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CRITICAL POINTS OF THE TRUDINGER-MOSER TRACE FUNCTIONAL
WITH HIGH ENERGY LEVELS

SHENGBING DENG AND MONICA MUSSO

Abstract: Let Q be a bounded domain in R? with smooth boundary. In this paper we are
concerned with the existence of critical points for the super critical Trudinger-Moser trace
functional

(01) f ekﬂ(1+/,l)u2
0Q

in the set {u e H(Q) : fQ(IVMI2 +u?)dx = 1}, where k > 1 is an integer and u > O is a
small parameter. For any integer k > 1 and for any u > 0 sufficiently small, we prove the
existence of a pair of k-peaks constrained critical points of the above problem.

Keywords: Trudinger-Moser trace functional; Reduction methods.

1. INTRODUCTION

Let Q be a bounded domain in R? with smooth boundary, and let H'(Q) be the Sobolev

space, equipped with the norm
1
2
llul| = ( f (IVul? + uz)dx) .
Q

Let a be a positive number, the Trudinger-Moser trace inequality states that

< i <
(1.1) CoQ) = sup f g | SC<teoibasn
ueH' (Q), [lull<1 JoQ = +o00, if a>n

[1, 2, 6, 7, 18, 22, 23]. Let us mention that the early works [6, 7] do not include the
case when the constant in (1.1) is exactly 7. For (1.1) there is a loss of compactness at
the limiting exponent @ = . Despite of that, it has been proven in [29] that the supremum
C(Q) is attained by a function u € H'(Q) with fQ[WuI2 +u*] = 1, for any bounded domain
Q in R?, with smooth boundary. Also, for any @ € (0, ), the supremum C, () is finite and
it is attained. But the exponent @ = 7 is critical in the sense that for any @ > 7, C,(Q) = co.
See also [8, 16, 17] for generalizations.

The aim of this paper is to study the existence of critical points of the Trudinger-Moser
trace functional

(1.2) E,(u) = f e,
oQ
constrained to functions
(1.3) weM={ueHQ) : uP =1}
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ACT-125, Chile.
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in the super critical regime
a > T

In view of the results described above, we will be interested in critical points other than
global supremum. As far as we know, no results are known in the literature concerning
existence of critical points for the Trudinger-Moser trace constrained problem in the super
critical regime. Nevertheless, much more is known for the corresponding Trudinger-Moser
functional.

Let us recall that the Trudinger-Moser inequality in dimension 2 states that

5 <C <+o0, if u<dn
(1.4) sup f e dx _
ueH}(Q), [IVul<1 JQ = +00, if u>4m.

Here again Q is a bounded domain of IR?, with smooth boundary. We refer the reader to
[25, 23, 28, 30] for the first works on Problem (1.4), and to [3, 4] for some more recent
contributions. For problem (1.4) there is a loss of compactness at the limiting exponent
= 4m [21]. Despite of this loss of compactness, the supremum

2
sup f M dx
ueH)(Q), [[Vul,<1 Y

is attained for any bounded domain Q c R?. This was proven first in the seminal work [5]
for the ball QQ = B;(0) (see also an alternative proof in [10]). In [26] the result was proven
for domains Q which are small perturbation of the ball. The general result in dimension 2
was proven by Flucher in [14], and Lin [20] extended it for the corresponding Trudinger-
Moser inequality for general domain of R, with N > 2.

Concerning the super critical regime for the Trudinger-Moser functional, namely
(1.5) L(u) = f ¢ dx, we HYQ), VUl = 1, with u > 4z,
Q

some results are known. In the works [26] and [15] it has been proven that a local maxima
and saddle point solutions in the supercritical regime u € (4, o) for the functional (1.5)
do exist, for some py > 4.

Our first result is an extension of the existence of a local maxima for the Trudinger-
Moser trace functional in the super critical regime « € (r, @p). Namely, a local maximizer
for Problem (1.2)-(1.3) exists when the value of « is slightly to the right of x.

Theorem 1.1. Let Q be a bounded domain in R%. Then there exists ay > n, such that for
any a € (0, ap), there exists a function u, € M which locally maximizes of E, on M.

This result is proved in Section 2.

Much more is known for Problem (1.5) and i > 4x. Recently in [12] (see also [11]), the
authors obtained several results concerning critical points for Problem (1.5) also in a very
super critical regime. They found general conditions on the domain Q under which there
is a critical point for /,(u) with fQ |Vul’dx = 1 when u € (4rk, u;), for any integer k > 1
and for some y slightly bigger than 4 7 k. In particular, for any bounded domain Q, they
found a critical point for /(1) with fQ |Vul’dx = 1 when u € (4n, 1), for some p; > 4.
The L*-norm of this solution converges to co as u — 4 and its mass is concentrated, in
some proper sense, as ¢ — 4, around a point in the interior of Q. On the other hand, if Q
has a hole, namely it is not simply connected, they proved the existence of a critical point
for 1, (u) with fQ [Vul>dx = 1 also in the super critical range u € (87, 1), for some o > 8.
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Again in this case, the L*-norm of these solutions converges to oo as u — 8, but now its
mass concentrates, as ¢ — 8, around two distinct points inside Q. Furthermore, if Q is an
annulus, taking advantage of the symmetry, a critical point for 1, (u) with L |VulPdx = 1
and u € (4nk, yi) does exist. In this latter case, the L*-norm of the solution converges to
oo as 4 — 4nk and its mass concentrates, as g — 4k, around k points distributed along
the vertices of a proper regular polygon with k sides lying inside Q.

The second result of this paper establishes the counterpart of the above situation for the
Trudinger-Moser trace functional in the super critical regime: we will show the existence
of critical points for E, constrained to M, for a € (kn, @), for any k > 1 integer and for
some a slightly to the right of k7 . We next describe our result.

Let G(x,y) be the Green’s function of the problem
{—AxG(x’ ») +G(x,y) =0 x e,

28D = 2, (x) x € 09,

(1.6)

and H its regular part defined as

(1.7) H(x.y) = G(x,y) = 2log 7= 5

Our second result reads as follows.

Theorem 1.2. Let Q be any bounded domain in R? with smooth boundary. Fix a positive
integer k > 1. Then there exists ay > kn such that for a € (km, ay), the functional E,(u)
restricted to M has at least two critical points u, and u(z, Furthermore, for any i = 1,2

there exist numbers mé,’d > 0 and points §;a € 0Q, for j=1,...,k such that
(1.8) ali[ilﬂ m';, = m'; € (0, ),
(1.9) &, > EedQ, with &#& for j#1, as a—kn
and

. a -k b . .
(1.10) ul(x) = |l Gx. &) +o(D]. i=1.2,

j=1

where o(1) — 0 uniformly on compact sets of Q\{f’i, ... ,f,i}, as @ — kn. In particular,
(Em'y = (&,....&,mi,....m) in (0" x (0,00), for i = 1,2, are two distinct critical

points for the function

2 k k
feomy =7 lz D milog(2n) = " mHELE) ~ Y mimGEED| .
j=1 J=1

i#]
Moreover, for any i = 1,2, for any 6 > 0 small, forany j=1,...,k,

(1.11) sup ufl(x) — +00, as a— km.
xeB(£L0)

There are two important differences between the result stated in Theorem 1.2 and the
corresponding result obtained in [12] for the Trudinger-Moser functional (1.5). A first dif-
ference is that for Problem (1.2)-(1.3) existence of critical points in the range @ € (k 7, @)
is guaranteed in any bounded domain Q with smooth boundary, at any integer level k. No
further hypothesis on Q is needed, unlike the Trudinger-Moser case (1.5). The second
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difference is that, we do find two families of critical points for Problem (1.2)-(1.3) when
a € (km, ay), and not only one as in the Trudinger-Moser case (1.5).

In recent years a very successful method has been developed for studying elliptic equa-
tions in critical or supercritical regimes. The main idea is to try to guess the form of
the solution (using the shape of the “’standard bubble”), then linearize the equation at this
approximate solution and use a Lyapunov-Schmidt reduction to arrive at a reduced finite
dimensional variational problem, whose critical points yield actual solutions of the equa-
tion. In this paper we use this method to study problem (1.2)-(1.3) in the supercritical
regime. We explain this in Section 3, where we also provide the proof of Theorem 1.2.
Some technical results are postponed to Section 4 and Section 5.

Let us just mention that through out the paper, C will always denote an arbitrary positive
constant, independent of A, whose value changes from line to line.

2. THE LOCAL MAXIMIZER: PROOF OF THEOREM 1.1

We set
@D Ew= [ .
oQ
and
(2.2) My ={ueH'Q) : |lul = o).

We note that by the obvious scaling property, finding critical points of £, on M (see (1.2)
and (1.3)) is equivalent to finding critical points of E on M, (see (2.1) and (2.2)). In this
section, we study the local maximizer for the functional E constrained on the set M, with
a in the right neighborhood of 7.

We start with the following Lion’s type Lemma. The proof is quite standard, but we
reproduce it here for completeness.

Lemma 2.1. Let u,, be a sequence of functions in H'(Q) with |lu,|| = 1. Suppose that
Uy — ug weakly in H'(Q). Then either
(i) up = 0,
or
(ii) there exists a > m such that the family e is uniformly bounded in L*(0Q).
In particular, in case (ii), we have that

f M — & asm — oo.
Q oQ
Proof. Since |lu,,|| = 1 and u,, — uy weakly in H'(Q), we have

L(VumVuo + Uyly) — L(W%'Z + u(z)) as m — oo,

Thus we find that

m—oo

lim [, — uoll* = lim {f[lv(um —up)* + (ty, — M())Z]}
m—oo Q

lim {Ilumll2 -2 f(VumVuo + Uplp) + ||M0||2}
m—oo Q

2
1= {luoll”.
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Assume uy # 0. Take p € (1, m), and choose ¢; and ¢, such that 1 < pgq; <

1
Ity =t0l?
and qll + ql—z = 1. By Holder inequality we have

f eﬂ'purzn - f enp(um—mwuo)z — f enp[(um—uo)z+2(u,,,—u(;)uo+ur2,]
oQ oQ oQ

=f P Ln=100) + 2013 | Sf &P =0 Y +2t110]
oQ oQ

T 4
q1 q2
— f P Un=10) 2mpitnity < ( f eﬂpql(umtto)z) ( f e27rpqzumuo) i
00 00 00

We now recall that
(2.3) m=supif :  sup f " do < oo
ueH Q). lull<1 JoQ

see for instance [2, 6, 7, 18]. Hence, given the choice of p and g;, we get that there exists
a constant C, independent of m, such that

_ 2
f P =0)”
oQ

On the other hand, Young’s inequality implies that 2|u,,uo| < £%u?, + g%u(z), with & > 0 small.
Then from (2.3), we have

2.2 1.2 1.2
f XPDMl f eﬂpqz[s Uy 5 gl _ f enpqzszuzﬂ FPLEN < O
aQ Q o)

by choosing & so that pg,e> < 1. Here again C is a constant, independent of m. Thus, we
have that there exists @ = pzr > 7 such that the family e is uniformly bounded in L*(0).
We shall now show that

2 2
2.4) f emn — &M asm — oo.
a0 00

Indeed, let / be a positive number and p > 1. We have
1 N z(p)—l)
< 2(p-1) f eiru,,, uml
177 00

2 2 2
f o _ f i f i
Q QN |u,|<1) QN {|u, [>1}
1 ; Tc
S\ P P
T, 2
< 2(p-1 (f € ’) (f Mm) 2p-1) *

177 \Jaa a0 =7

From the above relation, we conclude that

2 2 C
f < 100 + <.
00 I

P

IA

Hence dominated convergence Theorem implies (2.4).

Suppose now that “n is not bounded in L*(0Q) for any a > 7. Using Stokes theorem,
for @ > m we have

2 . 2 2
f eMndo = f div(e™m)dx < Cf |Vt ||ty |e™ ' d x
0Q Q Q

2 i R
sc( f |Vum|2dx) ( f |um|qu) ( f eﬂ"mdx)
Q Q Q
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where g > 1 satisfies § + ‘11 +§ = 1 with 8 > 27. Then we get that IS Pndx is unbounded

for all B > 2n.
Observe now that we can assume that fﬂ u,dx = 0, since otherwise we set i,, = u,, —

Iﬁll fQ u,,dx and obtain fQ u,,dx = 0. We can also assume that fQ |Vu,,[> = 1. Furthermore,

by Poincaré inequality, (u,,) is bounded in H'(Q), and also (|u,,|) is bounded in H'(Q).
Hence there exists u € H'(Q) such that |u,,| — uy weakly in H'(Q). We claim that

(2.3) lim | [V —n)Pdx=1 ¥Yn>0.
Q

m—oo

By contradiction, assume there exists 7 > 0 such that lim,, fﬂ IV(uty — )" Pdx # 1.
Define y = inf fn IV(u,, — 7)"Pdx < 1 and choose a sufficiently small & > 0 such that
m

o = % > 27, Let us recall that

(2.6) 2 =supif : sup fe‘)"zdx <oop,
ueH (Q), [, IVuP<1, [ u=0 Y Q

(see [2, 6, 7, 29]). From (2.6), there exists a positive constant C such that

Qb= = &5 fey Qb=+
”[ [ Jo
e

2
, . P 2
fealou,,,\—rn A f e ] dx <C.
Q Q

where we use the fact that fQ IV%lzdx <1.
Define d,, = ﬁ fQ(luml —n)*. Choosing & > 0 small such that @ := % > 2r, and by
the Young’s inequality,

”,Zn < (77 + dm)2 + 2(77 + dm)[(luml —~ 77)+ - dm] + [(|um| - 77)+ - m]2

1
< (1+ &)l = )" = dp)® + (o + D+ d)’.

Thus, since there d,, = O(1) as m — oo,

- o 2 ’ L :
f e(mgldx — f e T+ Un <C f & [(Ium\*n)*—@ fgz(lumlﬂm] dx < O,
Q Q Q

for some positive constants C; and C,. This is a contradiction, thus (2.5) holds.
Set v,, = min{|u,,|,n}, then v,, is bounded in H'(Q) and, up to subsequence, we have
that v,, — v. Observe now that |u,,| = v,, + (lu,,| — )", and

1= f Vit * > f |V ety dx = f Vvl dx + f IV(ltt| — )" Pdx.
Q Q Q Q

Therefore (2.5) implies that that fQ [Vv,|>dx — 0as m — oo, so v is constant. On the other
hand,

lim f Vv, l*dx = lim [V ]u|Pdx = 0.
Q

m=ee M= Jan(lunl<n)

This implies that [{x : |u,,| > n}| = 0 as m — oco. By Fatou Lemma,
{x:up > n}| <liminf [{x : |u,| =71}l =0,
then [{x : uy > n}| = O for any > 0. Hence we get uy = 0. O

We denote 8 := sup E(u) = sup E(u). A direct consequence of the previous Lemma is
ueM;, ueM

the following
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Proposition 2.1. Let u,, be a bounded sequence in H'(Q) with |lu,|| = 1. Suppose that
Uy — Uy weakly in H'(Q). Suppose Er(u,,) — B with 8 > |0Q|. Then there exists « > 1t
such that the family e is uniformly bounded in L*(0Q). In particular E;(u,,) — Er(up)
and uy # 0.

Proof. Suppose ¢“n is unbounded in L*(0Q) for all @ > 7, and assume the supremum of
E; on M is not attained. Then by Lemma 2.1, we have that ©y = 0, which is impossible
because E,(u,,) — S > |0Q)|. ]

Let K, be the set defined by
K:={ueM : E(u) =p}.
Lemma 2.2. The set K is compact.
Proof. Let {u,,} C K be such that u,, — uy weakly in H'(Q), then by Proposition 2.1,
Ex(un) — Ex(uo).

Moreover, ||uo|| < ||ul| = 1, then

Ex(u) < Ex(—2) < sup Ex(v) = B.
Il o|| veM

Then we get E(ug) = S, and ||ug|| = 1, hence u,, — ug strongly in H'(Q), hence K, is
compact. O

The property of K of being compact implies that the family of norm-neighborhoods
Ne={lueM|AvekK,: |lu-v||<e&}
constitutes a basic neighborhood for K in M.

Lemma 2.3. For sufficiently small € > 0, one has

2.7 sup E; < =supkE;.
Nop\Ng Ne
Proof. We argue by contradiction. We suppose that there is a sequence u,, € N,.\N, such
that E,(u,,) — f. Then we have u,, € H'(Q) with |lu,,||> = 1. Up to subsequence, we can
assume that u,, — uo weakly in H'(Q). By the definition of N, there is z,, € K, such that
[z — umll < 2¢. By the compactness of K, we have that z,, — z strongly, with z € K, and
z satisfies ,
a Z
~Az+z=0 Q. 2= o ondQ
4 f[)QZ e

By the maximum principle, we have z € L*(Q).

By the lower-semi continuity, we have ||z — up|| < 2e. Then

llz - mll < llz = uoll + lluo — mll llz = uoll + 1 = [luol| < 4e.

Thus % ”u i € Nyg, and so E (ug) < E”(Huon) < B. If Ex(up) = B then ||ug|| = 1, and u,, — uo.
On the other hand, our assumption implies that uy ¢ N,, thus uy does not belong to K, and
g can not be relatively maximal. Thus we necessarily get E(uo) < .

Set Wy, = Uy, — Zp + 2, S0 We have w,, — ug weakly in H'(Q). Since

2 2 2 2 - 112 2
Ml — Tzt o 2=zl 2P _ 2l P (i 2miz  Smed ()2 o

Choosing & small such that 166> < 1, then from (2.3) we have that el s uniformly
bounded in L*(9Q), as m — oo. Thus lim E;(w,,) = Er(uo). On the other hand, we have
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W — Uy — 0 strongly in H'(Q). By uniform local continuity of E, and compactness of
K, we obtain that E,(w,,) — E;(u,,) — 0, and E,(up) = 8. This is a contradiction. m]

Lemma 2.4. There exists a* > n, € > 0 such that for all « € [r, @), then we have
(i)
(2.8) sup E, < supE,.
Noe\Ne Ne
(ii) By = sup E, is achieved in N..
Ng
(iii) Ko = {u € N | Eo(u) = B} is compact.

Proof. (i) Since K, is compact, there is a neighborhood N of K such that, for any ¢ > 0
there exists ¢’ > 0 such that for all |@ — | < ¢ then E,(u) — Ex(u)| < ¢, for all u € N.
Choose € > 0 such that (2.7) holds and N, C N, then (2.8) will be valid for all @ in a small
neighborhood of 7.

(ii) For such a, and let u,, € N, be a maximizing sequence of E,, that is, E,(u,,) — Ba
and let v,, € K, satisfy ||u,, — v,u]| < &.-We may assume that v,, — v strongly in H'(Q) with
v e L*, and u,, — u weakly in HY(Q). Set wy, = Uy, — vy + v, as the proof of Lemma 2.3,
we obtain that for £ > 0 small, @ in a neighborhood of 7= we have that

Ear(wm) - Ea(“)a Ea(“m) - Ea(wm) — 0 asm — oo

Then E,(u) = ,. Moreover, by the lower-semi continuity, we have ||v — u|| < &. Then

u u
==l <lv—ull+llu——l =lv—ull + 1 —[lul] < 2e.

[l lull

We get that HII:_H € N, and Ea(ﬁ) < Ba- Furthermore, since ||u|| < 1, we can get Ea(ﬁ) <
E,(u) and ||u|| = 1. It implies that u € M, that is u € N, and 3, is attained. Moreover,
u,, — u strongly in H'(Q).

(iii) As the proof of (ii), if u,, € K,, we may assume that u,, — u weakly in H'(Q), we
then get u € K,, that is K,, is compact. ]

Proof of Theorem 1.1: From (2.3), we have that sup E is achieved for @ < 7. Moreover,
M,

since sup E(u) > |0Q)|, from Lemma 2.4 we have thaat for a sufficiently close to x, then E
ueM;,

has relative maximizers on M,,.

3. THE PROOF OF THEOREM 1.2

In this section, we consider critical points of functional E(u) constrained on the set M,
(which is equivalent to consider critical points of E,(u) constrained on the set M with
a = kn(1 + u), where u > 0 small). We define a critical point of E, constrained on M to be
a solution of the following problem

—“Au+u=0 in Q;
3.1

u u?

o = Aue on 0QQ,
where
(3.2) 1 a _ k(1 +p)

= fag MZeu2 - J;)Q u2euz :
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In this section we shall prove the existence of solutions to Problem (3.1)-(3.2) with the
properties described in Theorem 1.2. In fact, we will construct a solution to (3.1)-(3.2) of
the form

(3.3) u="U+¢,

where U is the principal part while ¢ represents a lower order correction. In what follows
we shall first describe explicitly the function U(x). The definition of this function depends
on several parameters: some points & on the boundary of Q and some positive numbers m.
Next we find the correction ¢ so that U + ¢ solves our Problem in a certain projected sense
(see Proposition 3.1). Finally we select proper points & and numbers m in the definition of
U to get an exact solution to Problem (3.1)-(3.2).

To define the function U, first we introduce the following limit problem
Aw=0  in R
(3.4) v =¢”  on OR%;
foRi e < oo,
A family solutions to (3.4) is given by

2u
(x1 = 02 + (2 + 2’

(3.5) Wiu(X) = wyu(x1, x2) = log

where t € R and u > 0 are parameters. See [19, 24, 31]. Set

2u
3.6 wu(x) 1= wpu(x) = log 57—
(3.6) 00 1= W0u() = log s
Let &, ..., & be k distinct points on the boundary and m, . . ., my be k positive numbers.

We assume there exists a sufficiently small but fixed number 6 > 0 such that
1
3.7 & —&jl>0 fori# j, 6<mj<5.

For notational convenience through out the paper we will use the notation

(f’m) = (gls"'vgkamlw“vmk)'

Forany j=1,...,k, we define &, to be the positive numbers given by the relation
2 1 2
(3-8) 2m; (log = +2 log(ij)) =1
E”
J

Since the parameters m; satisfy assumption (3.7), it follows that lim,_,g&; = 0. Define
moreover /1 to be the positive constants given by

(3.9) log(2u;) = —210g(2m§) +H(E ) + Z mim;lG(fi,fj).
i#]
Using once more assumption (3.7), we get that there exists two positive constants ¢ and C,

such that ¢ < p; < C,as 1 — 0.
We define the function U in (3.3) to be given by

k
(3.10) Ux) = VA mj[u;x) + Hyx)],

=
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where
1
g -
lx = & — &juv(é)

v(¢;) denoting the unit outer normal to 0L at the point &;, and where H; is a correction
term given as the solution of

(.11) uj(x) = lo

—AHj+Hj=—uj in Q;
(3.12) )
% =2¢gjue" — % on 0Q.

Arguing as in Lemma 3.1 in [9], one can show that the maximum principle allows a precise
asymptotic description of the functions H;, namely we have that

(3.13) Hj(x) = H(x,&)) + 0(83-’) for 0<o <1

uniformly in Q, as 4 — 0. Recall that H is the regular part of the Green’s function, as
defined in (1.6). Therefore, the function U can be described as follows

k
(3.14) U@ = V1) mj[Gx.£) + 0]

=1

uniformly on compact sets of Q\ {&1,...,& ), as 4 — 0. On the other hand, if we consider
aregion close to &;, for some j fixed, say for |x — &;| < ¢, with sufficiently small but fixed
0, We can rewrite

(3.15) U(x) = Vam; (w;(x) + loge;” + B, + 6(x)).
where

x=§ 2 x o, &
3.16 O =w, (—y—jog—— T L g
(3.16) wi(x) = w,( 4 ) = log =&~ uE)P y p & sj

and

k
Bj = —logQu)) + HEE) + Y mi'miG(€;,6),  0(x) = Ox—&l) + ) O

i Jj=1

Define on the boundary 9Q the error of approximation

U
(3.17) Ri= fU) = .

Here and in what follows f denotes the nonlinearity
Fit) = Aiie™ .

The choice we made of y; in (3.9) and of ¢; in (3.8) gives that in the region |x — &;| < 6,
the error of approximation can be described as follows

G18)  R=myVa{(1+2am2(w; + 0(1)) ™I (1 + O(w)) - 1} &7 e,
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where w; is defined in (3.16). Indeed, for x € 0Q with |x — &;| < 8, we have that

-2 2
A FU) = A[my (w0 + log &7 + B + 6(x)) | elmluitoioze; s +60)]

1
= (/lmj(log 8—2 +Bj) + Amj(w; + 0(1))]
J
Am(log 4 +8))* 2m%(log L +B))w; 2Am’(log ﬁ +B)0(x)
j e j e i e

we Amﬁ(wﬁe(x))z

1 1
= Am;(log 2 +8B;) [l + (log 2 +Bj)_1(Wj + 0(1))]
J J

2 1 )2 2 1 ). 2 1 A
><e/!m,.(log ¥+ﬁj) eZ/lm/(log Ef +B)w; eZ/lmj(log gf +ﬁ’)9(x)e/lm§(wj+9(x))2
1 3(og L +8))
= — (1+2amlw; + 0(1))e” 7
2mj J X

Vi ! e/lm?(w,'+9(x))2

L _ )i m2w?
= %sj'eﬁf/z (1+20m(w; + O(1))) e"e" eI (1 + O()w))
thanks to the definition of &; in (3.8). On the other hand, in the same region, we have

k
P ac,)—lvj = % [m; (wi(x) +loge;® + B; + 60))| = mje;' e + ; O(), as A1 0.

The definition of u; in (3.9) allows to match at main order the two terms %—lg and f(U) in
the region under consideration, since we , we easily get that

A2 ) = my (1 +2am2(w; + O(1)) &7 7€ (1 + O(w))).
These facts imply the validity of expansion (3.18). Let us now observe that a direct com-
putation shows that R(x) ~ /lgsjflewf(” in the region |x — &;| = O(A); while, in the region

[x — &I > ¢ for all j, we have that |[R(x)| < C/l%, for some positive constant C. We thus
conclude that the error of approximation satisfies the global bound

IR < CA3p(x),
where
k
P(X) = ) (OB (0) + 1.

=1
Here y () is the characteristic function on B5(¢;) () 9 and

1 m2w? -1 w
P = =g {(1+2m(w; + 0(1)) " (1 + O(w))) — 1} &5 e
J

From now on, let us write

(3.19) pj(x) =cy; {(1 + i(wj + 1))(1 + i(l + ijl)) e% - 1}8;] i,
Yi Y

J

where y; = log £;%. We define the L*~weight norm
(3.20) lI7ll.a0 = sup p(x)~' [A(x)|.
x€0Q)

We thus have the validity of the following key estimate for the error term R

(3.21) IRll.00 < CA3.
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Up to this point, we have defined a function U, whose expression depends of &i,. .., &
points on 9L, and depends of m;, ..., my positive numbers. These points and numbers
satisfy the bounds (3.7). We next describe the problem that the function ¢ in (3.3) solves.

Define in R2 = {(x1,x;) : x» > 0} the functions

(et 2) = R
20iX1, X)) = — —2—F5—""—,
! Hj X+ o+ pg)?
It has been shown in [9] that these functions are all the bounded solutions to the linearized
equation around wy,; (3.6) associated to Problem (3.4), that is they are the only bounded
solutions to

X1

21i(x1,x0) = 22—,
1j(x1, x2) Ft ()

0 ,
(3.22) Ay =0 in R2, W "y on ORZ.
6x2
For ¢; € 0Q, we define F; : Bs(¢;) — O to be a diffeomorphism, where O is an open
neighborhood of the origin in ]Ri such that F;(Q N Bs(&))) = R2NO, F H(0Q N Bs(€)) =

AR2 N O. We can select F; so that it preserves area. Define
(3.23) Zij0) =zj(e]' Fi), i=0.1, j=1,... .k

Next, let us consider a large but fixed number Ry > 0 and a nonnegative radial and smooth
cut-off function y with y(r) = 1 if r < Ry and y(r) = 0if r > Ry + 1,0 < y < 1. Then set

(3.24) xi(x) = &5'x (87 F ().
The problem we solve is the following: given &i,...,& and my,...,my; satisfying the
bounds (3.7), find a function ¢ and numbers ¢;; such that
AU+ +U+¢)=0 inQ;
(3.25) WD — QU + )V + V2 3, 3 c,,X, L ond;

i=0,1 j=1
fQXjZij(/) =0 for i=0,1, j=1,....k
Consider the norm

ll$lles = sup [¢(x)]-

xeQ
In [13], we have the following result.

Proposition 3.1. Let 6 > 0 be a small but fixed number and assume points the &1, ..., & €
0Q and the numbers my, . ..,my satisfy (3.7). Furthermore we assume that &; and j1; are
given by (3.8) and (3.9). Then there exist positive numbers Ay and C, such that for any
0 < A < Ao, there is a unique solution ¢ = ¢(A,&,m), ¢;j = ¢;j(A,&,m) to (3.25). Moreover,

(3.26) Iglle < CA2, eyl < CA.

Furthermore, function ¢ and constant c;j are C ! with respect to (¢, m), and we have
(3.27) IDemlle < CAZ, | Depcijl < CA.

We will sketch the proof in Section 4, leaving some technical details to the Appendix 6.

Assuming for the moment the validity of the statement in the above Proposition, we
observe that U + ¢ is an exact solution to Problem (3.1), if there exists a proper choice of
A, of the points &; and the parameters m;, such that

k(1 + p)

3.28 ==—
429 [io(U + ¢)2eV+o?

and ¢;; =0, forallj,j
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or equivalently
(3.29) f [IV(U + )P + (U + ¢|dx = kn(1 + ) and c;; =0, foralli,j.
Q

In order to solve (3.29), we are in the need of understanding the asymptotic expansion,
as 1 — 0, of fQ [IV(U +o))? + U + ¢)2] dx in terms of the localization of the points & and
the values of the parameters m. Next Proposition contains this result, together with the
asymptotic expansion of fasz U as 1 — 0, again in terms of in terms of & and m.

Proposition 3.2. Under the conditions of Proposition 3.1, Assume that & and u; are given
by (3.8) and (3.9). Furthermore, we assume that A is a free parameter. Then, as 1 — 0, we
have

(3.30) f [V + @) + (U + ¢ dx = ke {1+ 1fi€,m) + 12@,(6,m))
Q

where

(3.3 fulé,m) =

1

k k
[2 > mdlog@md) = 3 miH(E; £) ~ Y mimiG(&;, .f,»)} .

j=1 =1 i#]
Moreover, as A — 0,

k k
(3.32) fé i V" =10Q] +4n Y md+ 1Y
=1 j=1

where € is a positive constant. In (3.31) and (3.32) the function © (¢, m)(x) denotes a
generic smooth function, uniformly bounded together with its derivatives, as 1 — 0, for
(&, m) satisfying (3.7). In (3.31) and (3.32), G is the Green function defined in (1.6) and H
its regular part, as defined in (1.7).

c+ f Gz(x,f,-)]uzm(g,m),
oQ

Next Proposition will suggest how to solve Problem in (3.29).

Proposition 3.3. Under the conditions of Proposition 3.1, let R be the set of points (&, m)
satisfy (3.7). then there exist py > 0 and a subregion R’ of R such that for all 0 < pu < o
and for all (¢,m) € R’, there exists a function A = A(u, &, m) such that

(3.33) f (VU + &) + (U + ¢ |dx = kn(1 + ) for all p>0, u— 0.
Q

Moreover; A is a smooth function of the free parameter p, of the points &, . .., & and of the
parameters my, . ..,mg. Furthermore, 1 — 0as u — 0 for points &, . .., & and parameters
my,...,my belonging to R'. With this definition of A, we have that the function ¢ and the
constants c;j are C Lwith respect to (¢, m). We finally have that

(3.34) DeyEU+¢)=0 = ¢;;=0 foralli,j.
See (2.1) for the definition of E.

The proofs of Proposition 3.2 and of Proposition 3.3 are postponed to Section 5.

Given the choice of A defined through formula (3.33), for all i > 0 small, Proposition
3.3 gives that U + ¢ is a solution to problem (3.1)-(3.2) if we can find (£, m) to be a critical
point of the function

(3.35) I(¢,m):=EU+¢).

We have now all the elements to give the
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Proof of Theorem 1.2: Let D be the open set such that
DcfEme@ xR &#&. Vi j)

Let U(x) be defined as in (3.10), and ¢(x) be the solution of problem (3.25), whose exis-
tence and properties are stated in Proposition 3.1. Proposition 3.3 gives that

u(x) = U(x) + ¢(x)
is a solution to problem (3.1)-(3.2) if we can find (£, m) to be a critical point of the function
I(&m) = E(U +¢).
From (3.33) and (3.30), we have
(3.36) Afi(&m) + O & m) = u

where

k k
2
fémy =2 [2 > mtlog@m?) - )" mAH(E;, ) = ) mmGE, f,-)] :
=1 =1 i#]
In (3.36), ©,(£,m)(x) denotes a smooth function, uniformly bounded together with its
derivatives, as 4 — 0, for (£, m) satisfying (3.7). Make the change of variables s; = m? So
we write, with abuse of notation,

) k k
flg.s) =7 lzz sjlog(2s) = > s;HE €)= ) \/chi,fp]

= =1 i#]

Fix &. Observe that the function s — f;(&, 5) has a unique zero, namely there exists a unique
§=(51(8),...,5()) € ]R’fr satisfying fy (¢, 5) = 0. We have the following properties:

(@) 5;isaC ! function with respect to & defined in (0Q)*;

(ii) There is a positive constant co, independent of the points &, such that 5; > co for
each j=1,...,k;

(iii) 5; — +oo as |& — &l — 0 for some i # j;

(iv) Define

M = {(&,5) € (OQF xRE : s150...5; 20, fi(&,5) > O}

Then (¢,(1 + r)5) € M for r > 0 small.
Proof of (i). Since f(¢, 5) = 0, and for j fixed,

2 1
0, file | = {2 log(25)) +2 — [H(fj,‘fj) -3 J@-/@G(&-f,-)]}.
i#]

Then

(3.37) Vi fil§.5) - 5 = 05, fill€, )31 + ... + 05, fi&, )5 =

EN

k
ZSJ‘>0
=

Thus we get V, fi (&, S)|s=s # 0. The implicit function theorem implies the validity of (i).
Proof of (ii). According to the definition of 5, we know that

1

k _
D5 |2108(25) — HEé) - ) ?Gfi’fj)} =0.
J

j=1 i
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It yields that
Si
210g(25) — HEj,6)) = ) [5G, > 0.

i Vi

So
1 HeE)
gj > 56 2

Then we get (ii).

Proof of (iii). Since G(¢;,¢&;) — +ooif |§; — &;| — 0, for some i # j, if we suppose that
57 is bounded, for some /, then the relation fi(¢, §) = 0 would provide a contradiction. This
proves (iii).

Proof of (iv). For r > 0 small, by the Taylor expansion, from (3.37) we have

Je&. (1 +1)8) = ful€, 5) + 05, filld, 31 + ... + 05, ful&, H)Sk] r + 0(r)

k
4 _
(3.38) = Er; 5+ o(r) > 0.

Making the change of variable, define s = (1 + r)§ with r > 0 small, we have (¢, (1 +
r)3) e M.

Thanks to the above properties, we conclude that relation (3.36) defines A as a function
of the free parameter y and (&, s). More precisely,

U 2

A= + i
il L+ 13 file, (1 +1)5)°
where ©,(¢, s) is a smooth function, uniformly bounded together with its derivatives, as
A1—=0.
Taking (3.39) into (3.32), we get that

(3.39) 0, 5)

k

X %5 [+ [ G2(x. )]
o - Jj=

T (1 +1)5) = 0Q] + 4(1 + 1) 2 R TR
2
J7

4 (fk(,f,(l ¥ r)f)) Oul&:s)
k

. 2 5 6+ [o G2x.)]

(3.40) =109 + 4(1 + P Z 5+ u p + 1O, (£, ),
J=1 %r Zl §j
£

where ©,(&, s) is a smooth function, uniformly bounded together with its derivatives, as
u— 0.
We claim that, given 6 > 0, for all i > 0 small enough, the function

k
G o Zler [@e )]
Gu(E,5.7) = 10Q] + 4 Y 55+ drm 5+ p

=1 =1

M=

bl B2

r S

1

has a critical point in the region |& — &;| > 6 fori # j, & € 0Q, and 6u < r < 5! VH,

k
with value [0Q| + 47 3} 5; + O(+/u), as u — 0, in the region considered. By construction,
j=1
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the critical point situation is stable under proper small C' perturbation of @, to be more
precise, any function ¢ such that || — @l + [V = Vg, llc < Cu in the region considered,
also has a critical point. This fact will conclude the proof of Theorem 1.2.

Observe that the function
k

‘ o ZEler [p@eg)]
r o Q€5 = |00+ dm )5+ Arm ) §j+pe

J=1 J=1

E B
~
~.
T~
)
&

has a critical point 7 given by

k
\/zl Sile+ [ G2 )]
=
r= Vi,

Inserting the value of 7 in ¢,,, in the new variables £ € (OQ), we get

Q&) = 1(&, (1 +7)35)

k k
= 10Q| + 41 Y §5;+2Vkn [ fc;z &
|09 + ﬂ;s1+ KJZS] ¢+ o (x,&))

J=1

\/ﬁ + M®l~l(‘$’ S)

k
= |aQ|+47TZ§j+O(\/ﬁ) asu— 0
J=1
foré € O = {(£1,....&) € OQF : & # & ifi # j).

Next we show that functional ®(¢) has at least two critical points. Let Cy be a com-
ponent of Q. Let A : S! — Cy be a continuous bijective function that parametrizes C.
Set

O =1{(&,....&) €Cy : & — &l > dfori# j).
The function @ is C!, bounded from below in €, and from (iii) we have

DE) = DEy,...,&) > +oo as & — & — 0 for some i # j.

Hence, since ¢ is arbitrarily small, ® has an absolute minimum c,, in Q.

On the other hand, using the Ljusternik-Schnirelmann theory, we get that @ has at least
two distinct points in Q. Let cat(€) be the Ljusternik-Schnirelmann category of
relative to €, which is the minimum number of closed and contractible sets in €, whose
union covers €. We will estimate the number of critical points for @ by cat(€y).

Claim: cat(€y) > 1.

Indeed, by contradiction, suppose that cat(€) = 1. This means that € is contractible
in itself, namely there exist a point & € Q and a continuous function T : [0, 1]1xQy — Oy,
such that, for all & € ),

F(()’é:) =§7 F(l,f) =‘§:0-
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Define f : S' — € to be the continuous function given by
f@ = (M@, A@™HE), ... AT ).
Letn:[0,1]1xS' — S be the well defined continuous map given by
n(t,€) = A omy o T(1, f(£)),

where 7, is the projection on the first component. The function 7 is a contraction of S! to
a point and this gives a contradiction, then claim follows.
Therefore we have that car(€;) > 2 for any k > 1. Define
o= upiaf o®
where
E={CcQ : Cclosed and cat(C) > 2}.
Then by Ljusternik-Schnirelmann theory we obtain that ¢ is a critical level.

If ¢ # ¢, we conclude that ® has at least two distinct critical points in Q. If ¢ = ¢,
there is at least one set C such that cat(C) > 2, where the function ® reaches its absolute
minimum. In this case we conclude that there are infinitely many critical points for @ in
Q.

Thus we obtain that the function ® has at least two distinct critical points in €, denoted
say by £!,£2. Hence, for i sufficiently small, the function Z(£, s) has two distinct points
(&1 53) and (€2, 52) close respectively to (£', (1 + #(£"))5(&")) and to (£2, (1 + #(£2))5(£2)).
This implies the existence of a solution to our Problem of the form U + ¢. Finally, let us
remark that (1.10) holds as a direct consequence of the construction of U and of the fact
that ¢ is a smaller perturbation. This ends the proof of the Theorem.

4. Proor or ProposiTION 3.1

The proof of Proposition 3.1 is based on a fixed point argument and the invertibility
property of the following linear Problem: Given i € L*(9Q), find a function ¢ and con-
stants c¢;; such that

-Ap+¢p=0 in Q;
k
4.1) L(¢) =h+ Z Z Cij/\/jZij on 0Q;
i=0,1 j=1
JoxiZij¢ =0 for i=0,1, j=1,... .,k
We shall prove the validity of the following
Proposition 4.1. Let 6 > 0 be a small but fixed number and assume we have &, ...,&; €
0Q and my, . .., my with
1
4.2 l&i—¢&jl=6, Yi#j d<m;< 5

Then there exist positive numbers Ay and C such that, for any 0 < 1 < Ay and any h €
L*(0Q), there is a unique solution ¢ = T(h), and c;j € R to (4.1). Moreover,

4.3) ¢l < CliAll+ 00

The proof of this result is postponed to Appendix 6.

The result of Proposition 4.1 implies that the unique solution ¢ = T,(h) of (4.1) defines
a continuous linear map form the Banach space C. of all functions £ in L*(0Q2) for which
[I7lls 60 < oo into L™, with norm bounded uniformly in A.
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Lemma 4.1. The operator T, is differentiable with respect to the variable &, . . ., & on 0Q
satisfying 4.2, and my, . .., my, one has the estimate
4.4) ID:Ti(W)leo < CliAl 0025 1D Ta(W)lleo < ClIAll: p0-

for a given positive C, independent of A, and for all A small enough.

Proof. Differentiating equation (4.1), formally Z := d, ¢, for all s, [, should satisfy in Q
the equation
-AZ+Z=0 inQ,

and on the boundary 0Q

LZ) = -0,

k
Z W’]¢+ Z ZCUE)&; XiZ 1] + Zdu iiXi

Jj=1 i=0,1 j=1 i=0,1 j=1

with d;; = 0¢,c;j, and the orthogonality conditions now become

Q

f ZixZ = - f Oe, (Zisks) b
Q Q

We consider the constants @, a = 0,1, b =1,...,k, defined as

aa,,fxﬁzabf = fafs, Zaryp) ¢, for a=0,1, b=1,... k.
Q Q

Define
k
Z =7+ Z Z aa;,)(;,Zab.
a=0,1 b=1
We then have
-AZ+7=f in
. k
L(Z) =h + 'Zoll '21 dijZijx;  ondQ;
i=0,1 j=
JoxiziiZ =0 for i=0,1, j=1,...,k
where
k
Z (AN pZap) + XvZab)s
a=0,1 b=1
k k
hy = —85\1 [Z W;] ¢+ Z Z Cl/a&\ lej Z Z a’ahL(XbZab)
=1 =0,1 a=0,1 b=

Hence, using the result of Lemma 6.1 we have that

1Zlle < C (1l + 1 fillewg) -

By the definition of @y, we get || < Cliglle. Since [Bllw < Clikll a0, lcijl < CliAll. a0 we
obtain that

1Zllee < CllAll. g02-

Hence we get
10, Ta(MWlleo < Cllhllc o forall s,I.

Analogous computation holds true if we differentiate with respect to m;. O
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We are now in the position to prove Proposition 3.1.

Proof of Proposition 3.1. In terms of the operator 7, defined in Proposition 4.1, problem
(3.25) becomes

4.5) ¢ =Ta(R+N(®)) := A(¢),

where R is defined in (3.17). For a given number y > 0, let us consider the region
Fy 1= {6 € CQ) : lIgllo < y23}.

From Proposition 4.1, we get

IA@)le < C[lIRIl 00 + IN@)l.00] -

An involved but direct computation shows that

k

(4.6) 0= et <o
J=1 #,0Q

and

%)) 77 @), 0 < €.

From (3.21), (4.6) and (4.7), from the definition of N(¢) in (4.5), namely

k
OEDY s,-lewf}cﬁ,

J=1

(4.8) N@®) := f(U +¢) - f(O) - (D) +

it follows that
IA@ )l < C (27 + 18I + Al

We then get that A(F,) C ¥, for a sufficiently large but fixed y and all small 1. Moreover,
for any ¢y, ¢» € ¥, one has

IN(¢1) = N(P2)lls 00 < C [(51:1?32( |I¢illoo) + /l] ll¢1 = P2lleo,
In fact, using directly (4.8),
N(¢1) — N(¢2)
@) -

J

= f(U +¢1) ~ f(U +¢2) = f(O)g1 — ¢) +

k
s;‘ewf] (61— ¢2)
=1

k
OEDY a;lewf] (@1~ )

J=1

1 d 5 ~
. ](; (Ef(U + ¢+ 11 — ¢2)))dt—f'(U)(¢1 —¢2) +

k
OEDY s;-‘ewf} (¢1 — ¢2)

=

1
= j(; (/T + 62 + 11 = $2)) = £/(D)) dt (¢1 = ¢2) +
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Thus, for a certain t* € (0, 1), and s € (0, 1)
IN(¢1) — N(2)|

<C

k
/(U + g2+ (1 = ¢2) = f/(O)] + [f'([/) - Z é‘j_-lewfﬂ 1 = p2lleo
J=1
<C [|f”(U +5¢2 + 1 (1 — eI (191l + [12lleo)
k
+f'(0) - Z sj]er]] ll¢1 = dalloo-

j=1
Thanks to (4.6), (4.7) and the fact that ||@{]|c, ||#2]lcc = 0 as 4 — 0, we conclude that
(IN(#1) = N(@2)llvae < Clllg1lleo + Igallec + A lld1 = Palloo-

Then we have

lA($1) — A(@2)lleo < ClIN($1) = N(@2)llv o0 < C

Inax llpilleo + /l] llp1 = Palleo-

Thus the operator A has a small Lipschitz constant in ¥, for all small A, and therefore a
unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map (&, m) = (&1, ..., &, my, ..., my) —
¢. Assume for instance that the partial derivative 9, ¢ exists, for s = 1,...,k, [ = 1,2.
Since ¢ = T, (N(¢) + R), formally we have that

Be,d = (9, ) (N(@) + R) + T, (3¢, N(@) + O R).
From (4.4), we have
10:, T2 (N(@) + R) llss < CIIN(®) + Rll. g0 < CA3.
On the other hand,

1 (T 1 (T >y > aZ’/ : -1 _w
e, N@) = ' (O + ) = f'O) = (O)$106,0 + 8, | - = 1) €716
j=1

k
HO +¢) = £ (O)1oe, 6 + [f’(U) -] s,-‘e’%]) L
=1

Then,

10, N@ a0 < C {IBIE, + Adlle + 1911l Hloo + e, Bllc)
Since |10z, Rlls.00 < /l%, Proposition 4.1 guarantees that

3
”af\l¢||oo < CA2

for all s,/. Analogous computation holds true if we differentiate with respect to m;. Then,
the regularity of the map (£, m) — ¢ can be proved by standard arguments involving the
implicit function theorem and the fixed point representation (4.5). This concludes proof of
the Proposition. O
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5. Proors oF PrRoPOSITION 3.2 AND OF ProposITION 3.3

5.1. Proof of Proposition 3.2.

Proof. Let us write

k
U@ =) Ui, with Uj(0) = Vam;lu;(x) + Hi(x)]

J=1

where u; and H; are given by (3.11) and (3.12). We observe that U satisfies

~AU;(x) + Uj(x) = 0 in Q;
oD {% =2VAmjejuie™™®  on Q.
We have
_LUWU+@F+W+¢H
(5.2) = fg (IVUP + U?) + fﬂ [2(VUVe + Ug) + (VoI + 67| := L + 1.

For 1,,, we have

k
(5.3) ZflVU|+U2 Zf VUVU + UiU}) = Lay + laa.
P

i#j

Multiplying (5.1) by U; and integrating on , by (3.13) we find

k
I :ZZ\/_mj ,yjf ey, (x)—z2/lm sjy]f el(uj+ Hj)
Jj=1 j=1
k Eil;j 1
=Y 2am? f det) (log +H(xE)+ 0(.9".))
; ! Joa Ix— & — ejuv(é)P Ix =& — ejuv(é)l? > /
k 1 1
=) 2am? f [10 + H(E &) = 2log(eju;) + 0(80-)]
]Z:; J o0, ly — v(0)2 g ly — v(0)2 &€ gLE M J
where Q. . = 2/_5’ . Using the following facts

1 1 1
—— =71+ 0(), f lo = 2rlog?2 + 0O(&7),
L%mez 177 Jia,,, = OF 2 b= 0P BT

and the definition of &; given in (3.8), we obtain

k
Ly = Z 2m% [-2mlog 2 + nH(.£)) — 2mlog(e ;) + O()]

(5.4) = kn + 27l Z |H(.£) - 210g(2m?) — 210g(2u)) + O]
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Multiplying (5.1) by U; and integrating on €, we find
I = Zf 2 \/zmigjyiel’f("‘)U,-(x) = ZZ /lmimisj,uif ei(u; + Hy)
7 JoQ ’ ’ — ! S Joa
#] i#]
1 1
=2 ) Amm; f [10
Y e BV OR [ 16— &+ ey — e @R

+ Hi(gjujy + &)

1 1 o a
5.5 = 27r/12m,~mj [G(.fi,fj) + 0(8,- log ;l +¢gjlog 8_,) +0(&] + sj)

i#]

Thus from (5.3), (5.4), (5.5) and the definition of x; given in (3.9) we get

k
(5.6) f (IVUP + U?) = kn {1 + Afu&m) + Z &jlog l(aﬁ(g, m)}
Q = Ej

where f; is the function defined in (3.31) and ®,(&,m) is a smooth function, uniformly
bounded as 4 — 0, in the region for (&, m) satisfying (3.7). This is a estimate in the
C%—sense. For C'-closeness, the derivatives in & and in m, by the same argument of
C%—estimate, we have

k
1
(5.7 Dy ( fg (Ivur + UZ)) = knADg (fi(€,m)) + § &;log E,Qﬂ(f’ m),
J=1

k
(5.8) D, ( f (Ivui + UZ)) = krAD,, (felé,m) + ) &;log Lo &m.
Q j=1 8j

where ®(&, m) is uniformly bounded, as 4 — 0, in the region for (£, m) satisfying (3.7).
From the choice of ¢; in (3.8), we note that g log % = o(%).
On the other hand, for 7, given in (5.2). We have

[1vw ovosw s o)
Q
Multiplying (3.25) by ¢ and integrating on Q, we find

f [V(U + ¢)Vo + (U + ¢d)p] = /lf U + ¢)8(U+¢)2¢_
Q 0

IbSZ

By (3.26) we have ||¢||. < C2: for some fixed constant C independent of A, and using a
Taylor expansion, we find
f UeV”
00

1 f U+ $)eV* " ¢ < Aldlloo ‘ f U + ¢)e<U+¢>2‘ <Cp
0Q oQ
k
UeV’ = f Ue + f UeV” =1+ 1,
L% :

Since, for some 6 > 0 small, we write
= oanBE; 6 yE)

+CA*%,

k
90\ U B0 &)
=
where

2 2 2
UeV = Ue” + UeV =11 +1.,.

IQNB(E},6\E)) 0QNB(&;.0¢)| log £)1) 0QN(B(&;.0 \/e))\B(&;.0¢] log £1)
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From (3.8) and (3.15), for x close to point £;, we have U = ﬁmj (wj + ﬁ + O(l)) and
eV = 2m2 ‘1 €"i(1 + O(A)), where w; is defined in (3.16). Hence,

1
Iy = 2Vamle;! f wi+ —— + 0(1)|e"/(1 + O())
2m?
AQNB(E;.05,|log &) J
20! 1 2
=2V’ f log S R —+0(1) ——— (1 +0)).
/ Iy -v(0)P m? ly = (0P
af.ié." ABO. ol Iugbsl\ )
g Hj
Moreover,
6{% 1 R2+— R2+YT%
oe’ 1 21+
o] < CVA f e’ rdr=CVa f e fdt <CcVa f e”'dt = 0(17).
ollog | Ry+logy? Ri+logy;

k
For I, since in the region 0€2\ | B(¢, 6 1/€}), the function U(x) satisfies U(x) = ﬁ[Z];ZI m;G(x, &)+
j=1

o(1)], with o(1) — 0 as A — 0, we then have

k k 2
Id:f . UV = \//—Iijf G| 1+2| Y miGx, &)
0Q\ /’L=Jl B(£;.6 E)) j=1 0Q j=1

k
= \/jzmjf G(x, &)1 + o(1)).
= oQ

(I+o(1)

Thanks to above facts, we obtain
(5.9) I, = 20,(m, &)

with ®,(m, &) is a function, uniformly bounded, in the region for (¢, m) satisfying (3.7), as
A — 0. Therefore, from (5.2), (5.6) and (5.9) we obtain that estimate (3.30) holds in the
C sense.

Next let us show the C!'—closeness in estimate (3.30). From (3.25) and (3.27) we have

oi( [ (v sors s "’)2)) =2 [ [0+ 090U + 3200+ U + 90U + 000
oW +9)

(5.10) =2
0Q dv

———(0:U + 9¢¢) = fm Z—LvlagU + 220, (m, &)

where ©,(m, ¢) is a function, uniformly bounded, in the region for (¢, m) satisfying (3.7),
as A — 0, here we use the facts [|0;¢|le < CA3 and J{;Q 9U < C+/A. On the other hand, we
note that —AU + U = 0 in Q, hence

(5.11) Dg(jf; (VUP + UZ)) = 2L[VUV6§U+ U6 f —an

From (5.7), (5.10) and (5.11), we obtain the C' —closeness in estimate (3.30)

(5.12) Dy ( fﬂ (VW +$)P + W + ¢)2)) = knADg (fi(€.m) + @, (&.m),
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and by the same argument, we have

(5.13) Dy ( fg (VW +$)P + (@ + ¢>2)) = krAD,, (fulé,m)) + @, (€. m),

where ©,(m, ¢) is a function, uniformly bounded, in the region for (¢, m) satisfying (3.7),
as 1 — 0.

Finally, let us evaluate fm ¢U9" By a Taylor expansion, we find

(5.14) f U+’ = f eV + 20,(m, &).
oQ oQ

We write

k
(5.15) er2=Z f O f RECP
oQ

J=1 ; -
OQNB(E},5\E)) 20 LkJ D168
j=1

Since
2 2 2
VW = U™ 4 VW =, + 1,
AONBE;.6 &) AQNB(E; 05| log &) BON(B(E;,0 \ED\BE),0¢| log 1)

From (3.8), (3.9), (3.15) and definition of 3;, we have

Bj

I, = eUZ(x) —sle? Vi) e/lm?[w}+2w/9(x)+92(x)]
’ J

OQNB(€;,08)|log &) 0QNB(€;,08)|log &)

2
= 2m? - = 4t
(5.16)  =2m’ ﬁ%_ w025, = O (1+0W) = 4z’ (1 + O(D) ,

Eiki

with ©,(m, £) a function, uniformly bounded, in the region for (&, m) satisfying (3.7), as
A — 0. Moreover,

2

581% 1 @ R2+y7j —2r+% R+
517 |Lal < Cf —e i rdr= Cf e idt< Cf e”'dt = O(Q).
R R

Sllog ;| r 1+Iogy§ ﬁlogy?

=3

Furthermore, we have

U2

Iy = f k e = f k
09\ U BE5 ) o0\ U B&;6 v
= =

k
1+) mG(x, f,—)} (1+0(1))
=1

k
(5.18) =109+ m f G*(x,£) + 2@ (m. &)
=) a0

with |0Q| denotes the measure of domain 0Q, and ®,(m, &) is a function, uniformly bounded,
in the region for (£, m) satisfying (3.7), as A — 0. Then from (5.14)-(5.18) we get that es-
timate (3.32) hold true in C—sense.

On the other hand, by a Taylor expansion and the facts ||¢||c < CA2 and fag U<CVa,
we have

Dy ( f e(U+¢)2) =2 f V' UBU + 20 ,(m, &) = D ( f eUz) + 20,(m, &),
oQ oQ oQ
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D, ( f e<U+¢>2) =D, ( f eUz)+/12®,l(m,§)
0Q oQ

with ®,(m, &) is a function, uniformly bounded, in the region for (£, m) satisfying (3.7), as
A — 0. Then we obtain that the C'—closeness in (3.32) by the same way as in the proof of
C'—closeness in (3.30). ]

and

5.2. Proof of Proposition 3.3.

Proof. Define the set
={(¢ m) eR: fi(&,m) # O}
From Proposition 3.2, replacing expansion (3.30) into (3.33), we see that (3.33) gives

(5.19) Afi(&m) + O E m) = u

In R’, (5.19) defines A as a function of u, ¢ and m, which is smooth in (£, m) in the region
R’. Furthermore, as u — 0,

1 2

= s
Je&om) £ & m)

with ©,(m, £) is a function, uniformly bounded with its derivatives, as y — 0.

Assume now (3.33), we shall prove (3.34). Let us denote 0 by the partial derivative
with respect to m; for any j = 1,...,k, or the partial derivative with respect to &;; for
j=1,...,k By adirect computation we have

0,(&,m)

J(U+¢)[0U +¢)] = %6( fﬂ (VU + )P + (U + ¢)2)) - ga( fd . e<U+"’>2).

From (3.33) we have that 9 ( [,(IV(U + @) + (U + ¢)»)) = 0. Thus 9 [, eV*?") = 0 if
and only if J/(U + ¢) [0(U + ¢)] = 0. Let us now rewrite

1
7<U +BEm() = mzw( If’) T

forsome/=1,...,k, with

k
0
= + (0] + &)+ O 2 f < —.
Vi) = W, (7) ;( ey + & = &) + 0= for i<
Since U + ¢ is the solution of (3.25), then v; satisfies

—Av + g (vl + Um ) =0 in y;

k
) F; F(ey+&—
@ -1+ 2/1m vl)ewe/lm,v, =m; 81 Z 118 ( (81}:51 &) ) l]( z(f‘l):fl fz)) on 4%,
| — el -]

where Q; = Qs;f’ For any /, we define

1 1Y
L(v) = —f Vvi? + & [v1+ ) —f e"letmivi
2 Jo, ! 2Am? a0

T +$) [0 + $)] = am} L (vp[ovi].

We observe that



26 SHENGBING DENG AND MONICA MUSSO

and
/lml II(vplov]

o (Filey+&—¢&) Filery +&-§&))
b T e e

i=0,1 j=1

Now, fix i and j, we compute the coefficient in front of ¢;;, we choose [ = j, dv; = Dy, vi(y),

and obtain
Fi(ery + Fi(ery + -
f 8;1/\(( ey +é& - f,)) ( ey +&— é:]))Dm\Vl(y) dy
0 gj €j
k
= fﬁ & X 0)7 0) D, |, 0 + > (0teph + 0)| d
1] Jj=1
O, 2
L fa B o)
Thus we concludes that for any s = 1,2,--- , k, we have

Similarly, we get that for all s, [

k
’ aﬂlf 2
T (U + ¢) [0 (U =2 otk ) dycoi(1 + o(1)).
(U + ) [0, (U + §)] m,a; o aR3z0,(y) yeo (1 +o(1))
k
Z (1+o(1)).

= (6&1 f Z‘Z)f@dy) coj + ( fa . z%s(y)dy) iy

Thus, we can conclude that J'(U + ¢) [0(U + ¢)| = 0, that is D¢, E(U + ¢) = 0 then we
have the following system

k
8,uj
(5.20) [ “Coj
; omy

k
A ; %Co j T Cls
for some fixed constant A, with o(1) small in the sense of the L* norm as 4 — 0. Then
(3.34) follows if we show that the matrix 7 U of dimension k X k is invertible in the region
for (£, m) satisfying (3.7). Indeed, this fact 1mplles unique solvability of (5.20). Inserting
this in (5.21) we get unique solvability of (5.21).

Consider the definition of the y;, in terms of m’s and points &; given in (3.7). These
relations correspond to the gradient D,, F(m, £) of the function F(m, £) defined as follows

k

F(m,&) = % D md[-21og (2m3) — log(2p) + 2 + H(E £)] + D mm;G(&.€)).

Jj=1 i

T (U+)|0¢, (U + ¢)| = ampes

I +o(1))=0, s=12,--k

(5.21) (1+0(1))=0, foralls,

We set s; = m?, then the above function can be written as follows

k
D si[-2108(25) — log(2u)) + 2+ HELED] + Y VFSiGE €)).

Jj=1 i#j

NI'—‘

F(s,8) =

This function is strictly convex function of the parameters s;, for parameters s; uniformly
bounded and uniformly bounded away from 0 and for points &; in Q uniformly far away
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from each other and from the boundary. For this reason, the matrix (%) is invertible
i05j

in the range of parameters and points we are considering. Thus, by the implicit function

theorem, relation (3.9) defines a diffeomorphism between p; and m;. This fact gives the

invertibility of (%). Thus we finish the proof of Proposition 3.3. O
6. APPENDIX

This section is devoted to the proof of Proposition 4.1. The proof of this result is based
on the a-priori estimate for solutions to the following problem

Ap+¢p=f in Q;
k

(61) L(¢) =h+ Z cij)(jZij on 0Q;

i=0,1 j=1

JoxiZij¢ =0 for i=0,1, j=1,...,k
Define
k Pl -1
(6.2) Ifllsg = su : +1 1f(x)l
Slnga = 500 Z; (1 +1x =& — eumEND>T f

=
where 0 < oo < 1.

Lemma 6.1. Under the assumptions of Proposition 4.1, if ¢ is a solution of (6.1) for some
h € L¥(0Q) and for some f € L*(Q) with ||hll. o0, || fllw.qo < o0 and c;; € R, then

(6.3) gl < C [llAll- 00 + Ifllsx0] s
leijl < C(Ihlloq + 1 flleg), Vi=0,1, j=1,....k
hold for C independent of A.
Proof. We will carry out the proof of the a priori estimate (6.3) by contradiction. We
assume then the existence of sequences 4, — 0, points & € JQ and numbers m’j, 1

which satisfy relations (4.2) and (3.9), functions h,, f, with [[A,l. g0, | fullo — 0, ¢, with
ll¢ullo = 1, constants ¢;;,,

(6.4) -Ag,+ ¢, = [, InQ,
2k
(©6.5) L) =ha+ D > cnZipy;,  ondQ,
i=0 j=1
(6.6) f Zixjba =0, foralli, j.
Q

We will prove that in reality under the above assumption we must have that ¢, — 0 uni-
formly in Q, which is a contradiction that concludes the result of the Lemma.

Passing to a subsequence we may assume that the points &’} approach limiting, distinct
points {f}f in Q. We claim that ¢, — 0 in C! local sense on compacts of Q \ {&,.... &)
Indeed, let us observe that f, — 0 locally uniformly in Q, away from the points & ;. Away
from the g;’s we have then —A¢, +¢, — 0 uniformly on compact subsets on Q\{f;‘, sk
Since ¢, is bounded it follows also that passing to a further subsequence, ¢, approaches
in C! local sense on compacts of Q \ {&],.... &} alimit ¢* which is bounded and satisfies
-A¢" +¢" =0in Q\ {&7, ..., &} Furthermore, observe that far from {¢],..., &3}, hy — 0

locally uniformly on Q \ {£],...,&;} and so we also have %‘f’v” — 0ondQ\ {&],.... &)
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Hence ¢* extends smoothly to a function which satisfies —A¢* + ¢* = 0 in Q, and ‘Z;i; =0
on 9Q. We conclude that ¢* = 0, and the claim follows.

For notational convenience, we shall omit the explicit dependence on # in the rest of the
proof. We shall next show that

©.7) leii] < CAllloo + Whll. o2 + 1 llv.0)-
Multiplying the first equation of (6.1) by Z;; and integrating over B(¢;, 6), we find

9¢
ZCljf XjleZij = —f hZ,-j+f L(Zij)¢— a—Zij
=01 0Q (N B(£;.0) 0Q M B(£;.0) 0Q M B(£;.6) Q" IB(;.0) v

(6.8) + f (=AZij+ Zij)$ - 1Zi
QN BE;.0) QM B(;.0)

Having in mind that ¢, — 0 in C! sense in Q () dB(£}, §), we have that L)ﬂﬁB(gi,é) %Z,»_,» -
0 as A — 0. Furthermore, a direct computation shows that

(69) f XjleZij =M6; +o0(l), as A— 0
QM B&;.0)

where M; is some universal constant and 6; = 1 if i = [, and = 0 if i # [. On the other
hand, we have that

0Zii N 1,
(6.10) 5= ezyfos [ a2y 20 < Clol,
QN BE0) | 9V = QN BE;.0)
and
6.11) ffZij < Cllfllsq-
Q

In fact, estimate (6.11) is a direct consequence of the definition of the || - || o-norm. Let us
prove the validity of (6.10). Recall that in Q () B(¢;, 6), we have that Z;;(x) = zij(e;l Fi(x)),
where F; is chosen to preserve area (see (3.23)). Performing the change of variables y =
sJTlF_,-(x), we get that

(6.12) f (~AZij + Zij)p = (1 +0(1))f Lz +&%2;) b
onses R:N50.2) (L2 + )
where ¢(y) = ¢(F ;1(8 7)) and L is a second order differential operator defined as follows
2 : 2 6
(6.13) L=-A+0(glyDV° + O(gj)V, in Ry ﬂ B0, —).
€j
Hence

< (¢ lloo.-

f (—AZij + Z;j)¢
QM B(;.0)

On the other hand, we observe that, after a possible rotation, we can assume that VF;(¢;) =
1. Hence, using again the change of variables y = szlF i(x), we get

(6.14) f L(Zij)¢ = (1 +o(1)) f , (B(zij)) = Wzi)b(y)d
QN BE;.6) aIR. N B, i])
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where W(y) = st(F]T'(sjy)) with W(x) = Z];:I e;'ewf, and b(y) is a positive function,
coming from the change of variables, which is uniformly positive and bounded as 1 — 0.
Furthermore B is a differential operator of order one on 6IR3. In fact, we have that

0 s
(6.15) B=-gi+ OV on OR2 ﬂ B(O, a_,-)

On the other hand, since

21,62
Wx) = &1 HI) (1 + ) e ,0(1)]

Dlx =& —euvEpP py
we get

2
2 2 +
i+

- &y 6
(6.16) W(y) = >t OR? () B0, —),
o T A &

for some 0 < a < 1. Thus we can conclude that

f L(Zij)¢
0Q (N B(;,0)

This shows the validity of (6.10).
We shall now estimate the term fag hZ;;. Using the definition of the || - ||, so-norm, we
observe that

s
o

< Clllleo-

:f P(x)_1|h|P(x)ZijS||h||*,agf p(X)Z;;
00 80

k
= Il o0 f [Z P86 (¥) + 1)2,-,-
2\ =T
k
I=

+1 1+ i )
< (Al 00 Z f Vi {(1 + le[ )(1 + yiwll)elw — l}el_le”'r

LoonB, @)

6.17) £Clill 0 f Z;.
OQ\UL, Bs(&)

Since Z;; are uniformly bounded, as 4 — 0, in 0Q \ U;‘zl Bs(&)), we just need to estimate

W2
Vi {(1 + Wf; )(1 + #) e — 1} gj‘.lewf. Recall that the functions w; are defined
J J

0QNBs(€))
as

(x) =log —— "
M o T
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with y = f/,g—"} = f—j’, and y; =

—2logej. We decompose 0Q N Bs(¢;) into the union of
6QOBQ®QMM6QOPM§ﬂBQQ»kame

J

wj+ 1 L+wil\ 2 .
i1+ 1+ ————=)e”i —1ye; €%
Vi Vi
OQNBs(€))

wi+1 L+ wil\ 2
— f yj (1+ J )(1+ | jl)ezyj —1 S;IBWj
Y Vi
AQNB 5 (£))
Vi
Wj+1 1+|W/'| ﬁ dow
+ Y1+ 5 1+ = |e” —1r&; e
; .

Yi
Bﬂﬁ(Bﬁ(fj)\Byi (fj))
J

=L+ L.

(6.18)

Using the change of variables g,y = x — £;, we have

_ 2
W]' +1 1+ |W/| A .
L= Yj 1+ — 1+ —|e?i —1;e"
Yi Yi
90,8 _s_(0)

and

Wi+ 1 1+ 1wl ,; W
L = R e | LR CRS
j Yi
aggjm(gym\s ! <0>)

7%

O-&;
where Q. = i

= and
€j

w; =log ————.
1= O O

First we estimate L:

Wi+ 1 L+l 2 .
Ly = yiqll+ 1+ eV —14e"
Y Vi
BQSJ.OB 0)

s
Yici

1
<C f e =C f

v = (O
9908 _s_(0) 92,08 _s_(0)
75 ;

M j 1
scf —dr<C.
s T

Hji=5 %
U7y
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On the other hand, using the fact that w; = —=2logr + O(1) with r = [y — u;¥(0)|, the term
L, can be estimated as follows

W+ 1 L+l 5 ]
L, = f Vi (1+ ! )(1+ | Jl)e“/—l e
Yi Yi

aQ,,.jm(B 5 (O\B 5 (0))
&j i€

Yici

22 I
Yivi+w 51 toen?
<C f yjeri 7_,7. e < Cf; ﬁe“““f‘ (y; —2logrydr
j

Yjgi

99, N Bi(O)\BL(O))
T E Y&

log % 2 logfj
< Cf e”Te™il (y; — pdr < Cf , e_‘”(yj -ndt<C
I 1

)

0g E 0og E
for some positive 0. Therefore we get
(6.19) [ 2| < clth .
oQ

Thus, from (6.8)-(6.19) we find the validity of (6.7).

We now conclude our argument by contradiction to prove (6.3). From (6.7), we have
that ¢;;,, is bounded, thus we may assume that ¢;;, — c¢;; asn — oo.

Let us fix R > 0 large sufficiently but fixed. By the maximum principe and the Hopf
Lemma we find that,

_omax gl = max gl
Q\ U,‘:] BRs/-(f/ln) Q\ U,‘:] 0BR5/-(£/ZU)
Thus, from ||¢,|l = 1, we can find that there is some fixed jy € {1,2,--- , k} such that
(6.20) ~ max |n| = 1.
QN OBge Ejo)
Q¢ .
SetQ, = i, and consider
Jo €jgn

é\bn(z) > ¢n(§j0,n + gjo,nz)’ iln(z) = hn(‘fjo,n + g_jo,nz)’

F@) = filljon + 8jon2)s Zif(2) = Zif(Ejo + Ejon?)
Then
~Au(2) + €, 4u(2) = &5, fux) InQy

~ k k

24 L ) )

avn —&j, [Zl g EW’](P,, = Sj()hn + Z Z gj()cij,anZij on 695/0 .
j=

i=0,1 j=1
Then by elliptic estimate ¢, (up to subsequence) converges uniformly on compact sets to a
nontrivial solution ¢ # 0 of the problem

[ U 2
B —leﬂl?d) =0 on JR;.

By the nondegeneracy result ([9]), we conclude that ¢3 is a linear combination of zy; and
Z1j. On the other hand, we can take the limit in the orthogonality relation and we find that
faRi xbzi ;= 0fori=0,1. This contradicts the fact that $ # 0. This ends the proof of the
Lemma. ml
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Proof of Proposition 4.1 In proving the solvability of (4.1), we may first solve the follow-
ing problem: for given i € L*(0Q), with ||Al|. 5o bounded, find ¢ € L¥(Q) and d;; € R,
i=0,1j=1,...,ksuch that

k
_A¢+¢ = -%1 -21 dlejle in Q;
i=0,1 j=

©21) %3 etenlg = h on 9<;
fﬂ)(jzj,;pzo for i=0,1, j=1,....k
First we prove that for any ¢, d;; solution to (6.21) the bound
(6.22) llglleo < Cllllo0
holds. In fact, by Lemma 6.1, we have
k

(6.23) gl < C|hlloga+ > " &ildy

i=0,1 j=1

and therefore it is enough to prove that ;ld;;| < Cl|All. sq-

Fix an integer j. To show that g|d;;| < C||All. oo, we shall multiply equation (6.21)
against a test function, properly chosen. Let us observe that, the proper test function de-
pends whether we are considering the case i = 0 or i = 1. We start with i = 0. We
log(£)-log
log gi/_—logR :
B(0,£)\ B(O,R), h = 1 0n 4B(0,R) and i = 0 on 8B(0, 2).

Let 5; and 1, be two smooth cut-off functions defined in R? as

m=1 in BO,R), =0 in RZ\BO,R+1)

define Zo;(y) = h(y)z0;(y), where h(y) = In fact, we recognize that Ah = 0 in

so that
O0<m <1, |VplsC
and
. 6 . 2 6
m=1 in BO,—), =0 in R"\B@O,—)
48j 38]'
so that

&j 2 €
0<m<l1, |Vipl< CE’ [Vl < C(E) .
We assume that R > Ry (see (3.24)) and we define
(6.24)  Zo;(x) = m(s; Fj(00)Z0j(x) + (1 = m(&; Fien) ma (&7 F () 205 (27 F (),

for x € B(¢;,0) N Q.
We multiply equation (6.21) against ZO_,- and we integrate by parts. We get

ZdaijjZajZOj=f(_AZOj+ZOj)¢+f hZo,ﬂ-f L(Zoj)$
Q Q 90 90

a=0,1

Observe first that, assuming R > Ry, we have

(6.25) daj fXjZajZOj = daj fXjZajZOj = 8jM0500daj(] +o(1)), as A1—-0.
Q Q

Furthermore we have that

(6.26) | f hZy;| < ClIhll. g0-
0Q
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We claim that

(6.27) | = AZyj + Zojllvg < ———.
|log &)

(6.28) IL(Zoj)l 00 <

lloge;l
The proof of estimates (6.27) and (6.28) is postponed to the end of the Appendix. As-

suming for the moment the validity of (6.27) and (6.28), from estimates (6.25)—(6.28) we
conclude that

(6.29) lejdojl < C (Ihll..a0 + og &1 gl -

We shall now obtain an estimate similar to (6.29) for &;d;;. To do so, we use another test
function. Indeed we multiply equation (6.21) against 7,Z;; and we integrate by parts. We

get
Z daijjZajﬂzzljZ f(_A(n2ZIj)+UZZIj)¢_f hipZ
Q Q 20

a=0,1
0
¥ f L(Zyjynd + f Zi 500
aQ 0Q A

Observe first that, assuming R > Ry, we have
daj LXjZajTDle =d,; LXjZajZIj = M6a1g;dij(1 +0o(1)), as A—0,
and Um hn221j| < Cllhll+ go- Using the change of variables y = s]‘.le(x), we get that

772~
f 1 6v¢ f Ry 6v

where Q,, = 9 and (y) = ¢(F;'(¢;'y). But z); = O(t-) and Vi, = O(e)) so

Ifan ZIJ0”2¢| < Cgjlloge,|. Using again the change of variables y = s‘lF j(x), and pro-
ceeding similarly to (6.14), (6.15) and (6.16), one gets

f L(Zipme¢ = (1 +o(1)) f [— - Wzijlm

where @(y) = ¢(F e 7)) and b(y) is a positive function, coming from the change of

variables, Wthh is uniformly positive and bounded as 4 — (. Observe that “” - Wz =

0(]—+’r) + O(W) fory € Qg and |yl < 58j , and this implies that

I
J

for some O < a < 1. Thus we can conclude that

f L(Zij) m¢
o0

Consider once again the change of variables y = sj’.lF ;(x). Arguing as in (6.12) and (6.13)
we get that

Bz,-j ~

< Cedldle

[ anz e mzo = o) [ (-Bnzp + i) 8



34 SHENGBING DENG AND MONICA MUSSO

where ¢(y) = ¢(F ' (¢,y)). We thus compute in y € Q,,, with |y| < de;",
A A 2V, V Az;i=0 il o A
)= o+ + = 0(——)+o(—) + N
(m2z1) = A2 24 mVzy;+m Az (1 " r) " r) mAz

2
On the other hand, in this region we have —Az;; + s?zlj = O(:;—’rz) + O(%). Thus

f |-AGmzi) + £5m0z15| < Cejllog &)l
o

j

Summarizing all the above information, we get
(6.30) lejdij| < C (Il ac + &7l1gleo)
Estimates (6.29), (6.30) combined with (6.23) yields
lejdijl < Cllhll. 0.
which gives the validity of (6.22). Now consider the Hilbert space

H={¢6H'(Q) : fX,-Z,-,-(p:o Vi=0,1, j=1,...,k},
Q

endowed the norm ||¢||i[I = fQ(IquI2 + ¢?). Problem (6.21), expressed in a weak form, is
equivalent to find ¢ € H such that

k
f(W’V‘/""(W/)—f [Zsflewf]w=f hy, forall y € H,
Q 00 a0

With the aid of Fredholm’s alternative guarantees unique solvability of (6.21), which is
guarantees by (6.22).

In order to solve (4.1), let Y, € L™(Q,), dfj € R be the solution of (6.21) with i = yZ;,
that is '

—AY+Y,= 3 S dix jZij in Q;
i=0,1 j=1 "
©.31) o | ﬁ &7' e 1Yy = x:Zis on 0Q;
fsz)(jzij}l,s:o for [=0,1, s=1,...,k,
Then there is a unique solution Y;; € L*(Q) of (6.31), and
(6.32) IYillo <C,  gildll <C

for some constant C independent on A.
Multiplying (6.31) by Z;;, and integrates by parts, we have

k
Z f dijisx (Zij)* = f XsZisZij + f (—AZij + Zij) Y
B(£,0) 0B(£}.,6) B(¢;,0)

=01 j=1
Zi; &
+f —[ZS,- e"1Zij | Yis
om0 | 9V =
= 0i0s f
B8

!

))(j(Zij)z +o(1)

where 6;;, 0 j; are Kronecker’s delta. Then we get

(6.33) dojos = adjs +o(l), dijis=Dbojs+o(1)
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with a,b > 0 are independent of ;. Hence the matrix D; (or D,) with entries dy;os (or
d, j15) in invertible for small &; and ||DI."1|| < C(i = 1,2) uniformly in g;.
Now, given h € L*(0Q) we find ¢y, d;, solution to (6.21). Define constants c;, as

> D asds=~dy, Vi=0,1, j=1,.. .k

The above linear system is almost diagonal, since arguing as before one can show that
d,l; = g;'M,«(S js0i(1 + o(1)), as 4 — 0, where M; is a positive universal constant. Then

define
k
6=+ ), > ct

1=0,1 s=1
A direct computation shows that ¢ satisfies (4.1) and furthermore

k k
gl < llgrlls + > D letsl < Cllllega + D > &ildyl < Cllhll. o
i=0,1 s=1 i=0,1 j=1
by (6.22). This finishes the proof of Proposition 4.1.
Proof of (6.27). We shall prove

| = AZyj + Zojllwg € ——
J / |log &)l

where Zo_,- is defined in (6.24). Performe the change of variables y = sJTlF ;(x) and denote

Z()j(y) = Z()J(F]_l(é‘jy)) Then —AZ(]J' + Z()j = (LZ()J‘ + 8?2()]‘)7 where £ is defined in (613)
We shall show that

~ 2~
|(LZ()/‘ + SjZ()j)|

. Q
g4 (+b=gh7 ] ye
j=1

S Y A
[logejl | g

This fact implies (6.27).
Let us first consider the region where |y| < R. In this region, Zy; = zo;. Since Azg; = 0
and since (6.13) holds, we have that

(6.34) (L20j + &%) = OCey)  for I <R

Intheregion R+ 1 < |y| < 4%, we have Zo; = hzo;. Therefore, in this region,

4 C )
Az = VAV < - R+l<r<o—. =Dl

J
For the other terms we find

V20,1 < IV2hlzo; + 2IVhVzg;] + MYz,

1 1 1 1
=0( 5‘)+0( :_.)+0(r—3) R+1<r<4—

r?log & 3 log £
0
2 &j &j 9
OV = O(—2=)+ O(Z)  R+1<r<—.
rlog & r de;
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Also

1 §
V2ol < [Vhlzo; + V2ol = O(—— ) + 0( 5 R+l<r<-—.

log £ 4e;

Hence

(6.35)

o, 1 s
(Lz0; + £370;) = OC )+ O( )+0( 1) + 4% R+l<r<_—.

rlog £ r log £j
J
In the region ;2 < r < 32 the definition of Z; is Z; = nzhzo ;- We will estimate each term
J J

of (6.13) using the facts that Vi, = O(4 &y, IVZT]2| 0( ) and that in the considered region
h= 0( o )Wthh implies also Zp; = 0( o ) We obtain

AZy; = Amahzoj + 2V V(hzo)) + UzA(hZo i)
= AT]thQj + 2VT]2V/’ZZOJ' + ZVUQVZOJ'h + 27]2VhVZoj

P B B RV B
6%log g/ rélog g, r26log gj r3log eﬁ,
&2 5
= O( ! — <r<-—
621 4e; 3g;
Next
2 _ o2 2 6 o
VZo; = Vomahzo; + 2V V(hzo;) + 12V (hzo)) I <r< 3
j j
and by the above computations, for 4%_ <r< 3%/,
82 52
V2%, = O( ks MoV sty + 29KV, + H9°20)) = O,
6%lo g log =

. s o
Similarly, for G, << 35,

VZo; = Vmhzo; + 12Vhzoj + mhVzo; = 0(61 - 5)
Ej
This shows that
&2 o o
6.36 st ) o(—5 ) O LN
(6.36) (LZOJ SJZOJ) (62 logi) 4g; e 3¢;
£j

Thus we only need to estimate the size of LZy; + 8?20 ;j in the region R < r < R + 1. In this
region we have Zo; = 171z0; + (1 — 171;)hzo; and hence
AZg; = Am(1 = h)zoj — 2V Vhzoj; + 2V V(1 = h) + 11 Az
+ (1 = n1)A(hzo))
1
=0
(log o

&j

) + +111Az0; + (1 = 11)A(hzo ) R<r<R+1.
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First we recall that Azp; = O and, forR<r <R+ 1,

AhZyy) = 2VhVzo; + O(e)) = O(—) + 0&))

‘9/

Thus

(6.37) L2 +&7%0) = 0( R<r<R+1.

ﬁ )
This bound and (6.34), (6.35) and (6.36) imply (6.27).
Proof of (6.28). We shall prove
- C
ILZo)lls 00 £ ——
[log &)

We perform the change of variables y = sj‘.l Fj(x). We already observed that we can assume
that VF;(§;) = I. Hence,

L(Zoj) = (1 + o(1)) | BGo)) — Wiy,
where Zy; = Z J(F;'(gy)) and W(y) = W(F 7!(£7y)). Bis the differential operator of order

one on 3IR3, defined in (6.15) and W is described in (6.16). Thus in the region y € 9 (69),
with |y| < R, we get

(6.38) B(Z)) — Wz = Oe))
Next, in the region R < |x| < R + 1 we have

VZzoj = V(1 = h)zo; + hzo;)
= V(1 = h)zoj — mVhzoj + m(1 = h)Vzo; + Vhzo; + hVz,

1
=0(1 £)+T]1(1—h)VZ()J‘+hVZ0j.
&j
Since £ is radial this implies
020 1 Re;

— 40 +0 R<|y|<R+1,ye€dR>2.
0x) (Rzlogg) (10 i) b Y *

B(Zp;) = —h

€j

Using (6.16) we see that

> 1 Re;j
(6.39) B(Zp;) — Wzy; = O( —)+0(—=)  R<[|<R+1yecdR}.
R?log e log p
Using the fact that 4 has zero normal derivative on JR? we deduce
- 020

(6.40) B(hz)) = —ha—o-’ + O(e;r)(Vhzo; + hV20;)

0 0

= —h +0( )+0(—) R+l<r<=2.
6)62 Sj

On the other hand, using (6.16) we have in R+ 1 < r < g
J

8()’

(6.41) B(Z)) — W2, = 0( log & )+0(—)



38 SHENGBING DENG AND MONICA MUSSO

for some 0 < @ < 1. Finally we consider ;= < r < 32. Here we have Z); = nyhz; and
J J

h,zoj = O(k’gﬁ), Vil, = O(%). Using these facts, estimate (6.40) and that 7, has zero
j

normal derivative we find
B(Zoj) = B(m2)hzoj + 12B(hzo )

&r 1 & & s )
=0(—L—)+0(=) + 0(—L) + 0( — <r<—.
GrogE) HO@+ O+ 0D o <r< o
€j €j
From (6.16) we have
- g 0§ 5
W=0-) —<r<-—.
r 48j 8]'
Thus we conclude that for y € 90, , % <r< %
- . & 1 &j €j
(6.42) B(Zy)) = WZo; = O(——5) + O() + O(—) + O(=).
610g;} r log;j r

Estimates (6.38), (6.39), (6.41) and (6.42) give the validity of (6.28).
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