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ARTICLE INFO ABSTRACT

Communicated by Enzo Mitidieri We study the following boundary value problem

— p .
Keywords: Au+raxu’~'e” =0, u>0 ing; (0.1)
Elliptic equation u=20 onos2,
Liouville problem
Singularly perturbed problem where £2 is a bounded domain in R? with smooth boundary, A > 0 is a small parameter,
Lyapunov-Schmidt reduction the function a(x) > 0 is a smooth potential, and the exponent p satisfies 0 < p < 2. We

construct a family of solutions to problem (0.1) which blows up, as A — 0, at some points
of 2 which stay outside the zero set of a(x). We relate the number of possible blow-up
points with the zero set of a(x).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following boundary value problem

(1.1)

Au+rau e =0, u>0 ing;
u=~0 on 452,

where 2 is a bounded domain in R?> with smooth boundary, A > 0 is a small parameter and 0 < p < 2. The function
a(x) > 0is smooth in £2. This problem is the Euler-Lagrange equation for the functional

P 1 2 A uP 1
) = 5/ [Vux)|“dx — f/ ax)e" dx, ue€ Hy(£2). (1.2)
Q PJe

If a(x) = 1, problem (1.1) becomes

p—1_uP __ : .
{Au+xu e =0, u>0 ing; (1.3)

u=20 onos2.

This problem has been studied widely in the literature when p = 1. The asymptotic behavior of blowing up families of
solutions can be referred to [1,4,13-16]: in these works it has been established that if u; is an unbounded family of solutions
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to (1.3) for which A f o € remains uniformly bounded as A — 0, then there exists an integer K such that
A/ e dx — 8wK, asi — 0.
2

Moreover there are K points &y, . . ., & in §2, which are far away from the boundary of £2 and far away from each other, so
that

K
retr — 2851
=1

in the sense of measure. Furthermore, the location of the point £ = (&4, ..., &) is known to be related to the critical points
of the function

K K
Dp(E) =) HE. &) + Y GE &)
j=1 i#]

Here G(x, y) denotes Green’s function for the negative Laplacian with Dirichlet boundary condition in £2, namely

—AG(x,y) = 8y(x) X € £2; (1.4)
G(x,y) =0 x €082, .
and H(x, y) its regular part, given by
1
H(x,y) = G(x,y) — — log . (1.5)
2m T x =y

Concerning the reciprocal issue, several results are already known in the literature, we refer to [1,10,7]. In particular, in [7]
del Pino-Kowalczyk-Musso constructed bubbling solutions to problem (1.3) when p = 1. They showed that: If the domain
£2 is not simply connected, and given any integer K > 1, there exist K points &1, ..., & in £2 and a family of solutions u;, for
any X sufficiently small, which blows up at these K points in the sense that,as A — 0

sup u,(x) - 0, andforanyj=1,...,K, sup u(x) - oo
xeg\u]’.;] B(&;,8) xeB(§},8)

for any positive fixed number é. Furthermore,
f re'rdx — 8Km as A — 0.
2

The location of these blow-up points &1, . . ., & is not arbitrary: indeed they correspond to critical points of the function &y
defined above.

The results have been extended in [9] for the whole range of values of exponents p with 0 < p < 2. This result was
surprising, since the scenario changes completely when p = 2: this situation was previously treated in [8].

In this paper, we construct bubbling solutions to Problem (1.1), with a non negative nontrivial potential. When p = 1,
this situation was already treated in [7], under the condition that the concentration points (&1, ..., &) belong to a region
where the potential a is strictly positive. Our first result shows that this construction can be done for the whole range of
exponents0 < p < 2.

Before stating our result, it is useful to introduce some notations. For an integer K > 1 and K distinct points &;, j =
1,...,K,in £, separated uniformly from each other and from the boundary 02, write £ = (&4, ..., &), let us define the
following functional

K K 2_p K
oh(E) =D HE. &) + Y G &) + ?ﬂp > loga(&). (16)
j=1 i j=1

Definition 1.1. We say that £ is a C%-stable critical point of ¢ : M — R if for any sequence of functions ¢, : M — R such
that ¢, — ¢ uniformly on compact sets of M, ¢, has a critical point £" such that ¢, (§") — ¢(&).
In particular, if £ is a strict local minimum or maximum point of ¢, then & is C°-stable critical point.

Let ¢ be a parameter, which depends on A, defined as

2(p—1)

4 P 2(0-2)
pA —Elogg e P =1 (1.7)

Observe that,as A — 0,thene — 0,and A = g% ifp = 1.
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The result we have is the following.

Theorem 1.2. Let 2 be a bounded smooth domain in R?, 0 < p < 2 and K an integer with K > 1, assume that a(x) > 0 is
smooth in 2, and §* = (&}, ..., &) is a C%-stable critical point of ® . Then there exists Ao > 0 so that, forany 0 < A < Ao,
Problem (1.1) has a solution u,, which satisfies

o 20-p p
lime 7 / a(x)e'rdx = 8K, (1.8)
r—0 Q
where ¢ satisfies (1.7). Moreover, there exists a K-tuple §* = (¢7, ..., &¢) € 2" such that a(§}) > 0,and as A — 0,

Pyl 8 = P (ES 5D,

and
4 a X
U, (x) = <_5 log e> (871 > G g+ o(l)) (1.9)
j=1
where o(1) — 0, as . — 0, on each compact subset of £2 \ {5{‘, ey S,?}. Furthermore
2(1-p)
) 1/ 4 g 8Km 16K 7 27, »
Jo ) = I; —Bloge m[—Z + plog8] — loge — ﬂq)a,,((é )+ O0(|loge|™") (1.10)

where O(1) is uniformly bounded as A — 0.

In [7], the authors consider also the case in which the potential a(x) has a zero of type |x — q|* for some point g € £2.
Whenp = 1andK < 1+«, they show the existence of a family of solutions u;, to Problem (1.1) blowing up at K points of §2,
which remain far from q. This result was generalized by [6] in the case in which the potential a has several zeros qy, . . ., g,
of type |x — q;|% respectively. She studies how the concentration phenomena is affected by the presence of several zeros for
the potential. Our next result concerns a generalization of these results when the exponent p belongs to the whole range
O<p<?2

Define the setZ C £2 as

Z:={qe 2 :a(q) =0}.

We make the following assumptions on a(x).
(A1) Forany q € Z, there exists og > 0 such that

ag(x) = a(x)|x — q| 7>

is a strictly positive continuous function in a neighborhood of q.
(Ay) Assume Z C $2 is finite, and K > 2 is an integer such that there exist distinct points q1, ..., qm € Z and integers
Ki, ..., Ky with the following properties:

2-p

g #1,...,K—1, foreachs=1,...,m,

2 —

1<K <1+ paqs, foreachs=1,...,m, (1.11)

and K = Ky + - - - + Kip,.
We have the following result.

Theorem 1.3. Let 2 be a bounded smooth domain in R?, 0 < p < 2, and assume that a(x) and K satisfy (A1) and (A,). Then
there is Ao > 0 small such that for any 0 < A < Ao, Problem (1.1) has a family of solutions u, with the property:

. 2e-p p
lims P / a(x)e'rdx = 8K, (1.12)
r—0 Q
where ¢ is defined in (1.7). Moreover, there exists a K-tuple € = (§¥, ..., E}) € (22 \ Z)¥ such that as » — 0

Vol (&l ... &) — 0,

and

=p K
U, (X) = (—g loge) ! (871 ZG(X, 5}) + o(l)) (1.13)

=1
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where o(1) — 0, as A — 0, on each compact subset of (2 \ Z) \ {5{‘ ey é,@} Furthermore
2(1-p)
) 1/ 4 D 8K 16K 7 27’ , »
Jo ) = I; _I; loge m [-2+plog8] — » loge — ﬂ(DM(S )+ 0(|loge|™) (1.14)

where 0(1) is uniformly bounded as A — 0.

For the special case that 2 is the unit ball Bin R? and a(x) = |x|>** with @ > 0, that is, consider

{Au +Ax2w e’ =0, u>0 inB; (1.15)

u=~0 on 0B,

where A > 0 is a small parameter. A direct consequence of Theorem 1.3 is that there exists a bubbling solution to (1.15)
concentrating at points, which are outside the origin; furthermore the number of bubbling points depends on «. Set

Ka:max{keN:k< pa—i—l}.

The result we obtain for (1.15) can be stated as follows.

Theorem 1.4. Let 0 < p < 2, there exists Ly > 0 such that forany 1 < K < K, forany 0 < A < X, the problem (1.15) has a
solution u; which concentrates at K different points of B\ {0} and

2(2—p)
lime 7 /|x|2ae“’i x = 8K, (1.16)
A—0 B

where ¢ satisfies (1.7). Moreover, (1.9) and (1.10) hold.

Remark 1.5. To prove Theorem 1.3 we follow the approach developed in [6]: we apply a max-min argument to establish a
topologically nontrivial critical value of @5’ ¢ under the assumptions (A;) and (Ay) on a(x) in any bounded smooth domain.
Observe that we are not assuming the condition that domain is not simply connected. Observe that Z = (J, the condition

that £2 is not simply connected guarantees existence of a nontrivial critical value qbg’ « see [7].

Remark 1.6. Theorem 1.4 is the special case of Theorem 1.3 for a(x) = |x|>* and domain £2 = B.

Remark 1.7. We construct bubbling solutions to (1.1), whose location of concentration occurs at points different from the
zero set of the potential a(x). The problem of finding solutions with additional concentration around at the zero points of
a(x) is of different type, indeed from the works [2,3,17] it follows that the contribution of each blow-up point in the limit
(1.12) is of 871 (1 4+ «). The asymptotic analysis in this situation is completely different.

In order to cover the case p = 2 in (1.1), we believe that a different approach is needed, given the known result for
a(x) = 1 contained in [8].

The paper is organized as follows: Section 2 is devoted to describe a first approximation solution to problem (1.1) and to
estimate its error. We consider the linear problem and the nonlinear problem in Sections 3 and 4. Furthermore, we reduced
problem into the finite-dimensional problem and solve it, we sketch it in Section 5. In Section 6, we prove the main results.

2. The first approximation solution

In this section, we build a good approximation solution and we estimate its error. Let us introduce the radially symmetric
solutions of the following limit equation

Aw+e” =0 inR?, / eV < 400,
RZ

which are given by the one parameter family of functions

82
w,(z) =log ————. 2.1
W& =108 e &1
Let K be an integer, set £ = (&4, ..., &), let § > 0 small but fixed, define
0 =[R2\ : dist(§,d(2\2)) = 8, |& — &| = S fori #j} . (2.2)
Moreover, consider K positive numbers j; such that
§<pj<é8', forallj=1,...,K. (2.3)
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The parameters u; will be chosen properly later on. Define the function
S/sz
log — 2 2)2
(uie? + |x — §l*)?a(§)

X — .‘;—'j 1
= wy, (T) + 4logg — loga(&). (2.4)

UMj,Ej x) =

Let us denote PU; g (x) the projection of Uy, g into the space H(} (£2), in other words, PU, g (x) is the unique solution of

APUMj,Ej = AUMj,fj in .Q; (25)
PUu =0 onag2.
By Maximum Principle, we have that £ € O and y; satisfies (2.3), then
2
8'uf 2.2
PUy,; (%) = Uy, () + 8w H(x, &) —log Ts) +0(uie?) (2.6)
j
inC'(2) ase — 0,and
PU,, & (X) = 8mG(x, &) + O(uu %) 2.7)

in Clgc((.Q \Z) \ {§}) ase — 0, where G(-, -) and H(-, -) are Green’s function and its regular part as defined in (1.4) and
(1.5).
We now define that the first ansatz is given by

1 K
Ux) = = > PUL 5 (),
j=1

with some number y, to be fixed later on. We want to show that U (x) is a good approximation for a solution to (1.1), and so
that the solution to problem (1.1) like the formula U (x) plus a small term. In order to perform the fixed point argument to
find the lower order term, we need to improve our ansatz, adding two other terms in the expansion of the solution. In order
to do this, we set

8 2
Wi(Y) = wyy (7 — &) = log ———1
! e (u? + 1y — &/ 1»)?
and
Bi) = w,0) — logag) =1 By 28)
wi(y) = w,, (y) — loga(&) = log . .
! & ! uf +ly — &1»)%a)
Let w] be the radial solution of
Awj +e“iw] =e"f inR? fori=0,1, (2.9)
where
~ 1
fo = — |:wj + 2(wj)2i| s
and
p—2 1 1 . - 1 1 4~
fl=— [w;’ + m(wj)2 + 5(w;))z + g(wj)“ + 2w} + 5(wj)3 + ij“(w,-)z] .
In fact, as shown in [11] (see also [5,9]), there exists a radially symmetric solution with the properties that
; ly — &1 1
w;(y) = Gjlog 5 +0 - as|y — &/ — oo, (2.10)
p -4l

for some explicit constants Cj;, which can be explicitly computed. In particular, when i = 0, the constant Cy; is given by

2
oo 2 q Su: 2 1 SM._Z
Coi = —8 t lo J + — | lo A E— dt
o fo @1 | S+ 2\ C 2@

= 4log8 — 8 — 8log u;j — 4loga(§)). (2.11)
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Let us define
w® (%) = w? X w! o (x) = w! %) forxe @
upg T T g ) mp & T g ’

Let ngj,éj and Pw denote the projections into H (£2) of w " and w! . respectively. We write y = f Sj’ = % by

(2.10), we have that

1,6

: X

P, o (x) = w] (g) — 27CiH(x, &) + Gy log(wie) + 0(e) (2.12)

inC1(£2) as ¢ — 0, and
: /X

Pwj, @) =P (w](Z)) = —27CG(x. §) + OGuye) (2.13)

inCl.((2\2)\ {§}) ase — 0.
We define
1 & p—11, p—1\* 1 |,
Uy (x) = W Zl |:PU,L}.,gj(x) + T y Wy, s,(x) + ( P ) ﬁPw“jfj(x) . (2.14)
]:
From (2.7) and (2.13), one has, away from the points §&;,
]]Coj p—121C1j
Uy (x) = o ]ZG(X ) {1_7/”4_(17 WZJFO( 2) (2.15)
Consider now the change of variables
4
v(y) = pyP lu(ey) — pyP, withy” = ——loge.
p
Then problem (1.1) reduces to
Av+g() =0, v>-—py? ing,;

{v = —py? on 482, (2.16)

where 2, = ¢71£2, and
p-1 v \P
g(v) = a(ey) (1 + L) "1 ) 1] (2.17)
py?

Let us define the first approximation solution to (2.16) as

V.. (y) = py?~'Us(ey) — py?, (2.18)
with the numbers u;, j =1, ..., K defined by

8u? 2 1
a(s,] = [ (2”_ L (1-log8) +-— (H(SJ,SJ) + ZG(S,,SJ )} (1 +O(yp))' (2.19)

i#j

Lemma 2.1. Wewritey = ¢~ 'x, Ej’ = s”Sj. If wj, j=1,...,K, aregiven by (2.19), then for |y—$j/| < 8§/¢e with § sufficiently
small but fixed, we have

- p—11 p—1\" 1
V) = 50) + —— —w’) + [ —— ) w0 +00), (2.20)
p v p ) y®

with w; defined by (2.8) and
w0(y) = w’ (y_%) w @) = w] (y S)
M Hj

6(y) = O(ely — &/1) + O(e?).

and
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Proof. From (2.6), (2.7), (2.12), (2.13) and the fact that U, ¢ (¢y) — py? = w;(y), we have

Vi (y) = pyP'Us(ey) — py?

K 2
_ p—11 0 p—1 1 1 p
= ;:1: [Pqu,sj )+ = 5P O+ (T | 5P| Py
3 p—11_ p—1\> 1 ,
= POy 00 + == 5 Pwiy 0+ { = | 5P @) =Py

K 2

p—11 0 p—1 1 1

+ Z |:PU"!"51' ®) + 7Pwllis5i x) + prm-é‘i )

P p P p y®
2

= — pyP 31 8& 2.2
= Uy (&) —py’ +87H(x, §) — log aG) +0(uje)
)

p—11 0 +

poyP [w} &) — 27 CojH (x. &) + Cojlog(use) + O(se) ]

+p_]21 ! 2 CiH (%, &) + Cyjlog(use) + O(;
(T) ﬁ [wj ) — 2 CyH(x, &) 1 10g(p;¢) (MJS)]

K 2
S P e S N il A N 2
+8n;6(5,,s,)[1 . 4< S ) yzp}row)
- —-11 -1\ 1 )
= T+ —wf 0) + (p—> 5w} () + 0Gely — &) + 0(?)
p v p Y

p ]

8u? p—11 p—1\2 1
— log—L + C»——+c<(—> — | (log (1) + loge
a(&) {"f e T ) | Lot )

Cip—11 G (p—1\>1 K

i#j
Since numbers p; satisfy (2.19), we note that py? = —4loge, then find
8u? p—11 p—1\> 1
—log —L + C0.77+C1.(7) —— | (log(u;) + loge
a(&) [’ o T | et )
Cip—11 Gy (p—1\> 1 K
+87 1—’—’() — [|HE &) + ) _6E &) ) =0
|: 4 p o a p 7 j» 5 lz#: i &
Thus (2.20) holds. O

We will look for solutions to (2.16) of the form

v=V,+¢,

where V, is defined as in (2.18), and ¢ represents a lower order correction. We aim at finding a solution for ¢ small pro-
vided that the points &; are suitably chosen. For small ¢, we can rewrite problem (2.16) as a nonlinear perturbation of its

linearization, namely,

:L(¢) = —[Ex + N(9)], xe€ 82;
¢ =0, X €902,

where

L(¢) = Ap + g (Vi) o,
E;, = AV, +g(V)),

N(@) =gVi +¢) —g(Vy) —g'(Vi)¢.

typ_
We recall that g(t) = a(ey)(1 + #)P”eylj[(lﬂy” il

(2.21)

(2.22)
(2.23)

(2.24)

(2014), http://dx.doi.org/10.1016/j.na.2014.10.034
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In order to solve the problem (2.21), first we have to study the invertibility properties of the linear operator L. In order
to do this, we introduce a weighted L°°-norm defined as

X -1

Il = sup (Y A +1y =D +&*|  |h) (2.25)
YER: j=1

for any h € L*°(£2,). With respect to this norm, the error term E; given in (2.23) can be estimated in the following way.

Lemma 2.2. Let § > 0 be a small but fixed number and assume that the points & € ©. There exists C > 0, such that we have

C

El < — = —— 2.26
1Bl =~ = Toger? (2.26)
for all A small enough.
Proof. Far away from the points &;, namely for |x — &| > §,i.e. |y — Ej’| > g forallj =1,...,K, from(2.7) and (2.13) we
have that
AV, () = pyP~ e’ AU(ey) = O(e).
On the other hand, in this region we have
1% 410 o1 o1
L ) L 4lege0() 01 (227)
py? py? |log el
where 0(1) denotes a smooth function, uniformly bounded, as ¢ — 0, in the considered region. Hence
4
v, \/! ViYL »
g =aey) (1422 lab) o 22 o),
py?P |logelP~!
Thus if we are far away from the points &, or equivalently for |y — (§j/| > g the size of the error, measured with
respect to the || - ||4-norm, is relatively small. In other words, if we denote by 1, the characteristic function of the set
y:ly—§|> 2 j=1,....K} thenin this region we have
22-p)
Eylouerlly < C———— (2.28)
” A louterll = |10g8|p71. ’
Let us now fix the indexjin {1, ..., K}, for |y — Sj/| < g we have
p—11 p—1\* 1
AVL(y) = —e"Y + —— —Awl(y) + (—) —-Aw/ () + 0(e?). (2.29)
p P p Y

On the other hand, for any R > 0 large but fixed, in the ball |y — Sj/| < R, := R|logel|% with @ > 3, we can use Taylor
expansion to first get

A )‘” p—11 _ <p—1>2 1 [ 6. P—2 _ 2] (p—1>3 1 )
T+—) =1+——Wi+|— wj + 5 —— W~ |+ | ——) —5,(ogly — &,
( pyP p oy’ p y» L7 20-1 p y !

Vi \* - p—1\ 1 (;)> p—1\> 1 _ 1 )
o4 as) 1= (50) 5 [+ 50+ (557 st + b+ gony -

1+5) 1] _ i [1 + (pi_ 1) ! [wo n (176')2]

p Jyrl? " 2

and

2
p—1 1 - 1 ~ 1 /
+ <7p ) S [wjl + wyw) + E(wf + (wj)Z)Z] + e (logly — & |):| .

Thus we obtain

—1 V)L
g(Vy) = a(ey) (1 + V*)p eyp[(”m)p—l]
py?P

— ~\2
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~ 2 ~3
p—12\ 1 | , . o 1( o (@73 0o, P=2 5 W
+<p>y2p|:wj+2ijj+2 U)j+ 5 +wj+m(wj) +7

log |y — &
O(ogl;p S,I)]

Thus, thanks to the fact that we have improved our original approximation with the terms w;’ and wjl, and the definition of
*-norm, and we get that

”EAlB(Ej’,RS)”* < foranyj=1,...,K. (2.30)

y?  lloge”’
Here 1 g, denotes the characteristic function of B(;, R.). Finally, in the remaining region, namely where R, < |y — Sj/| <
j o fe

% foranyj=1,...,K, we have from one hand that |AV; (y)| < Ce"i%, and also |g(Vs.(y))| < Ce"% as a consequence of
(2.20). This fact, together with (2.30) and (2.28) we obtain estimate (2.26). O

As the same proof of above lemma, we have the following result.
Lemma 2.3. For x very close to the point &; in §2, we have
g’ (V) —e“i|l, = 0 asi — 0, (2.31)

and there exists some positive constant Dy such that

K
g(V,) Doy e (232)
j=1
Moreover,
lg” Vi)l < C. (2.33)

3. The linear problem
The main objective of this section is to study the invertibility of the linearized operator L. Let us recall that for x close
point &;,
g’ (Vi) —e¥|, — 0 asi — 0.
Thus we can see that the operator L can be approximated by the family
8,uj2
(u? + 1y — &/1?)°

which is non-degenerate, in the sense that the bounded solutions of Lj(¢) = 0, excepting rescaling and translation are
(see [1])

20 = Oy Zij() = w ), i=1,2.

We consider & = (&1, ..., &) € 0O, let us consider a large but fixed number Ry > 0 and a smooth cut-off function n(p)
with n(p) = 1if p < Rgand n(p) = 0if p > Ry + 1, and we denote

) = n(ly — &D.

Li(¢) = Ap +e"ip = Ap +

Moreover, let h € C%%(£2,), we consider the linear problem of finding a function ¢ andscalarscy, i=1,2, j=1,...,K,
such that
2 K
L) =h+) > cmZ; ine
j=1 j=1
¢ =0 onads2,

/ niZij¢p =0 foralli=1,2,j=1,...,K.
2

Lemma 3.1. Let 2, := 2 \ UJ’.;] B(&;, R). There exists R large enough such that if L(¢) < Oin 2. and ¢ >0on 352, then ¢ >0
in £2,.

Please cite this article in press as: S. Deng, et al., Multiple blow-up solutions for an exponential nonlinearity with potential in R?, Nonlinear Analysis
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Proof. We define the function

K
Z0) =Y zaly — ). ye 2,

j=1

2
where zy(r) = %

If a is taken small and fixed, and R large enough such that aly — Sj/l > aR > 1thenZ(y) > 0.From (2.32) we have

8@y —gP-1) K
@)=~ +g'(Vy)zZ _ ¢ b .
@ Z;a+@w—gmﬁ & VZv) = = E:éw P 02}1@)
K K

c C
- + <0. O
j;azly—%}l“ ; ly —§l*

We consider for R as in Lemma 3.1, define the inner norm as follows:

loli:=sup  |pO)I.

u" 1BE B

Lemma 3.2. Let h € L*°(£2,) if we consider the equation

L(¢) =h in 2, (3.1)
¢ =0 onas2,, (3.2)

then there exists C > 0 such that

ll¢lleo < CL@Mi + lIRll]. (3.3)

Proof. Let us take the following barrier
~ K
P) = 2091iZ) + Il > %)
j=1

where v; is a solution of the equation:

2

, M
_AWJ = /13 +2827 R < |y - §]| < (34)
y—¢ :

. M
Y =0 ifly—§&/| =R, IY—EJIZ;, (35)

where M is such that £2, C B(&/, %). A direct computation shows that
2 827‘2
v =-—2-— +alog(r) +b

2+82R27£7M2 22
whereq = 2=2 M2 apndp = 2 4 &
log(57)

1<R< i By the Maximum Principle one has v; > 0. Therefore, by the definition of Z(y) and for R large enough

) = [p)| inly—&|=R,
¢ >0=¢(y) ond.

Moreover

— alogR. Hence v/ (r) is a uniform bound function independent of ¢ as long as

K K
L) = 2[pliL@) + [Ih]].L (Z w,») < Rl (AY;+ 8/ (Vi)

j=1 Jj=1
= [Ihll. Z( — 2 +g<wm)
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K 2 2KD,
h . = _2 2 + 70 wj
K
< —|hll. (Z(l +ly—gn~° +82)
j=1
< —lh®| < LG W)

From Lemma 3.1 one has

9] < 16W)]; ¥ € 2.

Since v; is uniformly bounded over ¢, there exists C > 0 such that

¢lle = CLli@lli + lIAll]. O

Lemma 3.3. We consider the equation
Li@)=h in$2,
¢ =0 inds2,

/ niZip =0 fori=0,1,2,j=12... K.

&

Then there exist positive numbers Ag, C such that, for all ¢ € O we have

[Pllee < Clihll.
forall x < Ao

Proof. By contradiction, we suppose that there exist A, — 0, (], &7, ..., &) € O, functions h, and ¢, satisfy the above
equation, with ||h,|l« — O, ||¢$nllcc = 1. By Lemma 3.2, we have that ||¢,|l; > « > 0. Let q@n(z) = qﬁn((“g‘j")’ + z), where
the index j is such that sup|y,(§jn)/‘<R |¢pn] > k. We assume j is the same for all n. By local elliptic estimates, we get that <2>n

converges uniformly over compact set to a bounded solution (i& # 0 of the following equation

8 sz

— ) =0 inR%
(1} + 1z12)?

A +
The non degeneracy of the equation and the orthogonality condition give us the contradiction. O

Lemma 3.4. Let § > 0 be fixed and small. There exist positive numbers Aq and C, such that for & € O, and any solution ¢ to the
following problem

L(¢) =h, ing2,
¢ =0, onds2,

f nZj¢ =0, fori=1,2,j=1,...,K.
2
Then

¢lloo < C(—loge)llhll.
forall x < Xo.

Proof. LetR > Ry + 1 be a large and fixed number, and Z, be the solution of the problem

R 81 R
AZgi + ﬁloj =0,
(17 +1ly— &)
20j(y) = zoj(R) for [y — &/ =R,
A 8
Zi(y) =0 for |y_§j/| = 3

Please cite this article in press as: S. Deng, et al., Multiple blow-up solutions for an exponential nonlinearity with potential in R?, Nonlinear Analysis
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By computation, this function is explicitly given by

i
R sz2.(s)
A 0
20 =2y |1 = ——— |, r=ly—§l
3 _ds
R szgj(s)

Next we consider the radial smooth cut-off functions x; and y, with the following properties

0<x1<1, y3=1 inB(0,R), x1 =0 inB(O,R+ 1) and

) 5 \¢
0<)2<1, =1 inB(0,— ), x1=0 inB(0,— ],
4e 3e

and | x,(r)| < Ce, |x} (r)] < Ce?. Then we set
X =x11y =&D,  x») = x2(ly — &),
and define
Zoj = x1jZoj + (1 — X1) X2i20j-
Let ¢ be a solution to Eq. (3.6), we will modify ¢ so that the extra orthogonality condition with respect to Zy; holds. We set
K
=0+ Z djZoj
=1
with the number d; defined as
_ Jo miZyd
T Ja izl
Then

K
L@$) =h+ ) dil(Zy), (3.7)

j=1

and
/ niZoip =0, foralli=0,1,2.
2

Then from the previous lemma we have the following estimate

K
Iplloe < C [nhn* +Id ||L(20j)||*} . (38)

j=1

Next, we show that

3 C 1\°
L@« < —, and |dj| <C (log) Al (3.9)
log - )

&

Indeed, we have
LZo) = 2V x1;V (Zoj — Zo) + Ax1j(Zoj — Z0) + 2V %25V 205 + AxaiZoj + O(e?).
We consider the following four regions

21={y:ly-§I<R, 2={:R<ly—§l<R+1},

25 =1y:R+1=] “‘5'|<*(S 2, = o ly =&l 2
=1y — & , - <ly—§&| < .
= SVTESI= g S LA

First, we note that L(Zy) = O(e?) fory € §2; U £25. Fory € £2,, we have

fr ds
R sz2(s)
~ 0j
Zoj — Zoj = —2gj(1) —5——— o
3e S
fR sztz)j(s)
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|20j — Zojl < —-
log -
Similarly, in this region, we have
Zp — Zpi| < ——.
120 = 2ol = log 1
On the other hand, for y € 24, we have
20(r) < —, and 2(/)j(r) =—7.
log ¢ log ¢

Therefore, by the definition of the x-norm, we get

LGl < —
log -
where the number C depends in principle of the chosen large constant R.

Next we show the other inequality of (3.9) holds. Testing Eq. (3.7) against Zy; we have

(@, LZor)) = (h, Zo)) + di{L(Zo1), Za),
where (f, g) = st fg. This relation and (3.8) provide that

=1

K
di{L(zo), Zor) < ClIhIl[1+ ILGZoD [I+] + C Z \djl ILGon) I3

We want to measure the size of (L(Zy), Zo;). We decompose

Since

(Lzon), Zo) = /
2

< C/ IV xail IV 2ol 1201] + C/ |A X2l Zoi]* + O(e%)

/ L(Zo)Zo1
24
C

L(Zo)Zor + f L(Zo)Zo1 + O(e).
24

S72
(log {)

Moreover, fory € £2,, we have

independent of &€ we have

/ LGZo)Zg = 2 / VxuV(Zo — Zon)Zo + / Ax11(Zoi — Zo1)Zo1 + O(e)
2
= /VXHV(ZOI — Zo)Zo1 — f V x1(Zor — Zo) VZor + O(e)

Now, we observe that in the considered region £2,, |2y — Zoi| < é while |Z| ~ ng +
e

1

< S—
R? log !

/ V x1(Zoi — Z01) VZor

where C; is a constant to be chosen independent of R. Moreover

R+1
/ VxuV(Zo — ZoZor = 27 / X1zor — Zop) 2o dr
R
2 Re1 4uirizo fp s%
Xu|1-
A ! (uf +12)?

i

log 1

G 1
=-——=|1+0
log -

R SZ%I
)} ’

1
R

13

(3.10)

(3.11)

(3.12)

(3.13)

—L_. Then, for R is large but
log &

, Nonlinear Analysis
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14
where G, is a positive constant independent on €. Thus, choosing R large enough, we get

G

/ LZoZo ~ —— -
2 log =
(3.14)

Combining this and (3.12), (3.13) we get

- - C
(LG Z) < ——= [1+0[ —= ] |
log - log -

From (3.10), (3.11) and (3.13) we have

1 2
ldil <C (10g g) [l

We thus have from estimate (3.8) that
1

¢l <C (log g) Ihll. O

We are ready to obtain the principal result of this section.
Proposition 3.5. There exist positive numbers Aq and C, such that for & € O, there is unique solution ¢ = T, (h) to:

2 K
L@)=h+) > cmZj ing
j=1 j=1
¢ =0 onds2 (3.15)
/ niZip =0 foralli=1,2,j=1,...,K,
¢
(3.16)

forall A, < Ag. Moreover

1
l¢lls < C (log g) Al
We just considered the orthogonality conditions with respect to the elements of the approximate kernel due to

translation.
Proof. Let us consider the cut-off function yy; introduced before. Testing Eq. (3.15) against Z; x,; we get
(3.17)

(L), Zyxag) = (h. Ziop) + 5 / izl
¢

Moreover
(L(®), Zijx2i) = (P, LZijx2))-

We have
LZijxaj) = AxoiZij + 2VZiV x1 + €0((1 +1)73),

withr = |y — &/|. Since Ayy) = 0(g%), Vxj = O(¢),and Z; = O(r™1), VZ; = O(r—2), we get

L(Zjx2j) = 0(*)e0((1 +1)7%).

Then we have
{L(®), Zijxa)| = [{@, LZijx2))| < CellPlloo-

From the previous lemma we find
(3.18)

1 2 K
¢l < C (log g) {nhu* + ZZ%} :
i=1 j=1

Please cite this article in press as: S. Deng, et al., Multiple blow-up solutions for an exponential nonlinearity with potential in R?, Nonlinear Analysis
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Combining this with (3.17) and (3.18)

1
lejl < € |:||h”*+510g82|clm|:|~ (3.19)
ILm
Then,
gl < Clihlls.
Combining this with (3.18) we obtain the estimate

1
[Pl = C (log 8) ([l

Next prove the solvability assertion. We consider the Hilbert space
H= {qﬁeH&(QE):/ ¢Zinj =0fori=1,2, j= 1,2,...,1<},
2

endowed with the usual inner product (¢, V) = fﬂs V¢ V. Problem (3.15), expressed in a weak form, is equivalent to find
¢ € H such that

@01 = [ Wo—myax forally e
Q¢
where W = g’(V,). With the aid of Riesz’s representation theorem, this equation gets rewritten in H in the operator form

(Id —R)¢ = h, (3.20)

for certain h € H, where Risa compact operator in H. The homogeneous equation ¢ = R¢ in H, which is equivalent to (3.15)
with h = 0, has only the triviNal solution in view of the a priori estimate (3.16). Now, Fredholm'’s alternative guarantees unique
solvability of (3.20) for any h € H. This finishes the proof. O

Lemma 3.6. The operator T, is differentiable with respect to the variable (&1, ..., &) € O. Moreover one has the estimate
1\2
19y Ta(Mlleo = C <10g g) (1l

Proof. Let ¢ = T, (h) where ¢ satisfies the equation
L(¢) =h+ Z CijZijnj
i.j

with additional conditions, for some unique constants ¢;. Formally Z = 9/ ¢ should satisfy
2 K

2
L(Z) = =gy, @ (Vi) + D Cimdgy, ImZim) + Y > diiZijn (321)

i=1 i=1 j=1

with dij = 9/ ¢y and the orthogonality conditions become

/ ZimmZ = — / 3(5,’“)1 (ZimMm)®-
¢ ¢
We consider the projected function
zZ=12 + Z bimnmZim
such that

/ T]jZ,'jZ =0.
$2¢

Then

bim/ Umzfn :/ 3(5,’,1),(Zim77m)¢~
2 2
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We write Eq. (3.21) in the way that (3.15)

2 K
LZ)=f+ ) bmnZm  in2
i=1 j=1
Z=0 onds, (322)

/ nZmZ =0 fori=0,1,2,
2
and by Proposition (3.15), we get

Z =T(f), (3.23)
where f satisfies

Ifll« < Clidlloo-
Using (3.16) we find

1 1 1\?2
10y (Ml < C (log g) Ifll« <C (IOg g) lplle < C (log g) hll.. O

4. The nonlinear problem
Following the approach in [9] for a(x) = 1, we have the following result.
Lemma 4.1. There exist Ao > 0 and a constant C > 0 such that for any A € (0, Ao) and each £ € O, there exists a unique ¢

satisfying

2 K

AWV, + @) +8g (Vi + ) =22cij2,~jnj in §2;;
i=1 j=1
¢ =0 onds2; (4.1)

¢Zinj =0 fori=1,2,j=1,...,K
2
for some c;; € R. Moreover,

C
0 < —-.
Pl (e < oge ]2

Furthermore, the map &' +— ¢ € HS (£2,)is @1, and

Ds/ 00 < .
D@10 (2,) < oge]

We included the proof just for completeness.
Proof. From Proposition 3.5 Eq. (4.1) is equivalent to find ¢ such that
¢ =T.(—(N(@) + E)) = A() (42)

where

1
APl = C (10g g) UIN@)l + IIE ] (4.3)

To N(¢) we have that there exist s € (0, 1) such that
IN(@)| < CIg" (Vi +sp)| 191* < Clg" (Vs + s8] |2,

From the previous step, we know that ||¢ ||, — 0as A — 0 and from (2.33)

lg"Vll« < C;
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then we get

IN@) I« = Clillx

we combine this with (4.3) to get

1
IA(@) I < Cllogel  CliglIZ, + 3 )
| log &

For a given number M > 0, let us consider the region

Fu = {¢€C(5_2)1||¢|Ioc§ 2}.
|loge|

We then get that A(Fy) C Fu for a sufficiently large but fixed M and all small A. Moreover, for any ¢1, ¢, € Fy, using
standard argument on mean value integral, one has

IN(#1) — N(g2)ll« < C (gr_l?)z(”(pi”oo) [$1 — P2l co-
Thanks to (2.33) and the fact that ||¢1 /e, |¢2]lcc — 0as A — 0, we conclude that
IN(p1) = N(@D) I« = ClIg" V)ll+(IP1lloo + lP2llo) @1 — P2lloc < Cllidrlloo + lI@21l00) 161 — P2l
Then we have

[A(@1) — A(@2) oo = C|logel [IN(p1) — N(¢2) |« < Clloge] <!H:1§D2< ||¢i||oo> 91 — P2lloo-

Thus the operator A has a small Lipschitz constant in %y, for all small A, and therefore a unique fixed point of A exists in this
region.

We shall next analyze the differentiability of the map &’ = (&, ...,&;) — ¢. Assume for instance that the partial
derivative 8<§Jg)iqb exists fori = 1, 2. Since ¢ = T,, (—(N(¢) + E,)), formally that

dep® = (0, T) (~(N@) + E)) + T, (— @ N@) + g, ) )

From Lemma 3.6, we have

1
197y, Tr (—(N(@) + E2)) llos < Clloge|*IN(¢) + E; |l < C .
j |loge|

On the other hand,
B N(@) = [8'(Vi +¢) — &' (V) — 8" (V@1 Vi + ey [8' (V) — 1
+IE Vi + ) — &' (V)10 ¢ + [/ (V) — €110 6.
Then,

1 1
Ay, N <C 2 4 — ey, —— |9/, .
10 N (@)l = {I|¢I|oo+ loge] ¢l + 181y P lloclIlloc + |10g8||| (éj),(p”oo}

. C . .
Since ||8(§].)1.EA e < Toge? and by Proposition 3.5 we have

ey, < ,
196 Blloe < 70—

foralli = 1,2,j = 1, ..., K. Then, the regularity of the map &’ + ¢ can be proved by standard arguments involving the
implicit function theorem and the fixed point representation (4.2). This concludes proof of the lemma. O

5. The finite dimensional reduction

After problem (4.1) has been solved, we find a solution to problem (2.21), if we can find a point £’ = % =(&,.... &)
such that coefficients ¢;;(¢) in (4.1) satisfy
ci(§)=0 foralli=1,2,j=1,...,K. (5.1)
We now introduce the finite dimensional restriction g, (§) : © — R, given by
5:© =10, (6 +9) x.©) (52)
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where

- 1
(Urd)ws =y + o (o (52 53
py?P & €

with V; defined in (2.18), ¢ is the unique solution to problem (4.1) given by Lemma 4.1.
The following result can be proved by using standard arguments, see Lemma 5.1 in [9].

Lemma 5.1. For all A > 0 sufficiently small, the functional g, (£) is of class C'. Moreover, if £ € @ is a critical point of §, then
U, + ¢ is a critical point of]é’,k, namely a solution to the problem (1.1).

Next we need to write the expansion of g, (§) as A goes to 0.

Lemma 5.2. Let § > O be fixed. There exists positive number Mo, such that p; are given by (2.19), for any 0 < A < Ao, the
following expansion holds

2(p—1)
4 i 8K 16K 272 B
p —EIOgE 3A($)=m[—2 +plog8] — » loge — 2_p¢a,1<(§)+|10g5| 0,.(8) (5.4)
uniformly for any points (&4, ..., &) € O, where
K K 2-p &
P! (&) = ZH(sj, &)+ GlE &) + e Z log a(&).
j=1 i j=1
Furthermore
2(p-1)
4 v 3272 ) i
p(- loge Viem $:6) = 5= Viem @0 (©) + |loge| 10,(6). (5.5)

In (5.4) and (5.5), the function 6, denotes a smooth function of the points &, which is uniformly bounded, as A — 0, for points
£Eeo.

Proof. Define
1 v \P_
B =g [ wuray— [ aenel) 56)
2 2

By direct calculation,

~ 1 x &
Jcll),)L ((Ux +¢) (%, 5)) = Wlé’,k <(VA +é) (ga g)) . (5.7)

Using the fact (Uy +8) (v, §) =y + Lt (Vi + 9 (% £)), we have

1
3.(6) — ix U,.(8)) = W [IZ,A(V)\ +¢) — 15,)\(‘//\)] .

Since by construction DI";’A(VA + ¢)[¢] = 0, we get

1 1
3,.(8) —Jﬁ’,x U (§)) = W/ DZIgTA(VA + t)p*(1 —t) dt
0

1

1
= 5= / [ / (B +N@)p + / ['(V,) —g’(vx+r¢>]¢2] (1-0dt.
p°y 0 Q¢ ¢

since [Exll, < i Illieen < mosoz IN@)I < oSz and (233), we get that

T og el (5.8)

|9.8) — I8, (UL(E)| < v
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Next we expand J, (U;.(§)). We first have

/|V(UA(§))| 2p2 %D {Z/ |VPU, & +Z/QVPUM,§,VPUM

I#

p—11 0
—— Z VPU,, () VPW, o (%)
j=17%

p-1 2—] K VPU, - VPw!
* p 7/2”; PG
2 K
(Pt L » IVPwd 1P+ [ VPw), VP
2p 15§ niél Wi &
p Y j=1 2 [ 2

p—1 E
0 1
+ (717 > —Z/QVPwMJ_’%VPwHJ_,Ej

3p
[

p—1 , 1 ]
+< p ) [ fIVwM| +Z/ VP, e VPw, o | 1 (5.9)
I#j

Let us estimate the first two terms. We observe that the remaining terms are O(m). We note that PU, ¢ satisfies

~APU, ¢ = e2a(&)e’i5, inQ,  PU,g =0 onde.

Then we have

/ |VPU,.5 (0| dx
2

& / a&)e" 5 PU, & (%)
2

8 2
& / a(g)ei (qu,g}.(x) +87H(x, &) — log % + 05 82))
2 J

8821 1
+ 87H + 0(u?e?
A (SZM] |X _ SJ|2)2 ( (SZHJ_Z +|x— %-j|2)2 wH(x, Ej) ( e ))

8 1
= 1 STH(E iz, &) — 41 ; o(u?e?
/ij RENFEE <0g RENPEE + 87 H(§j + ez, §) og(sup) + O0(uje%)

8 1 8
- /Q T T /Q L T (T o ) = 6. 6)

+ 87 -/Qw- (lﬁsﬁH(éj, &) — 4log(e ;) o, W + O(M]_zsz). (5.10)
But
/ 5 =87 + 0(e), (5.11)
20y (1Y)
and
f i log ! = —167 + 0(e). (5.12)
20y, (TH P27 (A4 yP)?
Moreover,
fgw U:;W (HE + ey, §) — H(g, §)) = O(e). (5.13)

Therefore from (5.10)-(5.13) and (2.19), we have

1
/ |VPUMj,§j(x)|2dx = —167 + 64712H(§j, &) — 32w loge — 167 log(SMJ-z) + 167 log(8) + O (—p)
2 14

Please cite this article in press as: S. Deng, et al., Multiple blow-up solutions for an exponential nonlinearity with potential in R?, Nonlinear Analysis
(2014), http://dx.doi.org/10.1016/j.na.2014.10.034




20 S. Deng et al. / Nonlinear Analysis 1 (111E) IIE-EI

1
= —16mr + 64712H(§j, &) — 32w loge + 167 log(8) — 167 loga(&;) + O (—p)
14

— 167 |: (2p D) (1—10g8)+7 (H(EJ,E])—{-ZG(E,,E] >:| (5.14)
i#j

Now, we calculate that

/ VPU,, & VPU,, ¢ dx = f e2a(g)em “PU, ¢

I#j I#j

8e?u? 8} 8}
lo + 8mH(x, log —_ +
/g(e 202 +|x—a|2)2< S T k= gag) o E) ~log s + 004

I#j

1
+8TH(E + ez, &) | + 0(ule?)
— /g <1+|z|2>2< (82uf+|smz+a—s,-|2>2 ! !

- L : 2.2
= Z/le (1+ |Z|2)287TG($17 S])'{'O(Mjg )

1)
= 647> Y G(&, &) + 017 e?). (5.15)
I#j
Thus, from (5.9), (5.14) and (5.15) we have
1 5 1 20— 1)
= VU, (®)|“dx = ———— { — 8Km — 16K7 log ¢ + 8K log(8) — 81(717 (1 —1log8)
2 Jq pry2e-V 2-

—87 Zloga(s» -— (ZH@J, &) + ZG@,, &) ) <| lolgg|>} : (5.16)

i#]

Finally, let us evaluate the second term in the energy

)\. )\ 1 X p
,/ a(x)eV’ dx = 7/ a(x)eyp(wwp (VA)(Q)) dx
pJe P Jo
)\. K vy (X p )\‘ 1 X p
- 72/ a(x)eyP(prp(VA)(g)) dx + 7/ ) a(x)eyp(wpyp (VA)(S)) i
p j=1 B(§j 8) p Q\-UIB(SJ-’S)
=
=1+I (5.17)
First we observe that
II=16,(&) (5.18)
with ©; (£) a function, uniformly bounded, as A — 0. On the other hand,

1 K 1 b
I= m Z/B a(sy)eyp[(”p;P (VA)O')) 1] dy

& .5/e)
Fi+21 Lw @)+(u)27 (y)+9<y>} 1
= a(sy)e R P 7 1+0(—))ay
= Z/ — (140 1Y) ¢
T p y2<v D )+ |y|2>2 )]
1 -1
= stn (1+|10g8| 0,(8)), (5.19)

with @, (£¢) a function, uniformly bounded, as A — 0. From (5.17)-(5.19) we get

A 1
-~ U)P _ -1
p/Qa(x)e dx_pzyz(p_])SKn (1+ [loge|~'©;.(8)) . (5.20)

Therefore, from (5.8), (5.16), (5.20) and (1.7) we get that (5.4) holds.
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Let us now prove the validity of (5.5). Fixm € {1,...,K}and ! € {1, 2}. We have

1
e 0.(8) = TR [ZZ%/ ﬁjZij3<s/,.>,VA} (1 +0 (ﬁ)) (5.21)

i=1 j=1

On the one hand, if we multiply equation in (4.1) against 9, ), Vi, we get

2 K
(Ave + 2(Ve)) g Vi = ) Z%/g NiZijd el Vi

2 i=1 j=1

where v = (Vi + ), &) = (Vi +¢) (2, %). On the other hand, we have that

-1

By Us () = —— e, Vi (>
EmnUr(X) = oy 0V (;) :
Putting together these information, we have that

B 1. (8) = ( / (AW, +8) +ha@ U, + e+ | o, UA) (1+o(1)).

2
Furthermore, since [|¢||;x o) < % ¢ |1 (2., by definition of U, we have that
- 1 )

Ur+9)x) = Up(x) (] +0 (;)) in £2.

Hence, by means of integration by parts, and the boundary conditions satisfied by U,, we get that

1
a(ém)lgl(%') = </ I:AUA + AG(X)U£71€U£] a(gm)IUA) (1 +0 (—p)) ,
e Y

where 0(1) here denotes a smooth function of the points &, which is uniformly bounded as A — 0. We thus conclude that

p—1_uP 1
Aemn #1.(5) = [—VUAV?i(\gm),UAJr/\a(x)UA e xa@m)luk] 1+0 )
2

Computations analogous to the ones we performed to get expansion (5.4) give us the validity of (5.5). This concludes the
proof of the lemma. O

6. Proof of the main results
6.1. Proof of Theorem 1.2

Proof of Theorem 1.2. According to Lemma 5.1, we have a solution to (1.1) if we find a critical point &+ of ,(8), it is
equivalent to finding a critical point of the function £(§) : © — R defined by

Ty =2"P [—wg“p‘ e

) + 8Km [=2 + log 8] 16K I
— = 0g8] — ——loge|.
32712 & 2—p & p &

From Lemma 5.2, we have

1E) = @ (&) +o(D), (6.1)
where 0(1) — 0 uniformly for any points (£, ...,&) € 0O, and &° ..k (&) defined by (1.6). By assumptlon that £&* =
(51 - SK) is a @° stable critical point of cba Pe by Definition 1.1, there exists a critical point § € O of 1 such that
1(5)\) — 1(5 ). Moreover, up to a subsequence, &, — £*as A — 0, with @p,((é )= K(§ ).

Furthermore, expansion (1.8) follows from (1.7) and (5.20), while (1.9) holds as a dlrect consequence of the construction
of U,. Expansion (1.10) is a consequence of (5.4). O

6.2. Proof of Theorem 1.3

Proof of Theorem 1.3. According to the result of Theorem 1.2, the proof of Theorem 1.3 reduces to show that, for K as in
assumption (A;), the function @ﬁi,( has a nontrivial critical values in some open set 9, compactly contained in (£2 \ Z)X.
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This fact has already been established in [6] under some minor modifications. For completeness, we recall here the principal
ingredients employed to characterize a topological nontrivial critical value of cbfi ¢ in some set @, compactly contained in

(2 \ Z)X. We refer the reader to [6] for a complete proof of each step.
From the assumptions (A;) and (A;), without loss of generality we write

m
a) = [ Ix— s,
s=1

Then we have

2 — K m
L () = ZH@,, 5 + Zc@,, g - p) Yy
27T |€j - QS|

2
i#j j=1 s=1

2

j=1

2-D) 2 —
( p) Z aSG(E]s qs) + ( p) Z ZWSH(Sp qs) (6.2)

s=1 j=1 s=1

= ZH(%}, &)+ Zc@,, &) —
i#j

0(1)
Define the set
={&=(1.....80 € (R\D & #gifi#j}.

Define the set

K 2 K m K
EemvE =Y HE 8 - 223 Y a6l q) — Y 6E. & +01) > —M (63)
j=1 j=1 s=1 i#j

where M > 0 is a sufficiently large number to be chosen. We have that O is compactly contained in M.
From (1.11), we write set {1,2, ..., K} = UL, U --- U [, where

L={1,...,K},
L={K+1,....,K +K},

ISZ{Kl+"'+K571+1a-~-,K1+"'+K571+Ks},

In=1{Ki+ +Kn1+1,...,K.

Let us fix angles 6, (¢ € Z) and a number § € (0, Z) sufficiently small such that the cones

{a+pe @t p>0, 0[5}, qez (6.4)
are disjoint from one another. Moreover, we assume
dist(q, 02) > 28 VqeZ, lgi — qj| > 48 Vaqi,q €Z, i+#]. (6.5)

Now we define K-tuple
SO (Spu-s%}?)
by
3 P8
Ejo =qs+ EBeI(Q"SHK) Viel,s=1,...,m
Let us set an annulus with radii § and 28 centered in g, that is
U ={& eR*:6 < |§ —q4| <26},
and consider the K-tuple £ = (&4, ..., &) belongs to the open set
{seuflx~--><u§m:|si—sj|>M—1Vi¢j}. (6.6)

The choice of § in (6.4) and (6.5) implies that 50 #+ 50 fori # j, then we have that & belongs to (6.6) provided that M is
sufficiently large. Then we define

W := the connectedness of (6.6) containing &,

X =W, Koz{sexzrrgn|§i—$j|=M_l}.
7]
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From these facts, we get that
(P1) O is an open set, X and Ky are compact sets, K is connected and

KoCKCDCDCM.
Let us define # to be the class of all continuous maps n : X — O with the property that there exists a continuous
homotopy I" : [0, 1] x KX — D such that
rq,-) =id, ra,-) =n, r,& =& vtelo,1], V& € Xo.
In [6], the following facts are proven:
(P2)
o* = sup min P (n(§) < 52}23 Dy (§).
(P3) For every & € 0D such that q>§,,<(s) = @%, 0D is smooth at & and there exists a vector t: tangent to 0D at & so that
T - VO (§) #0.

Under (P1)-(P3), a critical point £D of ¢5,K with 455,,((5) = @™ exists, as a standard deformation argument involving

the gradient flow of & , shows. This finishes the proof of Theorem 1.3. O

6.3. Proof of Theorem 1.4

Proof of Theorem 1.4. According to Theorem 1.2, the proof of Theorem 1.4 reduces to show that function @} , has a €°-
critical point. For a(x) = |x|>* and £2 = B is the unit ball in R?. Following the approach in [12], we obtain that this holds.
Indeed, for p € (0, 1), we set

£ cos 2n(j— D sin 2n(j— D
o osi
e =\ P K P K

Then by symmetry, we have

foranyj=1,...,K.

K
2—-p)
¢g,1(('§,0) =K |:H(§1,ps S],p) + ; G(gl,pv gi.p) + Tj{a log IO:| .

Thus it is equivalent to find a €°-critical point of

K
(2 —p
F(p) = H(E1 . £10) + ) GlE1,, &) + ———— logp.
= 2pm
In the unit ball of R? we have
1 1

1
Gx,y) = —1

og— — — log ,
2 =yl 2T xRy 4 1 - 2(x, )
H(x, x) = 110 !
B L RN
Hence
1 1 /2-p 1K Vet +1-202G1.8)
F(p):flog(l—pz)—l——( oz—(K—l))logp—i—— log ” —.
; = 3 e
Here
2n(j—Hmr . 2n(G— Dm .
* = cos ,sin foranyj=1,...,K.
5 ( K K Vi

lfzp;Pa —(K—1) > 0,thatisK < %”a + 1, we find that

lim F(p) = lim F(p) = —o0.
p—1- p—0t

Then there exists py € (0, 1) such that
F(po) = max F(p),
pe(0,1)

and pg is a @%-critical point of F(p). This completes the proof of Theorem 1.4. O
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