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a b s t r a c t

We study the following boundary value problem
∆u + λa(x)up−1eu

p
= 0, u > 0 inΩ;

u = 0 on ∂Ω,
(0.1)

where Ω is a bounded domain in R2 with smooth boundary, λ > 0 is a small parameter,
the function a(x) ≥ 0 is a smooth potential, and the exponent p satisfies 0 < p < 2. We
construct a family of solutions to problem (0.1) which blows up, as λ → 0, at some points
of Ω which stay outside the zero set of a(x). We relate the number of possible blow-up
points with the zero set of a(x).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following boundary value problem
1u + λa(x)up−1eu

p
= 0, u > 0 inΩ;

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in R2 with smooth boundary, λ > 0 is a small parameter and 0 < p < 2. The function
a(x) ≥ 0 is smooth inΩ . This problem is the Euler–Lagrange equation for the functional

Jpa,λ(u) =
1
2


Ω

|∇u(x)|2dx −
λ

p


Ω

a(x)eu
p
dx, u ∈ H1

0 (Ω). (1.2)

If a(x) ≡ 1, problem (1.1) becomes
1u + λup−1eu

p
= 0, u > 0 inΩ;

u = 0 on ∂Ω.
(1.3)

This problem has been studied widely in the literature when p = 1. The asymptotic behavior of blowing up families of
solutions can be referred to [1,4,13–16]: in these works it has been established that if uλ is an unbounded family of solutions
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to (1.3) for which λ

Ω
euλ remains uniformly bounded as λ → 0, then there exists an integer K such that

λ


Ω

euλ dx → 8πK , as λ → 0.

Moreover there are K points ξ1, . . . , ξK inΩ , which are far away from the boundary ofΩ and far away from each other, so
that

λeuλ →

K
j=1

δξj

in the sense of measure. Furthermore, the location of the point ξ = (ξ1, . . . , ξK ) is known to be related to the critical points
of the function

ΦK (ξ) =

K
j=1

H(ξj, ξj)+

K
i≠j

G(ξi, ξj).

Here G(x, y) denotes Green’s function for the negative Laplacian with Dirichlet boundary condition inΩ , namely
−∆xG(x, y) = δy(x) x ∈ Ω;

G(x, y) = 0 x ∈ ∂Ω,
(1.4)

and H(x, y) its regular part, given by

H(x, y) = G(x, y)−
1
2π

log
1

|x − y|
. (1.5)

Concerning the reciprocal issue, several results are already known in the literature, we refer to [1,10,7]. In particular, in [7]
del Pino–Kowalczyk–Musso constructed bubbling solutions to problem (1.3) when p = 1. They showed that: If the domain
Ω is not simply connected, and given any integer K ≥ 1, there exist K points ξ1, . . . , ξK inΩ and a family of solutions uλ, for
any λ sufficiently small, which blows up at these K points in the sense that, as λ → 0

sup
x∈Ω\∪

K
j=1 B(ξj,δ)

uλ(x) → 0, and for any j = 1, . . . , K , sup
x∈B(ξj,δ)

uλ(x) → ∞

for any positive fixed number δ. Furthermore,
Ω

λeuλdx → 8Kπ as λ → 0.

The location of these blow-up points ξ1, . . . , ξK is not arbitrary: indeed they correspond to critical points of the functionΦK
defined above.

The results have been extended in [9] for the whole range of values of exponents p with 0 < p < 2. This result was
surprising, since the scenario changes completely when p = 2: this situation was previously treated in [8].

In this paper, we construct bubbling solutions to Problem (1.1), with a non negative nontrivial potential. When p = 1,
this situation was already treated in [7], under the condition that the concentration points (ξ1, . . . , ξK ) belong to a region
where the potential a is strictly positive. Our first result shows that this construction can be done for the whole range of
exponents 0 < p < 2.

Before stating our result, it is useful to introduce some notations. For an integer K ≥ 1 and K distinct points ξj, j =

1, . . . , K , in Ω , separated uniformly from each other and from the boundary ∂Ω , write ξ = (ξ1, . . . , ξK ), let us define the
following functional

Φ
p
a,K (ξ) =

K
j=1

H(ξj, ξj)+

K
i≠j

G(ξi, ξj)+
2 − p
4pπ

K
j=1

log a(ξj). (1.6)

Definition 1.1. We say that ξ is a C0-stable critical point of ϕ : M → R if for any sequence of functions ϕn : M → R such
that ϕn → ϕ uniformly on compact sets of M, ϕn has a critical point ξ n such that ϕn(ξ

n) → ϕ(ξ).
In particular, if ξ is a strict local minimum or maximum point of ϕ, then ξ is C0-stable critical point.

Let ε be a parameter, which depends on λ, defined as

pλ


−
4
p
log ε

 2(p−1)
p

ε
2(p−2)

p = 1. (1.7)

Observe that, as λ → 0, then ε → 0, and λ = ε2 if p = 1.
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The result we have is the following.

Theorem 1.2. Let Ω be a bounded smooth domain in R2, 0 < p < 2 and K an integer with K ≥ 1, assume that a(x) ≥ 0 is
smooth inΩ , and ξ ∗

= (ξ ∗

1 , . . . , ξ
∗

K ) is a C0-stable critical point of Φp
a,K . Then there exists λ0 > 0 so that, for any 0 < λ < λ0,

Problem (1.1) has a solution uλ, which satisfies

lim
λ→0

ε
2(2−p)

p


Ω

a(x)eu
p
λdx = 8Kπ, (1.8)

where ε satisfies (1.7). Moreover, there exists a K-tuple ξλ = (ξλ1 , . . . , ξ
λ
K ) ∈ ΩK such that a(ξλj ) > 0, and as λ → 0,

Φ
p
a,K (ξ

λ
1 , . . . , ξ

λ
K ) → Φ

p
a,K (ξ

∗

1 , . . . , ξ
∗

K ),

and

uλ(x) =


−

4
p
log ϵ

 1−p
p

8π

K
j=1

G(x, ξλj )+ o(1)


(1.9)

where o(1) → 0, as λ → 0, on each compact subset of Ω̄ \ {ξλ1 , . . . , ξ
λ
K }. Furthermore

Jpa,λ(uλ) =
1
p


−

4
p
log ϵ

 2(1−p)
p


8Kπ

(2 − p)p
[−2 + p log 8] −

16Kπ
p

log ε −
32π2

2 − p
Φ

p
a,K (ξ

λ)+ O(| log ε|−1)


(1.10)

where O(1) is uniformly bounded as λ → 0.

In [7], the authors consider also the case in which the potential a(x) has a zero of type |x − q|α for some point q ∈ Ω .
When p = 1 and K < 1+α, they show the existence of a family of solutions uλ to Problem (1.1) blowing up at K points ofΩ ,
which remain far from q. This result was generalized by [6] in the case in which the potential a has several zeros q1, . . . , qm,
of type |x− qj|αj respectively. She studies how the concentration phenomena is affected by the presence of several zeros for
the potential. Our next result concerns a generalization of these results when the exponent p belongs to the whole range
0 < p < 2.

Define the set Z ⊂ Ω as

Z := {q ∈ Ω : a(q) = 0}.

Wemake the following assumptions on a(x).
(A1) For any q ∈ Z, there exists αq > 0 such that

aq(x) = a(x)|x − q|−2αq

is a strictly positive continuous function in a neighborhood of q.
(A2) Assume Z ⊂ Ω is finite, and K ≥ 2 is an integer such that there exist distinct points q1, . . . , qm ∈ Z and integers

K1, . . . , Km with the following properties:
2 − p
p

αqs ≠ 1, . . . , K − 1, for each s = 1, . . . ,m,

1 ≤ Ks < 1 +
2 − p
p

αqs , for each s = 1, . . . ,m, (1.11)

and K = K1 + · · · + Km.
We have the following result.

Theorem 1.3. Let Ω be a bounded smooth domain in R2, 0 < p < 2, and assume that a(x) and K satisfy (A1) and (A2). Then
there is λ0 > 0 small such that for any 0 < λ < λ0, Problem (1.1) has a family of solutions uλ with the property:

lim
λ→0

ε
2(2−p)

p


Ω

a(x)eu
p
λdx = 8Kπ, (1.12)

where ε is defined in (1.7). Moreover, there exists a K-tuple ξ̃λ = (ξ̃λ1 , . . . , ξ̃
λ
K ) ∈ (Ω \ Z)K such that as λ → 0

∇Φ
p
a,K (ξ̃

λ
1 , . . . , ξ̃

λ
K ) → 0,

and

uλ(x) =


−

4
p
log ε

 1−p
p

8π

K
j=1

G(x, ξ̃λj )+ o(1)


(1.13)
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where o(1) → 0, as λ → 0, on each compact subset of (Ω \ Z) \ {ξ̃λ1 , . . . , ξ̃
λ
K }. Furthermore

Jpa,λ(uλ) =
1
p


−

4
p
log ε

 2(1−p)
p


8Kπ

(2 − p)p
[−2 + p log 8] −

16Kπ
p

log ε −
32π2

2 − p
Φ

p
a,K (ξ̃

λ)+ O(| log ε|−1)


(1.14)

where O(1) is uniformly bounded as λ → 0.

For the special case thatΩ is the unit ball B in R2 and a(x) = |x|2α with α > 0, that is, consider
1u + λ|x|2αup−1eu

p
= 0, u > 0 in B;

u = 0 on ∂B,
(1.15)

where λ > 0 is a small parameter. A direct consequence of Theorem 1.3 is that there exists a bubbling solution to (1.15)
concentrating at points, which are outside the origin; furthermore the number of bubbling points depends on α. Set

Kα = max

k ∈ N : k <

2 − p
p

α + 1

.

The result we obtain for (1.15) can be stated as follows.

Theorem 1.4. Let 0 < p < 2, there exists λ0 > 0 such that for any 1 ≤ K ≤ Kα , for any 0 < λ < λ0, the problem (1.15) has a
solution uλ which concentrates at K different points of B \ {0} and

lim
λ→0

ε
2(2−p)

p


B
|x|2αeu

p
λdx = 8Kπ, (1.16)

where ε satisfies (1.7). Moreover, (1.9) and (1.10) hold.

Remark 1.5. To prove Theorem 1.3 we follow the approach developed in [6]: we apply a max–min argument to establish a
topologically nontrivial critical value ofΦp

a,K under the assumptions (A1) and (A2) on a(x) in any bounded smooth domain.
Observe that we are not assuming the condition that domain is not simply connected. Observe that Z = ∅, the condition
thatΩ is not simply connected guarantees existence of a nontrivial critical valueΦp

a,K , see [7].

Remark 1.6. Theorem 1.4 is the special case of Theorem 1.3 for a(x) = |x|2α and domainΩ = B.

Remark 1.7. We construct bubbling solutions to (1.1), whose location of concentration occurs at points different from the
zero set of the potential a(x). The problem of finding solutions with additional concentration around at the zero points of
a(x) is of different type, indeed from the works [2,3,17] it follows that the contribution of each blow-up point in the limit
(1.12) is of 8π(1 + α). The asymptotic analysis in this situation is completely different.

In order to cover the case p = 2 in (1.1), we believe that a different approach is needed, given the known result for
a(x) ≡ 1 contained in [8].

The paper is organized as follows: Section 2 is devoted to describe a first approximation solution to problem (1.1) and to
estimate its error. We consider the linear problem and the nonlinear problem in Sections 3 and 4. Furthermore, we reduced
problem into the finite-dimensional problem and solve it, we sketch it in Section 5. In Section 6, we prove the main results.

2. The first approximation solution

In this section, we build a good approximation solution andwe estimate its error. Let us introduce the radially symmetric
solutions of the following limit equation

1w + ew = 0 in R2,


R2

ew < +∞,

which are given by the one parameter family of functions

wµ(z) = log
8µ2

(µ2 + |z|2)2
. (2.1)

Let K be an integer, set ξ = (ξ1, . . . , ξK ), let δ > 0 small but fixed, define

O :=

ξ ∈ (Ω \ Z)K : dist(ξj, ∂(Ω \ Z)) ≥ δ, |ξi − ξj| ≥ δ for i ≠ j


. (2.2)

Moreover, consider K positive numbers µj such that

δ < µj < δ−1, for all j = 1, . . . , K . (2.3)
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The parameters µj will be chosen properly later on. Define the function

Uµj,ξj(x) = log
8µ2

j

(µ2
j ε

2 + |x − ξj|2)2a(ξj)

= wµj


x − ξj

ε


+ 4 log

1
ε

− log a(ξj). (2.4)

Let us denote PUµj,ξj(x) the projection of Uµj,ξj into the space H1
0 (Ω), in other words, PUµj,ξj(x) is the unique solution of

1PUµj,ξj = 1Uµj,ξj inΩ;

PUµj,ξj = 0 on ∂Ω. (2.5)

By Maximum Principle, we have that ξ ∈ O and µj satisfies (2.3), then

PUµj,ξj(x) = Uµj,ξj(x)+ 8πH(x, ξj)− log
8µ2

j

a(ξj)
+ O(µ2

j ε
2) (2.6)

in C1(Ω̄) as ε → 0, and

PUµj,ξj(x) = 8πG(x, ξj)+ O(µ2
j ε

2) (2.7)

in C1
loc((Ω \ Z) \ {ξj}) as ε → 0, where G(·, ·) and H(·, ·) are Green’s function and its regular part as defined in (1.4) and

(1.5).
We now define that the first ansatz is given by

U(x) =
1

pγ p−1

K
j=1

PUµj,ξj(x),

with some number γ , to be fixed later on. We want to show that U(x) is a good approximation for a solution to (1.1), and so
that the solution to problem (1.1) like the formula U(x) plus a small term. In order to perform the fixed point argument to
find the lower order term, we need to improve our ansatz, adding two other terms in the expansion of the solution. In order
to do this, we set

wj(y) = wµj(y − ξ ′

j ) = log
8µ2

j

(µ2
j + |y − ξ ′

j |
2)2
,

and

wj(y) = wµj(y)− log a(ξj) = log
8µ2

j

(µ2
j + |y − ξ ′

j |
2)2a(ξj)

. (2.8)

Letwi
j be the radial solution of

1wi
j + ewjwi

j = ewj f i in R2, for i = 0, 1, (2.9)

where

f 0 = −

wj +
1
2
(wj)

2

,

and

f 1 = −


w0

j +
p − 2

2(p − 1)
(wj)

2
+

1
2
(w0

j )
2
+

1
8
(wj)

4
+ 2wjw

0
j +

1
2
(wj)

3
+

1
2
w0

j (wj)
2

.

In fact, as shown in [11] (see also [5,9]), there exists a radially symmetric solution with the properties that

wi
j(y) = Cij log

|y − ξ ′

j |

µj
+ O


1

|y − ξ ′

j |


as |y − ξ ′

j | → ∞, (2.10)

for some explicit constants Cij, which can be explicitly computed. In particular, when i = 0, the constant C0j is given by

C0j = −8


+∞

0
t

t2 − 1
(t2 + 1)3

log
8µ−2

j

(1 + t2)2a(ξj)
+

1
2


log

8µ−2
j

(1 + t2)2a(ξj)

2
 dt

= 4 log 8 − 8 − 8 logµj − 4 log a(ξj). (2.11)
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Let us define

w0
µj,ξj

(x) := w0
j

 x
ε


, w1

µj,ξj
(x) := w1

j

 x
ε


for x ∈ Ω.

Let Pw0
µj,ξj

and Pw1
µj,ξj

denote the projections into H1
0 (Ω) of w

0
µj,ξj

and w1
µj,ξj

, respectively. We write y =
x
ε
, ξ ′

j =
ξj
ε
, by

(2.10), we have that

Pwi
µj,ξj

(x) = wi
j

 x
ε


− 2πCijH(x, ξj)+ Cij log(µjε)+ O(µjε) (2.12)

in C1(Ω̄) as ε → 0, and

Pwi
µj,ξj

(x) = P

wi

j

 x
ε


= −2πCijG(x, ξj)+ O(µjε) (2.13)

in C1
loc((Ω \ Z) \ {ξj}) as ε → 0.
We define

Uλ(x) =
1

pγ p−1

K
j=1


PUµj,ξj(x)+

p − 1
p

1
γ p

Pw0
µj,ξj

(x)+


p − 1
p

2 1
γ 2p

Pw1
µj,ξj

(x)


. (2.14)

From (2.7) and (2.13), one has, away from the points ξj,

Uλ(x) =
8π

pγ p−1

K
j=1

G(x, ξj)


1 −

p − 1
p

1
γ p

C0j

4
−


p − 1
p

2 1
γ 2p

C1j

4
+ O(ε2)


. (2.15)

Consider now the change of variables

v(y) = pγ p−1u(εy)− pγ p, with γ p
= −

4
p
log ε.

Then problem (1.1) reduces to
1v + g(v) = 0, v > −pγ p inΩε;

v = −pγ p on ∂Ωε,
(2.16)

whereΩε = ε−1Ω , and

g(v) = a(εy)

1 +

v

pγ p

p−1

eγ
p


1+ v
pγ p

p
−1

. (2.17)

Let us define the first approximation solution to (2.16) as

Vλ(y) = pγ p−1Uλ(εy)− pγ p, (2.18)

with the numbers µj, j = 1, . . . , K defined by

log
8µ2

j

a(ξj)
=


2(p − 1)
2 − p

(1 − log 8)+
8π

2 − p


H(ξj, ξj)+

K
i≠j

G(ξi, ξj)


1 + O


1
γ p


. (2.19)

Lemma 2.1. Wewrite y = ε−1x, ξ ′

j = ε−1ξj. If µj, j = 1, . . . , K , are given by (2.19), then for |y−ξ ′

j | < δ/εwith δ sufficiently
small but fixed, we have

Vλ(y) = wj(y)+
p − 1
p

1
γ p
w0

j (y)+


p − 1
p

2 1
γ 2p

w1
j (y)+ θ(y), (2.20)

with wj defined by (2.8) and

w0
j (y) := w0

j

y − ξ ′

j

µj


, w1

j (y) := w1
j

y − ξ ′

j

µj


and

θ(y) = O(ε|y − ξ ′

j |)+ O(ε2).
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Proof. From (2.6), (2.7), (2.12), (2.13) and the fact that Uµj,ξj(εy)− pγ p
= wj(y), we have

Vλ(y) = pγ p−1Uλ(εy)− pγ p

=

K
j=1


PUµj,ξj(x)+

p − 1
p

1
γ p

Pw0
µj,ξj

(x)+


p − 1
p

2 1
γ 2p

Pw1
µj,ξj

(x)


− pγ p

= PUµj,ξj(x)+
p − 1
p

1
γ p

Pw0
µj,ξj

(x)+


p − 1
p

2 1
γ 2p

Pw1
µj,ξj

(x)− pγ p

+

K
i≠j


PUµi,ξi(x)+

p − 1
p

1
γ p

Pw0
µi,ξi

(x)+


p − 1
p

2 1
γ 2p

Pw1
µi,ξi

(x)



= Uµj,ξj(x)− pγ p
+ 8πH(x, ξj)− log

8µ2
j

a(ξj)
+ O(µ2

j ε
2)

+
p − 1
p

1
γ p


w0

j (y)− 2πC0jH(x, ξj)+ C0j log(µjε)+ O(µjε)


+


p − 1
p

2 1
γ 2p


w1

j (y)− 2πC1jH(x, ξj)+ C1j log(µjε)+ O(µjε)


+ 8π
K
i≠j

G(ξi, ξj)


1 −

C0j

4
p − 1
p

1
γ p

−
C1j

4


p − 1
p

2 1
γ 2p


+ O(ε2)

= wj(y)+
p − 1
p

1
γ p
w0

j (y)+


p − 1
p

2 1
γ 2p

w1
j (y)+ O(ε|y − ξ ′

|)+ O(ε2)

− log
8µ2

j

a(ξj)
+


C0j

p − 1
p

1
γ p

+ C1j


p − 1
p

2 1
γ 2p

 
log(µj)+ log ε


+ 8π


1 −

C0j

4
p − 1
p

1
γ p

−
C1j

4


p − 1
p

2 1
γ 2p


H(ξj, ξj)+

K
i≠j

G(ξi, ξj)


.

Since numbers µj satisfy (2.19), we note that pγ p
= −4 log ε, then find

− log
8µ2

j

a(ξj)
+


C0j

p − 1
p

1
γ p

+ C1j


p − 1
p

2 1
γ 2p

 
log(µj)+ log ε


+ 8π


1 −

C0j

4
p − 1
p

1
γ p

−
C1j

4


p − 1
p

2 1
γ 2p


H(ξj, ξj)+

K
i≠j

G(ξi, ξj)


= 0.

Thus (2.20) holds. �

We will look for solutions to (2.16) of the form

v = Vλ + φ,

where Vλ is defined as in (2.18), and φ represents a lower order correction. We aim at finding a solution for φ small pro-
vided that the points ξj are suitably chosen. For small φ, we can rewrite problem (2.16) as a nonlinear perturbation of its
linearization, namely,

L(φ) = −[Eλ + N(φ)], x ∈ Ωε;

φ = 0, x ∈ ∂Ωε,
(2.21)

where

L(φ) := 1φ + g ′(Vλ)φ, (2.22)
Eλ := 1Vλ + g(Vλ), (2.23)

N(φ) := g(Vλ + φ)− g(Vλ)− g ′(Vλ)φ. (2.24)

We recall that g(t) = a(εy)(1 +
t

pγ p )
p−1eγ

p
[(1+ t

pγ p )
p
−1].
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In order to solve the problem (2.21), first we have to study the invertibility properties of the linear operator L. In order
to do this, we introduce a weighted L∞-norm defined as

∥h∥∗ := sup
y∈Ωε


K

j=1

(1 + |y − ξ ′

j |)
−3

+ ε2

−1

|h(y)| (2.25)

for any h ∈ L∞(Ωε). With respect to this norm, the error term Eλ given in (2.23) can be estimated in the following way.

Lemma 2.2. Let δ > 0 be a small but fixed number and assume that the points ξ ∈ O. There exists C > 0, such that we have

∥Eλ∥∗ ≤
C
γ 3p

=
C

|logε|3
(2.26)

for all λ small enough.

Proof. Far away from the points ξj, namely for |x − ξj| > δ, i.e. |y − ξ ′

j | >
δ
ε
, for all j = 1, . . . , K , from (2.7) and (2.13) we

have that

1Vλ(y) = pγ p−1ε21U(εy) = O(ε4).

On the other hand, in this region we have

1 +
Vλ(y)
pγ p

= 1 +
4 log ε + O(1)

pγ p
=

O(1)
| log ε|

(2.27)

where O(1) denotes a smooth function, uniformly bounded, as ε → 0, in the considered region. Hence

g(Vλ) = a(εy)

1 +

Vλ
pγ p

p−1

eγ
p


1+ Vλ
pγ p

p
−1

=

ε
4
p

| log ε|p−1
O(1).

Thus if we are far away from the points ξj, or equivalently for |y − ξ ′

j | > δ
ε
, the size of the error, measured with

respect to the ∥ · ∥∗-norm, is relatively small. In other words, if we denote by 1outer the characteristic function of the set
{y : |y − ξ ′

j | >
δ
ε
, j = 1, . . . , K}, then in this region we have

∥Eλ1outer∥∗ ≤ C
ε

2(2−p)
p

| log ε|p−1
. (2.28)

Let us now fix the index j in {1, . . . , K}, for |y − ξ ′

j | <
δ
ε
, we have

1Vλ(y) = −ewj(y) +
p − 1
p

1
γ p
1w0

j (y)+


p − 1
p

2 1
γ 2p

1w1
j (y)+ O(ε2). (2.29)

On the other hand, for any R > 0 large but fixed, in the ball |y − ξ ′

j | < Rε := R| log ε|α , with α ≥ 3, we can use Taylor
expansion to first get

1 +
Vλ
pγ p

p−1

= 1 +
p − 1
p

1
γ p
wj +


p − 1
p

2 1
γ 2p


w0

j +
p − 2

2(p − 1)
(wj)

2


+


p − 1
p

3 1
γ 3p

(log |y − ξ ′

j |),

γ p


1 +
Vλ
pγ p

p

− 1


= wj +


p − 1
p


1
γ p


w0

j +
(wj)

2

2


+


p − 1
p

2 1
γ 2p

(w1
j + wjw

0
j )+

1
γ 3p

(log |y − ξ ′

j |)

and

eγ
p


1+ Vλ
pγ p

p
−1


= ewj


1 +


p − 1
p


1
γ p


w0

j +
(wj)

2

2


+


p − 1
p

2 1
γ 2p


w1

j + wjw
0
j +

1
2
(w0

j + (wj)
2)2


+
1
γ 3p

(log |y − ξ ′

j |)


.

Thus we obtain

g(Vλ) := a(εy)

1 +

Vλ
pγ p

p−1

eγ
p


1+ Vλ
pγ p

p
−1


=

a(ξj)+ O(ε)


ewj


1 +


p − 1
p


1
γ p


w0

j +
(wj)

2

2
+ wj


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+


p − 1
p

2 1
γ 2p


w1

j + 2wjw
0
j +

1
2


w0

j +
(wj)

2

2

2

+ w0
j +

p − 2
2(p − 1)

(wj)
2
+
w3

j

2



+ O
 log |y − ξ ′

j |

γ 3p


.

Thus, thanks to the fact that we have improved our original approximation with the termsw0
j andw1

j , and the definition of
∗-norm, and we get that

∥Eλ1B(ξ ′
j ,Rε)

∥∗ ≤
C
γ 3p

=
C

| log ε|3
, for any j = 1, . . . , K . (2.30)

Here 1B(ξ ′
j ,Rε)

denotes the characteristic function of B(ξj, Rε). Finally, in the remaining region, namely where Rε < |y− ξ ′

j | <

δ
ε
, for any j = 1, . . . , K , we have from one hand that |1Vλ(y)| ≤ Cewj(y), and also |g(Vλ(y))| ≤ Cewj(y) as a consequence of

(2.20). This fact, together with (2.30) and (2.28) we obtain estimate (2.26). �

As the same proof of above lemma, we have the following result.

Lemma 2.3. For x very close to the point ξj inΩ , we have

∥g ′(Vλ)− ewj∥∗ → 0 as λ → 0, (2.31)

and there exists some positive constant D0 such that

g ′(Vλ) ≤ D0

K
j=1

ewj . (2.32)

Moreover,

∥g ′′(Vλ)∥∗ ≤ C . (2.33)

3. The linear problem

The main objective of this section is to study the invertibility of the linearized operator L. Let us recall that for x close
point ξj,

∥g ′(Vλ)− ewj∥∗ → 0 as λ → 0.

Thus we can see that the operator L can be approximated by the family

Lj(φ) = 1φ + ewjφ = 1φ +
8µ2

j
µ2

j + |y − ξ ′

j |
2
2 φ,

which is non-degenerate, in the sense that the bounded solutions of Lj(φ) = 0, excepting rescaling and translation are
(see [1])

z0,j = ∂µjwµj , zi,j(y) = ∂yiwµj(y), i = 1, 2.

We consider ξ = (ξ1, . . . , ξK ) ∈ O, let us consider a large but fixed number R0 > 0 and a smooth cut-off function η(ρ)
with η(ρ) = 1 if ρ < R0 and η(ρ) = 0 if ρ > R0 + 1, and we denote

ηj(y) = η(|y − ξ ′

j |).

Moreover, let h ∈ C0,α(Ωε), we consider the linear problem of finding a function φ and scalars cij, i = 1, 2, j = 1, . . . , K ,
such that

L(φ) = h +

2
j=1

K
j=1

cijηjZij inΩε

φ = 0 on ∂Ωε
Ωε

ηjZijφ = 0 for all i = 1, 2, j = 1, . . . , K .

Lemma 3.1. Let Ω̃ε := Ω \∪
K
j=1 B(ξj, R). There exists R large enough such that if L(φ) ≤ 0 in Ω̃ε and φ ≥ 0 on ∂Ω̃ε then φ ≥ 0

in Ω̃ε .
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Proof. We define the function

Z(y) =

K
j=1

z0(a|y − ξj|), y ∈ Ωε,

where z0(r) =
r2−1
r2+1

.
If a is taken small and fixed, and R large enough such that a|y − ξ ′

j | > aR ≫ 1 then Z(y) > 0. From (2.32) we have

L(Z) = −

K
j=1

8a2(a2|y − ξj|
2
− 1)

(1 + a2(|y − ξ ′

j |
2))3

+ g ′(Vλ)Z(y) ≤ −

K
j=1

c
a2|y − ξj|4

+ D0

K
j=1

ewjZ(y)

≤ −

K
j=1

c
a2|y − ξj|4

+

K
j=1

C
|y − ξj|4

≤ 0. �

We consider for R as in Lemma 3.1, define the inner norm as follows:

∥φ∥i := sup
y∈∪

K
j=1 B(ξ ′

j ,R)
|φ(y)|.

Lemma 3.2. Let h ∈ L∞(Ωε) if we consider the equation

L(φ) = h inΩε (3.1)
φ = 0 on ∂Ωε, (3.2)

then there exists C > 0 such that

∥φ∥∞ ≤ C[∥φ∥i + ∥h∥∗]. (3.3)

Proof. Let us take the following barrier

φ̃(y) = 2∥φ∥iZ(y)+ ∥h∥∗

K
j=1

ψj(y)

where ψj is a solution of the equation:

−1ψj =
2

|y − ξ ′

j |
3

+ 2ε2, R < |y − ξ ′

j | <
M
ε
, (3.4)

ψj = 0 if |y − ξ ′

j | = R, |y − ξ ′

j | =
M
ε
, (3.5)

whereM is such thatΩε ⊂ B(ξ ′

j ,
M
ε
). A direct computation shows that

ψ(r) = −
2
r

−
ε2r2

2
+ a log(r)+ b

where a =
2
R +

ε2R2
2 −

ε
M −

M2
2

log( εRM )
and b =

2
R +

ε2R2
2 − a log R. Hence ψ(r) is a uniform bound function independent of ε as long as

1 < R < 1
2ε . By the Maximum Principle one has ψj ≥ 0. Therefore, by the definition of Z(y) and for R large enough

φ̃(y) ≥ |φ(y)| in |y − ξ ′

j | = R,

φ̃ ≥ 0 = φ(y) on ∂Ωε.

Moreover

L(φ̃) = 2∥φ∥iL(Z)+ ∥h∥∗L


K

j=1

ψj


≤ ∥h∥∗

K
j=1


1ψj + g ′(Vλ)ψj


= ∥h∥∗

K
j=1


−

2
|y − ξ ′

j |
3

− 2ε2 + g ′(Vλ)ψj


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≤ ∥h∥∗

K
j=1


−

2
|y − ξ ′

j |
3

− 2ε2 +
2KD0

R
ewj



≤ −∥h∥∗


K

j=1

(1 + |y − ξ ′

j |)
−3

+ ε2


≤ −|h(y)| ≤ |L(φ)(y)|.

From Lemma 3.1 one has

|φ| ≤ |φ̃(y)|; y ∈ Ωε.

Since ψj is uniformly bounded over ε, there exists C > 0 such that

∥φ∥∞ ≤ C[∥φ∥i + ∥h∥∗]. �

Lemma 3.3. We consider the equation

L(φ) = h inΩε,

φ = 0 in ∂Ωε,
Ωε

ηjZijφ = 0 for i = 0, 1, 2, j = 1, 2 . . . , K .

Then there exist positive numbers λ0, C such that, for all ξ ∈ O we have

∥φ∥∞ ≤ C∥h∥∗

for all λ < λ0.

Proof. By contradiction, we suppose that there exist λn → 0, (ξ n1 , ξ
n
2 , . . . , ξ

n
K ) ∈ O, functions hn and φn, satisfy the above

equation, with ∥hn∥∗ → 0, ∥φn∥∞ = 1. By Lemma 3.2, we have that ∥φn∥i > κ > 0. Let φ̂n(z) = φn((ξ
n
j )

′
+ z), where

the index j is such that sup|y−(ξnj )
′|<R |φn| ≥ κ . We assume j is the same for all n. By local elliptic estimates, we get that φ̂n

converges uniformly over compact set to a bounded solution φ̂ ≠ 0 of the following equation

1φ +
8µ2

j

(µ2
j + |z|2)2

φ = 0 in R2.

The non degeneracy of the equation and the orthogonality condition give us the contradiction. �

Lemma 3.4. Let δ > 0 be fixed and small. There exist positive numbers λ0 and C, such that for ξ ∈ O, and any solution φ to the
following problem

L(φ) = h, inΩε

φ = 0, on ∂Ωε
Ωε

ηjZijφ = 0, for i = 1, 2, j = 1, . . . , K .
(3.6)

Then

∥φ∥∞ ≤ C(− log ε)∥h∥∗

for all λ < λ0.

Proof. Let R > R0 + 1 be a large and fixed number, and ẑ0 be the solution of the problem
1ẑ0j +

8µ2
j

µ2
j + |y − ξ ′

j |
2
2 ẑ0j = 0,

ẑ0j(y) = z0j(R) for |y − ξ ′

j | = R,

ẑ0j(y) = 0 for |y − ξ ′

j | =
δ

3ε
.
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By computation, this function is explicitly given by

ẑ0j(y) = z0j(y)

1 −

 r
R

ds
sz20j(s) δ

3ε
R

ds
sz20j(s)

 , r = |y − ξ ′

j |.

Next we consider the radial smooth cut-off functions χ1 and χ2 with the following properties

0 ≤ χ1 ≤ 1, χ1 ≡ 1 in B(0, R), χ1 ≡ 0 in B(0, R + 1)c; and

0 ≤ χ2 ≤ 1, χ2 ≡ 1 in B

0,
δ

4ε


, χ1 ≡ 0 in B


0,
δ

3ε

c

,

and |χ ′

2(r)| ≤ Cε, |χ ′′

2 (r)| ≤ Cε2. Then we set

χ1j(y) = χ1(|y − ξ ′

j |), χ2j(y) = χ2(|y − ξ ′

j |),

and define

z̃0j = χ1jZ0j + (1 − χ1j)χ2jẑ0j.

Let φ be a solution to Eq. (3.6), we will modify φ so that the extra orthogonality condition with respect to Z0j holds. We set

φ̃ = φ +

K
j=1

djz̃0j

with the number dj defined as

dj = −


Ωε
ηjZ0jφ

Ωε
ηj|Z0j|2

.

Then

L(φ̃) = h +

K
j=1

djL(z̃0j), (3.7)

and 
Ωε

ηjZ0iφ̃ = 0, for all i = 0, 1, 2.

Then from the previous lemma we have the following estimate

∥φ̃∥∞ ≤ C


∥h∥∗ +

K
j=1

|dj| ∥L(z̃0j)∥∗


. (3.8)

Next, we show that

∥L(z̃0j)∥∗ ≤
C

log 1
ε

, and |dj| ≤ C

log

1
ε

2

∥h∥∗. (3.9)

Indeed, we have

L(z̃0j) = 2∇χ1j∇(Z0j − ẑ0j)+1χ1j(Z0j − ẑ0j)+ 2∇χ2j∇ ẑ0j +1χ2jẑ0j + O(ε4).

We consider the following four regions

Ω1 = {y : |y − ξ ′

j | ≤ R}, Ω2 = {y : R < |y − ξ ′

j | < R + 1},

Ω3 =


y : R + 1 ≤ |y − ξ ′

j | ≤
δ

4ε


, Ω2 =


y :

δ

4ε
< |y − ξ ′

j | <
δ

3ε


.

First, we note that L(z̃0) = O(ε4) for y ∈ Ω1 ∪Ω3. For y ∈ Ω2, we have

ẑ0j − Z0j = −z0j(r)

 r
R

ds
sz20j(s) δ

3ε
R

ds
sz20j(s)

.



S. Deng et al. / Nonlinear Analysis ( ) – 13

Then

|ẑ0j − Z0j| ≤
C

log 1
ε

.

Similarly, in this region, we have

|ẑ ′

0j − Z ′

0j| ≤
C

log 1
ε

.

On the other hand, for y ∈ Ω4, we have

ẑ0j(r) ≤
C

log 1
ε

, and ẑ ′

0j(r) ≤
Cε

log 1
ε

.

Therefore, by the definition of the ∗-norm, we get

∥L(z̃0j)∥∗ ≤
C

log 1
ε

, (3.10)

where the number C depends in principle of the chosen large constant R.
Next we show the other inequality of (3.9) holds. Testing Eq. (3.7) against z̃0l we have

⟨φ̃, L(z̃0l)⟩ = ⟨h, z̃0l⟩ + dl⟨L(z̃0l), z̃0l⟩,

where ⟨f , g⟩ =

Ωε

fg . This relation and (3.8) provide that

dl⟨L(z̃0l), z̃0l⟩ ≤ C∥h∥∗[1 + ∥L(z̃0l)∥∗] + C
K

j=1

|dj| ∥L(z̃0l)∥2
∗
. (3.11)

We want to measure the size of ⟨L(z̃0l), z̃0l⟩. We decompose

⟨L(z̃0l), z̃0l⟩ =


Ω2

L(z̃0l)z̃0l +

Ω4

L(z̃0l)z̃0l + O(ε). (3.12)

Since 
Ω4

L(z̃0l)z̃0l

 ≤ C


|∇χ2l| |∇ ẑ0l| |ẑ0l| + C


|1χ2l| |ẑ0l|2 + O(ε2)

≤
C

log 1
ε

2 . (3.13)

Moreover, for y ∈ Ω2, we have
Ω2

L(z̃0l)z̃0l = 2


∇χ1l∇(Z0l − ẑ0l)ẑ0 +


1χ1l(Z0l − ẑ0l)ẑ0l + O(ε)

=


∇χ1l∇(Z0l − ẑ0l)ẑ0l −


∇χ1l(Z0l − ẑ0l)∇ ẑ0l + O(ε).

Now, we observe that in the considered region Ω2, |ẑ0l − Z0l| ≤
C

log 1
ε

, while |ẑ ′

0l| ∼
1
R3

+
1
R

1
log 1

ε

. Then, for R is large but

independent of ε we have ∇χ1l(Z0l − ẑ0l)∇ ẑ0l

 ≤
C1

R3

1
log 1

ε

,

where C1 is a constant to be chosen independent of R. Moreover
∇χ1l∇(Z0l − ẑ0l)ẑ0l = 2π

 R+1

R
χ ′

1l(z0l − ẑ0l)′ẑ0lr dr

=
2π δ
3ε

R
ds
sz20l

 R+1

R
χ ′

1l

1 −

4µ2
l r

2z0l
 r
R

ds
sz20l

(µ2
l + r2)2

 dr

= −
C2

log 1
ε


1 + O


1

log 1
ε


,
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where C2 is a positive constant independent on ε. Thus, choosing R large enough, we get
Ω2

L(z̃0l)z̃0l ∼ −
C2

log 1
ε

.

Combining this and (3.12), (3.13) we get

⟨L(z̃0l), z̃0l⟩ ≤ −
C2

log 1
ε


1 + O


1

log 1
ε


. (3.14)

From (3.10), (3.11) and (3.13) we have

|dj| ≤ C

log

1
ε

2

∥h∥∗.

We thus have from estimate (3.8) that

∥φ∥∞ ≤ C

log

1
ε


∥h∥∗. �

We are ready to obtain the principal result of this section.

Proposition 3.5. There exist positive numbers λ0 and C, such that for ξ ∈ O, there is unique solution φ = Tλ(h) to:

L(φ) = h +

2
j=1

K
j=1

cijηjZij inΩε

φ = 0 on ∂Ωε
Ωε

ηjZijφ = 0 for all i = 1, 2, j = 1, . . . , K ,

(3.15)

for all λ < λ0. Moreover

∥φ∥∞ ≤ C

log

1
ε


∥h∥∗. (3.16)

We just considered the orthogonality conditions with respect to the elements of the approximate kernel due to
translation.

Proof. Let us consider the cut-off function χ2j introduced before. Testing Eq. (3.15) against Zijχ2j we get

⟨L(φ), Zijχ2j⟩ = ⟨h, Zijχ2j⟩ + cij


Ωε

ηj|Zij|2. (3.17)

Moreover

⟨L(φ), Zijχ2j⟩ = ⟨φ, L(Zijχ2j)⟩.

We have

L(Zijχ2j) = 1χ2jZij + 2∇Zij∇χ2j + εO((1 + r)−3),

with r = |y − ξ ′

j |. Since1χ2j = O(ε2), ∇χ2j = O(ε), and Zij = O(r−1), ∇Zij = O(r−2), we get

L(Zijχ2j) = O(ε3)εO((1 + r)−3).

Then we have

|⟨L(φ), Zijχ2j⟩| = |⟨φ, L(Zijχ2j)⟩| ≤ Cε∥φ∥∞.

From the previous lemma we find

∥φ∥∞ ≤ C

log

1
ε


∥h∥∗ +

2
i=1

K
j=1

cij


. (3.18)
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Combining this with (3.17) and (3.18)

|cij| ≤ C


∥h∥∗ + ε log

1
ε


l,m

|clm|


. (3.19)

Then,

|cij| ≤ C∥h∥∗.

Combining this with (3.18) we obtain the estimate

∥φ∥∞ ≤ C

log

1
ε


∥h∥∗.

Next prove the solvability assertion. We consider the Hilbert space

H =


φ ∈ H1

0 (Ωε) :


Ωε

φZijηj = 0 for i = 1, 2, j = 1, 2, . . . , K

,

endowedwith the usual inner product ⟨φ,ψ⟩ =

Ωε

∇φ∇ψ . Problem (3.15), expressed in a weak form, is equivalent to find
φ ∈ H such that

⟨φ,ψ⟩ =


Ωε

(Wφ − h)ψ dx, for all ψ ∈ H,

where W = g ′(Vλ). With the aid of Riesz’s representation theorem, this equation gets rewritten in H in the operator form

(Id − R)φ = h̃, (3.20)

for certain h̃ ∈ H, where R is a compact operator inH. The homogeneous equation φ = Rφ inH, which is equivalent to (3.15)
with h ≡ 0, has only the trivial solution in viewof the a priori estimate (3.16). Now, Fredholm’s alternative guarantees unique
solvability of (3.20) for any h̃ ∈ H. This finishes the proof. �

Lemma 3.6. The operator Tλ is differentiable with respect to the variable (ξ1, . . . , ξK ) ∈ O. Moreover one has the estimate

∥∂(ξ ′
m)l

Tλ(h)∥∞ ≤ C

log

1
ε

2

∥h∥∗.

Proof. Let φ = Tλ(h)where φ satisfies the equation

L(φ) = h +


i,j

cijZijηj

with additional conditions, for some unique constants cij. Formally Z = ∂(ξ ′
m)l
φ should satisfy

L(Z) = −∂(ξ ′
m)l
(g ′(Vλ))φ +

2
i=1

cim∂(ξ ′
m)l
(ηmZim)+

2
i=1

K
j=1

dijZijηj (3.21)

with dij = ∂(ξ ′
m)l

cij and the orthogonality conditions become
Ωε

ZimηmZ = −


Ωε

∂(ξ ′
m)l
(Zimηm)φ.

We consider the projected function

Z̃ = Z +


bimηmZim

such that
Ωε

ηjZijZ̃ = 0.

Then

bim


Ωε

ηmZ2
im =


Ωε

∂(ξ ′
m)l
(Zimηm)φ.
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We write Eq. (3.21) in the way that (3.15)
L(Z̃) = f +

2
i=1

K
j=1

bimηmZim inΩε

Z̃ = 0 on ∂Ωε
Ωε

ηjZimZ̃ = 0 for i = 0, 1, 2,

(3.22)

and by Proposition (3.15), we get

Z̃ = Tλ(f ), (3.23)

where f satisfies

∥f ∥∗ ≤ C∥φ∥∞.

Using (3.16) we find

∥∂(ξ ′
m)l

Tλ(h)∥∞ ≤ C

log

1
ε


∥f ∥∗ ≤ C


log

1
ε


∥φ∥∞ ≤ C


log

1
ε

2

∥h∥∗. �

4. The nonlinear problem

Following the approach in [9] for a(x) = 1, we have the following result.

Lemma 4.1. There exist λ0 > 0 and a constant C > 0 such that for any λ ∈ (0, λ0) and each ξ ∈ O, there exists a unique φ
satisfying

∆(Vλ + φ)+ g (Vλ + φ) =

2
i=1

K
j=1

cijZijηj inΩε;

φ = 0 on ∂Ωε;
Ωε

φZijηj = 0 for i = 1, 2, j = 1, . . . , K

(4.1)

for some cij ∈ R. Moreover,

∥φ∥L∞(Ωε) ≤
C

| log ε|2
.

Furthermore, the map ξ ′
→ φ ∈ H1

0 (Ωε) is C1, and

∥Dξ ′φ∥L∞(Ωε) ≤
C

| log ε|
.

We included the proof just for completeness.

Proof. From Proposition 3.5 Eq. (4.1) is equivalent to find φ such that

φ = Tλ(−(N(φ)+ Eλ)) := A(φ) (4.2)

where

∥A(φ)∥∞ ≤ C

log

1
ε


[∥N(φ)∥∗ + ∥Eλ∥∗] . (4.3)

To N(φ)we have that there exist s ∈ (0, 1) such that

|N(φ)| ≤ C |g ′′(Vλ + sφ)| |φ|
2

≤ C |g ′′(Vλ + sφ)| ∥φ∥
2
∞
.

From the previous step, we know that ∥φ∥∞ → 0 as λ → 0 and from (2.33)

∥g ′′(Vλ)∥∗ ≤ C;
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then we get

∥N(φ)∥∗ ≤ C∥φ∥∗

we combine this with (4.3) to get

∥A(φ)∥∞ ≤ C | log ε|

C∥φ∥

2
∞

+
1

| log ε|3


.

For a given numberM > 0, let us consider the region

FM :=


φ ∈ C(Ω̄) : ∥φ∥∞ ≤

M
| log ε|2


.

We then get that A(FM) ⊂ FM for a sufficiently large but fixed M and all small λ. Moreover, for any φ1, φ2 ∈ FM , using
standard argument on mean value integral, one has

∥N(φ1)− N(φ2)∥∗ ≤ C

max
i=1,2

∥φi∥∞


∥φ1 − φ2∥∞.

Thanks to (2.33) and the fact that ∥φ1∥∞, ∥φ2∥∞ → 0 as λ → 0, we conclude that

∥N(φ1)− N(φ2)∥∗ ≤ C∥g ′′(Vλ)∥∗(∥φ1∥∞ + ∥φ2∥∞)∥φ1 − φ2∥∞ ≤ C(∥φ1∥∞ + ∥φ2∥∞)∥φ1 − φ2∥∞.

Then we have

∥A(φ1)− A(φ2)∥∞ ≤ C | log ε| ∥N(φ1)− N(φ2)∥∗ ≤ C | log ε|

max
i=1,2

∥φi∥∞


∥φ1 − φ2∥∞.

Thus the operator A has a small Lipschitz constant in FM for all small λ, and therefore a unique fixed point of A exists in this
region.

We shall next analyze the differentiability of the map ξ ′
= (ξ ′

1, . . . , ξ
′

K ) → φ. Assume for instance that the partial
derivative ∂(ξ ′

j )i
φ exists for i = 1, 2. Since φ = Tλ (−(N(φ)+ Eλ)), formally that

∂(ξ ′
j )i
φ = (∂(ξ ′

j )i
Tλ) (−(N(φ)+ Eλ))+ Tλ


−(∂(ξ ′

j )i
N(φ)+ ∂(ξ ′

j )i
Eλ)

.

From Lemma 3.6, we have

∥∂(ξ ′
j )i
Tλ (−(N(φ)+ Eλ)) ∥∞ ≤ C | log ε|2∥N(φ)+ Eλ∥∗ ≤ C

1
| log ε|

.

On the other hand,

∂(ξ ′
j )i
N(φ) = [g ′(Vλ + φ)− g ′(Vλ)− g ′′(Vλ)φ]∂(ξ ′

j )i
Vλ + ∂(ξ ′

j )i
[g ′(Vλ)− ewj ]φ

+ [g ′(Vλ + φ)− g ′(Vλ)]∂(ξ ′
j )i
φ + [g ′(Vλ)− ewj ]∂(ξ ′

j )i
φ.

Then,

∥∂(ξ ′
j )i
N(φ)∥∗ ≤ C


∥φ∥

2
∞

+
1

| log ε|
∥φ∥∞ + ∥∂(ξ ′

j )i
φ∥∞∥φ∥∞ +

1
| log ε|

∥∂(ξ ′
j )i
φ∥∞


.

Since ∥∂(ξj)iEλ∥∗ ≤
C

| log ε|3
, and by Proposition 3.5 we have

∥∂(ξ ′
j )i
φ∥∞ ≤

C
| log ε|

,

for all i = 1, 2, j = 1, . . . , K . Then, the regularity of the map ξ ′
→ φ can be proved by standard arguments involving the

implicit function theorem and the fixed point representation (4.2). This concludes proof of the lemma. �

5. The finite dimensional reduction

After problem (4.1) has been solved, we find a solution to problem (2.21), if we can find a point ξ ′
=

ξ

ε
= (ξ ′

1, . . . , ξ
′

K )

such that coefficients cij(ξ ′) in (4.1) satisfy

cij(ξ ′) = 0 for all i = 1, 2, j = 1, . . . , K . (5.1)

We now introduce the finite dimensional restriction Jλ(ξ) : O → R, given by

Jλ(ξ) = Jpa,λ


Uλ + φ̃

(x, ξ)


(5.2)
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where
Uλ + φ̃


(x, ξ) = γ +

1
pγ p−1


(Vλ + φ)


x
ε
,
ξ

ε


(5.3)

with Vλ defined in (2.18), φ is the unique solution to problem (4.1) given by Lemma 4.1.
The following result can be proved by using standard arguments, see Lemma 5.1 in [9].

Lemma 5.1. For all λ > 0 sufficiently small, the functional Jλ(ξ) is of class C1. Moreover, if ξ ∈ O is a critical point of J, then
Uλ + φ̃ is a critical point of Jpa,λ, namely a solution to the problem (1.1).

Next we need to write the expansion of Jλ(ξ) as λ goes to 0.

Lemma 5.2. Let δ > 0 be fixed. There exists positive number λ0, such that µj are given by (2.19), for any 0 < λ < λ0, the
following expansion holds

p


−
4
p
log ε

 2(p−1)
p

Jλ(ξ) =
8Kπ

(2 − p)p
[−2 + p log 8] −

16Kπ
p

log ε −
32π2

2 − p
Φ

p
a,K (ξ)+ | log ε|−1θλ(ξ) (5.4)

uniformly for any points (ξ1, . . . , ξK ) ∈ O, where

Φ
p
a,K (ξ) =

K
j=1

H(ξj, ξj)+

K
i≠j

G(ξi, ξj)+
2 − p
4pπ

K
j=1

log a(ξj).

Furthermore

p


−
4
p
log ε

 2(p−1)
p

∇(ξm)lJλ(ξ) =
32π2

2 − p
∇(ξm)lΦ

p
a,K (ξ)+ | log ε|−1θλ(ξ). (5.5)

In (5.4) and (5.5), the function θλ denotes a smooth function of the points ξ , which is uniformly bounded, as λ → 0, for points
ξ ∈ O.

Proof. Define

Ipa,λ(v) =
1
2


Ωε

|∇v|2 dy −


Ωε

a(εy)eγ
p


1+ v
pγ p

p
−1

dy. (5.6)

By direct calculation,

Jpa,λ


Uλ + φ̃

(x, ξ)


=

1
p2γ 2(p−1)

Ipa,λ


(Vλ + φ)


x
ε
,
ξ

ε


. (5.7)

Using the fact

Uλ + φ̃


(x, ξ) = γ +

1
pγ p−1


(Vλ + φ)

 x
ε
,
ξ

ε


, we have

Jλ(ξ)− Jpa,λ (Uλ(ξ)) =
1

p2γ 2(p−1)


Ipa,λ(Vλ + φ)− Ipa,λ(Vλ)


.

Since by construction DIpa,λ(Vλ + φ)[φ] = 0, we get

Jλ(ξ)− Jpa,λ (Uλ(ξ)) =
1

p2γ 2(p−1)

 1

0
D2Ipa,λ(Vλ + tφ)φ2(1 − t) dt

=
1

p2γ 2(p−1)

 1

0


Ωε

(Eλ + N(φ))φ +


Ωε

[g ′(Vλ)− g ′(Vλ + tφ)]φ2

(1 − t) dt.

Since ∥Eλ∥∗ ≤
c

| log ε|3
, ∥φ∥L∞(Ωε) ≤

c
| log ε|2

, ∥N(φ)∥∗ ≤
c

| log ε|4
and (2.33), we get that

Jλ(ξ)− Jpa,λ (Uλ(ξ))
 ≤

C
γ 2(p−1)| log ε|3

. (5.8)
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Next we expand Jpa,λ (Uλ(ξ)). We first have

1
2


Ω

|∇ (Uλ(ξ)) |2 =
1
2

1
p2γ 2(p−1)


K

j=1


Ω

|∇PUµj,ξj |
2
+


l≠j


Ω

∇PUµl,ξl∇PUµj,ξj

+
p − 1
p

1
γ p

K
j=1


Ω

∇PUµj,ξj(x)∇Pw0
µj,ξj

(x)

+


p − 1
p

2 1
γ 2p

K
j=1


Ω

∇PUµj,ξj∇Pw1
µj,ξj

+


p − 1
p

2 1
γ 2p


K

j=1


Ω

|∇Pw0
µj,ξj

|
2
+


l≠j


Ω

∇Pw0
µl,ξl

∇Pw0
µj,ξj



+


p − 1
p

3 1
γ 3p

K
j=1


Ω

∇Pw0
µj,ξj

∇Pw1
µj,ξj

+


p − 1
p

4 1
γ 4p


K

j=1


Ω

|∇w1
µj,ξj

|
2
+


l≠j


Ω

∇Pw1
µl,ξl

∇Pw1
µj,ξj


. (5.9)

Let us estimate the first two terms. We observe that the remaining terms are O( 1
γ 2(p−1)γ p ). We note that PUµj,ξj satisfies

−1PUµj,ξj = ε2a(ξj)e
Uµj,ξj , inΩ, PUµj,ξj = 0 on ∂Ω.

Then we have
Ω

|∇PUµj,ξj(x)|
2 dx = ε2


Ω

a(ξj)e
Uµj,ξj PUµj,ξj(x)

= ε2

Ω

a(ξj)e
Uµj,ξj


Uµj,ξj(x)+ 8πH(x, ξj)− log

8µ2
j

a(ξj)
+ O(µ2

j ε
2)



=


Ω

8ε2µ2
j

(ε2µ2
j + |x − ξj|2)2


log

1
(ε2µ2

j + |x − ξj|2)2
+ 8πH(x, ξj)+ O(µ2

j ε
2)



=


Ωεµj

8
(1 + |z|2)2


log

1
(1 + |z|2)2

+ 8πH(ξj + εµjz, ξj)− 4 log(εµj)


+ O(µ2

j ε
2)

=


Ωεµj

8
(1 + |z|2)2

log
1

(1 + |z|2)2
+ 8π


Ωεµj

8
(1 + |z|2)2


H(ξj + εµjz, ξj)− H(ξj, ξj)


+ 8π


Ωεµj

8
(1 + |z|2)2

H(ξj, ξj)− 4 log(εµj)


Ωεµj

8
(1 + |y|2)2

+ O(µ2
j ε

2). (5.10)

But 
Ωεµj

8
(1 + |y|2)2

= 8π + O(ε), (5.11)

and 
Ωεµj

8
(1 + |y|2)2

log
1

(1 + |y|2)2
= −16π + O(ε). (5.12)

Moreover,
Ωεµj

8
(1 + |y|2)2


H(ξj + εµjy, ξj)− H(ξj, ξj)


= O(ε). (5.13)

Therefore from (5.10)–(5.13) and (2.19), we have
Ω

|∇PUµj,ξj(x)|
2dx = −16π + 64π2H(ξj, ξj)− 32π log ε − 16π log(8µ2

j )+ 16π log(8)+ O


1
γ p


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= −16π + 64π2H(ξj, ξj)− 32π log ε + 16π log(8)− 16π log a(ξj)+ O


1
γ p



− 16π


2(p − 1)
2 − p

(1 − log 8)+
8π

2 − p


H(ξj, ξj)+

K
i≠j

G(ξi, ξj)


. (5.14)

Now, we calculate that
l≠j


Ω

∇PUµl,ξl∇PUµj,ξj dx =


l≠j


Ω

ε2a(ξl)eUµl,ξl PUµj,ξj

=


l≠j


Ω

8ε2µ2
l

(ε2µ2
l + |x − ξl|2)2


log

8µ2
j

(ε2µ2
j + |x − ξj|2)2a(ξj)

+ 8πH(x, ξj)− log
8µ2

j

a(ξj)
+ O(µ2

j ε
2)



=


l≠j


Ωεµl

8
(1 + |z|2)2


log

1
(ε2µ2

j + |εµlz + ξl − ξj|2)2
+ 8πH(ξl + εµlz, ξj)


+ O(µ2

j ε
2)

=


l≠j


Ωεµl

8
(1 + |z|2)2

8πG(ξl, ξj)+ O(µ2
j ε

2)

= 64π2

l≠j

G(ξl, ξj)+ O(µ2
j ε

2). (5.15)

Thus, from (5.9), (5.14) and (5.15) we have

1
2


Ω

|∇Uλ(x)|2 dx =
1

p2γ 2(p−1)


− 8Kπ − 16Kπ log ε + 8Kπ log(8)− 8Kπ

2(p − 1)
2 − p

(1 − log 8)

− 8π
K

j=1

log a(ξj)−
32π2p
2 − p


K

j=1

H(ξj, ξj)+

K
i≠j

G(ξi, ξj)


+ O


1

| log ε|


. (5.16)

Finally, let us evaluate the second term in the energy

λ

p


Ω

a(x)e(Uλ)
p
dx =

λ

p


Ω

a(x)eγ
p

1+ 1

pγ p (Vλ)(
x
ε )
p

dx

=
λ

p

K
j=1


B(ξj,δ̃)

a(x)eγ
p

1+ 1

pγ p (Vλ)(
x
ε )
p

dx +
λ

p


Ω\

K
j=1

B(ξj,δ̃)
a(x)eγ

p

1+ 1

pγ p (Vλ)(
x
ε )
p

dx

:= I + II. (5.17)

First we observe that

II = λΘλ(ξ) (5.18)

withΘλ(ξ) a function, uniformly bounded, as λ → 0. On the other hand,

I =
1

p2γ 2(p−1)

K
j=1


B(ξ ′

j ,δ̃/ε)

a(εy)eγ
p


1+ 1
pγ p (Vλ)(y)

p
−1

dy

=
1

p2γ 2(p−1)

K
j=1


B(ξ ′

j ,δ̃/ε)

a(εy)e

wj(y)+
p−1
p

1
γ p w

0
j (y)+


p−1
p

2 1
γ 2p

w1
j (y)+θ(y)

 
1 + O


1
γ p


dy

=
1

p2γ 2(p−1)

K
j=1


B

0, δ̃
µjε

 8
(1 + |y|2)2


1 + O


1
γ p


dy

=
1

p2γ 2(p−1)
8Kπ


1 + | log ε|−1Θλ(ξ)


, (5.19)

withΘλ(ξ) a function, uniformly bounded, as λ → 0. From (5.17)–(5.19) we get

λ

p


Ω

a(x)e(Uλ)
p
dx =

1
p2γ 2(p−1)

8Kπ

1 + | log ε|−1Θλ(ξ)


. (5.20)

Therefore, from (5.8), (5.16), (5.20) and (1.7) we get that (5.4) holds.
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Let us now prove the validity of (5.5). Fixm ∈ {1, . . . , K} and l ∈ {1, 2}. We have

∂(ξm)lJλ(ξ) =
1

p2γ 2(p−1)
ε−1


2

i=1

K
j=1

cij


Ωε

ηjZij∂(ξ ′
m)l

Vλ


1 + O


1
γ p


. (5.21)

On the one hand, if we multiply equation in (4.1) against ∂(ξ ′
m)l

Vλ, we get
Ωε

(1υξ + g(υξ ))∂(ξ ′
m)l

Vλ =

2
i=1

K
j=1

cij


Ωε

ηjZij∂(ξ ′
m)l

Vλ

where υξ = (Vλ + φ)(y, ξ ′) = (Vλ + φ)( x
ε
,
ξ

ε
). On the other hand, we have that

∂(ξm)lUλ(x) =
ε−1

pγ p−1
∂(ξ ′

m)l
Vλ
 x
ε


.

Putting together these information, we have that

∂(ξm)lJλ(ξ) =


Ω


∆(Uλ + φ̃)+ λa(x)(Uλ + φ̃)p−1e(Uλ+φ̃)

p

∂(ξm)lUλ


(1 + o(1)).

Furthermore, since ∥φ̃∥L∞(Ω) ≤
C

γ p−1 ∥φ∥L∞(Ωε), by definition of Uλ we have that

(Uλ + φ̃)(x) = Uλ(x)

1 + O


1
γ p


inΩ.

Hence, by means of integration by parts, and the boundary conditions satisfied by Uλ, we get that

∂(ξm)lJλ(ξ) =


Ω


1Uλ + λa(x)Up−1

λ eU
p
λ


∂(ξm)lUλ


1 + O


1
γ p


,

where O(1) here denotes a smooth function of the points ξ , which is uniformly bounded as λ → 0. We thus conclude that

∂(ξm)lJλ(ξ) =


Ω


−∇Uλ∇∂(ξm)lUλ + λa(x)Up−1

λ eU
p
λ∂(ξm)lUλ


1 + O


1
γ p


.

Computations analogous to the ones we performed to get expansion (5.4) give us the validity of (5.5). This concludes the
proof of the lemma. �

6. Proof of the main results

6.1. Proof of Theorem 1.2

Proof of Theorem 1.2. According to Lemma 5.1, we have a solution to (1.1) if we find a critical point ξλ of Jλ(ξ), it is
equivalent to finding a critical point of the functionI(ξ) : O → R defined by

I(ξ) =
2 − p
32π2


−λ−1ε

2(2−p)
p Jλ(ξ)+

8Kπ
2 − p

[−2 + log 8] −
16Kπ

p
log ε


.

From Lemma 5.2, we haveI(ξ) = Φ
p
a,K (ξ)+ o(1), (6.1)

where o(1) → 0 uniformly for any points (ξ1, . . . , ξK ) ∈ O, and Φp
a,K (ξ) defined by (1.6). By assumption that ξ ∗

=

(ξ ∗

1 , . . . , ξ
∗

K ) is a C0 stable critical point of Φp
a,K , by Definition 1.1, there exists a critical point ξ ∗

λ ∈ O of I such thatI(ξ ∗

λ ) → I(ξ ∗). Moreover, up to a subsequence, ξ ∗

λ → ξλ as λ → 0, withΦp
a,K (ξ

λ) = Φ
p
a,K (ξ

∗).
Furthermore, expansion (1.8) follows from (1.7) and (5.20), while (1.9) holds as a direct consequence of the construction

of Uλ. Expansion (1.10) is a consequence of (5.4). �

6.2. Proof of Theorem 1.3

Proof of Theorem 1.3. According to the result of Theorem 1.2, the proof of Theorem 1.3 reduces to show that, for K as in
assumption (A2), the function Φp

a,K has a nontrivial critical values in some open set O, compactly contained in (Ω \ Z)K .
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This fact has already been established in [6] under someminormodifications. For completeness, we recall here the principal
ingredients employed to characterize a topological nontrivial critical value of Φp

a,K in some set O, compactly contained in
(Ω \ Z)K . We refer the reader to [6] for a complete proof of each step.

From the assumptions (A1) and (A2), without loss of generality we write

a(x) =

m
s=1

|x − qs|2αs .

Then we have

Φ
p
a,K (ξ) =

K
j=1

H(ξj, ξj)+

K
i≠j

G(ξi, ξj)−
(2 − p)

p

K
j=1

m
s=1

αs

2π
log

1
|ξj − qs|

=

K
j=1

H(ξj, ξj)+

K
i≠j

G(ξi, ξj)−
(2 − p)

p

K
j=1

m
s=1

αsG(ξj, qs)+
(2 − p)

p

K
j=1

m
s=1

αsH(ξj, qs)  
O(1)

. (6.2)

Define the set

M :=

ξ = (ξ1, . . . , ξK ) ∈ (Ω \ Z)K : ξi ≠ ξj if i ≠ j


.

Define the set

D =


ξ ∈ M | Ψ (ξ) :=

K
j=1

H(ξj, ξj)−
(2 − p)

p

K
j=1

m
s=1

αsG(ξj, qs)−

K
i≠j

G(ξi, ξj)+ O(1) > −M


(6.3)

where M > 0 is a sufficiently large number to be chosen. We have that D is compactly contained in M.
From (1.11), we write set {1, 2, . . . , K} = I1 ∪ I2 ∪ · · · ∪ Im where

I1 = {1, . . . , K1},

I2 = {K1 + 1, . . . , K1 + K2},

. . .

Is = {K1 + · · · + Ks−1 + 1, . . . , K1 + · · · + Ks−1 + Ks},

. . .

Im = {K1 + · · · + Km−1 + 1, . . . , K}.

Let us fix angles θq (q ∈ Z) and a number δ ∈ (0, π2 ) sufficiently small such that the cones
q + ρei(θq+θ) : ρ ≥ 0, θ ∈ [−δ, δ]


, q ∈ Z (6.4)

are disjoint from one another. Moreover, we assume

dist(q, ∂Ω) > 2δ ∀ q ∈ Z, |qi − qj| > 4δ ∀ qi, qj ∈ Z, i ≠ j. (6.5)

Now we define K -tuple

ξ0 = (ξ 01 , . . . , ξ
0
K )

by

ξ 0j = qs +
3
2
δei


θqs+j δK


∀j ∈ Is, s = 1, . . . ,m.

Let us set an annulus with radii δ and 2δ centered in qs, that is

Us :=

ξ ∈ R2

: δ < |ξ − qs| < 2δ

,

and consider the K -tuple ξ = (ξ1, . . . , ξK ) belongs to the open set
ξ ∈ UK1

1 × · · · × UKm
m : |ξi − ξj| > M−1

∀ i ≠ j

. (6.6)

The choice of δ in (6.4) and (6.5) implies that ξ 0i ≠ ξ 0j for i ≠ j, then we have that ξ0 belongs to (6.6) provided that M is
sufficiently large. Then we define

W := the connectedness of (6.6) containing ξ0

K := W̄ , K0 =


ξ ∈ K : min

i≠j
|ξi − ξj| = M−1


.
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From these facts, we get that
(P1) D is an open set, K and K0 are compact sets, K is connected and

K0 ⊂ K ⊂ D ⊂ D̄ ⊂ M.

Let us define F to be the class of all continuous maps η : K → D with the property that there exists a continuous
homotopy Γ : [0, 1] × K → D such that

Γ (0, ·) = id, Γ (1, ·) = η, Γ (t, ξ) = ξ ∀t ∈ [0, 1], ∀ξ ∈ K0.

In [6], the following facts are proven:
(P2)

Φ∗
:= sup

η∈F
min
ξ∈K

Φ
p
a,K (η(ξ)) < min

ξ∈K0
Φ

p
a,K (ξ).

(P3) For every ξ ∈ ∂D such that Φp
a,K (ξ) = Φ∗, ∂D is smooth at ξ and there exists a vector τξ tangent to ∂D at ξ so that

τξ · ∇Φ
p
a,K (ξ) ≠ 0.

Under (P1)–(P3), a critical point ξD of Φp
a,K with Φp

a,K (ξ) = Φ∗ exists, as a standard deformation argument involving
the gradient flow ofΦp

a,K shows. This finishes the proof of Theorem 1.3. �

6.3. Proof of Theorem 1.4

Proof of Theorem 1.4. According to Theorem 1.2, the proof of Theorem 1.4 reduces to show that function Φp
a,K has a C0-

critical point. For a(x) = |x|2α andΩ = B is the unit ball in R2. Following the approach in [12], we obtain that this holds.
Indeed, for ρ ∈ (0, 1), we set

ξj,ρ =


ρ cos

2π(j − 1)π
K

, ρ sin
2π(j − 1)π

K


for any j = 1, . . . , K .

Then by symmetry, we have

Φ
p
a,K (ξρ) = K


H(ξ1,ρ, ξ1,ρ)+

K
i=2

G(ξ1,ρ, ξi,ρ)+
(2 − p)α

2pπ
log ρ


.

Thus it is equivalent to find a C0-critical point of

F(ρ) = H(ξ1,ρ, ξ1,ρ)+

K
i=2

G(ξ1,ρ, ξi,ρ)+
(2 − p)α

2pπ
log ρ.

In the unit ball of R2 we have

G(x, y) =
1
2π

log
1

|x − y|
−

1
2π

log
1

|x|2|y|2 + 1 − 2(x, y)
,

H(x, x) = −
1
2π

log
1

1 − |x|2
.

Hence

F(ρ) =
1
2
log(1 − ρ2)+

1
2π


2 − p
p

α − (K − 1)

log ρ +

1
2π

K
i=2

log


ρ4 + 1 − 2ρ2(ξ ∗

1 , ξ
∗

i )

|ξ ∗

1 − ξ ∗

i |
.

Here

ξ ∗

j =


cos

2π(j − 1)π
K

, sin
2π(j − 1)π

K


for any j = 1, . . . , K .

If 2−p
p α − (K − 1) > 0, that is K < 2−p

p α + 1, we find that

lim
ρ→1−

F(ρ) = lim
ρ→0+

F(ρ) = −∞.

Then there exists ρ0 ∈ (0, 1) such that

F(ρ0) = max
ρ∈(0,1)

F(ρ),

and ρ0 is a C0-critical point of F(ρ). This completes the proof of Theorem 1.4. �
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