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CRITICAL POINTS OF THE TRUDINGER-MOSER TRACE FUNCTIONAL
WITH HIGH ENERGY LEVELS

SHENGBING DENG AND MONICA MUSSO

Abstract: Let Ω be a bounded domain in R2 with smooth boundary. In this paper we are
concerned with the existence of critical points for the super critical Trudinger-Moser trace
functional ∫

∂Ω

ekπ (1+μ) u2
(0.1)

in the set
{
u ∈ H1(Ω) :

∫
Ω

(|∇u|2 + u2)dx = 1
}
, where k ≥ 1 is an integer and μ > 0 is a

small parameter. For any integer k ≥ 1 and for any μ > 0 sufficiently small, we prove the
existence of a pair of k-peaks constrained critical points of the above problem.

Keywords: Trudinger-Moser trace functional; Reduction methods.

1. Introduction

Let Ω be a bounded domain in R2 with smooth boundary, and let H1(Ω) be the Sobolev
space, equipped with the norm

‖u‖ =
(∫
Ω

(|∇u|2 + u2)dx

) 1
2

.

Let α be a positive number, the Trudinger-Moser trace inequality states that

(1.1) Cα(Ω) = sup
u∈H1(Ω), ‖u‖≤1

∫
∂Ω

eα |u|
2

⎧⎪⎪⎨⎪⎪⎩ ≤ C < +∞ , if α ≤ π
= +∞, if α > π

[1, 2, 6, 7, 18, 22, 23]. Let us mention that the early works [6, 7] do not include the
case when the constant in (1.1) is exactly π. For (1.1) there is a loss of compactness at
the limiting exponent α = π. Despite of that, it has been proven in [29] that the supremum
Cπ(Ω) is attained by a function u ∈ H1(Ω) with

∫
Ω

[|∇u|2+u2] = 1, for any bounded domain
Ω in IR2, with smooth boundary. Also, for any α ∈ (0, π), the supremum Cα(Ω) is finite and
it is attained. But the exponent α = π is critical in the sense that for any α > π, Cα(Ω) = ∞.
See also [8, 16, 17] for generalizations.

The aim of this paper is to study the existence of critical points of the Trudinger-Moser
trace functional

(1.2) Eα(u) =
∫
∂Ω

eα u2
,

constrained to functions

(1.3) u ∈ M =
{
u ∈ H1(Ω) : ‖u‖2 = 1

}
The research of the second author has been partly supported by Fondecyt Grant 1120151 and CAPDE-Anillo

ACT-125, Chile.

1



2 SHENGBING DENG AND MONICA MUSSO

in the super critical regime
α > π.

In view of the results described above, we will be interested in critical points other than
global supremum. As far as we know, no results are known in the literature concerning
existence of critical points for the Trudinger-Moser trace constrained problem in the super
critical regime. Nevertheless, much more is known for the corresponding Trudinger-Moser
functional.

Let us recall that the Trudinger-Moser inequality in dimension 2 states that

(1.4) sup
u∈H1

0 (Ω), ‖∇u‖2≤1

∫
Ω

eμ |u|
2
dx

⎧⎪⎪⎨⎪⎪⎩ ≤ C < +∞ , if μ ≤ 4π

= +∞, if μ > 4π.

Here again Ω is a bounded domain of IR2, with smooth boundary. We refer the reader to
[25, 23, 28, 30] for the first works on Problem (1.4), and to [3, 4] for some more recent
contributions. For problem (1.4) there is a loss of compactness at the limiting exponent
μ = 4π [21]. Despite of this loss of compactness, the supremum

sup
u∈H1

0 (Ω), ‖∇u‖2≤1

∫
Ω

e4π |u|2 dx

is attained for any bounded domain Ω ⊂ R2. This was proven first in the seminal work [5]
for the ball Ω = B1(0) (see also an alternative proof in [10]). In [26] the result was proven
for domains Ω which are small perturbation of the ball. The general result in dimension 2
was proven by Flucher in [14], and Lin [20] extended it for the corresponding Trudinger-
Moser inequality for general domain of RN , with N > 2.

Concerning the super critical regime for the Trudinger-Moser functional, namely

(1.5) Iμ(u) =
∫
Ω

eμ |u|
2
dx , u ∈ H1

0(Ω), ‖∇u‖22 = 1, with μ > 4π,

some results are known. In the works [26] and [15] it has been proven that a local maxima
and saddle point solutions in the supercritical regime μ ∈ (4π, μ0) for the functional (1.5)
do exist, for some μ0 > 4π.

Our first result is an extension of the existence of a local maxima for the Trudinger-
Moser trace functional in the super critical regime α ∈ (π, α0). Namely, a local maximizer
for Problem (1.2)-(1.3) exists when the value of α is slightly to the right of π.

Theorem 1.1. Let Ω be a bounded domain in R2. Then there exists α0 > π, such that for
any α ∈ (0, α0), there exists a function uα ∈ M which locally maximizes of Eα on M.

This result is proved in Section 2.

Much more is known for Problem (1.5) and μ > 4π. Recently in [12] (see also [11]), the
authors obtained several results concerning critical points for Problem (1.5) also in a very
super critical regime. They found general conditions on the domain Ω under which there
is a critical point for Iμ(u) with

∫
Ω
|∇u|2dx = 1 when μ ∈ (4πk, μk), for any integer k ≥ 1

and for some μk slightly bigger than 4 π k. In particular, for any bounded domain Ω, they
found a critical point for Iμ(u) with

∫
Ω
|∇u|2dx = 1 when μ ∈ (4π, μ1), for some μ1 > 4 π.

The L∞-norm of this solution converges to ∞ as μ → 4π and its mass is concentrated, in
some proper sense, as μ→ 4π, around a point in the interior of Ω. On the other hand, if Ω
has a hole, namely it is not simply connected, they proved the existence of a critical point
for Iμ(u) with

∫
Ω
|∇u|2dx = 1 also in the super critical range μ ∈ (8π, μ2), for some μ2 > 8π.
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Again in this case, the L∞-norm of these solutions converges to ∞ as μ → 8π, but now its
mass concentrates, as μ→ 8π, around two distinct points inside Ω. Furthermore, if Ω is an
annulus, taking advantage of the symmetry, a critical point for Iμ(u) with

∫
Ω
|∇u|2dx = 1

and μ ∈ (4πk, μk) does exist. In this latter case, the L∞-norm of the solution converges to
∞ as μ → 4πk and its mass concentrates, as μ → 4πk, around k points distributed along
the vertices of a proper regular polygon with k sides lying inside Ω.

The second result of this paper establishes the counterpart of the above situation for the
Trudinger-Moser trace functional in the super critical regime: we will show the existence
of critical points for Eα constrained to M, for α ∈ (k π, αk), for any k ≥ 1 integer and for
some αk slightly to the right of k π . We next describe our result.

Let G(x, y) be the Green’s function of the problem⎧⎪⎪⎨⎪⎪⎩
−ΔxG(x, y) +G(x, y) = 0 x ∈ Ω;

∂G(x,y)
∂νx
= 2πδy(x) x ∈ ∂Ω,(1.6)

and H its regular part defined as

H(x, y) = G(x, y) − 2 log
1
|x − y| .(1.7)

Our second result reads as follows.

Theorem 1.2. Let Ω be any bounded domain in R2 with smooth boundary. Fix a positive
integer k ≥ 1. Then there exists αk > kπ such that for α ∈ (kπ, αk), the functional Eα(u)
restricted to M has at least two critical points u1

α and u2
α. Furthermore, for any i = 1, 2

there exist numbers mi
j,α > 0 and points ξij,α ∈ ∂Ω, for j = 1, . . . , k such that

(1.8) lim
α→k π

mi
j,α = mi

j ∈ (0,∞),

(1.9) ξij,α → ξij ∈ ∂Ω, with ξij � ξ
i
l for j � l, as α→ k π

and

ui
α(x) =

√
α − kπ
α

k∑
j=1

[
mi

j,αG(x, ξij,α) + o(1)
]
, i = 1, 2,(1.10)

where o(1) → 0 uniformly on compact sets of Ω̄\{ξi1, . . . , ξik}, as α → kπ. In particular,
(ξi,mi) = (ξi1, . . . , ξ

i
k,m

i
1, . . . ,m

i
k) in (∂Ω)k × (0,∞)k, for i = 1, 2, are two distinct critical

points for the function

fk(ξ,m) =
2
k

⎡⎢⎢⎢⎢⎢⎢⎣2
k∑

j=1

m2
j log(2m2

j ) −
k∑

j=1

m2
j H(ξ j, ξ j) −

∑
i� j

mimjGξi, ξ j)

⎤⎥⎥⎥⎥⎥⎥⎦ .
Moreover, for any i = 1, 2, for any δ > 0 small, for any j = 1, . . . , k,

(1.11) sup
x∈B(ξij,δ)

ui
α(x)→ +∞, as α→ k π.

There are two important differences between the result stated in Theorem 1.2 and the
corresponding result obtained in [12] for the Trudinger-Moser functional (1.5). A first dif-
ference is that for Problem (1.2)-(1.3) existence of critical points in the range α ∈ (k π, αk)
is guaranteed in any bounded domain Ω with smooth boundary, at any integer level k. No
further hypothesis on Ω is needed, unlike the Trudinger-Moser case (1.5). The second
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difference is that, we do find two families of critical points for Problem (1.2)-(1.3) when
α ∈ (k π, αk), and not only one as in the Trudinger-Moser case (1.5).

In recent years a very successful method has been developed for studying elliptic equa-
tions in critical or supercritical regimes. The main idea is to try to guess the form of
the solution (using the shape of the ”standard bubble”), then linearize the equation at this
approximate solution and use a Lyapunov-Schmidt reduction to arrive at a reduced finite
dimensional variational problem, whose critical points yield actual solutions of the equa-
tion. In this paper we use this method to study problem (1.2)-(1.3) in the supercritical
regime. We explain this in Section 3, where we also provide the proof of Theorem 1.2.
Some technical results are postponed to Section 4 and Section 5.

Let us just mention that through out the paper, C will always denote an arbitrary positive
constant, independent of λ, whose value changes from line to line.

2. The local maximizer: proof of Theorem 1.1

We set

E(u) =
∫
∂Ω

eu2
,(2.1)

and

(2.2) Mα =
{
u ∈ H1(Ω) : ‖u‖2 = α

}
.

We note that by the obvious scaling property, finding critical points of Eα on M (see (1.2)
and (1.3)) is equivalent to finding critical points of E on Mα (see (2.1) and (2.2)). In this
section, we study the local maximizer for the functional E constrained on the set Mα with
α in the right neighborhood of π.

We start with the following Lion’s type Lemma. The proof is quite standard, but we
reproduce it here for completeness.

Lemma 2.1. Let um be a sequence of functions in H1(Ω) with ‖um‖ = 1. Suppose that
um ⇀ u0 weakly in H1(Ω). Then either

(i) u0 = 0,
or

(ii) there exists α > π such that the family eu2
m is uniformly bounded in Lα(∂Ω).

In particular, in case (ii), we have that∫
∂Ω

eπu
2
m →

∫
∂Ω

eπu
2
0 as m→ ∞.

Proof. Since ‖um‖ = 1 and um ⇀ u0 weakly in H1(Ω), we have∫
Ω

(∇um∇u0 + umu0)→
∫
Ω

(|∇u0|2 + u2
0) as m→ ∞.

Thus we find that

lim
m→∞ ‖um − u0‖2 = lim

m→∞

{∫
Ω

[|∇(um − u0)|2 + (um − u0)2]

}

= lim
m→∞

{
‖um‖2 − 2

∫
Ω

(∇um∇u0 + umu0) + ‖u0‖2
}

= 1 − ‖u0‖2.
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Assume u0 � 0. Take p ∈ (1, 1
1−‖u0‖2 ), and choose q1 and q2 such that 1 < pq1 <

1
‖um−u0‖2

and 1
q1
+ 1

q2
= 1. By Hölder inequality we have∫

∂Ω

eπpu2
m =

∫
∂Ω

eπp(um−u0+u0)2
=

∫
∂Ω

eπp[(um−u0)2+2(um−u0)u0+u2
0]

=

∫
∂Ω

eπp[(um−u0)2+2umu0−u2
0] ≤

∫
∂Ω

eπp[(um−u0)2+2umu0]

=

∫
∂Ω

eπp(um−u0)2
e2πpumu0 ≤

(∫
∂Ω

eπpq1(um−u0)2

) 1
q1

(∫
∂Ω

e2πpq2umu0

) 1
q2

.

We now recall that

π = sup

⎧⎪⎪⎨⎪⎪⎩θ : sup
u∈H1(Ω),‖u‖≤1

∫
∂Ω

eθu
2
dσ < ∞

⎫⎪⎪⎬⎪⎪⎭ .(2.3)

see for instance [2, 6, 7, 18]. Hence, given the choice of p and q1, we get that there exists
a constant C, independent of m, such that∫

∂Ω

eπpq1(um−u0)2
< C.

On the other hand, Young’s inequality implies that 2|umu0| ≤ ε2u2
m+

1
ε2 u2

0, with ε > 0 small.
Then from (2.3), we have∫

∂Ω

e2πpq2umu0 <

∫
∂Ω

eπpq2[ε2u2
m+

1
ε2

u2
0]
=

∫
∂Ω

eπpq2ε
2u2

m eπpq2
1
ε2

u2
0 < C

by choosing ε so that pq2ε
2 < 1. Here again C is a constant, independent of m. Thus, we

have that there exists α = pπ > π such that the family eu2
m is uniformly bounded in Lα(∂Ω).

We shall now show that ∫
∂Ω

eπu
2
m →

∫
∂Ω

eπu
2
0 as m→ ∞.(2.4)

Indeed, let l be a positive number and p > 1. We have∣∣∣∣∣∣
∫
∂Ω

eπu
2
m −

∫
∂Ω∩{|um |≤l}

eπu
2
m

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
∂Ω∩{|um |>l}

eπu
2
m

∣∣∣∣∣∣ ≤ 1

l
2(p−1)

p

∫
∂Ω

eπu
2
m u

2(p−1)
p

m

≤ 1

l
2(p−1)

p

(∫
∂Ω

eπpu2
m

) 1
p
(∫
∂Ω

u2
m

) p−1
p

≤ C

l
2(p−1)

p

.

From the above relation, we conclude that∫
∂Ω

eπu
2
m ≤ |∂Ω|eπl2 + C

l
2(p−1)

p

.

Hence dominated convergence Theorem implies (2.4).

Suppose now that eu2
m is not bounded in Lα(∂Ω) for any α > π. Using Stokes theorem,

for α > π we have∫
∂Ω

eαu2
m dσ =

∫
Ω

div(eαu2
m )dx ≤ C

∫
Ω

|∇um||um|eαu2
m dx

≤ C

(∫
Ω

|∇um|2dx

) 1
2
(∫
Ω

|um|qdx

) 1
q
(∫
Ω

eβu
2
m dx

) α
β
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where q > 1 satisfies 1
2 +

1
q +

α
β
= 1 with β > 2π. Then we get that

∫
Ω

eβu
2
m dx is unbounded

for all β > 2π.
Observe now that we can assume that

∫
Ω

umdx = 0, since otherwise we set ūm = um −
1
|Ω|

∫
Ω

umdx and obtain
∫
Ω

umdx = 0. We can also assume that
∫
Ω
|∇um|2 = 1. Furthermore,

by Poincaré inequality, (um) is bounded in H1(Ω), and also (|um|) is bounded in H1(Ω).
Hence there exists u ∈ H1(Ω) such that |um|⇀ u0 weakly in H1(Ω). We claim that

lim
m→∞

∫
Ω

|∇(um − η)+|2dx = 1 ∀ η > 0.(2.5)

By contradiction, assume there exists η > 0 such that limm→∞
∫
Ω
|∇(um − η)+|2dx � 1.

Define γ = inf
m

∫
Ω
|∇(um − η)+|2dx < 1 and choose a sufficiently small ε > 0 such that

α′ := 2π
γ+ε
> 2π. Let us recall that

2π = sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩θ : sup
u∈H1(Ω),

∫
Ω
|∇u|2≤1,

∫
Ω

u=0

∫
Ω

eθu
2
dx < ∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,(2.6)

(see [2, 6, 7, 29]). From (2.6), there exists a positive constant C such that∫
Ω

eα
′[(|um |−η)+− 1

|Ω|
∫
Ω

(|um |−η)+
]2

dx =
∫
Ω

e
2π

[
(|um |−η)+− 1

|Ω|
∫
Ω (|um |−η)+√

γ+ε

]2

dx < C,

where we use the fact that
∫
Ω
|∇ (um−η)+√

γ+ε
|2dx < 1.

Define dm =
1
|Ω|

∫
Ω

(|um| − η)+. Choosing ε′ > 0 small such that α̃ := α′
1+ε′ > 2π, and by

the Young’s inequality,

u2
m ≤ (η + dm)2 + 2(η + dm)[(|um| − η)+ − dm] + [(|um| − η)+ − dm]2

≤ (1 + ε′)[(|um| − η)+ − dm]2 + (
1
ε′
+ 1)(η + dm)2.

Thus, since there dm = O(1) as m→ ∞,∫
Ω

eα̃u2
m dx =

∫
Ω

e
α′

1+ε′ u2
m dx ≤ C1

∫
Ω

eα
′[(|um |−η)+− 1

|Ω|
∫
Ω

(|um |−η)+
]2

dx ≤ C2,

for some positive constants C1 and C2. This is a contradiction, thus (2.5) holds.
Set vm = min{|um|, η}, then vm is bounded in H1(Ω) and, up to subsequence, we have

that vm ⇀ v. Observe now that |um| = vm + (|um| − η)+, and

1 =
∫
Ω

|∇um|2 ≥
∫
Ω

|∇|um||2dx =
∫
Ω

|∇vm|2dx +
∫
Ω

|∇(|um| − η)+|2dx.

Therefore (2.5) implies that that
∫
Ω
|∇vm|2dx→ 0 as m→ ∞, so v is constant. On the other

hand,

lim
m→∞

∫
Ω

|∇vm|2dx = lim
m→∞

∫
Ω∩{|um |≤η}

|∇|um||2dx = 0.

This implies that |{x : |um| ≥ η}| → 0 as m→ ∞. By Fatou Lemma,

|{x : u0 ≥ η}| ≤ lim inf
m→∞ |{x : |um| ≥ η}| = 0,

then |{x : u0 ≥ η}| = 0 for any η > 0. Hence we get u0 = 0. �

We denote β := sup
u∈Mπ

E(u) = sup
u∈M

Eπ(u). A direct consequence of the previous Lemma is

the following
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Proposition 2.1. Let um be a bounded sequence in H1(Ω) with ‖um‖ = 1. Suppose that
um ⇀ u0 weakly in H1(Ω). Suppose Eπ(um) → β with β > |∂Ω|. Then there exists α > π
such that the family eu2

m is uniformly bounded in Lα(∂Ω). In particular Eπ(um) → Eπ(u0)
and u0 � 0.

Proof. Suppose eu2
m is unbounded in Lα(∂Ω) for all α > π, and assume the supremum of

Eπ on M is not attained. Then by Lemma 2.1, we have that u0 = 0, which is impossible
because Eπ(um)→ β > |∂Ω|. �

Let Kπ be the set defined by

Kπ = {u ∈ M : Eπ(u) = β}.
Lemma 2.2. The set Kπ is compact.

Proof. Let {um} ⊂ Kπ be such that um ⇀ u0 weakly in H1(Ω), then by Proposition 2.1,

Eπ(um)→ Eπ(u0).

Moreover, ‖u0‖ ≤ ‖um‖ = 1, then

Eπ(u0) ≤ Eπ(
u0

‖u0‖ ) ≤ sup
v∈M

Eπ(v) = β.

Then we get Eπ(u0) = β, and ‖u0‖ = 1, hence um → u0 strongly in H1(Ω), hence Kπ is
compact. �

The property of Kπ of being compact implies that the family of norm-neighborhoods

Nε = {u ∈ M | ∃ v ∈ Kπ : ‖u − v‖ < ε}
constitutes a basic neighborhood for Kπ in M.

Lemma 2.3. For sufficiently small ε > 0, one has

sup
N2ε\Nε

Eπ < β = sup
Nε

Eπ.(2.7)

Proof. We argue by contradiction. We suppose that there is a sequence um ∈ N2ε\Nε such
that Eπ(um) → β. Then we have um ∈ H1(Ω) with ‖um‖2 = 1. Up to subsequence, we can
assume that um ⇀ u0 weakly in H1(Ω). By the definition of N2ε, there is zm ∈ Kπ such that
‖zm − um‖ < 2ε. By the compactness of Kπ, we have that zm → z strongly, with z ∈ Kπ, and
z satisfies

−Δz + z = 0 in Ω,
∂z
∂ν
=
πzez2∫
∂Ω

z2ez2
on ∂Ω.

By the maximum principle, we have z ∈ L∞(Ω).
By the lower-semi continuity, we have ‖z − u0‖ ≤ 2ε. Then

‖z − u0

‖u0‖‖ ≤ ‖z − u0‖ + ‖u0 − u0

‖u0‖‖ = ‖z − u0‖ + 1 − ‖u0‖ ≤ 4ε.

Thus u0
‖u0‖ ∈ N4ε, and so Eπ(u0) ≤ Eπ(

u0
‖u0‖ ) ≤ β. If Eπ(u0) = β then ‖u0‖ = 1, and um → u0.

On the other hand, our assumption implies that u0 � Nε, thus u0 does not belong to Kπ and
u0 can not be relatively maximal. Thus we necessarily get Eπ(u0) < β.

Set wm = um − zm + z, so we have wm ⇀ u0 weakly in H1(Ω). Since

eπ|wm |2 = eπ|um−zm+z|2 ≤ e2π|um−zm |2 e2π|z|2 = e2π‖um−zm‖2( um−zm
‖um−zm‖ )

2
e2π|z|2 ≤ e8πε2( um−zm

‖um−zm‖ )
2
e2π|z|2 .

Choosing ε small such that 16ε2 ≤ 1, then from (2.3) we have that eπ|wm |2 is uniformly
bounded in L2(∂Ω), as m → ∞. Thus lim

m→∞ Eπ(wm) = Eπ(u0). On the other hand, we have
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wm − um → 0 strongly in H1(Ω). By uniform local continuity of Eπ, and compactness of
Kπ, we obtain that Eπ(wm) − Eπ(um)→ 0, and Eπ(u0) = β. This is a contradiction. �

Lemma 2.4. There exists α∗ > π, ε > 0 such that for all α ∈ [π, α∗), then we have
(i)

sup
N2ε\Nε

Eα < sup
Nε

Eα.(2.8)

(ii) βα := sup
Nε

Eα is achieved in Nε.

(iii) Kα = {u ∈ Nε | Eα(u) = βα} is compact.

Proof. (i) Since Kπ is compact, there is a neighborhood N of Kπ such that, for any ς > 0
there exists δ′ > 0 such that for all |α − π| < δ then Eα(u) − Eπ(u)| ≤ ς, for all u ∈ N.
Choose ε > 0 such that (2.7) holds and Nε ⊂ N, then (2.8) will be valid for all α in a small
neighborhood of π.

(ii) For such α, and let um ∈ Nε be a maximizing sequence of Eα, that is, Eα(um) → βα
and let vm ∈ Kπ satisfy ‖um − vm‖ ≤ ε.We may assume that vm → v strongly in H1(Ω) with
v ∈ L∞, and um → u weakly in H1(Ω). Set wm = um − vm + v, as the proof of Lemma 2.3,
we obtain that for ε > 0 small, α in a neighborhood of π we have that

Eα(wm)→ Eα(u), Eα(um) − Eα(wm)→ 0 as m→ ∞.
Then Eα(u) = βα. Moreover, by the lower-semi continuity, we have ‖v − u‖ ≤ ε. Then

‖v − u
‖u‖‖ ≤ ‖v − u‖ + ‖u − u

‖u‖ ‖ = ‖v − u‖ + 1 − ‖u‖ ≤ 2ε.

We get that u
‖u‖ ∈ N̄2ε and Eα( u

‖u‖ ) ≤ βα. Furthermore, since ‖u‖ ≤ 1, we can get Eα( u
‖u‖ ) ≤

Eα(u) and ‖u‖ = 1. It implies that u ∈ M, that is u ∈ Nε and βα is attained. Moreover,
um → u strongly in H1(Ω).

(iii) As the proof of (ii), if um ∈ Kα, we may assume that um ⇀ u weakly in H1(Ω), we
then get u ∈ Kα, that is Kα is compact. �

Proof of Theorem 1.1: From (2.3), we have that sup
Mα

E is achieved for α < π. Moreover,

since sup
u∈Mπ

E(u) > |∂Ω|, from Lemma 2.4 we have that for α sufficiently close to π, then E

has relative maximizers on Mα.

3. The proof of Theorem 1.2

In this section, we consider critical points of functional E(u) constrained on the set Mα
(which is equivalent to consider critical points of Eα(u) constrained on the set M with
α = kπ(1+ μ), where μ > 0 small). We define a critical point of Eα constrained on M to be
a solution of the following problem⎧⎪⎪⎨⎪⎪⎩

−Δu + u = 0 in Ω;

∂u
∂ν
= λueu2

on ∂Ω,
(3.1)

where

λ =
α∫

∂Ω
u2eu2

=
kπ(1 + μ)∫
∂Ω

u2eu2
.(3.2)
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In this section we shall prove the existence of solutions to Problem (3.1)-(3.2) with the
properties described in Theorem 1.2. In fact, we will construct a solution to (3.1)-(3.2) of
the form

(3.3) u = U + φ,

where U is the principal part while φ represents a lower order correction. In what follows
we shall first describe explicitly the function U(x). The definition of this function depends
on several parameters: some points ξ on the boundary of Ω and some positive numbers m.
Next we find the correction φ so that U + φ solves our Problem in a certain projected sense
(see Proposition 3.1). Finally we select proper points ξ and numbers m in the definition of
U to get an exact solution to Problem (3.1)-(3.2).

To define the function U, first we introduce the following limit problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Δw = 0 in R2

+;

∂w
∂ν
= ew on ∂R2

+;∫
∂R2
+

ew < ∞.
(3.4)

A family solutions to (3.4) is given by

wt,μ(x) = wt,μ(x1, x2) = log
2μ

(x1 − t)2 + (x2 + μ)2
,(3.5)

where t ∈ R and μ > 0 are parameters. See [19, 24, 31]. Set

wμ(x) := w0,μ(x) = log
2μ

x2
1 + (x2 + μ)2

.(3.6)

Let ξ1, . . . , ξk be k distinct points on the boundary and m1, . . . ,mk be k positive numbers.
We assume there exists a sufficiently small but fixed number δ > 0 such that

|ξi − ξ j| > δ for i � j, δ < mj <
1
δ
.(3.7)

For notational convenience through out the paper we will use the notation

(ξ,m) = (ξ1, . . . , ξk,m1, . . . ,mk).

For any j = 1, . . . , k, we define ε j to be the positive numbers given by the relation

2λm2
j

⎛⎜⎜⎜⎜⎜⎝log
1

ε2
j

+ 2 log(2m2
j )

⎞⎟⎟⎟⎟⎟⎠ = 1.(3.8)

Since the parameters mj satisfy assumption (3.7), it follows that limλ→0 ε j = 0. Define
moreover μ j to be the positive constants given by

log(2μ j) = −2 log(2m2
j ) + H(ξ j, ξ j) +

∑
i� j

mim
−1
j G(ξi, ξ j).(3.9)

Using once more assumption (3.7), we get that there exists two positive constants c and C,
such that c ≤ μ j ≤ C, as λ→ 0.

We define the function U in (3.3) to be given by

U(x) =
√
λ

k∑
j=1

mj

[
u j(x) + Hj(x)

]
,(3.10)
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where

u j(x) = log
1

|x − ξ j − ε jμ jν(ξ j)|2 ,(3.11)

ν(ξ j) denoting the unit outer normal to ∂Ω at the point ξ j, and where Hj is a correction
term given as the solution of⎧⎪⎪⎨⎪⎪⎩

−ΔHj + Hj = −u j in Ω;

∂Hj

∂ν
= 2ε jμ jeu j − ∂u j

∂ν
on ∂Ω.

(3.12)

Arguing as in Lemma 3.1 in [9], one can show that the maximum principle allows a precise
asymptotic description of the functions Hj, namely we have that

Hj(x) = H(x, ξ j) + O(εσj ) for 0 < σ < 1(3.13)

uniformly in Ω, as λ → 0. Recall that H is the regular part of the Green’s function, as
defined in (1.6). Therefore, the function U can be described as follows

U(x) =
√
λ

k∑
j=1

mj

[
G(x, ξ j) + O(εσj )

]
(3.14)

uniformly on compact sets of Ω̄ \ {ξ1, . . . , ξk}, as λ→ 0. On the other hand, if we consider
a region close to ξ j, for some j fixed, say for |x − ξ j| < δ, with sufficiently small but fixed
δ, we can rewrite

U(x) =
√
λmj

(
wj(x) + log ε−2

j + β j + θ(x)
)
,(3.15)

where

(3.16) wj(x) = wμ j (
x − ξ j

ε j
) = log

2μ j

|y − ξ′j − μ jν(ξ′j)|2
, y =

x
ε j
, ξ′j =

ξ j

ε j
,

and

β j = − log(2μ j) + H(ξ j, ξ j) +
∑
i� j

m−1
j miG(ξ j, ξi), θ(x) = O(|x − ξ j|) +

k∑
j=1

O(εαj ).

Define on the boundary ∂Ω the error of approximation

R := f (U) − ∂U
∂ν
.(3.17)

Here and in what follows f denotes the nonlinearity

f (ũ) = λũeũ2
.

The choice we made of μ j in (3.9) and of ε j in (3.8) gives that in the region |x − ξ j| < δ,
the error of approximation can be described as follows

R = mj

√
λ
{(

1 + 2λm2
j (wj + O(1))

)
eλm

2
j w

2
j (1 + O(λwj)) − 1

}
ε−1

j ew j ,(3.18)
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where wj is defined in (3.16). Indeed, for x ∈ ∂Ω with |x − ξ j| < δ, we have that

λ−
1
2 f (U) = λ

[
mj

(
wj(x) + log ε−2

j + β j + θ(x)
)]

eλ
[
m j

(
w j(x)+log ε−2

j +β j+θ(x)
)]2

=

⎛⎜⎜⎜⎜⎜⎝λmj(log
1

ε2
j

+ β j) + λmj(wj + O(1))

⎞⎟⎟⎟⎟⎟⎠
×e
λm2

j (log 1
ε2j
+β j)2

e
2λm2

j (log 1
ε2j
+β j)w j

e
2λm2

j (log 1
ε2j
+β j)θ(x)

eλm
2
j (w j+θ(x))2

= λmj(log
1

ε2
j

+ β j)

⎛⎜⎜⎜⎜⎜⎝1 + (log
1

ε2
j

+ β j)
−1(wj + O(1))

⎞⎟⎟⎟⎟⎟⎠
×e
λm2

j (log 1
ε2j
+β j)2

e
2λm2

j (log 1
ε2j
+β j)w j

e
2λm2

j (log 1
ε2j
+β j)θ(x)

eλm
2
j (w j+θ(x))2

=
1

2mj

(
1 + 2λm2

j (wj + O(1))
)

e
1
2 (log 1

ε2j
+β j)

ew j eθ(x)eλm
2
j (w j+θ(x))2

=
1

2mj
ε−1

j eβ j/2
(
1 + 2λm2

j (wj + O(1))
)

ew j eθ(x)eλm
2
j w

2
j (1 + O(λ)wj)

thanks to the definition of ε j in (3.8). On the other hand, in the same region, we have

λ−
1
2
∂U
∂ν
=
∂

∂ν

[
mj

(
wj(x) + log ε−2

j + β j + θ(x)
)]
= mjε

−1
j ew j +

k∑
j=1

O(ε2
j ), as λ→ 0.

The definition of μ j in (3.9) allows to match at main order the two terms ∂Ũ
∂ν

and f (Ũ) in
the region under consideration, since we , we easily get that

λ−
1
2 f (Ũ) = mj

(
1 + 2λm2

j (wj + O(1))
)
ε−1

j ew j eλm
2
j w

2
j (1 + O(λwj)).

These facts imply the validity of expansion (3.18). Let us now observe that a direct com-
putation shows that R(x) ∼ λ 3

2 ε−1
j ew j(x) in the region |x − ξ j| = O(λ); while, in the region

|x − ξ j| > δ for all j, we have that |R(x)| ≤ Cλ
3
2 , for some positive constant C. We thus

conclude that the error of approximation satisfies the global bound

|R| ≤ Cλ
3
2 ρ(x),

where

ρ(x) :=
k∑

j=1

ρ j(x)χBδ(ξ j)(x) + 1.

Here χBδ(ξ j) is the characteristic function on Bδ(ξ j)
⋂
∂Ω and

ρ j(x) :=
1

2λm2
j

{(
1 + 2λm2

j (wj + O(1))
)

eλm
2
j w

2
j (1 + O(λwj)) − 1

}
ε−1

j ew j

From now on, let us write

ρ j(x) = cγ j

⎧⎪⎪⎨⎪⎪⎩
(
1 +

1
γ j

(wj + 1)

) (
1 +

1
γ j

(1 + |wj|)
)

e
w2

j
2γ j − 1

⎫⎪⎪⎬⎪⎪⎭ ε−1
j ew j ,(3.19)

where γ j = log ε−2
j . We define the L∞−weight norm

‖h‖∗,∂Ω = sup
x∈∂Ω
ρ(x)−1|h(x)|.(3.20)

We thus have the validity of the following key estimate for the error term R

‖R‖∗,∂Ω ≤ Cλ
3
2 .(3.21)
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Up to this point, we have defined a function U, whose expression depends of ξ1, . . . , ξk
points on ∂Ω, and depends of m1, . . . ,mk positive numbers. These points and numbers
satisfy the bounds (3.7). We next describe the problem that the function φ in (3.3) solves.

Define in R2
+ = {(x1, x2) : x2 > 0} the functions

z0 j(x1, x2) =
1
μ j
− 2

x2 + μ j

x2
1 + (x2 + μ j)2

, z1 j(x1, x2) = −2
x1

x2
1 + (x2 + μ j)2

.

It has been shown in [9] that these functions are all the bounded solutions to the linearized
equation around wμ j (3.6) associated to Problem (3.4), that is they are the only bounded
solutions to

(3.22) Δψ = 0 in R2
+, −

∂ψ

∂x2
= ewμ jψ on ∂R2

+.

For ξ j ∈ ∂Ω, we define F j : Bδ(ξ j) → O to be a diffeomorphism, where O is an open
neighborhood of the origin in IR2

+ such that F j(Ω ∩ Bδ(ξ j)) = R2
+ ∩ O, F j(∂Ω ∩ Bδ(ξ j)) =

∂R2
+ ∩ O. We can select F j so that it preserves area. Define

(3.23) Zi j(x) = zi j

(
ε−1

j F j(x)
)
, i = 0, 1, j = 1, . . . , k.

Next, let us consider a large but fixed number R0 > 0 and a nonnegative radial and smooth
cut-off function χ with χ(r) = 1 if r < R0 and χ(r) = 0 if r > R0 + 1, 0 ≤ χ ≤ 1. Then set

(3.24) χ j(x) = ε−1
j χ

(
ε−1

j F j(x)
)
.

The problem we solve is the following: given ξ1, . . . , ξk and m1, . . . ,mk satisfying the
bounds (3.7), find a function φ and numbers ci j such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δ(U + φ) + (U + φ) = 0 in Ω;

∂(U+φ)
∂ν
= λ(U + φ)e(U+φ)2

+
√
λ

∑
i=0,1

k∑
j=1

ci jχ jZi j on ∂Ω;∫
Ω
χ jZi jφ = 0 for i = 0, 1, j = 1, . . . , k.

(3.25)

Consider the norm
‖φ‖∞ = sup

x∈Ω
|φ(x)|.

In [13], we have the following result.

Proposition 3.1. Let δ > 0 be a small but fixed number and assume points the ξ1, . . . , ξk ∈
∂Ω and the numbers m1, . . . ,mk satisfy (3.7). Furthermore we assume that ε j and μ j are
given by (3.8) and (3.9). Then there exist positive numbers λ0 and C, such that for any
0 < λ < λ0, there is a unique solution φ = φ(λ, ξ,m), ci j = ci j(λ, ξ,m) to (3.25). Moreover,

‖φ‖∞ ≤ Cλ
3
2 , |ci j| ≤ Cλ.(3.26)

Furthermore, function φ and constant ci j are C1 with respect to (ξ,m), and we have

‖Dξ,mφ‖∞ ≤ Cλ
3
2 , |Dξ,mci j| ≤ Cλ.(3.27)

We will sketch the proof in Section 4, leaving some technical details to the Appendix 6.
Assuming for the moment the validity of the statement in the above Proposition, we

observe that U + φ is an exact solution to Problem (3.1), if there exists a proper choice of
λ, of the points ξ j and the parameters mj, such that

λ =
kπ(1 + μ)∫

∂Ω
(U + φ)2e(U+φ)2

and ci j = 0, for all i, j,(3.28)
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or equivalently∫
Ω

[
|∇(U + φ)|2 + (U + φ)2

]
dx = kπ(1 + μ) and ci j = 0, for all i, j.(3.29)

In order to solve (3.29), we are in the need of understanding the asymptotic expansion,
as λ→ 0, of

∫
Ω

[
|∇(U + φ)|2 + (U + φ)2

]
dx in terms of the localization of the points ξ and

the values of the parameters m. Next Proposition contains this result, together with the
asymptotic expansion of

∫
∂Ω

e(U+φ)2
, as λ→ 0, again in terms of in terms of ξ and m.

Proposition 3.2. Under the conditions of Proposition 3.1, Assume that ε j and μ j are given
by (3.8) and (3.9). Furthermore, we assume that λ is a free parameter. Then, as λ→ 0, we
have ∫

Ω

[
|∇(U + φ)|2 + (U + φ)2

]
dx = kπ

{
1 + λ fk(ξ,m) + λ2Θλ(ξ,m)

}
(3.30)

where

fk(ξ,m) =
2
k

⎡⎢⎢⎢⎢⎢⎢⎣2
k∑

j=1

m2
j log(2m2

j ) −
k∑

j=1

m2
j H(ξ j, ξ j) −

∑
i� j

mimjG(ξi, ξ j)

⎤⎥⎥⎥⎥⎥⎥⎦ .(3.31)

Moreover, as λ→ 0,∫
∂Ω

e(U+φ)2
= |∂Ω| + 4π

k∑
j=1

m2
j + λ

k∑
j=1

m2
j

[
c̃ +

∫
∂Ω

G2(x, ξ j)

]
+ λ2Θλ(ξ,m),(3.32)

where c̃ is a positive constant. In (3.31) and (3.32) the function Θλ(ξ,m)(x) denotes a
generic smooth function, uniformly bounded together with its derivatives, as λ → 0, for
(ξ,m) satisfying (3.7). In (3.31) and (3.32), G is the Green function defined in (1.6) and H
its regular part, as defined in (1.7).

Next Proposition will suggest how to solve Problem in (3.29).

Proposition 3.3. Under the conditions of Proposition 3.1, let R be the set of points (ξ,m)
satisfy (3.7). then there exist μ0 > 0 and a subregion R′ of R such that for all 0 < μ < μ0

and for all (ξ,m) ∈ R′, there exists a function λ = λ(μ, ξ,m) such that∫
Ω

[
|∇(U + φ)|2 + (U + φ)2

]
dx = kπ(1 + μ) for all μ > 0, μ→ 0.(3.33)

Moreover, λ is a smooth function of the free parameter μ, of the points ξ1, . . . , ξk and of the
parameters m1, . . . ,mk. Furthermore, λ→ 0 as μ→ 0 for points ξ1, . . . , ξk and parameters
m1, . . . ,mk belonging to R′. With this definition of λ, we have that the function φ and the
constants ci j are C1 with respect to (ξ,m). We finally have that

Dξ,mE(U + φ) = 0 =⇒ ci j = 0 for all i, j.(3.34)

See (2.1) for the definition of E.

The proofs of Proposition 3.2 and of Proposition 3.3 are postponed to Section 5.

Given the choice of λ defined through formula (3.33), for all μ > 0 small, Proposition
3.3 gives that U + φ is a solution to problem (3.1)-(3.2) if we can find (ξ,m) to be a critical
point of the function

I(ξ,m) := E(U + φ).(3.35)

We have now all the elements to give the
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Proof of Theorem 1.2: LetD be the open set such that

D̄ ⊂
{
(ξ,m) ∈ (∂Ω)k × Rk

+ : ξi � ξ j, ∀ i � j
}

Let U(x) be defined as in (3.10), and φ(x) be the solution of problem (3.25), whose exis-
tence and properties are stated in Proposition 3.1. Proposition 3.3 gives that

u(x) = U(x) + φ(x)

is a solution to problem (3.1)-(3.2) if we can find (ξ,m) to be a critical point of the function

I(ξ,m) := E(U + φ).

From (3.33) and (3.30), we have

λ fk(ξ,m) + λ2Θλ(ξ,m) = μ(3.36)

where

fk(ξ,m) =
2
k

⎡⎢⎢⎢⎢⎢⎢⎣2
k∑

j=1

m2
j log(2m2

j ) −
k∑

j=1

m2
j H(ξ j, ξ j) −

∑
i� j

mimjGξi, ξ j)

⎤⎥⎥⎥⎥⎥⎥⎦ .
In (3.36), Θλ(ξ,m)(x) denotes a smooth function, uniformly bounded together with its
derivatives, as λ→ 0, for (ξ,m) satisfying (3.7). Make the change of variables s j = m2

j . So
we write, with abuse of notation,

fk(ξ, s) =
2
k

⎡⎢⎢⎢⎢⎢⎢⎣2
k∑

j=1

s j log(2s j) −
k∑

j=1

s jH(ξ j, ξ j) −
∑
i� j

√
sis jGξi, ξ j)

⎤⎥⎥⎥⎥⎥⎥⎦
Fix ξ. Observe that the function s→ fk(ξ, s) has a unique zero, namely there exists a unique
s̄ = (s̄1(ξ), . . . , s̄k(ξ)) ∈ IRk

+ satisfying fk(ξ, s̄) = 0. We have the following properties:
(i) s̄ j is a C1 function with respect to ξ defined in (∂Ω)k;
(ii) There is a positive constant c0, independent of the points ξ, such that s̄ j ≥ c0 for

each j = 1, . . . , k;
(iii) s̄ j → +∞ as |ξi − ξ j| → 0 for some i � j;
(iv) Define

M+ = {(ξ, s) ∈ (∂Ω)k × Rk
+ : s1s2 . . . sk � 0, fk(ξ, s) > 0}.

Then (ξ, (1 + r)s̄) ∈ M+ for r > 0 small.
Proof of (i). Since f (ξ, s̄) = 0, and for j fixed,

∂s j fk(ξ, s)
∣∣∣
s=s̄
=

2
k

⎧⎪⎪⎪⎨⎪⎪⎪⎩2 log(2s̄ j) + 2 −
⎡⎢⎢⎢⎢⎢⎢⎣H(ξ j, ξ j) − 1

2

∑
i� j

√
s̄i/s̄ jG(ξi, ξ j)

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Then

∇s fk(ξ, s̄) · s̄ = ∂s1 fk(ξ, s̄)s̄1 + . . . + ∂sk fk(ξ, s̄)s̄k =
4
k

k∑
j=1

s̄ j > 0(3.37)

Thus we get ∇s fk(ξ, s)
∣∣∣
s=s̄
� 0. The implicit function theorem implies the validity of (i).

Proof of (ii). According to the definition of s̄, we know that

2
k

k∑
j=1

s̄ j

⎡⎢⎢⎢⎢⎢⎢⎣2 log(2s̄ j) − H(ξ j, ξ j) −
∑
i� j

√
s̄i

s̄ j
Gξi, ξ j)

⎤⎥⎥⎥⎥⎥⎥⎦ = 0.
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It yields that

2 log(2s̄ j) − H(ξ j, ξ j) =
∑
i� j

√
s̄i

s̄ j
Gξi, ξ j) > 0.

So

s̄ j >
1
2

e
H(ξ j ,ξ j )

2

Then we get (ii).
Proof of (iii). Since G(ξi, ξ j) → +∞ if |ξi − ξ j| → 0, for some i � j, if we suppose that

s̄l is bounded, for some l, then the relation fk(ξ, s̄) = 0 would provide a contradiction. This
proves (iii).

Proof of (iv). For r > 0 small, by the Taylor expansion, from (3.37) we have

fk(ξ, (1 + r)s̄) = fk(ξ, s̄) +
[
∂s1 fk(ξ, s̄)s̄1 + . . . + ∂sk fk(ξ, s̄)s̄k

]
r + o(r)

=
4
k

r
k∑

j=1

s̄ j + o(r) > 0.(3.38)

Making the change of variable, define s = (1 + r)s̄ with r > 0 small, we have (ξ, (1 +
r)s̄) ∈ M+.

Thanks to the above properties, we conclude that relation (3.36) defines λ as a function
of the free parameter μ and (ξ, s). More precisely,

λ =
μ

fk(ξ, (1 + r)s̄)
+

μ2

fk(ξ, (1 + r)s̄)3
Θλ(ξ, s)(3.39)

where Θλ(ξ, s) is a smooth function, uniformly bounded together with its derivatives, as
λ→ 0.

Taking (3.39) into (3.32), we get that

I(ξ, (1 + r)s̄) = |∂Ω| + 4(1 + r)π
k∑

j=1

s̄ j + μ

k∑
j=1

s̄ j

[
c̃ +

∫
∂Ω

G2(x, ξ j)
]

fk(ξ, (1 + r)s̄)

+

(
μ

fk(ξ, (1 + r)s̄)

)2

Θμ(ξ, s)

= |∂Ω| + 4(1 + r)π
k∑

j=1

s̄ j + μ

k∑
j=1

s̄ j

[
c̃ +

∫
∂Ω

G2(x, ξ j)
]

4
k r

k∑
j=1

s̄ j

+ μΘμ(ξ, s),(3.40)

where Θμ(ξ, s) is a smooth function, uniformly bounded together with its derivatives, as
μ→ 0.

We claim that, given δ > 0, for all μ > 0 small enough, the function

ϕμ(ξ, s̄, r) := |∂Ω| + 4π
k∑

j=1

s̄ j + 4rπ
k∑

j=1

s̄ j + μ

k∑
j=1

s̄ j

[
c̃ +

∫
∂Ω

G2(x, ξ j)
]

4
k r

k∑
j=1

s̄ j

has a critical point in the region |ξi − ξ j| > δ for i � j, ξ j ∈ ∂Ω, and δ
√
μ < r < δ−1 √μ,

with value |∂Ω| + 4π
k∑

j=1
s̄ j + O(

√
μ), as μ → 0, in the region considered. By construction,
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the critical point situation is stable under proper small C1 perturbation of ϕμ: to be more
precise, any function ψ such that ‖ψ−ϕμ‖∞ + ‖∇ψ−∇ϕμ‖∞ ≤ Cμ in the region considered,
also has a critical point. This fact will conclude the proof of Theorem 1.2.

Observe that the function

r �→ ϕμ(ξ, s̄, r) := |∂Ω| + 4π
k∑

j=1

s̄ j + 4rπ
k∑

j=1

s̄ j + μ

k∑
j=1

s̄ j

[
c̃ +

∫
∂Ω

G2(x, ξ j)
]

4
k r

k∑
j=1

s̄ j

has a critical point r̄ given by

r̄ =

√
k∑

j=1
s̄ j

[
c̃ +

∫
∂Ω

G2(x, ξ j)
]

4
√
π√
k

k∑
j=1

s̄ j

√
μ,

which is a non-degenerate mimimum, since

∂2
rrϕμ(ξ, s̄, r) = μ

k∑
j=1

s̄ j

[
c̃ +

∫
∂Ω

G2(x, ξ j)
]

2
k

k∑
j=1

s̄ j

1
r3
> 0.

Inserting the value of r̄ in ϕμ, in the new variables ξ ∈ (∂Ω)k, we get

Φ(ξ) := I(ξ, (1 + r̄)s̄)

= |∂Ω| + 4π
k∑

j=1

s̄ j + 2
√

kπ

√√√ k∑
j=1

s̄ j

[
c̃ +

∫
∂Ω

G2(x, ξ j)

]√
μ + μΘμ(ξ, s)

= |∂Ω| + 4π
k∑

j=1

s̄ j + O(
√
μ) as μ→ 0

for ξ ∈ Ω̂k = {(ξ1, . . . , ξk) ∈ (∂Ω)k : ξi � ξ j if i � j}.
Next we show that functional Φ(ξ) has at least two critical points. Let C0 be a com-

ponent of ∂Ω. Let Λ : S 1 → C0 be a continuous bijective function that parametrizes C0.
Set

Ω̃k = {(ξ1, . . . , ξk) ∈ Ck
0 : |ξi − ξ j| > δ for i � j}.

The function Φ is C1, bounded from below in Ω̃k, and from (iii) we have

Φ(ξ) = Φ(ξ1, . . . , ξk)→ +∞ as |ξi − ξ j| → 0 for some i � j.

Hence, since δ is arbitrarily small, Φ has an absolute minimum cm in Ω̃k.
On the other hand, using the Ljusternik-Schnirelmann theory, we get that Φ has at least

two distinct points in Ω̃k. Let cat(Ω̃k) be the Ljusternik-Schnirelmann category of Ω̃k

relative to Ω̃k, which is the minimum number of closed and contractible sets in Ω̃k whose
union covers Ω̃k. We will estimate the number of critical points for Φ by cat(Ω̃k).

Claim: cat(Ω̃k) > 1.
Indeed, by contradiction, suppose that cat(Ω̃k) = 1. This means that Ω̃k is contractible

in itself, namely there exist a point ξ0 ∈ Ω̃k and a continuous function Γ : [0, 1]×Ω̃k → Ω̃k,
such that, for all ξ ∈ Ω̃k,

Γ(0, ξ) = ξ, Γ(1, ξ) = ξ0.
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Define f : S 1 → Ω̃k to be the continuous function given by

f (ξ̄) =
(
Λ(ξ̄),Λ(e2πi 1

k ξ̄), . . . ,Λ(e2πi k−1
k ξ̄)

)
.

Let η : [0, 1] × S 1 → S 1 be the well defined continuous map given by

η(t, ξ̄) = Λ−1 ◦ π1 ◦ Γ(t, f (ξ̄)),

where π1 is the projection on the first component. The function η is a contraction of S 1 to
a point and this gives a contradiction, then claim follows.

Therefore we have that cat(Ω̃k) ≥ 2 for any k ≥ 1. Define

c = sup
C∈Ξ

inf
ξ∈CΦ(ξ)

where
Ξ = {C ⊂ Ω̃k : C closed and cat(C) ≥ 2}.

Then by Ljusternik-Schnirelmann theory we obtain that c is a critical level.
If c � cm, we conclude that Φ has at least two distinct critical points in Ω̃k. If c = cm,

there is at least one set C such that cat(C) ≥ 2, where the function Φ reaches its absolute
minimum. In this case we conclude that there are infinitely many critical points for Φ in
Ω̃k.

Thus we obtain that the functionΦ has at least two distinct critical points in Ω̃k, denoted
say by ξ1, ξ2. Hence, for μ sufficiently small, the function I(ξ, s) has two distinct points(
ξ1μ, s

1
μ

)
and

(
ξ2μ, s

2
μ

)
close respectively to

(
ξ1, (1 + r̄(ξ1))s̄(ξ1)

)
and to

(
ξ2, (1 + r̄(ξ2))s̄(ξ2)

)
.

This implies the existence of a solution to our Problem of the form U + φ. Finally, let us
remark that (1.10) holds as a direct consequence of the construction of U and of the fact
that φ is a smaller perturbation. This ends the proof of the Theorem.

4. Proof of Proposition 3.1

The proof of Proposition 3.1 is based on a fixed point argument and the invertibility
property of the following linear Problem: Given h ∈ L∞(∂Ω), find a function φ and con-
stants ci j such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δφ + φ = 0 in Ω;

L(φ) = h +
∑

i=0,1

k∑
j=1

ci jχ jZi j on ∂Ω;∫
Ω
χ jZi jφ = 0 for i = 0, 1, j = 1, . . . , k.

(4.1)

We shall prove the validity of the following

Proposition 4.1. Let δ > 0 be a small but fixed number and assume we have ξ1, . . . , ξk ∈
∂Ω and m1, . . . ,mk with

|ξi − ξ j| ≥ δ, ∀ i � j, δ < mj <
1
δ
.(4.2)

Then there exist positive numbers λ0 and C such that, for any 0 < λ < λ0 and any h ∈
L∞(∂Ω), there is a unique solution φ ≡ Tλ(h), and ci j ∈ R to (4.1). Moreover,

‖φ‖∞ ≤ C‖h‖∗,∂Ω.(4.3)

The proof of this result is postponed to Appendix 6.
The result of Proposition 4.1 implies that the unique solution φ = Tλ(h) of (4.1) defines

a continuous linear map form the Banach space C∗ of all functions h in L∞(∂Ω) for which
‖h‖∗,∂Ω < ∞ into L∞, with norm bounded uniformly in λ.
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Lemma 4.1. The operator Tλ is differentiable with respect to the variable ξ1, . . . , ξk on ∂Ω
satisfying 4.2, and m1, . . . ,mk, one has the estimate

‖DξTλ(h)‖∞ ≤ C‖h‖∗,∂Ω, ‖DmTλ(h)‖∞ ≤ C‖h‖∗,∂Ω.(4.4)

for a given positive C, independent of λ, and for all λ small enough.

Proof. Differentiating equation (4.1), formally Z := ∂ξslφ, for all s, l, should satisfy in Ω
the equation

−ΔZ + Z = 0 in Ω,

and on the boundary ∂Ω

L(Z) = −∂ξsl

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

j=1

ε−1
j ew j

⎞⎟⎟⎟⎟⎟⎟⎠ φ +∑
i=0,1

k∑
j=1

ci j∂ξsl

(
χ jZi j

)
+

∑
i=0,1

k∑
j=1

di jZi jχ j

with di j = ∂ξsl ci j, and the orthogonality conditions now become∫
Ω

Zi jχ jZ = 0 if s � j.

∫
Ω

ZisχsZ = −
∫
Ω

∂ξsl (Zisχs) φ.

We consider the constants αab, a = 0, 1, b = 1, . . . , k, defined as

αab

∫
Ω

χ2
b|Zab|2 =

∫
Ω

∂ξsl (Zabχb) φ, for a = 0, 1, b = 1, . . . , k.

Define

Z̃ = Z +
∑
a=0,1

k∑
b=1

αabχbZab.

We then have ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−ΔZ̃ + Z̃ = f1 in Ω;

L(Z̃) = h1 +
∑

i=0,1

k∑
j=1

di jZi jχ j on ∂Ω;∫
Ω
χ jZi jZ̃ = 0 for i = 0, 1, j = 1, . . . , k,

where

f1 =
∑
a=0,1

k∑
b=1

αab(−Δ(χbZab) + χbZab),

h1 = −∂ξsl

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

j=1

ε−1
j ew j

⎞⎟⎟⎟⎟⎟⎟⎠ φ +∑
i=0,1

k∑
j=1

ci j∂ξls
(
Zi jχ j

)
+

∑
a=0,1

k∑
b=1

αabL(χbZab).

Hence, using the result of Lemma 6.1 we have that

‖Z̃‖∞ ≤ C
(‖h1‖∗,∂Ω + ‖ f1‖∗∗,Ω) .

By the definition of αab, we get |αab| ≤ C‖φ‖∞. Since ‖φ‖∞ ≤ C‖h‖∗,∂Ω, |ci j| ≤ C‖h‖∗,∂Ω we
obtain that

‖Z̃‖∞ ≤ C‖h‖∗,∂Ω.
Hence we get

‖∂ξsl Tλ(h)‖∞ ≤ C‖h‖∗,∂Ω for all s, l.

Analogous computation holds true if we differentiate with respect to mj. �
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We are now in the position to prove Proposition 3.1.

Proof of Proposition 3.1. In terms of the operator Tλ defined in Proposition 4.1, problem
(3.25) becomes

φ = Tλ (R + N(φ)) := A(φ),(4.5)

where R is defined in (3.17). For a given number γ > 0, let us consider the region

Fγ :=
{
φ ∈ C(Ω̄) : ‖φ‖∞ ≤ γλ 3

2

}
.

From Proposition 4.1, we get

‖A(φ)‖∞ ≤ C
[‖R‖∗,∂Ω + ‖N(φ)‖∗,∂Ω] .

An involved but direct computation shows that∥∥∥∥∥∥∥∥ f ′(Ũ) −
k∑

j=1

ε−1
j ew j

∥∥∥∥∥∥∥∥∗,∂Ω ≤ Cλ
3
2 .(4.6)

and ∥∥∥ f ′′(Ũ)
∥∥∥∗,∂Ω ≤ C.(4.7)

From (3.21), (4.6) and (4.7), from the definition of N(φ) in (4.5), namely

N(φ) := f (Ũ + φ) − f (Ũ) − f ′(Ũ)φ +

⎡⎢⎢⎢⎢⎢⎢⎣ f ′(Ũ) −
k∑

j=1

ε−1
j ew j

⎤⎥⎥⎥⎥⎥⎥⎦ φ,(4.8)

it follows that

‖A(φ)‖∞ ≤ C
(
λ

3
2 + ‖φ‖2∞ + λ‖φ‖∞

)
.

We then get that A(Fγ) ⊂ Fγ for a sufficiently large but fixed γ and all small λ. Moreover,
for any φ1, φ2 ∈ Fγ, one has

‖N(φ1) − N(φ2)‖∗,∂Ω ≤ C

[(
max
i=1,2
‖φi‖∞

)
+ λ

]
‖φ1 − φ2‖∞,

In fact, using directly (4.8),

N(φ1) − N(φ2)

= f (Ũ + φ1) − f (Ũ + φ2) − f ′(Ũ)(φ1 − φ2) +

⎡⎢⎢⎢⎢⎢⎢⎣ f ′(Ũ) −
k∑

j=1

ε−1
j ew j

⎤⎥⎥⎥⎥⎥⎥⎦ (φ1 − φ2)

=

∫ 1

0

(
d
dt

f (Ũ + φ2 + t(φ1 − φ2))

)
dt − f ′(Ũ)(φ1 − φ2) +

⎡⎢⎢⎢⎢⎢⎢⎣ f ′(Ũ) −
k∑

j=1

ε−1
j ew j

⎤⎥⎥⎥⎥⎥⎥⎦ (φ1 − φ2)

=

∫ 1

0

(
f ′(Ũ + φ2 + t(φ1 − φ2)) − f ′(Ũ)

)
dt (φ1 − φ2) +

⎡⎢⎢⎢⎢⎢⎢⎣ f ′(Ũ) −
k∑

j=1

ε−1
j ew j

⎤⎥⎥⎥⎥⎥⎥⎦ (φ1 − φ2)
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Thus, for a certain t∗ ∈ (0, 1), and s ∈ (0, 1)

|N(φ1) − N(φ2)|

≤ C

⎡⎢⎢⎢⎢⎢⎢⎣| f ′(Ũ + φ2 + t∗(φ1 − φ2)) − f ′(Ũ)| +
⎛⎜⎜⎜⎜⎜⎜⎝ f ′(Ũ) −

k∑
j=1

ε−1
j ew j

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ ‖φ1 − φ2‖∞

≤ C
[
| f ′′(Ũ + sφ2 + t∗(φ1 − φ2))| (‖φ1‖L∞(Ω) + ‖φ2‖∞)
+[ f ′(Ũ) −

k∑
j=1

ε−1
j ew j ]

⎤⎥⎥⎥⎥⎥⎥⎦ ‖φ1 − φ2‖∞.

Thanks to (4.6), (4.7) and the fact that ‖φ1‖∞, ‖φ2‖∞ → 0 as λ→ 0, we conclude that

‖N(φ1) − N(φ2)‖∗,∂Ω ≤ C
[‖φ1‖∞ + ‖φ2‖∞ + λ] ‖φ1 − φ2‖∞.

Then we have

‖A(φ1) − A(φ2)‖∞ ≤ C‖N(φ1) − N(φ2)‖∗,∂Ω ≤ C

[
max
i=1,2
‖φi‖∞ + λ

]
‖φ1 − φ2‖∞.

Thus the operator A has a small Lipschitz constant in Fγ for all small λ, and therefore a
unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map (ξ,m) = (ξ1, . . . , ξk,m1, . . . ,mk) �→
φ. Assume for instance that the partial derivative ∂ξslφ exists, for s = 1, . . . , k, l = 1, 2.
Since φ = Tλ (N(φ) + R), formally we have that

∂ξslφ = (∂ξsl Tλ) (N(φ) + R) + Tλ
(
∂ξsl N(φ) + ∂ξsl R

)
.

From (4.4), we have

‖∂ξsl Tλ (N(φ) + R) ‖∞ ≤ C‖N(φ) + R‖∗,∂Ω ≤ Cλ
3
2 .

On the other hand,

∂ξsl N(φ) = [ f ′(Ũ + φ) − f ′(Ũ) − f
′′
(Ũ)φ]∂ξsl Ũ + ∂ξsl

⎛⎜⎜⎜⎜⎜⎜⎝∂Zi j

∂ν
− [

k∑
j=1

ε−1
j ew j ]

⎞⎟⎟⎟⎟⎟⎟⎠ φ
+[ f ′(Ũ + φ) − f ′(Ũ)]∂ξslφ +

⎛⎜⎜⎜⎜⎜⎜⎝ f ′(Ũ) − [
k∑

j=1

ε−1
j ewμ j ]

⎞⎟⎟⎟⎟⎟⎟⎠ ∂ξslφ.

Then,

‖∂ξsl N(φ)‖∗,∂Ω ≤ C
{
‖φ‖2∞ + λ‖φ‖∞ + ‖φ‖∞‖∂ξslφ‖∞ + λ‖∂ξslφ‖∞

}
.

Since ‖∂ξsl R‖∗,∂Ω ≤ λ 3
2 , Proposition 4.1 guarantees that

‖∂ξslφ‖∞ ≤ Cλ
3
2

for all s, l. Analogous computation holds true if we differentiate with respect to mj. Then,
the regularity of the map (ξ,m) �→ φ can be proved by standard arguments involving the
implicit function theorem and the fixed point representation (4.5). This concludes proof of
the Proposition. �
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5. Proofs of Proposition 3.2 and of Proposition 3.3

5.1. Proof of Proposition 3.2.

Proof. Let us write

U(x) =
k∑

j=1

U j(x), with U j(x) =
√
λmj[u j(x) + Hj(x)]

where u j and Hj are given by (3.11) and (3.12). We observe that U j satisfies⎧⎪⎪⎨⎪⎪⎩
−ΔU j(x) + U j(x) = 0 in Ω;

∂U j(x)
∂ν
= 2
√
λmjε jμ jeu j(x) on ∂Ω.

(5.1)

We have ∫
Ω

[
|∇(U + φ)|2 + (U + φ)2

]
=

∫
Ω

(
|∇U |2 + U2

)
+

∫
Ω

[
2 (∇U∇φ + Uφ) + (|∇φ|2 + φ2)

]
:= Ia + Ib.(5.2)

For Ia, we have

(5.3) Ia =

k∑
j=1

∫
Ω

(
|∇U j|2 + U2

j

)
+

∑
i� j

∫
Ω

(
∇Ui∇U j + UiU j

)
:= Ia,1 + Ia,2.

Multiplying (5.1) by U j and integrating on Ω, by (3.13) we find

Ia,1 =

k∑
j=1

2
√
λmjε jμ j

∫
∂Ω

eu j(x)U j(x) =
k∑

j=1

2λm2
jε jμ j

∫
∂Ω

eu j (u j + Hj)

=

k∑
j=1

2λm2
j

∫
∂Ω

ε jμ j

|x − ξ j − ε jμ jν(ξ j)|2
(
log

1
|x − ξ j − ε jμ jν(ξ j)|2 + H(x, ξ j) + O(εσj )

)

=

k∑
j=1

2λm2
j

∫
∂Ωε jμ j

1
|y − ν(0)|2

[
log

1
|y − ν(0)|2 + H(ξ j, ξ j) − 2 log(ε jμ j) + O(εσj )

]

where Ωε jμ j =
Ω−ξ j

ε jμ j
. Using the following facts

∫
∂Ωε jμ j

1
|y − ν(0)|2 = π + O(εσj ),

∫
∂Ωε jμ j

1
|y − ν(0)|2 log

1
|y − ν(0)|2 = −2π log 2 + O(εσj ),

and the definition of ε j given in (3.8), we obtain

Ia,1 =

k∑
j=1

2λm2
j

[
−2π log 2 + πH(ξ j, ξ j) − 2π log(ε jμ j) + O(εσj )

]

= kπ + 2πλ
k∑

j=1

m2
j

[
H(ξ j, ξ j) − 2 log(2m2

j ) − 2 log(2μ j) + O(εαj )
]
.(5.4)
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Multiplying (5.1) by Ui and integrating on Ω, we find

Ia,2 =
∑
i� j

∫
∂Ω

2
√
λmjε jμ je

u j(x)Ui(x) = 2
∑
i� j

λmimjε jμ j

∫
∂Ω

eu j (ui + Hi)

= 2
∑
i� j

λmimj

∫
∂Ωε jμ j

1
|y − ν(0)|2

[
log

1
|ξ j − ξi + ε jμ jy − εiμiν(ξi)|2 + Hi(ε jμ jy + ξ j)

]

= 2πλ
∑
i� j

mimj

[
G(ξi, ξ j) + O

(
εi log

1
εi
+ ε j log

1
ε j

)
+ O(εσi + ε

σ
j )

]
.(5.5)

Thus from (5.3), (5.4), (5.5) and the definition of μ j given in (3.9) we get

(5.6)
∫
Ω

(
|∇U |2 + U2

)
= kπ

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 + λ fk(ξ,m) +
k∑

j=1

ε j log
1
ε j
Θλ(ξ,m)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where fk is the function defined in (3.31) and Θλ(ξ,m) is a smooth function, uniformly
bounded as λ → 0, in the region for (ξ,m) satisfying (3.7). This is a estimate in the
C0−sense. For C1−closeness, the derivatives in ξ and in m, by the same argument of
C0−estimate, we have

(5.7) Dξ

(∫
Ω

(
|∇U |2 + U2

))
= kπλDξ ( fk(ξ,m)) +

k∑
j=1

ε j log
1
ε j
Θλ(ξ,m),

(5.8) Dm

(∫
Ω

(
|∇U |2 + U2

))
= kπλDm ( fk(ξ,m)) +

k∑
j=1

ε j log
1
ε j
Θλ(ξ,m),

where Θ(ξ,m) is uniformly bounded, as λ → 0, in the region for (ξ,m) satisfying (3.7).
From the choice of ε j in (3.8), we note that ε j log 1

ε j
= o(λ3).

On the other hand, for Ib given in (5.2). We have

Ib ≤ 2
∣∣∣∣∣
∫
Ω

[∇(U + φ)∇φ + (U + φ)φ
]∣∣∣∣∣

Multiplying (3.25) by φ and integrating on Ω, we find∫
Ω

[∇(U + φ)∇φ + (U + φ)φ
]
= λ

∫
∂Ω

(U + φ)e(U+φ)2
φ.

By (3.26) we have ‖φ‖∞ ≤ Cλ
3
2 for some fixed constant C independent of λ, and using a

Taylor expansion, we find

λ

∫
∂Ω

(U + φ)e(U+φ)2
φ ≤ λ‖φ‖∞

∣∣∣∣∣
∫
∂Ω

(U + φ)e(U+φ)2
∣∣∣∣∣ ≤ Cλ

5
2

∣∣∣∣∣
∫
∂Ω

UeU2
∣∣∣∣∣ +Cλ4.

Since, for some δ > 0 small, we write∫
∂Ω

UeU2
=

k∑
j=1

∫
∂Ω∩B(ξ j,δ

√
ε j)

UeU2
+

∫
∂Ω\ k⋃

j=1
B(ξ j,δ

√
ε j)

UeU2
:= Ic + Id,

where∫
∂Ω∩B(ξ j,δ

√
ε j)

UeU2
=

∫
∂Ω∩B(ξ j,δε j | log ε j |)

UeU2
+

∫
∂Ω∩(B(ξ j,δ

√
ε j)\B(ξ j,δε j | log ε j |))

UeU2
:= Ic,1 + Ic,2.
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From (3.8) and (3.15), for x close to point ξ j, we have U =
√
λmj

(
wj +

1
2λm2

j
+ O(1)

)
and

eU2
= 2m2

jε
−1
j ew j (1 + O(λ)), where wj is defined in (3.16). Hence,

Ic,1 = 2
√
λm3

jε
−1
j

∫
∂Ω∩B(ξ j,δε j | log ε j |)

⎛⎜⎜⎜⎜⎜⎝wj +
1

2λm2
j

+ O(1)

⎞⎟⎟⎟⎟⎟⎠ ew j (1 + O(λ))

= 2
√
λm3

j

∫
∂Ω−ξ j
ε jμ j
∩B(0,

δ| log ε j |
μ j

)

⎛⎜⎜⎜⎜⎜⎝log
2μ−1

j

|y − ν(0)|2 +
1

2λm2
j

+ O(1)

⎞⎟⎟⎟⎟⎟⎠ 2
|y − ν(0)|2 (1 + O(λ)) .

Moreover,

|Ic,2| ≤ C
√
λ

δε
− 1

2
j∫

δ| log ε j |

1
r2

e
log2 r

γ2j r dr = C
√
λ

R2+
γ2j
4∫

R1+log γ2
j

e
−2t+ 4t2

γ2j dt ≤ C
√
λ

R2+
γ2j
4∫

R1+log γ2
j

e−tdt = O(λ
3
2 ).

For Id, since in the region ∂Ω\ k⋃
j=1

B(ξ j, δ
√
ε j), the function U(x) satisfies U(x) =

√
λ[

∑k
j=1 mjG(x, ξ j)+

o(1)], with o(1)→ 0 as λ→ 0, we then have

Id =

∫
∂Ω\ k⋃

j=1
B(ξ j,δ

√
ε j)

UeU2
=
√
λ

k∑
j=1

mj

∫
∂Ω

G(x, ξ j)

⎡⎢⎢⎢⎢⎢⎢⎢⎣1 + λ
⎛⎜⎜⎜⎜⎜⎜⎝

k∑
j=1

mjG(x, ξ j)

⎞⎟⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦ (1 + o(1))

=
√
λ

k∑
j=1

mj

∫
∂Ω

G(x, ξ j)(1 + o(1)).

Thanks to above facts, we obtain

Ib = λ
3Θλ(m, ξ)(5.9)

with Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m) satisfying (3.7), as
λ → 0. Therefore, from (5.2), (5.6) and (5.9) we obtain that estimate (3.30) holds in the
C0 sense.

Next let us show the C1−closeness in estimate (3.30). From (3.25) and (3.27) we have

Dξ

(∫
Ω

(
|∇(U + φ)|2 + (U + φ)2

))
= 2

∫
Ω

[
∇(U + φ)∇(∂ξU + ∂ξφ) + (U + φ)(∂ξU + ∂ξφ)

]
= 2

∫
∂Ω

∂(U + φ)
∂ν

(∂ξU + ∂ξφ) = 2
∫
∂Ω

∂U
∂ν
∂ξU + λ

2Θλ(m, ξ)(5.10)

where Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m) satisfying (3.7),
as λ → 0, here we use the facts ‖∂ξφ‖∞ ≤ Cλ

3
2 and

∫
∂Ω
∂U
∂ν
≤ C
√
λ. On the other hand, we

note that −ΔU + U = 0 in Ω, hence

Dξ

(∫
Ω

(
|∇U |2 + U2

))
= 2

∫
Ω

[
∇U∇∂ξU + U∂ξU

]
= 2

∫
∂Ω

∂U
∂ν
∂ξU.(5.11)

From (5.7), (5.10) and (5.11), we obtain the C1−closeness in estimate (3.30)

(5.12) Dξ

(∫
Ω

(
|∇(U + φ)|2 + (U + φ)2

))
= kπλDξ ( fk(ξ,m)) + λ2Θλ(ξ,m),
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and by the same argument, we have

(5.13) Dm

(∫
Ω

(
|∇(U + φ)|2 + (U + φ)2

))
= kπλDm ( fk(ξ,m)) + λ2Θλ(ξ,m),

where Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m) satisfying (3.7),
as λ→ 0.

Finally, let us evaluate
∫
∂Ω

e(U+φ)2
. By a Taylor expansion, we find∫

∂Ω

e(U+φ)2
=

∫
∂Ω

eU2
+ λ2Θλ(m, ξ).(5.14)

We write ∫
∂Ω

eU2
=

k∑
j=1

∫
∂Ω∩B(ξ j,δ

√
ε j)

eU2(x) +

∫
∂Ω\ k⋃

j=1
B(ξ j,δ

√
ε j)

eU2(x) := Ie + I f .(5.15)

Since∫
∂Ω∩B(ξ j,δ

√
ε j)

eU2(x) =

∫
∂Ω∩B(ξ j,δε j | log ε j |)

eU2(x) +

∫
∂Ω∩(B(ξ j,δ

√
ε j)\B(ξ j,δε j | log ε j |))

eU2(x) := Ie,1 + Ie,2.

From (3.8), (3.9), (3.15) and definition of β j, we have

Ie,1 =

∫
∂Ω∩B(ξ j,δε j | log ε j |)

eU2(x) = ε−1
j e

β j
2

∫
∂Ω∩B(ξ j,δε j | log ε j |)

ew j eθ(x)eλm
2
j [w

2
j+2wjθ(x)+θ2(x)]

= 2m2
j

∫
∂Ω−ξ j
ε jμ j
∩B(0,

δ| log ε j |
μ j

)

2
|y − ν(0)|2 (1 + O(λ)) = 4πm2

j (1 + O(λ)) ,(5.16)

with Θλ(m, ξ) a function, uniformly bounded, in the region for (ξ,m) satisfying (3.7), as
λ→ 0. Moreover,

(5.17) |Ie,2| ≤ C
∫ δε

− 1
2

j

δ| log ε j |
1
r2

e
log2 r

γ2j r dr = C
∫ R2+

γ2j
4

R1+log γ2
j

e
−2t+ 4t2

γ2j dt ≤ C
∫ R2+

γ2j
4

R1+log γ2
j

e−tdt = O(λ).

Furthermore, we have

I f =

∫
∂Ω\ k⋃

j=1
B(ξ j,δ

√
ε j)

eU2
=

∫
∂Ω\ k⋃

j=1
B(ξ j,δ

√
ε j)

⎡⎢⎢⎢⎢⎢⎢⎣1 + λ
k∑

j=1

m2
jG

2(x, ξ j)

⎤⎥⎥⎥⎥⎥⎥⎦ (1 + o(1))

= |∂Ω| + λ
k∑

j=1

m2
j

∫
∂Ω

G2(x, ξ j) + λ
2Θλ(m, ξ)(5.18)

with |∂Ω| denotes the measure of domain ∂Ω, andΘλ(m, ξ) is a function, uniformly bounded,
in the region for (ξ,m) satisfying (3.7), as λ → 0. Then from (5.14)-(5.18) we get that es-
timate (3.32) hold true in C0−sense.

On the other hand, by a Taylor expansion and the facts ‖φ‖∞ ≤ Cλ
3
2 and

∫
∂Ω

U ≤ C
√
λ,

we have

Dξ

(∫
∂Ω

e(U+φ)2

)
= 2

∫
∂Ω

eU2
U∂ξU + λ

2Θλ(m, ξ) = Dξ

(∫
∂Ω

eU2

)
+ λ2Θλ(m, ξ),
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and

Dm

(∫
∂Ω

e(U+φ)2

)
= Dm

(∫
∂Ω

eU2

)
+ λ2Θλ(m, ξ)

with Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m) satisfying (3.7), as
λ→ 0. Then we obtain that the C1−closeness in (3.32) by the same way as in the proof of
C1−closeness in (3.30). �

5.2. Proof of Proposition 3.3.

Proof. Define the set
R′ = {(ξ,m) ∈ R : fk(ξ,m) � 0}.

From Proposition 3.2, replacing expansion (3.30) into (3.33), we see that (3.33) gives

λ fk(ξ,m) + λ2Θλ(ξ,m) = μ.(5.19)

In R′, (5.19) defines λ as a function of μ, ξ and m, which is smooth in (ξ,m) in the region
R′. Furthermore, as μ→ 0,

λ =
μ

fk(ξ,m)
+

μ2

f 3
k (ξ,m)

Θμ(ξ,m)

with Θμ(m, ξ) is a function, uniformly bounded with its derivatives, as μ→ 0.
Assume now (3.33), we shall prove (3.34). Let us denote ∂ by the partial derivative

with respect to mj for any j = 1, . . . , k, or the partial derivative with respect to ξ j1 for
j = 1, . . . , k. By a direct computation we have

J′(U + φ)
[
∂(U + φ)

]
=

1
2
∂

(∫
Ω

(|∇(U + φ)|2 + (U + φ)2)

)
− λ

2
∂

(∫
∂Ω

e(U+φ)2

)
.

From (3.33) we have that ∂
(∫
Ω

(|∇(U + φ)|2 + (U + φ)2)
)
= 0. Thus ∂

(∫
∂Ω

e(U+φ)2
)
= 0 if

and only if J′(U + φ)
[
∂(U + φ)

]
= 0. Let us now rewrite

1√
λ

(U + φ)(ξ,m)(x) = mlvl

(
x − ξl
εl

)
+

1
2λml

for some l = 1, . . . , k, with

vl(y) := wμl (y) +
k∑

j=1

(
O(|εly + ξl − ξ j|) + O(ε2

j )
)

for |y| ≤ δ
εl
.

Since U + φ is the solution of (3.25), then vl satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−Δvl + ε

2
l

(
vl +

1
2λm2

l

)
= 0 in Ωl;

∂vl

∂ν
− (1 + 2λm2

l vl)evl eλm
2
l v2

l = m−1
l εl

∑
i=0,1

k∑
j=1

ci jε
−1
j χ

(
F j(εly+ξl−ξ j)

ε j

)
zi j

(
F j(εly+ξl−ξ j)

ε j

)
on ∂Ωl,

where Ωl =
Ω−ξl
εl

. For any l, we define

Il(vl) =
1
2

∫
Ωl

⎡⎢⎢⎢⎢⎢⎣|∇vl|2 + ε2
l

⎛⎜⎜⎜⎜⎝vl +
1

2λm2
l

⎞⎟⎟⎟⎟⎠2⎤⎥⎥⎥⎥⎥⎦ −
∫
∂Ωl

evl eλm
2
l v2

l .

We observe that
J′(U + φ)

[
∂(U + φ)

]
= λm2

l I′l (vl)[∂vl].
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and

λm2
l I′l (vl)[∂vl]

= λmlεl

∑
i=0,1

k∑
j=1

(∫
∂Ωl

ε−1
j χ

(
F j(εly + ξl − ξ j)

ε j

)
zi j

(
F j(εly + ξl − ξ j)

ε j

)
∂vl dy

)
ci j.

Now, fix i and j, we compute the coefficient in front of ci j, we choose l = j, ∂vl = Dms vl(y),
and obtain ∫

∂Ωl

ε−1
j χ

(
F j(εly + ξl − ξ j)

ε j

)
zi j

(
F j(εly + ξl − ξ j)

ε j

)
Dms vl(y) dy

=

∫
∂Ωl

ε−1
j χ (y) zi j (y) Dms

⎡⎢⎢⎢⎢⎢⎢⎣wμ j (y) +
k∑

j=1

(
O(|ε jy|) + O(ε2

j )
)⎤⎥⎥⎥⎥⎥⎥⎦ dy

=
∂μ j

∂ms

∫
∂R2
+

z2
0 j(y) dy(1 + o(1)).

Thus we concludes that for any s = 1, 2, · · · , k, we have

J′(U + φ)
[
∂ms (U + φ)

]
= λmlεl

k∑
j=1

∂μ j

∂ms

∫
∂R2
+

z2
0 j(y) dyc0 j(1 + o(1)).

Similarly, we get that for all s, l

J′(U+φ)
[
∂ξs1 (U + φ)

]
= λmlεl

⎡⎢⎢⎢⎢⎢⎢⎣
k∑

j=1

(
∂μ j

∂ξs1

∫
∂R2
+

z2
0 j(y)dy

)
c0 j +

(∫
∂R2
+

z2
1s(y)dy

)
c1s

⎤⎥⎥⎥⎥⎥⎥⎦ (1+o(1)).

Thus, we can conclude that J′(U + φ)
[
∂(U + φ)

]
= 0, that is Dξ,mE(U + φ) = 0 then we

have the following system⎡⎢⎢⎢⎢⎢⎢⎣
k∑

j=1

∂μ j

∂ms
c0 j

⎤⎥⎥⎥⎥⎥⎥⎦ (1 + o(1)) = 0, s = 1, 2, · · · , k,(5.20)

⎡⎢⎢⎢⎢⎢⎢⎣A
k∑

j=1

∂μ j

∂ξs1
c0 j + c1s

⎤⎥⎥⎥⎥⎥⎥⎦ (1 + o(1)) = 0, for all s,(5.21)

for some fixed constant A, with o(1) small in the sense of the L∞ norm as λ → 0. Then
(3.34) follows if we show that the matrix ∂μ j

∂ms
of dimension k × k is invertible in the region

for (ξ,m) satisfying (3.7). Indeed, this fact implies unique solvability of (5.20). Inserting
this in (5.21) we get unique solvability of (5.21).

Consider the definition of the μ j, in terms of m′js and points ξ j given in (3.7). These
relations correspond to the gradient DmF(m, ξ) of the function F(m, ξ) defined as follows

F(m, ξ) =
1
2

k∑
j=1

m2
j

[
−2 log

(
2m2

j

)
− log(2μ j) + 2 + H(ξ j, ξ j)

]
+

∑
i� j

mimjG(ξi, ξ j).

We set s j = m2
j , then the above function can be written as follows

F(s, ξ) =
1
2

k∑
j=1

s j

[
−2 log(2s j) − log(2μ j) + 2 + H(ξ j, ξ j)

]
+

∑
i� j

√
sis jG(ξi, ξ j).

This function is strictly convex function of the parameters s j, for parameters s j uniformly
bounded and uniformly bounded away from 0 and for points ξ j in Ω uniformly far away
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from each other and from the boundary. For this reason, the matrix ( ∂
2F
∂si∂s j

) is invertible
in the range of parameters and points we are considering. Thus, by the implicit function
theorem, relation (3.9) defines a diffeomorphism between μ j and mj. This fact gives the

invertibility of ( ∂μ j

∂ms
). Thus we finish the proof of Proposition 3.3. �

6. Appendix

This section is devoted to the proof of Proposition 4.1. The proof of this result is based
on the a-priori estimate for solutions to the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δφ + φ = f in Ω;

L(φ) = h +
∑

i=0,1

k∑
j=1

ci jχ jZi j on ∂Ω;∫
Ω
χ jZi jφ = 0 for i = 0, 1, j = 1, . . . , k.

(6.1)

Define

‖ f ‖∗∗,Ω := sup
x∈Ω

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

j=1

εσj

(1 + |x − ξ j − ε jμ jν(ξ j)|)2+σ
+ 1

⎞⎟⎟⎟⎟⎟⎟⎠
−1

| f (x)|(6.2)

where 0 < σ < 1.

Lemma 6.1. Under the assumptions of Proposition 4.1, if φ is a solution of (6.1) for some
h ∈ L∞(∂Ω) and for some f ∈ L∞(Ω) with ‖h‖∗,∂Ω, ‖ f ‖∗∗,Ω < ∞ and ci j ∈ R, then

‖φ‖∞ ≤ C
[‖h‖∗,∂Ω + ‖ f ‖∗∗,Ω] ,(6.3)

|ci j| ≤ C
(‖h‖∗,∂Ω + ‖ f ‖∗∗,Ω) , ∀ i = 0, 1, j = 1, . . . , k

hold for C independent of λ.

Proof. We will carry out the proof of the a priori estimate (6.3) by contradiction. We
assume then the existence of sequences λn → 0, points ξnj ∈ ∂Ω and numbers mn

j , μ
n
j

which satisfy relations (4.2) and (3.9), functions hn, fn with ‖hn‖∗,∂Ω, ‖ fn‖∗∗,Ω → 0, φn with
‖φn‖∞ = 1, constants ci j,n,

−Δφn + φn = fn, in Ω,(6.4)

L(φn) = hn +

2∑
i=0

k∑
j=1

ci j,nZi jχ j, on ∂Ω,(6.5)

∫
Ω

Zi jχ jφn = 0, for all i, j.(6.6)

We will prove that in reality under the above assumption we must have that φn → 0 uni-
formly in Ω̄, which is a contradiction that concludes the result of the Lemma.

Passing to a subsequence we may assume that the points ξnj approach limiting, distinct

points ξ∗j in ∂Ω. We claim that φn → 0 in C1 local sense on compacts of Ω̄ \ {ξ∗1, . . . , ξ∗k }.
Indeed, let us observe that fn → 0 locally uniformly in Ω̄, away from the points ξ j. Away
from the ξ∗j ’s we have then −Δφn+φn → 0 uniformly on compact subsets on Ω̄\{ξ∗1, . . . , ξ∗k }.
Since φn is bounded it follows also that passing to a further subsequence, φn approaches
in C1 local sense on compacts of Ω̄ \ {ξ∗1, . . . , ξ∗k } a limit φ∗ which is bounded and satisfies
−Δφ∗ + φ∗ = 0 in Ω \ {ξ∗1, . . . , ξ∗k }. Furthermore, observe that far from {ξ∗1, . . . , ξ∗k }, hn → 0

locally uniformly on ∂Ω \ {ξ∗1, . . . , ξ∗k } and so we also have ∂φn

∂ν
→ 0 on ∂Ω \ {ξ∗1, . . . , ξ∗k }.
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Hence φ∗ extends smoothly to a function which satisfies −Δφ∗ + φ∗ = 0 in Ω, and ∂φ
∗
∂ν
= 0

on ∂Ω. We conclude that φ∗ = 0, and the claim follows.

For notational convenience, we shall omit the explicit dependence on n in the rest of the
proof. We shall next show that∣∣∣ci j

∣∣∣ ≤ C(‖φ‖∞ + ‖h‖∗,∂Ω + ‖ f ‖∗∗,Ω).(6.7)

Multiplying the first equation of (6.1) by Zi j and integrating over B(ξ j, δ), we find∑
l=0,1

cl j

∫
∂Ω

⋂
B(ξ j,δ)

χ jZl jZi j = −
∫
∂Ω

⋂
B(ξ j,δ)

hZi j +

∫
∂Ω

⋂
B(ξ j,δ)

L(Zi j)φ −
∫
Ω

⋂
∂B(ξ j,δ)

∂φ

∂ν
Zi j

+

∫
Ω

⋂
B(ξ j,δ)

(−ΔZi j + Zi j)φ −
∫
Ω

⋂
B(ξ j,δ)

f Zi j(6.8)

Having in mind that φn → 0 in C1 sense in Ω
⋂
∂B(ξ j, δ), we have that

∫
Ω

⋂
∂B(ξ j,δ)

∂φ
∂ν

Zi j →
0 as λ→ 0. Furthermore, a direct computation shows that∫

∂Ω
⋂

B(ξ j,δ)
χ jZl jZi j = Miδli + o(1), as λ→ 0(6.9)

where Mi is some universal constant and δli = 1 if i = l, and = 0 if i � l. On the other
hand, we have that∫

∂Ω
⋂

B(ξ j,δ)

⎛⎜⎜⎜⎜⎜⎜⎝∂Zi j

∂ν
− [

k∑
j=1

ε−1
j ew j ]Zi j

⎞⎟⎟⎟⎟⎟⎟⎠ φ +
∫
Ω

⋂
B(ξ j,δ)

(−ΔZi j + Zi j)φ ≤ C‖φ‖∞(6.10)

and

(6.11)
∣∣∣∣∣
∫
Ω

f Zi j

∣∣∣∣∣ ≤ C‖ f ‖∗∗,Ω.

In fact, estimate (6.11) is a direct consequence of the definition of the ‖ · ‖∗∗,Ω-norm. Let us
prove the validity of (6.10). Recall that inΩ

⋂
B(ξ j, δ), we have that Zi j(x) = zi j(ε−1

j F j(x)),
where F j is chosen to preserve area (see (3.23)). Performing the change of variables y =
ε−1

j F j(x), we get that

(6.12)
∫
Ω

⋂
B(ξ j,δ)

(−ΔZi j + Zi j)φ = (1 + o(1))
∫

IR2
+

⋂
B(0, δε j

)

(
Lzi j + ε

2
j zi j

)
φ̃

where φ̃(y) = φ(F−1
j (ε jy)) and L is a second order differential operator defined as follows

(6.13) L = −Δ + O(ε j|y|)∇2 + O(ε j)∇, in IR2
+

⋂
B(0,

δ

ε j
).

Hence ∣∣∣∣∣∣
∫
Ω

⋂
B(ξ j,δ)

(−ΔZi j + Zi j)φ

∣∣∣∣∣∣ ≤ C‖φ‖∞.

On the other hand, we observe that, after a possible rotation, we can assume that ∇F j(ξ j) =
I. Hence, using again the change of variables y = ε−1

j F j(x), we get

(6.14)
∫
∂Ω

⋂
B(ξ j,δ)

L(Zi j)φ = (1 + o(1))
∫
∂IR2

+

⋂
B(0, δε j

)
(B(zi j) − W̃zi j)b(y)φ̃
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where W̃(y) = ε jW(F−1
j (ε jy)) with W(x) =

∑k
j=1 ε

−1
j ew j , and b(y) is a positive function,

coming from the change of variables, which is uniformly positive and bounded as λ → 0.
Furthermore B is a differential operator of order one on ∂IR2

+. In fact, we have that

(6.15) B = − ∂
∂y2
+ O(ε j|y|)∇ on ∂IR2

+

⋂
B(0,

δ

ε j
)

On the other hand, since

W(x) = ε−1
j

2μ jε
2
j

|x − ξ j − ε jμ jν(ξ j)|2
⎛⎜⎜⎜⎜⎜⎜⎝1 +∑

l� j

εlε jO(1)

⎞⎟⎟⎟⎟⎟⎟⎠
we get

(6.16) W̃(y) =
2μ j

y2
1 + μ

2
j

+
∑

l

εαl
(1 + |y|) on ∂IR2

+

⋂
B(0,

δ

ε j
),

for some 0 < α < 1. Thus we can conclude that

∣∣∣∣∣∣
∫
∂Ω

⋂
B(ξ j,δ)

L(Zi j)φ

∣∣∣∣∣∣ ≤ C‖φ‖∞.

This shows the validity of (6.10).
We shall now estimate the term

∫
∂Ω

hZi j. Using the definition of the ‖ · ‖∗,∂Ω-norm, we
observe that

∣∣∣∣∣
∫
∂Ω

hZi j

∣∣∣∣∣ =
∫
∂Ω

ρ(x)−1|h|ρ(x)Zi j ≤ ‖h‖∗,∂Ω
∫
∂Ω

ρ(x)Zi j

= ‖h‖∗,∂Ω
∫
∂Ω

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

l=1

ρlχBδ(ξl)(x) + 1

⎞⎟⎟⎟⎟⎟⎟⎠ Zi j

≤ C‖h‖∗,∂Ω
k∑

l=1

∫
∂Ω∩Bδ(ξl)

γl

{(
1 +

wl + 1
γl

) (
1 +

1 + |wl|
γl

)
e

w2
l

2γl − 1

}
ε−1

l ewl

+C‖h‖∗,∂Ω
∫

∂Ω\⋃k
l=1 Bδ(ξl)

Zi j.(6.17)

Since Zi j are uniformly bounded, as λ → 0, in ∂Ω \⋃k
l=1 Bδ(ξl), we just need to estimate∫

∂Ω∩Bδ(ξ j)

γ j

⎧⎪⎪⎨⎪⎪⎩
(
1 + w j+1

γ j

) (
1 + 1+|wj |

γ j

)
e

w2
j

2γ j − 1

⎫⎪⎪⎬⎪⎪⎭ ε−1
j ew j . Recall that the functions wj are defined

as

wj(x) = log
2μ j

|y − ξ′j − μ jν(ξ′j)|2
,
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with y = x
ε j

, ξ′j =
ξ j

ε j
, and γ j = −2 log ε j. We decompose ∂Ω ∩ Bδ(ξ j) into the union of

∂Ω ∩ B δ
γ j

(ξ j) and ∂Ω ∩
(
Bδ(ξ j)\B δ

γ j
(ξ j)

)
. We write

∫
∂Ω∩Bδ(ξ j)

γ j

⎧⎪⎪⎨⎪⎪⎩
(
1 +

wj + 1

γ j

) (
1 +

1 + |wj|
γ j

)
e

w2
j

2γ j − 1

⎫⎪⎪⎬⎪⎪⎭ ε−1
j ew j

=

∫
∂Ω∩B δ

γ j
(ξ j)

γ j

⎧⎪⎪⎨⎪⎪⎩
(
1 +

wj + 1

γ j

) (
1 +

1 + |wj|
γ j

)
e

w2
j

2γ j − 1

⎫⎪⎪⎬⎪⎪⎭ ε−1
j ew j

+

∫
∂Ω∩

(
Bδ(ξ j)\B δ

γ j
(ξ j)

) γ j

⎧⎪⎪⎨⎪⎪⎩
(
1 +

wj + 1

γ j

) (
1 +

1 + |wj|
γ j

)
e

w2
j

2γ j − 1

⎫⎪⎪⎬⎪⎪⎭ ε−1
j ew j

= L1 + L2.(6.18)

Using the change of variables ε jy = x − ξ j, we have

L1 =

∫
∂Ωε j∩B δ

γ jε j
(0)

γ j

⎧⎪⎪⎨⎪⎪⎩
(
1 +

w̄ j + 1

γ j

) (
1 +

1 + |w̄ j|
γ j

)
e

w̄2
j

2γ j − 1

⎫⎪⎪⎬⎪⎪⎭ ew̄ j

and

L2 =

∫
∂Ωε j∩

(
B δ
ε j

(0)\B δ
γ jε j

(0)

) γ j

⎧⎪⎪⎨⎪⎪⎩
(
1 +

w̄ j + 1

γ j

) (
1 +

1 + |w̄ j|
γ j

)
e

w̄2
j

2γ j − 1

⎫⎪⎪⎬⎪⎪⎭ ew̄ j

where Ωε j =
Ω−ξ j

ε j
and

w̄ j = log
2μ j

|y − μ jν(0)|2 .

First we estimate L1:

L1 =

∫
∂Ωε j∩B δ

γ jε j
(0)

γ j

⎧⎪⎪⎨⎪⎪⎩
(
1 +

w̄ j + 1

γ j

) (
1 +

1 + |w̄ j|
γ j

)
e

w̄2
j

2γ j − 1

⎫⎪⎪⎬⎪⎪⎭ ew̄ j

≤ C
∫

∂Ωε j∩B δ
γ jε j

(0)

ew̄ j = C
∫

∂Ωε j∩B δ
γ jε j

(0)

1
|y − μ jν(0)|2

≤ C
∫ μ j

μ j− δ
γ jε j

1
r2

dr ≤ C.
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On the other hand, using the fact that w̄ j = −2 log r + O(1) with r = |y − μ jν(0)|, the term
L2 can be estimated as follows

L2 =

∫
∂Ωε j∩

(
B δ
ε j

(0)\B δ
γ jε j

(0)

) γ j

⎧⎪⎪⎨⎪⎪⎩
(
1 +

w̄ j + 1

γ j

) (
1 +

1 + |w̄ j|
γ j

)
e

w̄2
j

2γ j − 1

⎫⎪⎪⎬⎪⎪⎭ ew̄ j

≤ C
∫

∂Ωε j∩
(
B δ
ε j

(0)\B δ
γ jε j

(0)

) γ je
w̄2

j
2γ j
γ j + w̄ j

γ j
ew̄ j ≤ C

∫ δ
ε j

δ
γ jε j

1
r2

e
(log r)2

| log ε j | (γ j − 2 log r)dr

≤ C
∫ log δ

ε j

log δ
γ jε j

e−te
t2

| log ε j | (γ j − t)dt ≤ C
∫ log δ

ε j

log δ
γ jε j

e−σt(γ j − t)dt ≤ C

for some positive σ. Therefore we get∣∣∣∣∣
∫
∂Ω

hZi j

∣∣∣∣∣ ≤ C‖h‖∗,∂Ω.(6.19)

Thus, from (6.8)-(6.19) we find the validity of (6.7).
We now conclude our argument by contradiction to prove (6.3). From (6.7), we have

that ci j,n is bounded, thus we may assume that ci j,n → ci j as n→ ∞.
Let us fix R > 0 large sufficiently but fixed. By the maximum principe and the Hopf

Lemma we find that,
max

Ω̄\⋃k
j=1 BRε j (ξ j,n)

|φn| = max
Ω̄\⋃k

j=1 ∂BRε j (ξ j,n)
|φn|.

Thus, from ‖φn‖∞ = 1, we can find that there is some fixed j0 ∈ {1, 2, · · · , k} such that

max
Ω̄∩ ∂BRε j0

(ξ j0 ,n)
|φn| = 1.(6.20)

Set Ωε j0
=
Ω−ξ j0 ,n

ε j0 ,n
, and consider

φ̂n(z) = φn(ξ j0,n + ε j0,nz), ĥn(z) = hn(ξ j0,n + ε j0,nz),

f̂n(z) = fn(ξ j0,n + ε j0,nz), Ẑi j(z) = Zi j(ξ j0,n + ε j0,nz)

Then
−Δφ̂n(z) + ε2

j0 φ̂n(z) = ε2
j0 fn(z) in Ωε j0

,

∂φ̂n

∂ν
− ε j0 [

k∑
j=1

ε−1
j ew j ]φ̂n = ε j0 ĥn +

∑
i=0,1

k∑
j=1

ε j0 ci j,nχ jẐi j on ∂Ωε j0
.

Then by elliptic estimate φ̂n (up to subsequence) converges uniformly on compact sets to a
nontrivial solution φ̂ � 0 of the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δφ = 0, in R2
+;

∂φ
∂ν
− 2μ j

x2
1+μ

2
j
φ = 0 on ∂R2

+.

By the nondegeneracy result ([9]), we conclude that φ̂ is a linear combination of z0 j and
z1 j. On the other hand, we can take the limit in the orthogonality relation and we find that∫
∂R2
+

χφ̂zi j = 0 for i = 0, 1. This contradicts the fact that φ̂ � 0. This ends the proof of the
Lemma. �
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Proof of Proposition 4.1 In proving the solvability of (4.1), we may first solve the follow-
ing problem: for given h ∈ L∞(∂Ω), with ‖h‖∗,∂Ω bounded, find φ ∈ L∞(Ω) and di j ∈ R,
i = 0, 1 j = 1, . . . , k such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δφ + φ = ∑
i=0,1

k∑
j=1

di jχ jZi j in Ω;

∂φ
∂ν
− [

k∑
j=1
ε−1

j ew j ]φ = h on ∂Ω;∫
Ω
χ jZi jφ = 0 for i = 0, 1, j = 1, . . . , k.

(6.21)

First we prove that for any φ, di j solution to (6.21) the bound

‖φ‖∞ ≤ C‖h‖∗,∂Ω(6.22)

holds. In fact, by Lemma 6.1, we have

‖φ‖∞ ≤ C

⎛⎜⎜⎜⎜⎜⎜⎝‖h‖∗,∂Ω +∑
i=0,1

k∑
j=1

ε j|di j|
⎞⎟⎟⎟⎟⎟⎟⎠(6.23)

and therefore it is enough to prove that ε j|di j| ≤ C‖h‖∗,∂Ω.
Fix an integer j. To show that ε j|di j| ≤ C‖h‖∗,∂Ω, we shall multiply equation (6.21)

against a test function, properly chosen. Let us observe that, the proper test function de-
pends whether we are considering the case i = 0 or i = 1. We start with i = 0. We

define ẑ0 j(y) = h(y)z0 j(y), where h(y) =
log( δε j

)−log |y|
log δ

ε j
−log R

. In fact, we recognize that Δh = 0 in

B(0, δ
ε j

) \ B(0,R), h = 1 on ∂B(0,R) and h = 0 on ∂B(0, δ
ε j

).

Let η1 and η2 be two smooth cut-off functions defined in IR2 as

η1 ≡ 1 in B(0,R), ≡ 0 in IR2 \ B(0,R + 1)

so that
0 ≤ η1 ≤ 1, |∇η1| ≤ C

and

η2 ≡ 1 in B(0,
δ

4ε j
), ≡ 0 in IR2 \ B(0,

δ

3ε j
)

so that
0 ≤ η2 ≤ 1, |∇η2| ≤ C

ε j

δ
, |∇2η2| ≤ C(

ε j

δ
)2.

We assume that R > R0 (see (3.24)) and we define

(6.24) Z̃0 j(x) = η1(ε−1
j F j(x))Z0 j(x) +

(
1 − η1(ε−1

j F j(x))
)
η2

(
ε−1

j F j(x)
)

ẑ0 j

(
ε−1

j F j(x)
)
,

for x ∈ B(ξ j, δ)
⋂
Ω.

We multiply equation (6.21) against Z̃0 j and we integrate by parts. We get∑
a=0,1

da j

∫
Ω

χ jZa jZ̃0 j =

∫
Ω

(−ΔZ̃0 j + Z̃0 j)φ +
∫
∂Ω

hZ̃0, j +

∫
∂Ω

L(Z̃0 j)φ

Observe first that, assuming R > R0, we have

(6.25) da j

∫
Ω

χ jZa jZ̃0 j = da j

∫
Ω

χ jZa jZ0 j = ε jM0δa0da j(1 + o(1)), as λ→ 0.

Furthermore we have that

(6.26)
∣∣∣∣∣
∫
∂Ω

hZ̃0 j

∣∣∣∣∣ ≤ C‖h‖∗,∂Ω.



CRITICAL POINTS OF THE TRUDINGER-MOSER TRACE FUNCTIONAL WITH HIGH ENERGY LEVELS 33

We claim that

(6.27) ‖ − ΔZ̃0 j + Z̃0 j‖∗∗,Ω ≤ C
| log ε j| ,

(6.28) ‖L(Z̃0 j)‖∗,∂Ω ≤ C
| log ε j| .

The proof of estimates (6.27) and (6.28) is postponed to the end of the Appendix. As-
suming for the moment the validity of (6.27) and (6.28), from estimates (6.25)–(6.28) we
conclude that

(6.29) |ε jd0 j| ≤ C
(
‖h‖∗,∂Ω + | log ε j|−1‖φ‖∞

)
.

We shall now obtain an estimate similar to (6.29) for ε jd1 j. To do so, we use another test
function. Indeed we multiply equation (6.21) against η2Z1 j and we integrate by parts. We
get ∑

a=0,1

da j

∫
Ω

χ jZa jη2Z1 j =

∫
Ω

(−Δ(η2Z1 j) + η2Z1 j)φ −
∫
∂Ω

hη2Z1, j

+

∫
∂Ω

L(Z1 j)η2φ +

∫
∂Ω

Z1 j
∂η2

∂ν
φ

Observe first that, assuming R > R0, we have

da j

∫
Ω

χ jZa jη2Z1 j = da j

∫
Ω

χ jZa jZ1 j = M1δa1ε jd1 j(1 + o(1)), as λ→ 0,

and
∣∣∣∫
∂Ω

hη2Z1 j

∣∣∣ ≤ C‖h‖∗,∂Ω. Using the change of variables y = ε−1
j F j(x), we get that∫

∂Ω

Z1 j
∂η2

∂ν
φ =

∫
∂Ωε j

z1 j
∂η2

∂ν
φ̃

where Ωε j =
Ω
ε j

and φ̃(y) = φ(F−1
j (ε−1

j y)). But z1 j = O( 1
1+r ) and ∇η2 = O(ε j) so

| ∫
∂Ω

Z1 j
∂η2

∂ν
φ| ≤ Cε j| log ε j|. Using again the change of variables y = ε−1

j F j(x), and pro-
ceeding similarly to (6.14), (6.15) and (6.16), one gets∫

∂Ω

L(Zi j)η2φ = (1 + o(1))
∫
∂Ωε j

[
∂zi j

∂ν
− W̃zi j]η2φ̃

where φ̃(y) = φ(F−1
j (ε jy)) and b(y) is a positive function, coming from the change of

variables, which is uniformly positive and bounded as λ → 0. Observe that ∂zi j

∂ν
− W̃zi j =

O( ε j

1+r ) + O(
εαj

1+r2 ) for y ∈ Ωε j and |y| < δε−1
j , and this implies that∫

∂Ωε j

∣∣∣∣∣∣∂zi j

∂ν
− W̃zi j

∣∣∣∣∣∣ ≤ Cεαj

for some 0 < α < 1. Thus we can conclude that∣∣∣∣∣
∫
∂Ω

L(Zi j) η2φ

∣∣∣∣∣ ≤ Cεαj ‖φ‖∞.

Consider once again the change of variables y = ε−1
j F j(x). Arguing as in (6.12) and (6.13)

we get that ∫
Ω

(−Δ(η2Zi j) + η2Zi j)φ = (1 + o(1))
∫
Ωε j

(
−Δ(η2zi j) + ε

2
jη2zi j

)
φ̃
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where φ̃(y) = φ(F−1
j (ε jy)). We thus compute in y ∈ Ωε1 , with |y| < δε−1

j ,

Δ(η2z1 j) = Δη2 z1 j + 2∇η2∇z1 j + η2 Δz1 j = O(
ε2

1

1 + r
) + O(

ε j

1 + r
) + η2Δz1 j.

On the other hand, in this region we have −Δz1 j + ε
2
j z1 j = O( ε j

1+r2 ) + O(
ε2

j

1+r ). Thus∫
Ωε j

∣∣∣−Δ(η2zi j) + ε
2
jη2zi j

∣∣∣ ≤ Cε j| log ε j|

Summarizing all the above information, we get

(6.30) |ε jd1 j| ≤ C
(
‖h‖∗,∂Ω + ε j‖φ‖∞

)
Estimates (6.29), (6.30) combined with (6.23) yields

|ε jdi j| ≤ C‖h‖∗,∂Ω.
which gives the validity of (6.22). Now consider the Hilbert space

H =

{
φ ∈ H1(Ω) :

∫
Ω

χ jZi jφ = 0 ∀ i = 0, 1, j = 1, . . . , k

}
,

endowed the norm ‖φ‖2
H1 =

∫
Ω

(|∇φ|2 + φ2). Problem (6.21), expressed in a weak form, is
equivalent to find φ ∈ H such that∫

Ω

(∇φ∇ψ + φψ) −
∫
∂Ω

[
k∑

j=1

ε−1
j ew j ]ψ =

∫
∂Ω

hψ, for all ψ ∈ H,

With the aid of Fredholm’s alternative guarantees unique solvability of (6.21), which is
guarantees by (6.22).

In order to solve (4.1), let Yls ∈ L∞(Ωε), dls
i j ∈ R be the solution of (6.21) with h = χsZls,

that is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ΔYls + Yls =
∑

i=0,1

k∑
j=1

dls
i jχ jZi j in Ω;

∂Yls

∂ν
− [

k∑
j=1
ε−1

j ew j ]Yls = χsZls on ∂Ω;∫
Ω
χ jZi jYls = 0 for l = 0, 1, s = 1, . . . , k,

(6.31)

Then there is a unique solution Yls ∈ L∞(Ω) of (6.31), and

‖Yls‖∞ ≤ C, ε j|dls
i j | ≤ C(6.32)

for some constant C independent on λ.
Multiplying (6.31) by Zi j, and integrates by parts, we have

∑
i=0,1

k∑
j=1

∫
B(ξ j,δ)

di j,lsχ j(Zi j)
2 =

∫
∂B(ξ j,δ)

χsZlsZi j +

∫
B(ξ j,δ)

(
−ΔZi j + Zi j

)
Yls

+

∫
∂B(ξ j,δ)

⎛⎜⎜⎜⎜⎜⎜⎝∂Zi j

∂ν
− [

k∑
j=1

ε−1
j ew j ]Zi j

⎞⎟⎟⎟⎟⎟⎟⎠ Yls

= δilδ js

∫
∂B(ξ j,δ)

χ j(Zi j)
2 + o(1)

where δil, δ js are Kronecker’s delta. Then we get

d0 j,0s = aδ js + o(1), d1 j,1s = bδ js + o(1)(6.33)
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with a, b > 0 are independent of ε j. Hence the matrix D1 (or D2) with entries d0 j,0s (or
d1 j,1s) in invertible for small ε j and ‖D−1

i ‖ ≤ C(i = 1, 2) uniformly in ε j.
Now, given h ∈ L∞(∂Ω) we find φ1, di j, solution to (6.21). Define constants cls as

∑
l=0,1

k∑
s=1

clsd
ls
i j = −di j, ∀ i = 0, 1, j = 1, . . . , k.

The above linear system is almost diagonal, since arguing as before one can show that
dls

i j = ε
−1
j Miδ jsδil(1 + o(1)), as λ → 0, where Mi is a positive universal constant. Then

define

φ = φ1 +
∑
l=0,1

k∑
s=1

clsYls,

A direct computation shows that φ satisfies (4.1) and furthermore

‖φ‖∞ ≤ ‖φ1‖∞ +
∑
l=0,1

k∑
s=1

|cls| ≤ C‖h‖∗,∂Ω +
∑
i=0,1

k∑
j=1

ε j|di j| ≤ C‖h‖∗,∂Ω

by (6.22). This finishes the proof of Proposition 4.1.

Proof of (6.27). We shall prove

‖ − ΔZ̃0 j + Z̃0 j‖∗∗,Ω ≤ C
| log ε j|

where Z̃0 j is defined in (6.24). Performe the change of variables y = ε−1
j F j(x) and denote

z̃0 j(y) = Z̃0 j(F−1
j (ε jy)). Then −ΔZ̃0 j + Z̃0 j =

(
Lz̃0 j + ε

2
j z̃0 j

)
, where L is defined in (6.13).

We shall show that∣∣∣∣(Lz̃0 j + ε
2
j z̃0 j

)∣∣∣∣ ≤ C
| log ε j|

⎡⎢⎢⎢⎢⎢⎢⎣ε2
j +

m∑
j=1

(1 + |y − ξ′j|)−2−σ
⎤⎥⎥⎥⎥⎥⎥⎦ , y ∈ Ω

ε j
.

This fact implies (6.27).
Let us first consider the region where |y| < R. In this region, z̃0 j = z0 j. Since Δz0 j = 0

and since (6.13) holds, we have that

(6.34)
(
Lz̃0 j + ε

2
j z̃0 j

)
= O(ε j) for |y| < R.

In the region R + 1 < |y| < δ
4ε j

, we have z̃0 j = hz0 j. Therefore, in this region,

|Δz̃0 j| = 2|∇h∇z0 j| ≤ C

r3 log δ
ε j

R + 1 < r <
δ

4ε j
, r = |y|.

For the other terms we find

|∇2z̃0 j| ≤ |∇2h|z0 j + 2|∇h∇z0 j| + h|∇2z0 j|
= O(

1

r2 log δ
ε j

) + O(
1

r3 log δ
ε j

) + O(
1
r3

) R + 1 < r <
δ

4ε j

so

O(ε j|y|)|∇2z̃0 j| = O(
ε j

r log δ
ε j

) + O(
ε j

r2
) R + 1 < r <

δ

4ε j
.
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Also

|∇z̃0 j| ≤ |∇h|z0 j + h|∇z0 j| = O(
1

r log δ
ε j

) + O(
1
r2

) R + 1 < r <
δ

4ε j
.

Hence

(
Lz̃0 j + ε

2
j z̃0 j

)
= O(

1

r3 log δ
ε j

) + O(
ε j

r log δ
ε j

) + O(
ε j

r2
) + ε2

j z̃0 j R + 1 < r <
δ

4ε j
.

(6.35)

In the region δ
4ε j
< r < δ

3ε j
the definition of z̃0 j is z̃0 j = η2hz0 j. We will estimate each term

of (6.13) using the facts that ∇η2 = O( ε j

δ
), |∇2η2| = O(

ε2
j

δ2
) and that in the considered region

h = O( 1
log δ

ε j

) which implies also z̃0 j = O( 1
log δ

ε j

). We obtain

Δz̃0 j = Δη2hz0 j + 2∇η2∇(hz0 j) + η2Δ(hz0 j)

= Δη2hz0 j + 2∇η2∇hz0 j + 2∇η2∇z0 jh + 2η2∇h∇z0 j

= O(
ε2

j

δ2 log δ
ε j

) + O(
ε j

rδ log δ
ε j

) + O(
ε j

r2δ log δ
ε j

) + O(
1

r3 log δ
ε j

)

= O(
ε2

j

δ2 log δ
ε j

)
δ

4ε j
< r <

δ

3ε j
.

Next

∇2z̃0 j = ∇2η2hz0 j + 2∇η2∇(hz0 j) + η2∇2(hz0 j)
δ

4ε j
< r <

δ

3ε j
.

and by the above computations, for δ
4ε j
< r < δ

3ε j
,

∇2z̃0 j = O(
ε2

j

δ2 log δ
ε j

) + η2(∇2hz0 j + 2∇h∇z0 j + h∇2z0 j) = O(
ε2

j

δ2 log δ
ε j

).

Similarly, for δ
4ε j
< r < δ

3ε j

∇z̃0 j = ∇η2hz0 j + η2∇hz0 j + η2h∇z0 j = O(
ε j

δ log δ
ε j

)

This shows that (
Lz̃0 j + ε

2
j z̃0 j

)
= O(

ε2

δ2 log δ
ε j

)
δ

4ε j
< r <

δ

3ε j
.(6.36)

Thus we only need to estimate the size of Lz̃0 j + ε
2
j z̃0 j in the region R < r < R + 1. In this

region we have z̃0 j = η1z0 j + (1 − η1 j)hz0 j and hence

Δz̃0 j = Δη1(1 − h)z0 j − 2∇η1∇hz0 j + 2∇η1∇z0 j(1 − h) + η1Δz0 j

+ (1 − η1)Δ(hz0 j)

= O(
1

log δ
ε j

) + +η1Δz0 j + (1 − η1)Δ(hz0 j) R < r < R + 1.
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First we recall that Δz0 j = 0 and, for R < r < R + 1,

Δ(hZ0 j) = 2∇h∇z0 j + O(ε j) = O(
1

log δ
ε j

) + O(ε j).

Thus

(6.37) Lz̃0 j + ε
2
j z̃0 j = O(

1

log δ
ε j

) R < r < R + 1.

This bound and (6.34), (6.35) and (6.36) imply (6.27).
Proof of (6.28). We shall prove

‖L(Z̃0 j)‖∗,∂Ω ≤ C
| log ε j|

We perform the change of variables y = ε−1
j F j(x). We already observed that we can assume

that ∇F j(ξ j) = I. Hence,

L(Z̃0 j) = (1 + o(1))
[
B(z̃0 j) − W̃z̃0 j

]
where z̃0 j = Z̃0 j(F−1

j (ε jy)) and W̃(y) = W(F−1
j (ε jy)). B is the differential operator of order

one on ∂IR2
+, defined in (6.15) and W̃ is described in (6.16). Thus in the region y ∈ ∂

(
Ω
ε j

)
,

with |y| < R, we get

(6.38) B(z̃0 j) − W̃z̃0 j = O(ε j)

Next, in the region R < |x| < R + 1 we have

∇z̃0 j = ∇(η1(1 − h)z0 j + hz0 j)

= ∇η1(1 − h)z0 j − η1∇hz0 j + η1(1 − h)∇z0 j + ∇hz0 j + h∇z0 j

= O(
1

log δ
ε j

) + η1(1 − h)∇z0 j + h∇z0 j.

Since h is radial this implies

B(z̃0 j) = −h
∂z0 j

∂x2
+ O(

1

R2 log δ
ε j

) + O(
Rε j

log δ
ε j

) R < |y| < R + 1, y ∈ ∂IR2
+.

Using (6.16) we see that

B(z̃0 j) − W̃z̃0 j = O(
1

R2 log δ
ε j

) + O(
Rε j

log δ
ε j

) R < |y| < R + 1, y ∈ ∂IR2
+.(6.39)

Using the fact that h has zero normal derivative on ∂IR2
+ we deduce

B(h̃z0 j) = −h
∂z0 j

∂x2
+ O(ε jr)(∇hz0 j + h∇z0 j)(6.40)

= −h
∂z0 j

∂x2
+ O(

ε j

log δ
ε j

) + O(
ε j

r
) R + 1 < r <

δ

ε j
.

On the other hand, using (6.16) we have in R + 1 < r < δ
ε j

(6.41) B(z̃0 j) − W̃z̃0 j = O(
ε j

log δ
ε j

) + O(
εαj

r
)
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for some 0 < α < 1. Finally we consider δ
4ε j
< r < δ

3ε j
. Here we have z̃0 j = η2hz0 j and

h, z0 j = O( 1
log δ

ε j

), ∇η̄2 = O( ε j

δ
). Using these facts, estimate (6.40) and that η2 has zero

normal derivative we find
B(z̃0 j) = B(η2)hz0 j + η2B(hz0 j)

= O(
ε2

j r

δ log δ
ε j

) + O(
1
r2

) + O(
ε j

log δ
ε j

) + O(
ε j

r
)

δ

4ε j
< r <

δ

3ε j
.

From (6.16) we have

W̃ = O(
εαj

r
)
δ

4ε j
< r <

δ

ε j
.

Thus we conclude that for y ∈ ∂Ωε j ,
δ

4ε j
< r < δ

3ε j

(6.42) B(z̃0 j) − W̃z̃0 j = O(
ε2

j r

δ log δ
ε j

) + O(
1
r2

) + O(
ε j

log δ
ε j

) + O(
ε j

r
).

Estimates (6.38), (6.39), (6.41) and (6.42) give the validity of (6.28).
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