is a critical point at this level for
F̃ (ξ), then, since

F̃ (ξp) � Cp < M,

we have that there exists ε > 0 such that |ξp,j − ξp,i | > 2ε, dist(ξp,j , ∂Ω) > 2ε. This implies
C1-closeness of F̃ (ξ) and ϕm(ξ) at this level, hence ∇ϕm(ξp) → 0. The function up(x) =
(Uξp (x) + φξp (x)) is therefore a solution with the qualitative properties predicted by the the-
orem. �
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