Bubbling solutions for an exponential nonlinearity in \mathbb{R}^{2}

Shengbing Deng, Monica Musso*
Departamento de Matemática, Pontificia Universidad Catolica de Chile, Avda. Vicuña Mackenna 4860, Macul, Chile

Received 10 September 2013; revised 7 May 2014
Available online 16 June 2014

Abstract

We study the following boundary value problem $$
\left\{\begin{array}{lll} \Delta u+\lambda u^{p-1} e^{u^{p}}=0, & u>0 & \text { in } \Omega ; \tag{0.1}\\ u=0 & \text { on } \partial \Omega, \end{array}\right.
$$

where Ω is a bounded domain in \mathbb{R}^{2} with smooth boundary, $\lambda>0$ is a small parameter and $0<p<2$. We construct bubbling solutions to problem (0.1) using a Lyapunov-Schmidt reduction procedure. © 2014 Elsevier Inc. All rights reserved.

Keywords: Bubbling solutions; Lyapunov-Schmidt reduction procedure

1. Introduction

We consider the following boundary value problem

$$
\begin{cases}\Delta u+\lambda u^{p-1} e^{u^{p}}=0, & u>0 \tag{1.1}\\ \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

[^0]where Ω is a bounded domain in \mathbb{R}^{2} with smooth boundary, $\lambda>0$ is a small parameter and $0<p \leq 2$. This problem is the Euler-Lagrange equation for the functional
\[

$$
\begin{equation*}
J_{\lambda}^{p}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\frac{\lambda}{p} \int_{\Omega} e^{u^{p}}, \quad u \in H_{0}^{1}(\Omega) \tag{1.2}
\end{equation*}
$$

\]

If $p=1$, problem (1.1) becomes

$$
\begin{cases}\Delta u+\lambda e^{u}=0, & u>0 \tag{1.3}\\ \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

which can be called the Liouville equation after [24]. This problem is related to Berger's problem concerning the existence of metrics in a given Riemannian surface with prescribed Gaussian curvatures. We refer the reader to the book of T. Aubin [6] for the description of the links between this equation and possible geometric applications.

There are many results about the behavior and existence of solution to (1.3). Thanks to the works of H. Brezis and F. Merle [9], Y.Y. Li and I. Shafrir [23], L. Ma and J. Wei [25], K. Nagasaki and T. Suzuki [29], the asymptotic behavior of solutions to problem (1.3) has been well understood. More precisely, it is by now known that if u_{λ} is an unbounded family of solutions to (1.1) for which $\lambda \int_{\Omega} e^{u_{\lambda}}$ remains uniformly bounded as $\lambda \rightarrow 0$, then there is an integer $k \geq 1$, such that necessarily

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \lambda \int_{\Omega} e^{u_{\lambda}}=8 k \pi \tag{1.4}
\end{equation*}
$$

Moreover, there are k distinct points $\xi_{j}, j=1, \cdots, k$, in Ω, separated uniformly from each other and from he boundary $\partial \Omega$, such that, as $\lambda \rightarrow 0, u_{\lambda}$ peaks to infinity in each one of them, and remains bounded away from them, that is, the solutions u_{λ} to problem (1.3) remain uniformly bounded on $\Omega \backslash \bigcup_{j=1}^{k} B_{\delta}\left(\xi_{j}\right)$ and

$$
\sup _{B_{\delta}\left(\xi_{j}\right)} u_{\lambda} \rightarrow+\infty, \quad \text { as } \lambda \rightarrow 0
$$

for any $\delta>0$. The location of the blow-up points ξ_{1}, \cdots, ξ_{k} is such that, after passing to a subsequence, it converges to a critical point of the function

$$
\begin{equation*}
\varphi_{k}\left(\xi_{1}, \cdots, \xi_{k}\right)=\sum_{j=1}^{k} H\left(\xi_{j}, \xi_{j}\right)+\sum_{i \neq j} G\left(\xi_{i}, \xi_{j}\right) \tag{1.5}
\end{equation*}
$$

where $G(x, y)$ is the Green's function of the problem

$$
\begin{cases}-\Delta_{x} G(x, y)=8 \pi \delta_{y}(x), & x \in \Omega \tag{1.6}\\ G(x, y)=0, & x \in \partial \Omega\end{cases}
$$

and $H(\cdot, \cdot)$ is its regular part defined as

$$
\begin{equation*}
H(x, y)=G(x, y)-4 \log \frac{1}{|x-y|} \tag{1.7}
\end{equation*}
$$

Conversely, many authors constructed blow-up solutions to problem (1.3) with property (1.4). In [8], S. Baraket and F. Pacard considered problem (1.3) in an open bounded subset Ω of \mathbb{C}, and they showed that given a non-degenerate critical point $\left(\xi_{1}, \ldots, \xi_{k}\right)$ of the function φ_{k} defined in (1.5), there is a sequence u_{λ} of solutions to (1.3), that converges to a function u^{*} in $C_{\text {loc }}^{2, \alpha}\left(\Omega \backslash\left\{\xi_{1}, \cdots, \xi_{k}\right\}\right)$, where u^{*} is the solution of

$$
\begin{cases}-\Delta u^{*}=\sum_{j=1}^{k} 8 \pi \delta_{\xi_{j}}, & \text { in } \Omega \\ u^{*}=0 & \text { on } \partial \Omega\end{cases}
$$

P. Esposito, M. Grossi, A. Pistoia [20] generalized this result relaxing the assumption of nondegenerate critical point for φ_{k} to that of stable critical point for φ_{k}. By using the notion of topologically non-trivial critical value for φ_{k}, that we will recall later on, M. del Pino, M. Kowalczyk, M. Musso [14] could establish the following general result: If the domain Ω is not simply connected, and given any integer $k \geq 1$, there exist k points ξ_{1}, \ldots, ξ_{k} in Ω and a family of solutions u_{λ} to (1.3), satisfying (1.4) and bubbling at exactly those k points. The shape of these solutions is given by

$$
\begin{equation*}
u_{\lambda}(x)=\sum_{j=1}^{k} G\left(x, \xi_{j}\right)+o(1), \quad \text { as } \lambda \rightarrow 0 \tag{1.8}
\end{equation*}
$$

where $o(1) \rightarrow 0$ as $\lambda \rightarrow 0$ uniformly in compact sets contained in $\Omega \backslash\left\{\xi_{1}, \ldots, \xi_{k}\right\}$. Furthermore

$$
\begin{equation*}
J_{\lambda}^{1}\left(u_{\lambda}\right)=-16 k \pi+8 k \pi \log 8-8 k \pi \log \lambda-4 \pi \varphi_{k}(\xi)+o(1) \tag{1.9}
\end{equation*}
$$

where φ_{k} is defined in (1.5) and $o(1) \rightarrow 0$ as $\lambda \rightarrow 0$.
If $p=2$, problem (1.1) becomes

$$
\begin{cases}\Delta u+\lambda u e^{u^{2}}=0, & u>0 \tag{1.10}\\ \text { in } \Omega ; \\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

This problem is the Euler-Lagrange equation for the functional J_{λ}^{2} (see (1.2)) which corresponds to the free energy associated to the critical Trudinger embedding (in the sense of Orlicz spaces) [35,27,34]

$$
H_{0}^{1}(\Omega) \ni u \longmapsto e^{u^{2}} \in L^{p}(\Omega) \quad \forall p \geq 1,
$$

which is connected to the critical Trudinger-Moser inequality

$$
C(\Omega)=\sup \left\{\int_{\Omega} e^{4 \pi u^{2}} / u \in H_{0}^{1}(\Omega), \int_{\Omega}|\nabla u|^{2}=1\right\}<+\infty,
$$

[28]. Observe that, in general, critical points of the above constrained variational problem satisfy, after a simple scaling, an equation of the form (1.10). The Trudinger-Moser embedding is critical, involving loss of compactness in $H_{0}^{1}(\Omega)$ for the functionals J_{λ}^{2} which translates into the presence of non-convergent Palais-Smale (PS) sequences. Let us consider for instance a sequence $\lambda_{n} \rightarrow \lambda_{0} \geq 0$, and a sequence u_{n} with $\nabla J_{\lambda_{n}}^{2}\left(u_{n}\right) \rightarrow 0, J_{\lambda_{n}}^{2}\left(u_{n}\right) \rightarrow c$. For the TrudingerMoser functional J_{λ}^{2}, a classification of all PS sequences for J_{λ} does not seem possible after the results in [2]. Actually PS holds as long as $c<2 \pi$, see [1,13]. On the other hand, for solutions more is known. From the result in [16] (see also [3,4,16,30]), we have the following fact:

Assume that u_{n} solves problem (1.10) for $\lambda=\lambda_{n}$, with $J_{\lambda_{n}}^{2}\left(u_{n}\right)$ bounded as $\lambda_{n} \rightarrow 0$. Then, passing to a subsequence, there is an integer $k \geq 0$ such that

$$
\begin{equation*}
J_{\lambda_{n}}^{2}\left(u_{n}\right)=2 k \pi+o(1) \tag{1.11}
\end{equation*}
$$

When $k=1$ a more precise answer is obtained in [3]: the solution u_{n} has for large n only one isolated maximum, which blows up around a point $x_{0} \in \Omega$ which is characterized as a critical point of Robin's function $x \mapsto H(x, x)$. When $k>1$, such a description for the behavior of u_{n} is not known and it seems to be still an open problem.

It is natural to ask whether or not solutions satisfying (1.11) exist. From the result in [2], it follows that there is a $\lambda_{0}>0$ such that a solution to (1.10) exists whenever $0<\lambda<\lambda_{0}$ (this is in fact true for a larger class of nonlinearities with critical exponential growth). By construction this solution falls, as $\lambda \rightarrow 0$, into the bubbling category (1.11) with $k=1$. In the case of a domain with a sufficiently small hole, Struwe in [32] built a solution taking advantage of the presence of topology. M. del Pino, M. Musso and B. Ruf in [15] established a general result concerning existence and multiplicity of solutions of problem (1.10).

In order to state this result, let us introduce the following function of k distinct points $\xi_{1}, \xi_{2}, \cdots, \xi_{k} \in \Omega$ and k positive numbers $m_{1}, m_{2}, \cdots, m_{k}$,

$$
\begin{equation*}
\varphi_{k, 2}(\xi, m)=a \sum_{j=1}^{k} m_{j}^{2}+2 \sum_{j=1}^{k} m_{j}^{2} \log m_{j}^{2}+\sum_{j=1}^{k} m_{j}^{2} H\left(\xi_{j}, \xi_{j}\right)+\sum_{i \neq j} m_{i} m_{j} G\left(\xi_{i}, \xi_{j}\right) \tag{1.12}
\end{equation*}
$$

where $a>0$ is an absolute constant, and $G(x, y)$ is the Green's function defined in (1.6) and $H(\cdot, \cdot)$ its regular part. The authors in [15] established that, if $\varphi_{k, 2}$ has a topologically non-trivial critical value, with corresponding critical point $\left(\xi_{1}, \ldots, \xi_{k}, m_{1}, \ldots, m_{k}\right) \in \Omega^{k} \times \mathbb{R}_{+}^{k}$, then there exists a solution u_{λ} of (1.10) with the shape

$$
\begin{equation*}
u_{\lambda}(x)=\sqrt{\lambda}\left[\sum_{j=1}^{k} m_{j} G\left(x, \xi_{j}\right)+o(1)\right], \quad \text { as } \lambda \rightarrow 0 \tag{1.13}
\end{equation*}
$$

where $o(1) \rightarrow 0$ as $\lambda \rightarrow 0$ uniformly on compact sets of $\Omega \backslash\left\{\xi_{1}, \ldots, \xi_{k}\right\}$. Furthermore,

$$
J_{\lambda}^{2}\left(u_{\lambda}\right)=2 k \pi+\alpha \lambda+4 \pi \lambda \varphi_{k, 2}(\xi, m)+\lambda o(1)
$$

where α is an absolute constant, $\varphi_{k, 2}$ is defined in (1.12) and $o(1) \rightarrow 0$ as $\lambda \rightarrow 0$. In particular, in the case Ω is not simply connected they constructed the solution u_{λ} of (1.10), with two bubbling points, namely satisfying

$$
u_{\lambda}(x)=\sqrt{\lambda}\left[\sum_{j=1}^{2} m_{j} G\left(x, \xi_{j}\right)+o(1)\right], \quad \text { as } \lambda \rightarrow 0
$$

where $\left(m_{1}, m_{2}, \xi_{1}, \xi_{2}\right)$ is a critical point of $\varphi_{2,2}$ defined in (1.12), and $o(1) \rightarrow 0$ as $\lambda \rightarrow 0$ uniformly on compact sets of $\Omega \backslash\left\{\xi_{1}, \xi_{2}\right\}$.

The above result shows a difference between the behavior of finite-energy solutions to problem (1.3) (or problem (1.1) with $p=1$) and those to problem (1.10) (or problem (1.1) with $p=2$): far away from the concentration points ξ_{1}, \ldots, ξ_{k}, solutions to (1.3) are at main order sums of Green's functions centered at ξ_{j} (see (1.8)), while solutions to (1.10) are at main order sum of Green's functions centered at ξ_{j} but with different positive weights $\sqrt{\lambda} m_{j}$ whose values depend on the location of the concentration points ξ_{1}, \ldots, ξ_{k} (see (1.13)). In other words: To construct solutions to (1.10), one not only needs to choose carefully the concentration points ξ_{1}, \ldots, ξ_{k}, as for problem (1.3), but one has to carefully choose the correct weights m_{1}, \ldots, m_{k}.

This paper is motivated to understand the solutions to problem (1.1) when p is between 1 and 2. In fact, we obtain existence results for (1.1) in the whole range $0<p<2$, and we find that in this range problem (1.1) behaves as in the case $p=1$, in the sense described above. Let us state our result.

Let us define

$$
\mathcal{M}=\left\{\left(\xi_{1}, \cdots, \xi_{k}\right) \in \Omega^{k}: \operatorname{dist}\left(\xi_{j}, \partial \Omega\right) \geq \delta,\left|\xi_{i}-\xi_{j}\right| \geq \delta \text { for } i \neq j\right\}
$$

for some $\delta>0$. Let ε be a parameter, which depends on λ, defined as

$$
\begin{equation*}
p \lambda\left(-\frac{4}{p} \log \varepsilon\right)^{\frac{2(p-1)}{p}} \varepsilon^{\frac{2(p-2)}{p}}=1 \tag{1.14}
\end{equation*}
$$

Observe that, as $\lambda \rightarrow 0$, then $\varepsilon \rightarrow 0$, and $\lambda=\varepsilon^{2}$ if $p=1$. Our result states as follows.
Theorem 1.1. Let $0<p<2$ and k be an integer with $k \geq 1$. If Ω is not simply connected, then there exists $\lambda_{0}>0$ so that, for any $0<\lambda<\lambda_{0}$ problem (1.1) has a solution u_{λ}. Furthermore

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \varepsilon^{\frac{2(2-p)}{p}} \int_{\Omega} e^{u_{\lambda}^{p}}=8 k \pi \tag{1.15}
\end{equation*}
$$

where ε satisfies (1.14). Moreover, there exists a k-tuple $\xi^{\lambda}=\left(\xi_{1}^{\lambda}, \cdots, \xi_{k}^{\lambda}\right) \in \mathcal{M}$ such that as $\lambda \rightarrow 0$

$$
\nabla \varphi_{k}\left(\xi_{1}^{\lambda}, \cdots, \xi_{k}^{\lambda}\right) \rightarrow 0
$$

and

$$
\begin{equation*}
u_{\lambda}(x)=\frac{1}{p}\left(-\frac{4}{p} \log \varepsilon\right)^{\frac{1-p}{p}}\left(\sum_{j=1}^{k} G\left(x, \xi_{j}^{\lambda}\right)+o(1)\right) \tag{1.16}
\end{equation*}
$$

where $o(1) \rightarrow 0$, as $\lambda \rightarrow 0$, on each compact subset of $\bar{\Omega} \backslash\left\{\xi_{1}^{\lambda}, \cdots, \xi_{k}^{\lambda}\right\}$. Furthermore

$$
\begin{align*}
J_{\lambda}^{p}\left(u_{\lambda}\right)= & \lambda \varepsilon^{\frac{2(p-2)}{p}}\left[\frac{8 k \pi}{(2-p) p}[-2+p \log 8]-\frac{16 k \pi}{p} \log \varepsilon\right. \\
& \left.-\frac{4 \pi}{2-p} \varphi_{k}\left(\xi^{\lambda}\right)+O\left(|\log \varepsilon|^{-1}\right)\right] \tag{1.17}
\end{align*}
$$

where $O(1)$ is uniformly bounded as $\lambda \rightarrow 0$.
In [31], T. Ogawa and T. Suzuki investigated the asymptotic behavior of the blow-up solutions for problem (1.1) when $0<p \leq 2$ and $\Omega=B(0,1)$. Every smooth positive solution of this problem must be radially symmetric and decreasing in $|x|$ by the result of Gidas, Ni and Nirenberg [22], then $u(0)=\|u\|_{L^{\infty}}$. Suppose u_{λ} is a solution satisfying $\left\|u_{\lambda}\right\|_{L^{\infty}} \rightarrow \infty$ as $\lambda \rightarrow 0$, then $u_{\lambda}(x) \rightarrow 0$ locally uniformly on $\bar{B} \backslash\{0\}$, as $\lambda \rightarrow 0$. Thus, if we consider problem (1.1) in the unit disk of \mathbb{R}^{2}, suppose u is the solution of (1.1), then u blow up at origin as $\lambda \rightarrow 0$. We also mention that problems involving Laplacian in bounded domain in \mathbb{R}^{2} with more generality exponential nonlinearity have been studied in [5,33]. In particular, the author in [33] considered the existence of solution to

$$
-\Delta u=\lambda u e^{u^{p}}, \quad u>0 \quad \text { in } B, \quad u=0 \quad \text { on } \partial B,
$$

where $\lambda>0$ and $B \subset \mathbb{R}^{2}$ is the unit ball and $1 \leq p \leq 2$.
We will prove Theorem 1.1 as a consequence of a more general theorem, in a spirit similar to the one used in [14]. To do so, we need to recall the notion of topologically non-trivial critical level for φ_{k}. Let us consider an open set \mathcal{D} compactly contained in the domain of the functional φ_{k}. We recall that φ_{k} links in \mathcal{D} at critical level \mathcal{C} relative to B and B_{0} if B and B_{0} are closed subsets of $\overline{\mathcal{D}}$ with B connected and $B_{0} \subset B$ such that the following conditions hold: Let us set Γ to be the class of the maps $\Phi \in C(B, \mathcal{D})$ with the property that there exists a function $\Psi \in C([0,1] \times B, \mathcal{D})$ such that

$$
\Psi(0, \cdot)=I d_{B}, \quad \Psi(1, \cdot)=\Phi,\left.\quad \Psi(t, \cdot)\right|_{B_{0}}=I d_{B_{0}} \quad \text { for } \forall t \in[0,1]
$$

We assume

$$
\begin{equation*}
\sup _{\xi \in B_{0}} \varphi_{k}(\xi)<\mathcal{C}:=\inf _{\Phi \in \Gamma} \sup _{\xi \in B} \varphi_{k}(\Phi(\xi)) \tag{1.18}
\end{equation*}
$$

and for all $\xi \in \partial \mathcal{D}$ such that $\varphi_{k}(\xi)=\mathcal{C}$, there exists a vector τ tangent to $\partial \mathcal{D}$ at ξ such that

$$
\begin{equation*}
\nabla \varphi_{k}(\xi) \cdot \tau \neq 0 \tag{1.19}
\end{equation*}
$$

Under these conditions a critical point $\bar{\xi} \in \mathcal{D}$ with $\varphi_{k}(\bar{\xi})=\mathcal{C}$ exists, as a standard deformation argument involving the negative gradient flow of φ_{k} shows. Condition (1.18) is a general way of describing a change of topology in the level sets $\left\{\varphi_{k} \leq c\right\}$ in \mathcal{D} taking place at $c=\mathcal{C}$, while (1.19) prevents intersection of the level set \mathcal{C} with the boundary. It is easy to check that the above conditions hold if

$$
\inf _{\xi \in \mathcal{D}} \varphi_{k}(\xi)<\inf _{\xi \in \partial \mathcal{D}} \varphi_{k}(\xi), \quad \text { or } \quad \sup _{\xi \in \mathcal{D}} \varphi_{k}(\xi)>\sup _{\xi \in \partial \mathcal{D}} \varphi_{k}(\xi)
$$

namely the case of (possibly degenerate) local minimum or maximum points of φ_{k}. The level \mathcal{C} may be taken in these cases respectively as that of the minimum and the maximum of φ_{k} in \mathcal{D}. These hold also if φ_{k} is C^{1}-close to a function with a non-degenerate critical point in \mathcal{D}. We call \mathcal{C} a non-trivial critical level of φ_{k} in \mathcal{D}.

Theorem 1.2. For $0<p<2$, let $k \geq 1$, assume that φ_{k} defined by (1.5) has a topologically non-trivial critical level \mathcal{C} in \mathcal{D}, then the problem (1.1) has a family solutions u_{λ} for λ small enough, such that

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \varepsilon^{\frac{2(2-p)}{p}} \int_{\Omega} e^{u_{\lambda}^{p}}=8 k \pi \tag{1.20}
\end{equation*}
$$

where ε satisfies (1.14). Moreover, there exists a k-tuple $\xi^{\lambda}=\left(\xi_{1}^{\lambda}, \cdots, \xi_{k}^{\lambda}\right) \in \mathcal{M}$ such that as $\lambda \rightarrow 0$

$$
\varphi_{k}\left(\xi_{1}^{\lambda}, \cdots, \xi_{k}^{\lambda}\right) \rightarrow c
$$

and

$$
\begin{equation*}
u_{\lambda}(x)=\frac{1}{p}\left(-\frac{4}{p} \log \varepsilon\right)^{\frac{1-p}{p}}\left(\sum_{j=1}^{k} G\left(x, \xi_{j}^{\lambda}\right)+o(1)\right) \tag{1.21}
\end{equation*}
$$

where $o(1) \rightarrow 0$ on each compact subset of $\bar{\Omega} \backslash\left\{\xi_{1}^{\lambda}, \cdots, \xi_{k}^{\lambda}\right\}$. Furthermore

$$
\begin{align*}
J_{\lambda}^{p}\left(u_{\lambda}\right)= & \lambda \varepsilon^{\frac{2(p-2)}{p}}\left[\frac{8 k \pi}{(2-p) p}[-2+p \log 8]-\frac{16 k \pi}{p} \log \varepsilon\right. \\
& \left.-\frac{4 \pi}{2-p} \varphi_{k}\left(\xi^{\lambda}\right)+O\left(|\log \varepsilon|^{-1}\right)\right] \tag{1.22}
\end{align*}
$$

where $O(1)$ is uniformly bounded as $\lambda \rightarrow 0$.
The proof of our result relies on a Lyapunov-Schmidt reduction procedure, introduced in [7,21$]$ and used in many different contexts, see for instance [14,15,17-20]. The key step is to find the ansatz for the solution. Usually, the ansatz is built as a sum of terms, which turns out to be solutions of the associate limit problem, which are properly scaled and translated. For our problem, our approximate solution is built by using the following "basic cells": the radially symmetric solutions of the following Liouville equation

$$
\Delta w+e^{w}=0 \quad \text { in } \mathbb{R}^{2}, \quad \int_{\mathbb{R}^{2}} e^{w}<+\infty
$$

which are given by

$$
\begin{equation*}
w_{\mu}(z):=\log \frac{8 \mu^{2}}{\left(\mu^{2}+|z|^{2}\right)^{2}}, \quad w_{\mu}(z-\xi):=\log \frac{8 \mu^{2}}{\left(\mu^{2}+|z-\xi|^{2}\right)^{2}} \tag{1.23}
\end{equation*}
$$

where μ is any positive number and ξ any point in \mathbb{R}^{2} (see [12]). If we use a sum of the above basic cells, properly scaled, and centered at several points of the domain as our approximate solution, we get a very good approximation of a solution in a region far away from the points, which unfortunately turns out to be not good enough close to these points. Thus we need to improve the approximation, at least near the points, and we do this adding two other terms in the expansion of the solution. This can be done in a very natural way, which has first been used in [17] for studying the following problem

$$
\begin{cases}\Delta u+u^{p}=0, & u>0 \tag{1.24}\\ u=0 & \text { in } \Omega \\ u & \text { on } \partial \Omega\end{cases}
$$

where Ω is a smooth bounded domain in \mathbb{R}^{2}, and p is a large exponent. Later on, this method has been applied in other contexts, see $[10,18,19,26]$. Observe that this method allows to improve the approximation near the points, but it is not useful to improve the approximation far away from these points. Nevertheless, as already mentioned, the approximation we build for this problem is sufficiently accurate in a regime far from the points. After the approximate solution is build, we find an actual solution to (1.1) as a small perturbation of the approximation.

The paper is organized as follows: Section 2 is devoted to describing a first approximation solution to problem (1.1) and estimating the error. Furthermore, problem (1.1) is written as a fixed point problem, involving a linear operator. In Section 3, we study the invertibility of the linear problem. In Section 4, we study the nonlinear problem. In Section 5, we study the variational reduction, we prove Theorems 1.1 and 1.2 in Section 6.

In this paper, the symbol C denotes a generic positive constant independent of λ, it could be changed from one line to another. The symbols $O(t)$ (respectively $o(t)$) will denote quantities for which $\frac{O(t)}{|t|}$ stays bounded (respectively, $\frac{o(t)}{|t|}$ tends to zero) as parameter λ goes to zero. In particular, we will often use the notation $o(1)$ standing for a quantity which tends to zero as $\lambda \rightarrow 0$.

2. Preliminaries and ansatz for the solution

In this first section we describe the approximate solution for problem (1.1) and then we estimate the error of such approximation in appropriate norms.

Let us consider k distinct points $\xi_{1}, \xi_{2}, \cdots, \xi_{k}$ in Ω; we choose a sufficiently small but fixed number $\delta>0$ and assume that for $j=1,2, \cdots, k$,

$$
\begin{equation*}
\operatorname{dist}\left(\xi_{j}, \partial \Omega\right) \geq \delta, \quad\left|\xi_{i}-\xi_{j}\right| \geq \delta \quad \text { for } i \neq j \tag{2.1}
\end{equation*}
$$

Furthermore, we consider k positive numbers μ_{j} such that

$$
\begin{equation*}
\delta<\mu_{j}<\delta^{-1}, \quad \text { for all } j=1, \ldots, k \tag{2.2}
\end{equation*}
$$

The parameters μ_{j} will be chosen properly later on. Define the function

$$
U_{\mu_{j}, \xi_{j}}(x)=\log \frac{8 \mu_{j}^{2}}{\left(\mu_{j}^{2} \varepsilon^{2}+\left|x-\xi_{j}\right|^{2}\right)^{2}}
$$

Let us denote $P U_{\mu_{j}, \xi_{j}}(x)$ the projection of $U_{\mu_{j}, \xi_{j}}$ into the space $H_{0}^{1}(\Omega)$, in other words, $P U_{\mu_{j}, \xi_{j}}(x)$ is the unique solution of

$$
\begin{cases}\Delta P U_{\mu_{j}, \xi_{j}}=\Delta U_{\mu_{j}, \xi_{j}}, & \text { in } \Omega \tag{2.3}\\ P U_{\mu_{j}, \xi_{j}}=0, & \text { on } \partial \Omega\end{cases}
$$

Lemma 2.1. Assume (2.1) and (2.2). We have

$$
\begin{equation*}
P U_{\mu_{j}, \xi_{j}}(x)=U_{\mu_{j}, \xi_{j}}(x)+H\left(x, \xi_{j}\right)-\log \left(8 \mu_{j}^{2}\right)+O\left(\mu_{j}^{2} \varepsilon^{2}\right) \tag{2.4}
\end{equation*}
$$

in $C^{1}(\bar{\Omega})$ as $\varepsilon \rightarrow 0$, and

$$
\begin{equation*}
P U_{\mu_{j}, \xi_{j}}(x)=G\left(x, \xi_{j}\right)+O\left(\mu_{j}^{2} \varepsilon^{2}\right) \tag{2.5}
\end{equation*}
$$

in $C_{l o c}^{1}\left(\bar{\Omega} \backslash\left\{\xi_{j}\right\}\right)$ as $\varepsilon \rightarrow 0$, where $G(\cdot, \cdot)$ and $H(\cdot, \cdot)$ are Green's function and its regular part as defined in (1.6) and (1.7).

Proof. Let $z(x)=P U_{\mu_{j}, \xi_{j}}(x)-U_{\mu_{j}, \xi_{j}}(x)+\log \left(8 \mu_{j}^{2}\right)$, then $z(x)$ satisfies

$$
\begin{cases}\Delta z(x)=0 & \text { in } \Omega \\ z(x)=2 \log \left(\mu_{j}^{2} \varepsilon^{2}+\left|x-\xi_{j}\right|^{2}\right) & \text { on } \partial \Omega\end{cases}
$$

On the other hand, we note that $\eta(x)=H\left(x, \xi_{j}\right)$ satisfies

$$
\begin{cases}\Delta \eta(x)=0 & \text { in } \Omega \\ \eta(x)=2 \log \left|x-\xi_{j}\right|^{2} & \text { on } \partial \Omega\end{cases}
$$

Then we get

$$
\begin{cases}\Delta(z(x)-\eta(x))=0 & \text { in } \Omega \\ z(x)-\eta(x)=-2 \log \frac{\left|x-\xi_{j}\right|^{2}}{\mu_{j}^{2} \varepsilon^{2}+\left|x-\xi_{j}\right|^{2}} & \text { on } \partial \Omega\end{cases}
$$

Since $\left|x-\xi_{j}\right|>\delta$ for $x \in \partial \Omega$, then by the maximum principle we get

$$
\max _{\bar{\Omega}}|z(\cdot)-\eta(\cdot)|=\max _{x \in \partial \Omega}|z(\cdot)-\eta(\cdot)|=O\left(\mu_{j}^{2} \varepsilon^{2}\right)
$$

as $\varepsilon \rightarrow 0$, uniformly in Ω. Then we obtain the C^{0}-estimate in (2.4). Analogous computations give the C^{1}-closeness and hence the validity of (2.4). By (2.4) we deduce (2.5).

We shall show later on that $P U_{\mu_{j}, \xi_{j}}(x)$ is a good approximation for a solution to (1.1) far from the points ξ_{j}, but unfortunately it is not good enough for our construction close to the points ξ_{j}. This is the reason why we need to further adjust $P U_{\mu_{j}, \xi_{j}}(x)$. To do this, we need to introduce the following functions w_{j}^{0} and w_{j}^{1}.

Let $w_{\mu_{j}}$ be defined as in (1.23). Define the function w_{j}^{i} to be radial solution of

$$
\begin{equation*}
\Delta w_{j}^{i}+e^{w_{\mu_{j}}} w_{j}^{i}=e^{w_{\mu_{j}}} f^{i} \quad \text { in } \mathbb{R}^{2}, \text { for } i=0,1 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{gather*}
f^{0}=-\left(w_{\mu_{j}}+\frac{1}{2}\left(w_{\mu_{j}}\right)^{2}\right) \tag{2.7}\\
f^{1}=-\left(w_{j}^{0}+\frac{p-2}{2(p-1)}\left(w_{\mu_{j}}\right)^{2}+\frac{1}{2}\left(w_{j}^{0}\right)^{2}+\frac{1}{8}\left(w_{\mu_{j}}\right)^{4}\right. \\
\left.+2 w_{\mu_{j}} w_{j}^{0}+\frac{1}{2}\left(w_{\mu_{j}}\right)^{3}+\frac{1}{2} w_{j}^{0}\left(w_{\mu_{j}}\right)^{2}\right) \tag{2.8}
\end{gather*}
$$

In fact, as shown in [17] (see also [11]), there exist radially symmetric solutions with the properties that

$$
\begin{equation*}
w_{j}^{i}(y)=C_{i j} \log \frac{|y|}{\mu_{j}}+O\left(\frac{1}{|y|}\right) \quad \text { as }|y| \rightarrow \infty \tag{2.9}
\end{equation*}
$$

for some explicit constants $C_{i j}$, which can be explicitly computed. In particular, when $i=0$, the constant $C_{0 j}$ is given by

$$
\begin{aligned}
C_{0 j}= & -8 \int_{0}^{+\infty} t \frac{t^{2}-1}{\left(t^{2}+1\right)^{3}}\left[\log \frac{8 \mu_{j}^{-2}}{\left(1+t^{2}\right)^{2}}+\frac{1}{2}\left(\log \frac{8 \mu_{j}^{-2}}{\left(1+t^{2}\right)^{2}}\right)^{2}\right] d t \\
= & -4 \int_{0}^{+\infty} \frac{t^{2}-1}{\left(t^{2}+1\right)^{3}}\left[\log \frac{8 \mu_{j}^{-2}}{\left(1+t^{2}\right)^{2}}+\frac{1}{2}\left(\log \frac{8 \mu_{j}^{-2}}{\left(1+t^{2}\right)^{2}}\right)^{2}\right] d\left(t^{2}\right) \\
& \operatorname{set} r=t^{2}+1 \\
= & -4 \int_{1}^{+\infty} \frac{r-2}{r^{3}}\left[\log \left(8 \mu_{j}^{-2}\right)-2 \log r\right. \\
& \left.+\frac{1}{2}\left(\log \left(8 \mu_{j}^{-2}\right)\right)^{2}-2 \log \left(8 \mu_{j}^{-2}\right) \log r+2(\log r)^{2}\right] d r
\end{aligned}
$$

Since

$$
\int_{1}^{+\infty} \frac{r-2}{r^{3}} d r=0, \quad \int_{1}^{+\infty} \frac{r-2}{r^{3}} \log r d r=\frac{1}{2}, \quad \text { and } \quad \int_{1}^{+\infty} \frac{r-2}{r^{3}}(\log r)^{2} d r=\frac{3}{2}
$$

we get

$$
\begin{equation*}
C_{0 j}=4 \log 8-8-8 \log \mu_{j} . \tag{2.10}
\end{equation*}
$$

Let us define

$$
w_{\mu_{j}, \xi_{j}}^{0}(x):=w_{j}^{0}\left(\frac{x-\xi_{j}}{\varepsilon}\right), \quad w_{\mu_{j}, \xi_{j}}^{1}(x):=w_{j}^{1}\left(\frac{x-\xi_{j}}{\varepsilon}\right) \quad \text { for } x \in \Omega
$$

Let $P w_{\mu_{j}, \xi_{j}}^{0}$ and $P w_{\mu_{j}, \xi_{j}}^{1}$ denote the projections into $H_{0}^{1}(\Omega)$ of $w_{\mu_{j}, \xi_{j}}^{0}$ and $w_{\mu_{j}, \xi_{j}}^{1}$, respectively. By (2.9), we have that

$$
\begin{align*}
P\left(w_{\mu_{j}, \xi_{j}}^{i}(x)\right) & =P\left(w_{j}^{i}\left(\frac{y-\xi_{j}^{\prime}}{\mu_{j}}\right)\right) \\
& =w_{j}^{i}\left(\frac{y-\xi_{j}^{\prime}}{\mu_{j}}\right)-\frac{C_{i j}}{4} H\left(x, \xi_{j}\right)+C_{i j} \log \left(\mu_{j} \varepsilon\right)+O\left(\mu_{j} \varepsilon\right) \tag{2.11}
\end{align*}
$$

in $C^{1}(\bar{\Omega})$ as $\varepsilon \rightarrow 0$, and

$$
\begin{equation*}
P\left(w_{\mu_{j}, \xi_{j}}^{i}(x)\right)=P\left(w_{j}^{i}\left(\frac{y-\xi_{j}^{\prime}}{\mu_{j}}\right)\right)=-\frac{C_{i j}}{4} G\left(x, \xi_{j}\right)+O\left(\mu_{j} \varepsilon\right) \tag{2.12}
\end{equation*}
$$

in $C_{l o c}^{1}\left(\bar{\Omega} \backslash\left\{\xi_{j}\right\}\right)$ as $\varepsilon \rightarrow 0$.
We define

$$
\begin{align*}
U_{\lambda}(x)= & \frac{1}{p \gamma^{p-1}} \sum_{j=1}^{k}\left(P U_{\mu_{j}, \xi_{j}}(x)+\frac{p-1}{p} \frac{1}{\gamma^{p}} P w_{\mu_{j}, \xi_{j}}^{0}(x)\right. \\
& \left.+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} P w_{\mu_{j}, \xi_{j}}^{1}(x)\right) \tag{2.13}
\end{align*}
$$

From (2.5) and (2.12), one has, away from the points ξ_{j},

$$
\begin{equation*}
U_{\lambda}(x)=\frac{1}{p \gamma^{p-1}} \sum_{j=1}^{k} G\left(x, \xi_{j}\right)\left(1-\frac{p-1}{p} \frac{1}{\gamma^{p}} \frac{C_{0 j}}{4}-\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} \frac{C_{1 j}}{4}+O\left(\varepsilon^{2}\right)\right) . \tag{2.14}
\end{equation*}
$$

Consider now the change of variables

$$
v(y)=p \gamma^{p-1} u(\varepsilon y)-p \gamma^{p}, \quad \text { with } \gamma^{p}=-\frac{4}{p} \log \varepsilon .
$$

By (1.14), then problem (1.1) reduces to

$$
\begin{cases}\Delta v+g(v)=0, & v>0 \tag{2.15}\\ v=-p \gamma^{p} & \text { in } \Omega_{\varepsilon} \\ v & \text { on } \partial \Omega_{\varepsilon}\end{cases}
$$

where $\Omega_{\varepsilon}=\varepsilon^{-1} \Omega$, and

$$
\begin{equation*}
g(v)=\left(1+\frac{v}{p \gamma^{p}}\right)^{p-1} e^{\gamma^{p}\left[\left(1+\frac{v}{p \gamma^{p}}\right)^{p}-1\right]} \tag{2.16}
\end{equation*}
$$

Let us define the first approximation solution to (2.15) as

$$
\begin{equation*}
V_{\lambda}(y)=p \gamma^{p-1} U_{\lambda}(\varepsilon y)-p \gamma^{p} \tag{2.17}
\end{equation*}
$$

with U_{λ} defined by (2.13). We write $y=\varepsilon^{-1} x, \xi_{j}^{\prime}=\varepsilon^{-1} \xi_{j}$. For $\left|x-\xi_{j}\right|<\delta$ with δ sufficiently small but fixed, by using (2.4), (2.5), (2.11), (2.12) and the fact that $U_{\mu_{j}, \xi_{j}}(\varepsilon y)-p \gamma^{p}=w_{j}(y-$ ξ_{j}^{\prime}), we have

$$
\begin{align*}
V_{\lambda}(y)= & P U_{\mu_{j}, \xi_{j}}(\varepsilon y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} P w_{\mu_{j}, \xi_{j}}^{0}(\varepsilon y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} P w_{\mu_{j}, \xi_{j}}^{1}(\varepsilon y)-p \gamma^{p} \\
& +\sum_{i \neq j}^{k}\left(P U_{\mu_{i}, \xi_{i}}(\varepsilon y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} P w_{\mu_{i}, \xi_{i}}^{0}(\varepsilon y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} P w_{\mu_{i}, \xi_{i}}^{1}(\varepsilon y)\right) \\
= & U_{\mu_{j}, \xi_{j}}(\varepsilon y)+H\left(\varepsilon y, \xi_{j}\right)-\log \left(8 \mu_{j}^{2}\right)+O\left(\mu_{j}^{2} \varepsilon^{2}\right)-p \gamma^{p} \\
& +\frac{p-1}{p} \frac{1}{\gamma^{p}}\left[w_{j}^{0}\left(\frac{y-\xi^{\prime}}{\mu_{j}}\right)-\frac{C_{0 j}}{4} H\left(\varepsilon y, \xi_{j}\right)+C_{0 j} \log \left(\mu_{j} \varepsilon\right)+O\left(\mu_{j} \varepsilon\right)\right] \\
& +\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}}\left[w_{j}^{1}\left(\frac{y-\xi^{\prime}}{\mu_{j}}\right)-\frac{C_{1 j}}{4} H\left(\varepsilon y, \xi_{j}\right)+C_{1 j} \log \left(\mu_{j} \varepsilon\right)+O\left(\mu_{j} \varepsilon\right)\right] \\
& +\sum_{i \neq j}^{k} G\left(\xi_{i}, \xi_{j}\right)\left[1-\frac{C_{0 j}}{4} \frac{p-1}{p} \frac{1}{\gamma^{p}}-\frac{C_{1 j}}{4}\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}}\right]+O\left(\varepsilon^{2}\right) \\
= & w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y) \\
& -\log \left(8 \mu_{j}^{2}\right)+\left[1-\frac{C_{0 j}}{4} \frac{p-1}{p} \frac{1}{\gamma^{p}}-\frac{C_{1 j}}{4}\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}}\right] \\
& \times\left(H\left(\xi_{j}, \xi_{j}\right)+\sum_{i \neq j}^{k} G\left(\xi_{i}, \xi_{j}\right)\right) \\
& +\left[C_{0 j} \frac{p-1}{p} \frac{1}{\gamma^{p}}+C_{1 j}\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}}\right]\left(\log \left(\mu_{j}\right)+\log \varepsilon\right) \\
& +O\left(\varepsilon\left|y-\xi^{\prime}\right|\right)+O\left(\varepsilon^{2}\right), \tag{2.18}
\end{align*}
$$

where

$$
w_{j}(y):=w_{\mu_{j}}\left(y-\xi_{j}^{\prime}\right), \quad w_{j}^{0}(y):=w_{j}^{0}\left(\frac{y-\xi_{j}^{\prime}}{\mu_{j}}\right), \quad w_{j}^{1}(y):=w_{j}^{1}\left(\frac{y-\xi_{j}^{\prime}}{\mu_{j}}\right)
$$

We now choose the parameters μ_{j} : we assume they are defined by the relation

$$
\begin{align*}
\log \left(8 \mu_{j}^{2}\right)= & \left(H\left(\xi_{j}, \xi_{j}\right)+\sum_{i \neq j}^{k} G\left(\xi_{i}, \xi_{j}\right)\right)-\frac{p-1}{4} C_{0 j} \\
& -\frac{p-1}{p} \frac{1}{\gamma^{p}} \frac{C_{0 j}}{4}\left(H\left(\xi_{j}, \xi_{j}\right)+\sum_{i \neq j}^{k} G\left(\xi_{i}, \xi_{j}\right)+4 \log \left(\mu_{j}\right)-(p-1) \frac{C_{1 j}}{C_{0 j}}\right) \\
& -\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} \frac{C_{1 j}}{4}\left(H\left(\xi_{j}, \xi_{j}\right)+\sum_{i \neq j}^{k} G\left(\xi_{i}, \xi_{j}\right)+4 \log \left(\mu_{j}\right)\right) \tag{2.19}
\end{align*}
$$

Taking into account the explicit expression (2.10) of the constant $C_{0 j}$, we observe that μ_{j} bifurcates, as λ goes to zero, from the value $\bar{\mu}_{j}$ defined by

$$
\begin{equation*}
\bar{\mu}_{j}=8^{-\frac{p}{2(2-p)}} e^{\frac{p-1}{2-p}} e^{\frac{1}{2(2-p)}\left[H\left(\xi_{j}, \xi_{j}\right)+\sum_{i \neq j}^{k} G\left(\xi_{i}, \xi_{j}\right)\right]} \tag{2.20}
\end{equation*}
$$

solution of equation

$$
\begin{equation*}
\log \left(8 \mu_{j}^{2}\right)=\left(H\left(\xi_{j}, \xi_{j}\right)+\sum_{i \neq j}^{k} G\left(\xi_{i}, \xi_{j}\right)\right)-\frac{p-1}{4} C_{0 j} \tag{2.21}
\end{equation*}
$$

Thus, μ_{j} is a perturbation of order $\frac{1}{\gamma^{p}}$ of the value $\bar{\mu}_{j}$, namely

$$
\begin{equation*}
\log \left(8 \mu_{j}^{2}\right)=\left[\frac{2(p-1)}{2-p}(1-\log 8)+\frac{1}{2-p}\left(H\left(\xi_{j}, \xi_{j}\right)+\sum_{i \neq j}^{k} G\left(\xi_{i}, \xi_{j}\right)\right)\right]\left(1+O\left(\frac{1}{\gamma^{p}}\right)\right) \tag{2.22}
\end{equation*}
$$

Then, by this choice of the parameters μ_{j}, we deduce that, if $\left|y-\xi_{j}^{\prime}\right|<\delta / \varepsilon$ with δ sufficiently small but fixed, we can rewrite

$$
\begin{equation*}
V_{\lambda}(y)=w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y), \tag{2.23}
\end{equation*}
$$

with

$$
\theta(y)=O\left(\varepsilon\left|y-\xi_{j}^{\prime}\right|\right)+O\left(\varepsilon^{2}\right)
$$

We will look for solutions to (2.15) of the form

$$
v=V_{\lambda}+\phi
$$

where V_{λ} is defined as in (2.17), and ϕ represents a lower order correction. We aim at finding a solution for ϕ small provided that the points ξ_{j} are suitably chosen. For small ϕ, we can rewrite problem (2.15) as a nonlinear perturbation of its linearization, namely,

$$
\begin{cases}L(\phi)=-\left[E_{\lambda}+N(\phi)\right], & x \in \Omega_{\varepsilon} \tag{2.24}\\ \phi=0, & x \in \partial \Omega_{\varepsilon}\end{cases}
$$

where

$$
\begin{gather*}
L(\phi):=\Delta \phi+g^{\prime}\left(V_{\lambda}\right) \phi, \tag{2.25}\\
E_{\lambda}:=\Delta V_{\lambda}+g\left(V_{\lambda}\right) \tag{2.26}\\
N(\phi):=g\left(V_{\lambda}+\phi\right)-g\left(V_{\lambda}\right)-g^{\prime}\left(V_{\lambda}\right) \phi \tag{2.27}
\end{gather*}
$$

We recall that $g(t)=\left(1+\frac{t}{p \gamma^{p}}\right)^{p-1} e^{\gamma^{p}\left[\left(1+\frac{t}{p \gamma^{p}}\right)^{p}-1\right]}$.
In order to solve the problem (2.24), first we have to study the invertibility properties of the linear operator L. In order to do this, we introduce a weighted L^{∞}-norm defined as

$$
\begin{equation*}
\|h\|_{*}:=\sup _{y \in \Omega_{\varepsilon}}\left(\sum_{j=1}^{k}\left(1+\left|y-\xi_{j}^{\prime}\right|\right)^{-3}+\varepsilon^{2}\right)^{-1}|h(y)| \tag{2.28}
\end{equation*}
$$

for any $h \in L^{\infty}\left(\Omega_{\varepsilon}\right)$. With respect to this norm, the error term E_{λ} given in (2.26) can be estimated in the following way.

Lemma 2.2. Let $\delta>0$ be a small but fixed number and assume that the points ξ_{j} satisfy (2.1). There exists $C>0$, such that we have

$$
\begin{equation*}
\left\|E_{\lambda}\right\|_{*} \leq \frac{C}{\gamma^{3 p}}=\frac{C}{|\log \varepsilon|^{3}} \tag{2.29}
\end{equation*}
$$

for all λ small enough.
Proof. Far away from the points ξ_{j}, namely for $\left|x-\xi_{j}\right|>\delta$, i.e. $\left|y-\xi_{j}^{\prime}\right|>\frac{\delta}{\varepsilon}$, for all $j=1, \cdots, k$, from (2.5) and (2.12) we have that

$$
\Delta V_{\lambda}(y)=p \gamma^{p-1} \varepsilon^{2} \Delta U(\varepsilon y)=O\left(\gamma^{p-1} \varepsilon^{4}\right)
$$

On the other hand, in this region we have

$$
\begin{equation*}
1+\frac{V_{\lambda}(y)}{p \gamma^{p}}=1+\frac{4 \log \varepsilon+O(1)}{p \gamma^{p}}=\frac{O(1)}{|\log \varepsilon|} \tag{2.30}
\end{equation*}
$$

where $O(1)$ denotes a smooth function, uniformly bounded, as $\varepsilon \rightarrow 0$, in the considered region. Hence

$$
\begin{aligned}
g\left(V_{\lambda}\right) & =\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{p-1} e^{\gamma^{p}\left[\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{p}-1\right]} \\
& \leq \begin{cases}C \frac{\varepsilon^{\frac{4}{p}}}{|\log \varepsilon|^{p-1}} & \text { if } 1 \leq p<2 ; \\
C \frac{\varepsilon^{\frac{4}{p}}}{|\log \varepsilon|^{p-1}} e^{\gamma^{p} \frac{O(1)}{|\log \varepsilon|^{p}}} & \text { if } 0<p<1 .\end{cases}
\end{aligned}
$$

$$
= \begin{cases}C \frac{\varepsilon^{\frac{4}{p}}}{|\log \varepsilon|^{p-1}} & \text { if } 1 \leq p<2 \\ C \frac{\varepsilon^{p}}{|\log \varepsilon|^{p-1}} e^{\frac{O(1)}{|\log \varepsilon|^{p-1}}} & \text { if } 0<p<1\end{cases}
$$

Thus if we are far away from the points ξ_{j}, or equivalently for $\left|y-\xi_{j}^{\prime}\right|>\frac{\delta}{\varepsilon}$, the size of the error, measured with respect to the $\|\cdot\|_{*}$-norm, is relatively small. In other words, if we denote by $1_{\text {outer }}$ the characteristic function of the set $\left\{y:\left|y-\xi_{j}^{\prime}\right|>\frac{\delta}{\varepsilon}, j=1, \ldots, k\right\}$, then in this region we have

$$
\begin{align*}
\left\|E_{\lambda} 1_{\text {outer }}\right\|_{*} & \leq \begin{cases}C \frac{\varepsilon^{\frac{2(2-p)}{p}}}{|\log \varepsilon|^{p-1}} & \text { if } 1 \leq p<2 ; \\
C \frac{\varepsilon^{\frac{2-p}{p}}}{|\log \varepsilon|^{p-1}} e^{\log \varepsilon} \frac{2-p}{p} & \frac{C}{|\log \varepsilon|^{p-1}} \\
\text { if } 0<p<1 .\end{cases} \\
& = \begin{cases}C \frac{\varepsilon^{\frac{2(2-p)}{p}}}{|\log \varepsilon|^{p-1}} & \text { if } 1 \leq p<2 ; \\
C \frac{\varepsilon^{\frac{2-p}{p}}}{|\log \varepsilon|^{p-1}} e^{-\frac{2-p}{p}|\log \varepsilon|+C|\log \varepsilon|^{1-p}} & \text { if } 0<p<1 .\end{cases} \\
& \leq \begin{cases}C \frac{\varepsilon^{\frac{2(2-p)}{p}}}{|\log \varepsilon|^{p-1}} & \text { if } 1 \leq p<2 ; \\
C \frac{\varepsilon^{\frac{2-p}{p}}}{|\log \varepsilon|^{p-1}} & \text { if } 0<p<1 .\end{cases} \tag{2.31}
\end{align*}
$$

Here we used that $-\frac{2-p}{p}|\log \varepsilon|+C|\log \varepsilon|^{1-p}<0$ for $0<p<1$ and ε small.
Let us now fix the index j in $\{1, \cdots, k\}$; for $\left|y-\xi_{j}^{\prime}\right|<\frac{\delta}{\varepsilon}$, we have

$$
\begin{equation*}
\Delta V_{\lambda}(y)=-e^{w_{j}(y)}+\frac{p-1}{p} \frac{1}{\gamma^{p}} \Delta w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} \Delta w_{j}^{1}(y)+O\left(\varepsilon^{2}\right) . \tag{2.32}
\end{equation*}
$$

On the other hand, for any $R>0$ large but fixed, in the ball $\left|y-\xi_{j}^{\prime}\right|<R_{\varepsilon}:=R|\log \varepsilon|^{\alpha}$, with $\alpha \geq 3$, we can use Taylor expansion to first get

$$
\begin{aligned}
& \begin{aligned}
\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{p-1}= & 1+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}}\left[w_{j}^{0}+\frac{p-2}{2(p-1)}\left(w_{j}\right)^{2}\right] \\
& +\left(\frac{p-1}{p}\right)^{3} \frac{1}{\gamma^{3 p}}(\log |y|)
\end{aligned} \\
& \gamma^{p}\left[\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{p}-1\right]= \\
& w_{j}+\left(\frac{p-1}{p}\right) \frac{1}{\gamma^{p}}\left[w_{j}^{0}+\frac{\left(w_{j}\right)^{2}}{2}\right] \\
& \\
& +\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}}\left(w_{j}^{1}+w_{j} w_{j}^{0}\right)+\frac{1}{\gamma^{3 p}}(\log |y|)
\end{aligned}
$$

and

$$
\begin{aligned}
\left.e^{\gamma^{p}\left[\left(1+v V_{\lambda} \frac{p p^{p}}{}{ }^{p}\right.\right.}-1\right] & =e^{w_{j}}\left[1+\left(\frac{p-1}{p}\right) \frac{1}{\gamma^{p}}\left[w_{j}^{0}+\frac{\left(w_{j}\right)^{2}}{2}\right]\right. \\
& \left.+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}}\left[w_{j}^{1}+w_{j} w_{j}^{0}+\frac{1}{2}\left(w_{j}^{0}+\left(w_{j}\right)^{2}\right)^{2}\right]+\frac{1}{\gamma^{3 p}}(\log |y|)\right]
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
g\left(V_{\lambda}\right): & \left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{p-1} e^{\gamma^{p}\left[\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{p}-1\right]} \\
= & e^{w_{j}}\left[1+\left(\frac{p-1}{p}\right) \frac{1}{\gamma^{p}}\left[w_{j}^{0}+\frac{\left(w_{j}\right)^{2}}{2}+w_{j}\right]\right. \\
& +\left(\frac{p-1^{2}}{p}\right) \frac{1}{\gamma^{2 p}}\left[w_{j}^{1}+2 w_{j} w_{j}^{0}+\frac{1}{2}\left(w_{j}^{0}+\frac{\left(w_{j}\right)^{2}}{2}\right)^{2}+w_{j}^{0}+\frac{p-2}{2(p-1)} w_{j}^{2}+\frac{w_{j}^{3}}{2}\right] \\
& \left.+O\left(\frac{\log \left|y-\xi_{j}^{\prime}\right|}{\gamma^{3 p}}\right)\right] .
\end{aligned}
$$

Thus, thanks to the fact that we have improved our original approximation with the terms w_{j}^{0} and w_{j}^{1}, and the definition of $*$-norm, we get that

$$
\begin{equation*}
\left\|E_{\lambda} 1_{B\left(\xi_{j}^{\prime}, R_{\varepsilon}\right)}\right\|_{*} \leq \frac{C}{\gamma^{3 p}}=\frac{C}{|\log \varepsilon|^{3}}, \quad \text { for any } j=1, \ldots, k \tag{2.33}
\end{equation*}
$$

Here $1_{B\left(\xi_{j}^{\prime}, R_{\varepsilon}\right)}$ denotes the characteristic function of $B\left(\xi_{j}, R_{\varepsilon}\right)$. Finally, in the remaining region, namely where $R_{\varepsilon}<\left|y-\xi_{j}^{\prime}\right|<\frac{\delta}{\varepsilon}$, for any $j=1, \ldots, k$, we have from one hand that $\left|\Delta V_{\lambda}(y)\right| \leq$ $C e^{w_{j}(y)}$, and also $\left|g\left(V_{\lambda}(y)\right)\right| \leq C e^{w_{j}(y)}$ as a consequence of (2.18). This fact, together with (2.33) and (2.31) gives the estimate (2.29).

As in the above computation, we find that very close to the point ξ_{j} in Ω, we have

$$
\begin{equation*}
\left\|g^{\prime}\left(V_{\lambda}\right)-e^{w_{j}}\right\|_{*} \rightarrow 0 \quad \text { as } \lambda \rightarrow 0 \tag{2.34}
\end{equation*}
$$

and there exists some positive constant D_{0} such that

$$
\begin{equation*}
g^{\prime}\left(V_{\lambda}\right) \leq D_{0} \sum_{j=1}^{k} e^{w_{j}} \tag{2.35}
\end{equation*}
$$

Moreover, we can get

$$
\begin{equation*}
\left\|g^{\prime \prime}\left(V_{\lambda}\right)\right\|_{*} \leq C \tag{2.36}
\end{equation*}
$$

Proof of (2.34) and (2.35). We have

$$
\begin{aligned}
g^{\prime}\left(V_{\lambda}\right)= & \frac{p-1}{p} \frac{1}{\gamma^{p}}\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{p-2} e^{\gamma^{p}\left[\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{p}-1\right]} \\
& +\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{2(p-1)} e^{\gamma^{p}\left[\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{p}-1\right]} \\
:= & I_{a}+I_{b} .
\end{aligned}
$$

Far away from the points ξ_{j}, namely for $\left|x-\xi_{j}\right|>\delta$, i.e. $\left|y-\xi_{j}^{\prime}\right|>\frac{\delta}{\varepsilon}$, for all $j=1, \cdots, k$, a consequence of (2.30) is that

$$
I_{a}=\frac{\varepsilon^{\frac{4}{p}}}{|\log \varepsilon|^{p-1}} O(1), \quad \text { and } \quad I_{b}=\frac{\varepsilon^{\frac{4}{p}}}{|\log \varepsilon|^{2(p-1)}} O(1)
$$

Then we have

$$
\begin{equation*}
g^{\prime}\left(V_{\lambda}\right) 1_{\text {outer }}=\frac{\varepsilon^{\frac{4}{p}}}{|\log \varepsilon|^{p-1}} O(1) \tag{2.37}
\end{equation*}
$$

On the other hand, fix the index j in $\{1, \cdots, k\}$, for $\left|y-\xi_{j}^{\prime}\right|<R_{\varepsilon}$ with $R_{\varepsilon}=R|\log \varepsilon|$, for any $R>0$ large but fixed, we use Taylor expansion to get

$$
\begin{aligned}
I_{a}= & \frac{p-1}{p} \frac{1}{\gamma^{p}}\left(1+\frac{1}{p \gamma^{p}}\left(w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right)\right)^{p-2} \\
& \times e^{\gamma^{p}\left[\left(1+\frac{1}{p \gamma^{p}}\left(w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right)\right)^{p}-1\right]} \\
= & \frac{p-2}{p} \frac{1}{\gamma^{p}}\left(\frac{p-1}{p-2}+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{0}(y)\right. \\
& \left.+\left(\frac{p-1}{p}\right)^{3} \frac{1}{\gamma^{3 p}} w_{j}^{1}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} \theta(y)\right) \\
& \times e^{w_{j}(y)} e^{\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)} e^{\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)} e^{\theta(y)} e^{\frac{1}{2} \frac{p-1}{p} \frac{1}{\gamma^{p}}\left[w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right]^{2}},
\end{aligned}
$$

and

$$
\begin{aligned}
I_{b}= & \left(1+\frac{1}{p \gamma^{p}}\left(w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right)\right)^{2(p-1)} \\
& \times e^{\gamma^{p}\left[\left(1+\frac{1}{p \gamma^{p}}\left(w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right)\right)^{p}-1\right]} \\
= & \left(1+\frac{2(p-1)}{p} \frac{1}{\gamma^{p}} w_{j}(y)+2\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{0}(y)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+2\left(\frac{p-1}{p}\right)^{3} \frac{1}{\gamma^{3 p}} w_{j}^{1}(y)+\frac{2(p-1)}{p} \frac{1}{\gamma^{p}} \theta(y)\right) \\
& \times e^{w_{j}(y)} e^{\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)} e^{\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)} e^{\theta(y)} e^{\frac{1}{2} \frac{p-1}{p} \frac{1}{\gamma^{p}}\left[w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right]^{2}} .
\end{aligned}
$$

By the definition of w_{j}^{0} and w_{j}^{1}, we get that

$$
\begin{equation*}
I_{a} 1_{B\left(\xi_{j}^{\prime}, R_{\varepsilon}\right)}=\frac{O(1)}{|\log \varepsilon|}, \quad I_{b} 1_{B\left(\xi_{j}^{\prime}, R_{\varepsilon}\right)}-e^{w_{j}(y)}=\frac{O(1)}{|\log \varepsilon|} \tag{2.38}
\end{equation*}
$$

Finally, in the remaining region, namely where for any $j=1, \ldots, k$, we have $R_{\varepsilon}<\left|y-\xi_{j}^{\prime}\right|<\frac{\delta}{\varepsilon}$, we have

$$
\begin{equation*}
\left|I_{a}\right| \leq \frac{C}{|\log \varepsilon|} e^{w_{j}(y)}, \quad\left|I_{b}\right| \leq C e^{w_{j}(y)} \tag{2.39}
\end{equation*}
$$

Then, from (2.38) and the definition of $*$-norm, we find that very close to the point ξ_{j} in Ω, we have

$$
\left\|g^{\prime}\left(V_{\lambda}\right)-e^{w_{j}}\right\|_{*}=\frac{O(1)}{|\log \varepsilon|}
$$

which implies (2.34). Combining (2.37), (2.38) with (2.39) we obtain estimate (2.35).
Proof of (2.36). We have

$$
\begin{aligned}
g^{\prime \prime}\left(V_{\lambda}\right)= & \frac{(p-1)(p-2)}{p^{2}} \frac{1}{\gamma^{2 p}}\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{p-3} e^{\gamma^{p}\left[\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{p}-1\right]} \\
= & \frac{3(p-1)}{p} \frac{1}{\gamma^{p}}\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{2 p-3} e^{\gamma^{p}\left[\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{p}-1\right]} \\
& +\left(1+\frac{V_{\lambda}}{p \gamma^{p}}\right)^{3(p-1)} e^{\gamma^{p}\left[\left(1+\frac{V_{\lambda}}{\left.\left.p \gamma^{p}\right)^{p}-1\right]}\right.\right.} \\
:= & I_{c}+I_{d}+I_{e} .
\end{aligned}
$$

By a similar computation as above: Far away from the points ξ_{j}, namely for $\left|x-\xi_{j}\right|>\delta$, i.e. $\left|y-\xi_{j}^{\prime}\right|>\frac{\delta}{\varepsilon}$, for all $j=1, \cdots, k$, we have

$$
I_{c}=\frac{\varepsilon^{\frac{4}{p}}}{|\log \varepsilon|^{p-1}} O(1), \quad I_{d}=\frac{\varepsilon^{\frac{4}{p}}}{|\log \varepsilon|^{2(p-1)}} O(1), \quad \text { and } \quad I_{e}=\frac{\varepsilon^{\frac{4}{p}}}{|\log \varepsilon|^{3(p-1)}} O(1)
$$

Then

$$
\begin{equation*}
g^{\prime \prime}\left(V_{\lambda}\right) 1_{\text {outer }}=\frac{\varepsilon^{\frac{4}{p}}}{|\log \varepsilon|^{p-1}} O(1) \tag{2.40}
\end{equation*}
$$

where again $O(1)$ denotes a function which is uniformly bounded, as $\varepsilon \rightarrow 0$, in the considered region. Let us now fix the index j in $\{1, \cdots, k\}$; for $\left|y-\xi_{j}^{\prime}\right|<R_{\varepsilon}$ with any $R_{\varepsilon}:=R|\log \varepsilon|$ for some $R>0$ large but fixed, by Taylor expansion, we have

$$
\begin{aligned}
I_{c}= & \frac{(p-1)(p-2)}{p^{2}} \frac{1}{\gamma^{2 p}}\left(1+\frac{1}{p \gamma^{p}}\left(w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)\right.\right. \\
& \left.\left.+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right)\right)^{p-3} \\
& \times e^{\gamma^{p}\left[\left(1+\frac{1}{p \gamma^{p}}\left(w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2} p} w_{j}^{1}(y)+\theta(y)\right)\right)^{p}-1\right]} \\
= & \frac{(p-2)(p-3)}{p^{2}} \frac{1}{\gamma^{2 p}}\left(\frac{p-1}{p-3}+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{0}(y)\right. \\
& \left.+\left(\frac{p-1}{p}\right)^{3} \frac{1}{\gamma^{3 p}} w_{j}^{1}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} \theta(y)\right) \\
& \times e^{w_{j}(y)} e^{\frac{p-1}{p}} \frac{1}{\gamma^{p}} w_{j}^{0}(y) e^{\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2} p} w_{j}^{1}(y)} e^{\theta(y)} e^{\frac{1}{2} \frac{p-1}{p} \frac{1}{\gamma^{p}}\left[w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right]^{2}}, \\
I_{d}= & \frac{3(p-1)}{p} \frac{1}{\gamma^{p}}\left(1+\frac{1}{p \gamma^{p}}\left(w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)\right.\right. \\
& \left.\left.+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right)\right)^{2 p-3} \\
& \times e^{\gamma^{p}\left[\left(1+\frac{1}{p \gamma^{p}}\left(w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right)\right)^{p}-1\right]} \\
= & \frac{3(2 p-3)}{p} \frac{1}{\gamma^{p}}\left(\frac{p-1}{2 p-3}+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{0}(y)\right. \\
& \left.+\left(\frac{p-1}{p}\right)^{3} \frac{1}{\gamma^{3 p}} w_{j}^{1}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} \theta(y)\right) \\
& \times e^{w_{j}(y)} e^{\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)} e^{\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)} e^{\theta(y)} e^{\frac{1}{2} \frac{p-1}{p} \frac{1}{\gamma^{p}}\left[w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right]^{2}},
\end{aligned}
$$

and

$$
\begin{aligned}
I_{e}= & \left(1+\frac{1}{p \gamma^{p}}\left(w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right)\right)^{3(p-1)} \\
& \times e^{\gamma^{p}\left[\left(1+\frac{1}{p \gamma^{p}}\left(w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right)\right)^{p}-1\right]} \\
= & \left(1+\frac{3(p-1)}{p} \frac{1}{\gamma^{p}} w_{j}(y)+3\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{0}(y)+3\left(\frac{p-1}{p}\right)^{3} \frac{1}{\gamma^{3 p}} w_{j}^{1}(y)\right. \\
& \left.+\frac{3(p-1)}{p} \frac{1}{\gamma^{p}} \theta(y)\right) \\
& \times e^{w_{j}(y)} e^{\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)} e^{\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)} e^{\theta(y)} e^{\frac{1}{2} \frac{p-1}{p} \frac{1}{\gamma^{p}}\left[w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right]^{2}} .
\end{aligned}
$$

Therefore, we get

$$
\begin{equation*}
I_{C} 1_{B\left(\xi_{j}^{\prime}, R_{\varepsilon}\right)}=\frac{O(1)}{|\log \varepsilon|}, \quad I_{d} 1_{B\left(\xi_{j}^{\prime}, R_{\varepsilon}\right)}=\frac{O(1)}{|\log \varepsilon|^{2}}, \quad I_{e} 1_{B\left(\xi_{j}^{\prime}, R_{\varepsilon}\right)}=O(1) \tag{2.41}
\end{equation*}
$$

Finally, for $R_{\varepsilon}<\left|y-\xi_{j}^{\prime}\right|<\frac{\delta}{\varepsilon}$, for any j, we have

$$
\begin{equation*}
\left|I_{c}\right| \leq \frac{C}{|\log \varepsilon|}, \quad\left|I_{d}\right| \leq \frac{C}{|\log \varepsilon|^{2}}, \quad\left|I_{e}\right|=O(1)+C e^{w_{j}(y)} \tag{2.42}
\end{equation*}
$$

From (2.40), (2.41) with (2.42), by the definition of $*$-norm, we obtain (2.36) holds.

3. The linearized problem

In this section, we prove the bounded invertibility of the operator L. We observe that the operator L can be approximately regarded as a superposition of the linear operator

$$
L_{j}(\phi)=\Delta \phi+e^{w_{j}} \phi=\Delta \phi+\frac{8 \mu_{j}^{2}}{\left(\mu_{j}^{2}+\left|y-\xi_{j}^{\prime}\right|^{2}\right)^{2}} \phi
$$

The key fact to develop a satisfactory solvability theory for the operator L is the nondegeneracy of w up to the natural invariances of the equation under translations and dilations, which translates into the fact that

$$
z_{0 j}(y)=\partial_{\mu_{j}} w_{\mu_{j}}(y), \quad z_{i j}(y)=\partial_{y_{i}} w_{\mu_{j}}(y), \quad i=1,2
$$

satisfy the function $\Delta Z+e^{w_{j}} Z=0$, see [8] for a proof. Define for $i=0,1,2$ and $j=1,2, \cdots, k$,

$$
\begin{equation*}
Z_{i j}(y):=z_{i j}\left(y-\xi_{j}^{\prime}\right), \quad i=0,1,2 \tag{3.1}
\end{equation*}
$$

Consider a large but fixed number $R_{0}>0$ and a radial and smooth cut-off function η with $\eta(r)=$ 1 if $r<R_{0}$ and $\eta(r)=0$ if $r>R_{0}+1$. Write

$$
\begin{equation*}
\eta_{j}(y)=\eta\left(\left|y-\xi_{j}^{\prime}\right|\right) . \tag{3.2}
\end{equation*}
$$

Given $h \in L^{\infty}\left(\Omega_{\varepsilon}\right)$, we consider the problem of finding a function ϕ such that for certain scalars $c_{i j}, i=1,2, j=1,2, \cdots, k$, it satisfies

$$
\begin{cases}L(\phi)=h+\sum_{i=1}^{2} \sum_{j=1}^{k} c_{i j} Z_{i j} \eta_{j}, & \text { in } \Omega_{\varepsilon} ; \tag{3.3}\\ \phi=0 & \text { on } \partial \Omega_{\varepsilon} ; \\ \int_{\Omega_{\varepsilon}} \phi Z_{i j} \eta_{j}=0 & \text { for } i=1,2, j=1, \cdots, k\end{cases}
$$

Consider the norm

$$
\|\phi\|_{\infty}=\sup _{y \in \Omega_{\varepsilon}}|\phi(y)| .
$$

The main result of this section is the following:
Proposition 3.1. Let $\delta>0$ be fixed. There exist positive numbers λ_{0} and C, such that for any points $\xi_{j}, j=1, \cdots, k$, in Ω, satisfying (2.1), μ_{j} given by (2.22), and $h \in L^{\infty}\left(\Omega_{\varepsilon}\right)$, there is a unique solution $\phi:=T_{\lambda}(h)$ to problem (3.3) for all $\lambda \leq \lambda_{0}$. Moreover,

$$
\begin{equation*}
\|\phi\|_{\infty} \leq C\left(\log \frac{1}{\varepsilon}\right)\|h\|_{*} \tag{3.4}
\end{equation*}
$$

The proof will be split into a series of lemmas which we state and prove next.
Lemma 3.1. The operator L satisfies the maximum principle in $\tilde{\Omega}_{\varepsilon}=\Omega_{\varepsilon} \backslash \bigcup_{j=1}^{k} B\left(\xi_{j}^{\prime}, R\right)$ for R large. Namely, if $L(\phi) \leq 0$ in $\tilde{\Omega}_{\varepsilon}$ and $\phi \geq 0$ on $\partial \tilde{\Omega}_{\varepsilon}$, then $\phi \geq 0$ in $\tilde{\Omega}_{\varepsilon}$.

Proof. Given $a>0$, we consider the function

$$
\begin{equation*}
Z(y)=\sum_{j=1}^{k} z_{0}\left(a\left|y-\xi_{j}^{\prime}\right|\right), \quad y \in \Omega_{\varepsilon}, \tag{3.5}
\end{equation*}
$$

where $z_{0}(r)=\frac{r^{2}-1}{r^{2}+1}$ is the radial solution in \mathbb{R}^{2} of

$$
\Delta z_{0}+\frac{8}{\left(1+r^{2}\right)^{2}} z_{0}=0
$$

First, we observe that, if $\left|y-\xi_{j}^{\prime}\right| \geq R$ for $R>\frac{1}{a}$, then $Z(y)>0$. By the definition of z_{0} we have

$$
\begin{aligned}
-\Delta Z(y) & =\sum_{j=1}^{k} \frac{8 a^{2}\left(a^{2}\left|y-\xi_{j}^{\prime}\right|^{2}-1\right)}{\left(1+a^{2}\left|y-\xi_{j}^{\prime}\right|^{2}\right)^{3}} \geq \sum_{j=1}^{k} \frac{1}{3} \frac{8 a^{2}}{\left(1+a^{2}\left|y-\xi_{j}^{\prime}\right|^{2}\right)^{2}} \\
& \geq \sum_{j=1}^{k} \frac{4}{27} \frac{8}{a^{2}\left|y-\xi_{j}^{\prime}\right|^{4}}
\end{aligned}
$$

provided $R>\frac{\sqrt{2}}{a}$. On the other hand, in the same region, we have

$$
g^{\prime}\left(V_{\lambda}\right) Z(x) \leq D_{0} \sum_{j=1}^{k} e^{w_{j}} Z(y) \leq D_{0} \sum_{j=1}^{k} \frac{C}{\left|y-\xi_{j}^{\prime}\right|^{4}},
$$

for some constant $C>0$ and D_{0} satisfies (2.35). Hence if a is taken small and fixed, and $R>0$ is chosen sufficiently large depending on this a, then we have $L(Z)<0$ in $\tilde{\Omega}_{\varepsilon}$. The function $Z(y)$ is what we are looking for.

Let us fix such a number $R>0$ which we may take large whenever it is needed. Define the "inner norm" of ϕ in the following way

$$
\|\phi\|_{i}=\sup _{y \in \bigcup_{j=1}^{k} B\left(\xi_{j}^{\prime}, R\right)}|\phi(y)| .
$$

Lemma 3.2. There exists a uniform constant $C>0$ such that if $L(\phi)=h$ in $\Omega_{\varepsilon}, \phi=0$ on $\partial \Omega_{\varepsilon}$, then

$$
\begin{equation*}
\|\phi\|_{\infty} \leq C\left[\|\phi\|_{i}+\|h\|_{*}\right] \tag{3.6}
\end{equation*}
$$

for any $h \in L^{\infty}\left(\Omega_{\varepsilon}\right)$.
Proof. We will establish this estimate with the use of suitable barriers. Let M be large, such that $\Omega_{\varepsilon} \subset B\left(\xi_{j}^{\prime}, \frac{M}{\varepsilon}\right)$ for all j. Consider the solution ψ_{j} of the following problem

$$
\left\{\begin{array}{l}
-\Delta \psi_{j}=\frac{2}{\left|y-\xi_{j}^{\prime}\right|^{3}}+2 \varepsilon^{2}, \quad R<\left|y-\xi_{j}^{\prime}\right|<\frac{M}{\varepsilon} \\
\psi_{j}(y)=0 \quad \text { for }\left|y-\xi_{j}^{\prime}\right|=R, \quad\left|y-\xi_{j}^{\prime}\right|=\frac{M}{\varepsilon}
\end{array}\right.
$$

We observe that by the direct computation we have that

$$
\psi_{j}(r)=\frac{1}{R}-\frac{1}{r}-\varepsilon^{2}(r-R)-\left[\frac{1}{R}-\frac{1}{r}-\varepsilon^{2}\left(\frac{M}{\varepsilon}-R\right)\right] \frac{\log \frac{r}{R}}{\log \frac{M}{\varepsilon R}}
$$

Therefore, this function is uniform bound independent of ε as long as $a<R<\frac{1}{2 \varepsilon}$.
Define now the function

$$
\tilde{\phi}(y)=2\|\phi\|_{i} Z(y)+\|h\|_{*} \sum_{j=1}^{k} \psi_{j}(y),
$$

where Z is the function defined in (3.5). First, observe that by the definition of Z, choosing R large if necessary,

$$
\tilde{\phi}(y) \geq 2\|\phi\|_{i} Z(y) \geq\|\phi\|_{i} \geq|\phi(y)| \quad \text { for }\left|y-\xi_{j}^{\prime}\right|=R, j=1, \cdots, k,
$$

and, by the positivity of $Z(y)$ and $\psi_{j}(y)$,

$$
\tilde{\phi}(y) \geq 0=\phi(y) \quad \text { for } y \in \partial \Omega_{\varepsilon} .
$$

Finally, by the definition of $\|\cdot\|_{*}$ we have that

$$
|h(y)| \leq\left(\sum_{j=1}^{k}\left(1+\left|y-\xi_{j}^{\prime}\right|\right)^{-3}+\varepsilon^{2}\right)\|h\|_{*},
$$

then

$$
\begin{aligned}
L(\tilde{\phi}) & =2\|\phi\|_{i} L(Z)+\|h\|_{*} L\left(\sum_{j=1}^{k} \psi_{j}\right) \leq\|h\|_{*} \sum_{j=1}^{k}\left(\Delta \psi_{j}+g^{\prime}\left(V_{\lambda}\right) \psi_{j}\right) \\
& =\|h\|_{*} \sum_{j=1}^{k}\left(-\frac{2}{\left|y-\xi_{j}^{\prime}\right|^{3}}-2 \varepsilon^{2}+g^{\prime}\left(V_{\lambda}\right) \psi_{j}\right) \\
& \leq\|h\|_{*} \sum_{j=1}^{k}\left(-\frac{2}{\left|y-\xi_{j}^{\prime}\right|^{3}}-2 \varepsilon^{2}+\frac{2 k D_{0}}{R} e^{w_{j}}\right) \\
& \leq-\|h\|_{*}\left(\sum_{j=1}^{k}\left(1+\left|y-\xi_{j}^{\prime}\right|\right)^{-3}+\varepsilon^{2}\right) \\
& \leq-|h(y)| \leq|L(\phi)(y)|
\end{aligned}
$$

provided R large enough. Hence, from Lemma 3.1, we obtain that

$$
|\phi(y)| \leq \tilde{\phi}(y) \quad \text { for } y \in \tilde{\Omega}_{\varepsilon}
$$

and, since $Z(y) \leq 1$ we get

$$
\|\phi\|_{\infty} \leq C\left[\|\phi\|_{i}+\|h\|_{*}\right] .
$$

Next we prove uniform a priori estimates for the problem (3.3) when ϕ satisfies additionally orthogonality under dilations. Specifically, we consider the problem

$$
\begin{cases}L(\phi)=h, & \text { in } \Omega_{\varepsilon} \tag{3.7}\\ \phi=0 & \text { on } \partial \Omega_{\varepsilon} \\ \int_{\Omega_{\varepsilon}} \eta_{j} Z_{i j} \phi=0 & \text { for } i=0,1,2, j=1, \cdots, k\end{cases}
$$

and prove the following estimate.

Lemma 3.3. Let $\delta>0$ be fixed. There exist positive numbers λ_{0} and C, such that for any points $\xi_{j}, j=1, \cdots, k$, in Ω, satisfying (2.1), μ_{j} given by (2.22), and $h \in L^{\infty}\left(\Omega_{\varepsilon}\right)$, and any solution ϕ to problem (3.7), one has

$$
\begin{equation*}
\|\phi\|_{\infty} \leq C\|h\|_{*} . \tag{3.8}
\end{equation*}
$$

Proof. We carry out the proof of lemma by a contradiction. If the result were false, then there would exist a sequence $\lambda_{n} \rightarrow 0$, points $\xi_{j}^{n} \in \Omega, j=1, \cdots, k$ in Ω, satisfying (2.1), function h_{n} with $\left\|h_{n}\right\|_{*} \rightarrow 0$ and ϕ_{n} with $\left\|\phi_{n}\right\|_{\infty}=1$,

$$
\begin{cases}L\left(\phi_{n}\right)=h_{n} & \text { in } \Omega_{\varepsilon_{n}} \tag{3.9}\\ \phi_{n}=0 & \text { on } \partial \Omega_{\varepsilon_{n}} \\ \int_{\Omega_{\varepsilon}} \eta_{j} Z_{i j} \phi_{n}=0 & \text { for all } i=0,1,2, j=1, \cdots, k\end{cases}
$$

Then from Lemma 3.2, we see that $\left\|\phi_{n}\right\|_{i}$ stays away from zero. Up to a subsequence, for one of the indices, say j, we can assume that there exists $R>0$ such that,

$$
\sup _{\left|y-\left(\xi_{j}^{n}\right)^{\prime}\right|<R}\left|\phi_{n}(y)\right| \geq \kappa>0 \quad \text { for all } n
$$

Let us set $\hat{\phi}_{n}(z)=\phi_{n}\left(\left(\xi_{j}^{n}\right)^{\prime}+z\right)$. Elliptic estimate allows us to assume that $\hat{\phi}_{n}$ converges uniformly over compact subsets of \mathbb{R}^{2} to a bounded, nonzero solution $\hat{\phi}$ of

$$
\Delta \phi+\frac{8 \mu_{j}^{2}}{\left(\mu_{j}^{2}+|z|^{2}\right)^{2}} \phi=0
$$

This implies that $\hat{\phi}$ is a linear combination of the functions $z_{i j}, i=0,1,2$. But orthogonality conditions over $\hat{\phi}_{n}$ pass to the limit thanks to $\left\|\hat{\phi}_{n}\right\|_{\infty} \leq 1$. The dominated convergence theorem then yields that $\int_{\mathbb{R}^{2}} \eta(z) z_{i j} \hat{\phi}=0$ for $i=0,1,2$, thus a contradiction with $\liminf _{n \rightarrow \infty}\left\|\phi_{n}\right\|_{i}>0$.

Now we establish a priori estimates for the problem (3.7) with the orthogonality condition $\int_{\Omega_{\varepsilon}} \eta_{j} Z_{0 j} \phi=0$ dropped. We consider the problem

$$
\begin{cases}L(\phi)=h & \text { in } \Omega_{\varepsilon} \tag{3.10}\\ \phi=0 & \text { on } \partial \Omega_{\varepsilon} \\ \int_{\Omega_{\varepsilon}} \eta_{j} Z_{i j} \phi=0 & \text { for } i=1,2, j=1, \cdots, k\end{cases}
$$

Lemma 3.4. Let $\delta>0$ be fixed. There exist positive numbers λ_{0} and C, such that for any points $\xi_{j} \in \Omega, j=1, \cdots, k$, satisfying (2.1), μ_{j} given by (2.22), and $h \in L^{\infty}\left(\Omega_{\varepsilon}\right)$, and any solution ϕ to problem (3.10), one has

$$
\begin{equation*}
\|\phi\|_{\infty} \leq C\left(\log \frac{1}{\varepsilon}\right)\|h\|_{*} \tag{3.11}
\end{equation*}
$$

for all $\lambda<\lambda_{0}$.
Proof. The proof is already contained in [14] but we reproduce it here for the sake of completeness. Let $R>R_{0}+1$ be a large and fixed number, and \hat{z}_{0} be the solution of the problem

$$
\begin{cases}\Delta \hat{z}_{0 j}+\frac{8 \mu_{j}^{2}}{\left(\mu_{j}^{2}+\left|y-\xi_{j}^{\prime}\right|^{2}\right)^{2}} \hat{z}_{0 j}=0, & \\ \hat{z}_{0 j}(y)=z_{0 j}(R) & \text { for }\left|y-\xi_{j}^{\prime}\right|=R \\ \hat{z}_{0 j}(y)=0 & \text { for }\left|y-\xi_{j}^{\prime}\right|=\frac{\delta}{3 \varepsilon}\end{cases}
$$

By computation, this function is explicitly given by

$$
\hat{z}_{0 j}(y)=z_{0 j}(y)\left[1-\frac{\int_{R}^{r} \frac{d s}{s z_{0 j}^{2}(s)}}{\int_{R}^{\frac{\delta}{3 \varepsilon}} \frac{d s}{s z_{0 j}^{2}(s)}}\right], \quad r=\left|y-\xi_{j}^{\prime}\right|
$$

Next we consider the radial smooth cut-off functions χ_{1} and χ_{2} withe the following properties:

$$
\begin{gathered}
0 \leq \chi_{1} \leq 1, \quad \chi_{1} \equiv 1 \quad \text { in } B(0, R), \quad \chi_{1} \equiv 0 \quad \text { in } B(0, R+1)^{c} ; \quad \text { and } \\
0 \leq \chi_{2} \leq 1, \quad \chi_{2} \equiv 1 \quad \text { in } B\left(0, \frac{\delta}{4 \varepsilon}\right), \quad \chi_{1} \equiv 0 \quad \text { in } B\left(0, \frac{\delta}{3 \varepsilon}\right)^{c}
\end{gathered}
$$

and $\left|\chi_{2}^{\prime}(r)\right| \leq C \varepsilon,\left|\chi_{2}^{\prime \prime}(r)\right| \leq C \varepsilon^{2}$. Then we set

$$
\chi_{1 j}(y)=\chi_{1}\left(\left|y-\xi_{j}^{\prime}\right|\right), \quad \chi_{2 j}(y)=\chi_{2}\left(\left|y-\xi_{j}^{\prime}\right|\right)
$$

and define the test function

$$
\tilde{z}_{0 j}=\chi_{1 j} Z_{0 j}+\left(1-\chi_{1 j}\right) \chi_{2 j} \hat{z}_{0 j}
$$

Letting ϕ be a solution to (3.10), we will modify ϕ so that the extra orthogonality conditions with respect to $Z_{0 j}$ are satisfied. We set

$$
\tilde{\phi}=\phi+\sum_{j=1}^{k} d_{j} \tilde{z}_{0}
$$

with the number d_{j} is defined as

$$
d_{j}=-\frac{\int_{\Omega_{\varepsilon}} \eta_{j} Z_{0 j} \phi}{\int_{\Omega_{\varepsilon}} \eta_{j}\left|Z_{0 j}\right|^{2}}
$$

Then

$$
\begin{equation*}
L(\tilde{\phi})=h+\sum_{j=1}^{k} d_{j} L\left(\tilde{z}_{0 j}\right) \tag{3.12}
\end{equation*}
$$

and the orthogonality condition

$$
\int_{\Omega_{\varepsilon}} \eta_{j} Z_{0 i} \tilde{\phi}=0, \quad \text { for all } i=0,1,2
$$

holds. Then from the previous lemma we have the following estimate

$$
\begin{equation*}
\|\tilde{\phi}\|_{\infty} \leq C\left[\|h\|_{*}+\sum_{j=1}^{k}\left|d_{j}\right|\left\|L\left(\tilde{z}_{0 j}\right)\right\|_{*}\right] \tag{3.13}
\end{equation*}
$$

Next, we show that

$$
\begin{equation*}
\left\|L\left(\tilde{z}_{0 j}\right)\right\|_{*} \leq \frac{C}{\log \frac{1}{\varepsilon}}, \quad \text { and } \quad\left|d_{j}\right| \leq C\left(\log \frac{1}{\varepsilon}\right)^{2}\|h\|_{*} . \tag{3.14}
\end{equation*}
$$

Indeed, we have

$$
\begin{aligned}
L\left(\tilde{z}_{0 j}\right)= & 2 \nabla \chi_{1 j} \nabla\left(Z_{0 j}-\hat{z}_{0 j}\right)+\Delta \chi_{1 j}\left(Z_{0 j}-\hat{z}_{0 j}\right) \\
& +2 \nabla \chi_{2 j} \nabla \hat{z}_{0 j}+\Delta \chi_{2 j} \hat{z}_{0 j}+O\left(\varepsilon^{4}\right) .
\end{aligned}
$$

We consider the following four regions

$$
\begin{gathered}
\Omega_{1}=\left\{y:\left|y-\xi_{j}^{\prime}\right| \leq R\right\}, \quad \Omega_{2}=\left\{y: R<\left|y-\xi_{j}^{\prime}\right|<R+1\right\}, \\
\Omega_{3}=\left\{y: R+1 \leq\left|y-\xi_{j}^{\prime}\right| \leq \frac{\delta}{4 \varepsilon}\right\}, \quad \Omega_{4}=\left\{y: \frac{\delta}{4 \varepsilon}<\left|y-\xi_{j}^{\prime}\right|<\frac{\delta}{3 \varepsilon}\right\} .
\end{gathered}
$$

First, we note that $L\left(\tilde{z}_{0}\right)=O\left(\varepsilon^{4}\right)$ for $y \in \Omega_{1} \cup \Omega_{3}$. For $y \in \Omega_{2}$, we have

$$
\hat{z}_{0 j}-Z_{0 j}=-z_{0 j}(r) \frac{\int_{R}^{r} \frac{d s}{s z_{0 j}^{2}(s)}}{\int_{R}^{\frac{\delta}{3 \varepsilon}} \frac{d s}{s z_{0 j}^{2}(s)}},
$$

so that

$$
\left|\hat{z}_{0 j}-Z_{0 j}\right| \leq \frac{C}{\log \frac{1}{\varepsilon}}
$$

Similarly, in this region, we have

$$
\left|\hat{z}_{0 j}^{\prime}-Z_{0 j}^{\prime}\right| \leq \frac{C}{\log \frac{1}{\varepsilon}}
$$

On the other hand, for $y \in \Omega_{4}$, we have

$$
\hat{z}_{0 j}(r) \leq \frac{C}{\log \frac{1}{\varepsilon}}, \quad \text { and } \quad \hat{z}_{0 j}^{\prime}(r) \leq \frac{C \varepsilon}{\log \frac{1}{\varepsilon}}
$$

Therefore, from the definition of the $*$-norm, we get

$$
\begin{equation*}
\left\|L\left(\tilde{z}_{0 j}\right)\right\|_{*} \leq \frac{C}{\log \frac{1}{\varepsilon}} \tag{3.15}
\end{equation*}
$$

where the number C depends in principle on the chosen large constant R.
Next we show that the other inequality of (3.14) holds. Testing Eq. (3.12) against $\tilde{z}_{0 l}$ we have

$$
\left\langle\tilde{\phi}, L\left(\tilde{z}_{0 l}\right)\right\rangle=\left\langle h, \tilde{z}_{0 l}\right\rangle+d_{l}\left\langle L\left(\tilde{z}_{0 l}\right), \tilde{z}_{0 l}\right\rangle,
$$

where $\langle f, g\rangle=\int_{\Omega_{\varepsilon}} f g$. This relation and (3.13) give us that

$$
\begin{equation*}
d_{l}\left\langle L\left(\tilde{z}_{0 l}\right), \tilde{z}_{0 l}\right\rangle \leq C\|h\|_{*}\left[1+\left\|L\left(\tilde{z}_{0 l}\right)\right\|_{*}\right]+C \sum_{j=1}^{k}\left|d_{j}\right|\left\|L\left(\tilde{z}_{0 l}\right)\right\|_{*}^{2} . \tag{3.16}
\end{equation*}
$$

We want to measure the size of $\left\langle L\left(\tilde{z}_{0 l}\right), \tilde{z}_{0 l}\right\rangle$. We decompose

$$
\begin{equation*}
\left\langle L\left(\tilde{z}_{0 l}\right), \tilde{z}_{0 l}\right\rangle=\int_{\Omega_{2}} L\left(\tilde{z}_{0 l}\right) \tilde{z}_{0 l}+\int_{\Omega_{4}} L\left(\tilde{z}_{0 l}\right) \tilde{z}_{0 l}+O(\varepsilon) \tag{3.17}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left|\int_{\Omega_{4}} L\left(\tilde{z}_{0 l}\right) \tilde{z}_{0 l}\right| \leq C \int\left|\nabla \chi_{2 l}\right|\left|\nabla \hat{z}_{0 l}\right|\left|\hat{z}_{0 l}\right|+C \int\left|\Delta \chi_{2 l}\right|\left|\hat{z}_{0 l}\right|^{2}+O\left(\varepsilon^{2}\right) \leq \frac{C}{\left(\log \frac{1}{\varepsilon}\right)^{2}} \tag{3.18}
\end{equation*}
$$

Moreover, for $y \in \Omega_{2}$, we have

$$
\begin{aligned}
\int_{\Omega_{2}} L\left(\tilde{z}_{0 l}\right) \tilde{z}_{0 l} & =2 \int \nabla \chi_{1 l} \nabla\left(Z_{0 l}-\hat{z}_{0 l}\right) \hat{z}_{0}+\int \Delta \chi_{1 l}\left(Z_{0 l}-\hat{z}_{0 l}\right) \hat{z}_{0 l}+O(\varepsilon) \\
& =\int \nabla \chi_{1 l} \nabla\left(Z_{0 l}-\hat{z}_{0 l}\right) \hat{z}_{0 l}-\int \nabla \chi_{1 l}\left(Z_{0 l}-\hat{z}_{0 l}\right) \nabla \hat{z}_{0 l}+O(\varepsilon),
\end{aligned}
$$

from the integration by parts. Now, we observe that in the considered region $\Omega_{2},\left|\hat{z}_{0 l}-Z_{0 l}\right| \leq$ $\frac{C}{\log \frac{1}{\varepsilon}}$, while $\left|\hat{z}_{0 l}^{\prime}\right| \sim \frac{1}{R^{3}}+\frac{1}{R} \frac{1}{\log \frac{1}{\varepsilon}}$. Then, for R large but independent of ε we have

$$
\left|\int \nabla \chi_{1 l}\left(Z_{0 l}-\hat{z}_{0 l}\right) \nabla \hat{z}_{0 l}\right| \leq \frac{C_{1}}{R^{3}} \frac{1}{\log \frac{1}{\varepsilon}},
$$

with C_{1} being a constant to be chosen independent of R. Moreover

$$
\begin{aligned}
\int \nabla \chi_{1 l} \nabla\left(Z_{0 l}-\hat{z}_{0 l}\right) \hat{z}_{0 l} & =2 \pi \int_{R}^{R+1} \chi_{1 l}^{\prime}\left(z_{0 l}-\hat{z}_{0 l}\right)^{\prime} \hat{z}_{0 l} r d r \\
& =\frac{2 \pi}{\int_{R}^{\frac{\delta}{3 \varepsilon}} \frac{d s}{s z_{0 l}^{2}}} \int_{R}^{R+1} \chi_{1 l}^{\prime}\left[1-\frac{4 \mu_{l}^{2} r^{2} z_{0 l} \int_{R}^{r} \frac{d s}{s z_{0 l}^{2}}}{\left(\mu_{l}^{2}+r^{2}\right)^{2}}\right] d r \\
& =-\frac{C_{2}}{\log \frac{1}{\varepsilon}}\left[1+O\left(\frac{1}{\log \frac{1}{\varepsilon}}\right)\right]
\end{aligned}
$$

where C_{2} is a positive constant independent of ε. Thus, choosing R large enough, we get

$$
\int_{\Omega_{2}} L\left(\tilde{z}_{0 l}\right) \tilde{z}_{0 l} \sim-\frac{C_{2}}{\log \frac{1}{\varepsilon}} .
$$

Combining this and (3.17), (3.18) we get

$$
\begin{equation*}
\left\langle L\left(\tilde{z}_{0 l}\right), \tilde{z}_{0 l}\right\rangle \leq-\frac{C_{2}}{\log \frac{1}{\varepsilon}}\left[1+O\left(\frac{1}{\log \frac{1}{\varepsilon}}\right)\right] \tag{3.19}
\end{equation*}
$$

From (3.15), (3.16) and (3.18) we have

$$
\left|d_{j}\right| \leq C\left(\log \frac{1}{\varepsilon}\right)^{2}\|h\|_{*}
$$

We thus have from estimate (3.13) that

$$
\|\phi\|_{\infty} \leq C\left(\log \frac{1}{\varepsilon}\right)\|h\|_{*} .
$$

Proof of Proposition 3.1. We first establish the validity of the a priori estimate (3.4). The previous lemma yields

$$
\begin{equation*}
\|\phi\|_{\infty} \leq C\left(\log \frac{1}{\varepsilon}\right)\left[\|h\|_{*}+\sum_{i=1}^{2} \sum_{j=1}^{k}\left|c_{i j}\right|\right] . \tag{3.20}
\end{equation*}
$$

Let us consider the cut-off function $\chi_{2 j}$ defined in the previous lemma. Multiplying the first equation of (3.3) by $Z_{i j} \chi_{2 j}$, we find

$$
\begin{equation*}
\left\langle L(\phi), Z_{i j} \chi_{2 j}\right\rangle=\left\langle h, Z_{i j} \chi_{2 j}\right\rangle+c_{i j} \int_{\Omega_{\varepsilon}} \eta_{j}\left|Z_{i j}\right|^{2} \tag{3.21}
\end{equation*}
$$

We have

$$
L\left(Z_{i j} \chi_{2 j}\right)=\Delta \chi_{2 j} Z_{i j}+2 \nabla Z_{i j} \nabla \chi_{2 j}+\varepsilon O\left((1+r)^{-3}\right)
$$

with $r=\left|y-\xi_{j}^{\prime}\right|$. Since $\Delta \chi_{2 j}=O\left(\varepsilon^{2}\right), \nabla \chi_{2 j}=O(\varepsilon)$, and $Z_{i j}=O\left(r^{-1}\right), \nabla Z_{i j}=O\left(r^{-2}\right)$, we get

$$
L\left(Z_{i j} \chi_{2 j}\right)=O\left(\varepsilon^{3}\right) \varepsilon O\left((1+r)^{-3}\right)
$$

Then we have

$$
\left|\left\langle L(\phi), Z_{i j} \chi_{2 j}\right\rangle\right|=\left|\left\langle\phi, L\left(Z_{i j} \chi_{2 j}\right)\right\rangle\right| \leq C \varepsilon\|\phi\|_{\infty} .
$$

Combining this with (3.20) and (3.21) we find

$$
\begin{equation*}
\left|c_{i j}\right| \leq C\left[\|h\|_{*}+\varepsilon \log \frac{1}{\varepsilon} \sum_{l, m}\left|c_{l m}\right|\right] . \tag{3.22}
\end{equation*}
$$

Then,

$$
\left|c_{i j}\right| \leq C\|h\|_{*}
$$

Combining this with (3.20) we obtain the estimate (3.4) holds.
Next prove the solvability of problem (3.3). We consider the Hilbert space

$$
\mathbb{H}=\left\{\phi \in H_{0}^{1}\left(\Omega_{\varepsilon}\right): \int_{\Omega_{\varepsilon}} \phi Z_{i j} \eta_{j}=0 \text { for } i=1,2, j=1,2, \cdots, k\right\},
$$

endowed with the usual inner product $\langle\phi, \psi\rangle=\int_{\Omega_{\varepsilon}} \nabla \phi \nabla \psi$. Problem (3.3), expressed in a weak form, is equivalent to find $\phi \in \mathbb{H}$ such that

$$
\langle\phi, \psi\rangle=\int_{\Omega_{\varepsilon}}(W \phi-h) \psi d x, \quad \text { for all } \psi \in \mathbb{H},
$$

where $W=g^{\prime}\left(V_{\lambda}\right)$. With the aid of Riesz's representation theorem, this equation gets rewritten in \mathbb{H} in the operator form

$$
\begin{equation*}
(I d-K) \phi=\tilde{h}, \tag{3.23}
\end{equation*}
$$

for certain $\tilde{h} \in \mathbb{H}$, where K is a compact operator in \mathbb{H}. The homogeneous equation $\phi=K \phi$ in \mathbb{H}, which is equivalent to (3.3) with $h \equiv 0$, has only the trivial solution in view of the a priori estimate (3.4). Now, Fredholm's alternative guarantees unique solvability of (3.23) for any $\tilde{h} \in \mathbb{H}$. This finishes the proof.

The result of Proposition 3.1 implies that the unique solution $\phi=T_{\lambda}(h)$ of (3.3) defines a continuous linear map form the Banach space \mathcal{C}_{*} of all functions h in L^{∞} for which $\|h\|_{*}<\infty$ into L^{∞}, with norm bounded uniformly in λ.

Lemma 3.5. The operator T_{λ} is differentiable with respect to the variables ξ_{1}, \ldots, ξ_{k} in Ω satisfying (2.1); one has the estimate

$$
\begin{equation*}
\left\|\partial_{\left(\xi_{m}^{\prime}\right) l} T_{\lambda}(h)\right\|_{\infty} \leq C\left(\log \frac{1}{\varepsilon}\right)^{2}\|h\|_{*} \quad \text { for } l=1,2, m=1,2, \cdots, k, \tag{3.24}
\end{equation*}
$$

for a given positive C, independent of ε, and for all ε small enough.
Proof. Differentiating Eq. (3.3), formally $Z:=\partial_{\left(\xi_{m}^{\prime}\right) l} \phi$ should satisfy

$$
L(Z)=-\partial_{\left(\xi_{m}^{\prime}\right) l}\left(g^{\prime}\left(V_{\lambda}\right)\right) \phi+\sum_{i=1}^{2} c_{i m} \partial_{\left(\xi_{m}^{\prime}\right)_{l}}\left(\eta_{m} Z_{i m}\right)+\sum_{i=1}^{2} \sum_{j=1}^{k} d_{i j} Z_{i j} \eta_{j}
$$

with $d_{i j}=\partial_{\left(\xi_{m}^{\prime}\right) l} c_{i j}$, and the orthogonality conditions now become

$$
\int_{\Omega_{\varepsilon}} Z_{i m} \eta_{m} Z=-\int_{\Omega_{\varepsilon}} \partial_{\left(\xi_{m}^{\prime}\right)_{l}}\left(Z_{l m} \eta_{m}\right) \phi
$$

We consider the constants $b_{i m}$ defined as

$$
b_{i m} \int_{\Omega_{\varepsilon}} \eta_{m} Z_{i m}^{2}=\int_{\Omega_{\varepsilon}} \partial_{\left(\xi_{m}^{\prime}\right)_{l}}\left(Z_{i m} \eta_{m}\right) \phi, \quad \text { for } l=1,2 .
$$

Define

$$
\tilde{Z}=Z+\sum_{i=1}^{2} b_{i m} \eta_{m} Z_{i m}
$$

and

$$
f=-\partial_{\left(\xi_{m}^{\prime}\right)_{l}}\left(g^{\prime}\left(V_{\lambda}\right)\right) \phi+\sum_{i=1}^{2} c_{i m} \partial_{\left(\xi_{m}^{\prime}\right)_{l}}\left(Z_{i m} \eta_{m}\right)+\sum_{i=1}^{2} b_{i m} L\left(\eta_{m} Z_{i m}\right)
$$

We then have

$$
\begin{cases}L(\tilde{Z})=f+\sum_{i=1}^{2} \sum_{j=1}^{k} b_{i m} \eta_{m} Z_{i m}, & \text { in } \Omega_{\varepsilon} ; \\ \tilde{Z}=0 & \text { on } \partial \Omega_{\varepsilon} ; \\ \int_{\Omega_{\varepsilon}} \eta_{m} Z_{i m} \tilde{Z}=0 & \text { for } i=0,1,2 .\end{cases}
$$

Namely, $\tilde{Z}=T_{\lambda}(f)$. Using the result of Proposition 3.1 we find that

$$
\|f\|_{*} \leq C\left(\log \frac{1}{\varepsilon}\right)\|h\|_{*}
$$

hence,

$$
\left\|\partial_{\left(\xi_{m}^{\prime}\right) l} T_{\lambda}(h)\right\|_{\infty} \leq C\left(\log \frac{1}{\varepsilon}\right)^{2}\|h\|_{*} \quad \text { for } l=1,2, m=1,2, \cdots, k
$$

4. The nonlinear problem

In what follows we keep the notation introduced in the previous sections. We recall that our goal is to solve problem (3.3). The strategy is to solve first the following problem

$$
\begin{cases}L(\phi)=-\left[E_{\lambda}+N(\phi)\right]+\sum_{i=1}^{2} \sum_{j=1}^{k} c_{i j} \eta_{j} Z_{i j}, & \text { in } \Omega_{\varepsilon} ; \tag{4.1}\\ \phi=0 & \text { on } \partial \Omega_{\varepsilon} ; \\ \int_{\Omega_{\varepsilon}} \eta_{j} Z_{i j} \phi=0 & \text { for all } i=1,2, j=1,2, \cdots, k\end{cases}
$$

We have the following result.
Lemma 4.1. Under the assumptions of Proposition 3.1, there exist positive numbers C and λ_{0}, such that problem (4.1) has a unique solution ϕ which satisfies

$$
\|\phi\|_{\infty} \leq \frac{C}{|\log \varepsilon|^{2}},
$$

for all $\lambda<\lambda_{0}$. Moreover, if we consider the map $\xi^{\prime} \mapsto \phi$ into the space $C\left(\bar{\Omega}_{\varepsilon}\right)$, the derivative $D_{\xi^{\prime}} \phi$ exists and defines a continuous function of ξ^{\prime}. Besides, there is a constant $C>0$, such that

$$
\begin{equation*}
\left\|D_{\xi^{\prime}} \phi\right\|_{\infty} \leq \frac{C}{|\log \varepsilon|} . \tag{4.2}
\end{equation*}
$$

Proof. In terms of the operator T_{λ} defined in Proposition 3.1, problem (4.1) becomes

$$
\begin{equation*}
\phi=T_{\lambda}\left(-\left(N(\phi)+E_{\lambda}\right)\right):=A(\phi) . \tag{4.3}
\end{equation*}
$$

For a given number $M>0$, let us consider the region

$$
\mathcal{F}_{M}:=\left\{\phi \in C(\bar{\Omega}):\|\phi\|_{\infty} \leq \frac{M}{|\log \varepsilon|^{2}}\right\} .
$$

From Proposition 3.1, we get

$$
\|A(\phi)\|_{\infty} \leq C\left(\log \frac{1}{\varepsilon}\right)\left[\|N(\phi)\|_{*}+\left\|E_{\lambda}\right\|_{*}\right] .
$$

By the definition of $N(\phi)$ in (2.27), we can write

$$
|N(\phi)| \leq C\left|g^{\prime \prime}\left(V_{\lambda}+s \phi\right)\right||\phi|^{2} \leq C\left|g^{\prime \prime}\left(V_{\lambda}+s \phi\right)\right|\|\phi\|_{\infty}^{2}
$$

for some $0<s<1$. Thus, using the fact that $\|\phi\|_{\infty} \rightarrow 0$ as $\lambda \rightarrow 0$, and (2.36), we obtain

$$
\|N(\phi)\|_{*} \leq C\|\phi\|_{\infty}^{2}
$$

Thus

$$
\|A(\phi)\|_{\infty} \leq C|\log \varepsilon|\left(C\|\phi\|_{\infty}^{2}+\frac{1}{|\log \varepsilon|^{3}}\right) .
$$

We then get that $A\left(\mathcal{F}_{M}\right) \subset \mathcal{F}_{M}$ for a sufficiently large but fixed M and all small λ. Moreover, for any $\phi_{1}, \phi_{2} \in \mathcal{F}_{M}$, one has

$$
\left\|N\left(\phi_{1}\right)-N\left(\phi_{2}\right)\right\|_{*} \leq C\left(\max _{i=1,2}\left\|\phi_{i}\right\|_{\infty}\right)\left\|\phi_{1}-\phi_{2}\right\|_{\infty}
$$

In fact,

$$
\begin{aligned}
N\left(\phi_{1}\right)-N\left(\phi_{2}\right) & =g\left(V_{\lambda}+\phi_{1}\right)-g\left(V_{\lambda}+\phi_{2}\right)-g^{\prime}\left(V_{\lambda}\right)\left(\phi_{1}-\phi_{2}\right) \\
& =\int_{0}^{1} \frac{d}{d t} g\left(V_{\lambda}+\phi_{2}+t\left(\phi_{1}-\phi_{2}\right)\right) d t-g^{\prime}\left(V_{\lambda}\right)\left(\phi_{1}-\phi_{2}\right) \\
& =\int_{0}^{1} g^{\prime}\left(V_{\lambda}+\phi_{2}+t\left(\phi_{1}-\phi_{2}\right)-g^{\prime}\left(V_{\lambda}\right)\right) d t\left(\phi_{1}-\phi_{2}\right) .
\end{aligned}
$$

Thus, for a certain $t^{*} \in(0,1)$, and $s \in(0,1)$

$$
\begin{aligned}
\left|N\left(\phi_{1}\right)-N\left(\phi_{2}\right)\right| & \leq C\left|g^{\prime}\left(V_{\lambda}+\phi_{2}+t^{*}\left(\phi_{1}-\phi_{2}\right)-g^{\prime}\left(V_{\lambda}\right)\right)\right|\left\|\phi_{1}-\phi_{2}\right\|_{\infty} \\
& \leq C\left|g^{\prime \prime}\left(V_{\lambda}+s \phi_{2}+t^{*}\left(\phi_{1}-\phi_{2}\right)\right)\right|\left(\left\|\phi_{1}\right\|_{\infty}+\left\|\phi_{2}\right\|_{\infty}\right)\left\|\phi_{1}-\phi_{2}\right\|_{\infty} .
\end{aligned}
$$

Thanks to (2.36) and the fact that $\left\|\phi_{1}\right\|_{\infty},\left\|\phi_{2}\right\|_{\infty} \rightarrow 0$ as $\lambda \rightarrow 0$, we conclude that

$$
\begin{aligned}
\left\|N\left(\phi_{1}\right)-N\left(\phi_{2}\right)\right\|_{*} & \leq C\left\|g^{\prime \prime}\left(V_{\lambda}\right)\right\|_{*}\left(\left\|\phi_{1}\right\|_{\infty}+\left\|\phi_{2}\right\|_{\infty}\right)\left\|\phi_{1}-\phi_{2}\right\|_{\infty} \\
& \leq C\left(\left\|\phi_{1}\right\|_{\infty}+\left\|\phi_{2}\right\|_{\infty}\right)\left\|\phi_{1}-\phi_{2}\right\|_{\infty} .
\end{aligned}
$$

Then we have

$$
\left\|A\left(\phi_{1}\right)-A\left(\phi_{2}\right)\right\|_{\infty} \leq C|\log \varepsilon|\left\|N\left(\phi_{1}\right)-N\left(\phi_{2}\right)\right\|_{*} \leq C|\log \varepsilon|\left(\max _{i=1,2}\left\|\phi_{i}\right\|_{\infty}\right)\left\|\phi_{1}-\phi_{2}\right\|_{\infty}
$$

Thus the operator A has a small Lipschitz constant in \mathcal{F}_{M} for all small λ, and therefore a unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map $\xi^{\prime}=\left(\xi_{1}^{\prime}, \cdots, \xi_{k}^{\prime}\right) \mapsto \phi$. Assume for instance that the partial derivative $\partial_{\left(\xi_{j}^{\prime}\right)_{i}} \phi$ exists for $i=1$, 2 . Since $\phi=T_{\lambda}\left(-\left(N(\phi)+E_{\lambda}\right)\right)$, formally it follows that

$$
\partial_{\left(\xi_{j}^{\prime}\right)_{i}} \phi=\left(\partial_{\left(\xi_{j}^{\prime}\right)_{i}} T_{\lambda}\right)\left(-\left(N(\phi)+E_{\lambda}\right)\right)+T_{\lambda}\left(-\left(\partial_{\left(\xi_{j}^{\prime}\right)_{i}} N(\phi)+\partial_{\left(\xi_{j}^{\prime}\right)_{i}} E_{\lambda}\right)\right) .
$$

From Lemma 3.5, we have

$$
\left\|\partial_{\left(\xi_{j}^{\prime}\right)_{i}} T_{\lambda}\left(-\left(N(\phi)+E_{\lambda}\right)\right)\right\|_{\infty} \leq C|\log \varepsilon|^{2}\left\|N(\phi)+E_{\lambda}\right\|_{*} \leq C \frac{1}{|\log \varepsilon|}
$$

On the other hand,

$$
\begin{aligned}
\partial_{\left(\xi_{j}^{\prime}\right)_{i}} N(\phi)= & {\left[g^{\prime}\left(V_{\lambda}+\phi\right)-g^{\prime}\left(V_{\lambda}\right)-g^{\prime \prime}\left(V_{\lambda}\right) \phi\right] \partial_{\left(\xi_{j}^{\prime}\right)_{i}} V_{\lambda}+\partial_{\left(\xi_{j}^{\prime}\right)_{i}}\left[g^{\prime}\left(V_{\lambda}\right)-e^{w_{j}}\right] \phi } \\
& +\left[g^{\prime}\left(V_{\lambda}+\phi\right)-g^{\prime}\left(V_{\lambda}\right)\right] \partial_{\left(\xi_{j}^{\prime}\right)_{i}} \phi+\left[g^{\prime}\left(V_{\lambda}\right)-e^{w_{j}}\right]_{\left(\xi_{j}^{\prime}\right)_{i}} \phi .
\end{aligned}
$$

Then,

$$
\left\|\partial_{\left(\xi_{j}^{\prime}\right)_{i}} N(\phi)\right\|_{*} \leq C\left\{\|\phi\|_{\infty}^{2}+\frac{1}{|\log \varepsilon|}\|\phi\|_{\infty}+\left\|\partial_{\left(\xi_{j}^{\prime}\right)_{i}} \phi\right\|_{\infty}\|\phi\|_{\infty}+\frac{1}{|\log \varepsilon|}\left\|\partial_{\left(\xi_{j}^{\prime}\right)_{i}} \phi\right\|_{\infty}\right\} .
$$

Since $\left\|\partial_{\left(\xi_{j}\right)_{i}} E_{\lambda}\right\|_{*} \leq \frac{C}{|\log \varepsilon|^{3}}$, and by Proposition 3.1 we then have

$$
\left\|\partial_{\left(\xi_{j}^{\prime}\right)_{i}} \phi\right\|_{\infty} \leq \frac{C}{|\log \varepsilon|},
$$

for all $i=1,2, j=1, \cdots, k$. Then, the regularity of the map $\xi^{\prime} \mapsto \phi$ can be proved by standard arguments involving the implicit function theorem and the fixed point representation (4.3). This concludes the proof of the lemma.

5. Variational reduction

We have solved the nonlinear problem (4.1). In order to find a solution to the original problem we need to find ξ^{\prime} such that

$$
\begin{equation*}
c_{i j}\left(\xi^{\prime}\right)=0 \quad \text { for all } i=1,2, j=1, \cdots, k \tag{5.1}
\end{equation*}
$$

This problem is variational: indeed it is equivalent to finding critical points of a function of $\xi=\varepsilon \xi^{\prime}$. Associated to (1.1), let us consider the energy functional J_{λ} given by

$$
\begin{equation*}
J_{\lambda}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{\lambda}{p} \int_{\Omega} e^{u^{p}} d x, \quad u \in H_{0}^{1}(\Omega) \tag{5.2}
\end{equation*}
$$

and the finite-dimensional restriction

$$
\begin{equation*}
F_{\lambda}(\xi)=J_{\lambda}\left(\left(U_{\lambda}+\tilde{\phi}\right)(x, \xi)\right), \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(U_{\lambda}+\tilde{\phi}\right)(x, \xi)=\gamma+\frac{1}{p \gamma^{p-1}}\left(\left(V_{\lambda}+\phi\right)\left(\frac{x}{\varepsilon}, \frac{\xi}{\varepsilon}\right)\right) \tag{5.4}
\end{equation*}
$$

with V_{λ} defined in (2.17), ϕ is the unique solution to problem (4.1) given by Lemma 4.1. Critical points of F_{λ} correspond to solutions of (5.1) for a small λ, as the following result states.

Lemma 5.1. Under the assumptions of Proposition 3.1, the functional $F_{\lambda}(\xi)$ is of class C^{1}. Moreover, for all $\lambda>0$ sufficiently small, if $D_{\xi} F_{\lambda}(\xi)=0$, then ξ satisfies (5.1).

Proof. A direct consequence of the results obtained in Lemma 4.1 and the definition of function U_{λ} is the fact that the map $\xi \mapsto F_{\lambda}(\xi)$ is of class C^{1}. Define

$$
\begin{equation*}
I_{\lambda}(v)=\frac{1}{2} \int_{\Omega_{\varepsilon}}|\nabla v|^{2} d y-\int_{\Omega_{\varepsilon}} e^{\gamma^{p}\left[\left(1+\frac{v}{p \gamma^{p}}\right)^{p}-1\right]} d y . \tag{5.5}
\end{equation*}
$$

Let us differentiate the function $F_{\lambda}(\xi)$ with respect to ξ. Since

$$
\begin{equation*}
J_{\lambda}\left(\left(U_{\lambda}+\tilde{\phi}\right)(x, \xi)\right)=\frac{1}{p^{2} \gamma^{2(p-1)}} I_{\lambda}\left(\left(V_{\lambda}+\phi\right)\left(\frac{x}{\varepsilon}, \frac{\xi}{\varepsilon}\right)\right) \tag{5.6}
\end{equation*}
$$

we can differentiate directly $I_{\lambda}\left(V_{\lambda}(\xi)+\phi(\xi)\right)$ under the integral sign. Let $m \in\{1, \ldots, k\}$ and $l \in 1,2$. We have

$$
\begin{aligned}
\partial_{\xi_{m, l}} F_{\lambda}(\xi) & =\frac{1}{p^{2} \gamma^{2(p-1)}} \varepsilon^{-1} D I_{\lambda}\left(V_{\lambda}(\xi)+\phi(\xi)\right)\left[\partial_{\left(\xi_{m}^{\prime}\right)_{l}} V_{\lambda}(\xi)+\partial_{\left(\xi_{m}^{\prime}\right) l} \phi(\xi)\right] \\
& =\frac{1}{p^{2} \gamma^{2(p-1)}} \varepsilon^{-1} \sum_{i=1}^{2} \sum_{j=1}^{k} \int_{\Omega_{\varepsilon}} c_{i j} \eta_{j} Z_{i j}\left[\partial_{\left(\xi_{m}^{\prime}\right)_{l}} V_{\lambda}(\xi)+\partial_{\left(\xi_{m}^{\prime}\right) l} \phi(\xi)\right] \\
& =\frac{1}{p^{2} \gamma^{2(p-1)}} \varepsilon^{-1}\left[\sum_{i=1}^{2} \sum_{j=1}^{k} \int_{\Omega_{\varepsilon}} c_{i j} \eta_{j} Z_{i j} \partial_{\left(\xi_{m}^{\prime}\right)_{l}} V_{\lambda}(\xi)+\sum_{i=1}^{2} \sum_{j=1}^{k} \int_{\Omega_{\varepsilon}} c_{i j} \eta_{j} Z_{i j} \partial_{\left(\xi_{m}^{\prime}\right) l} \phi(\xi)\right]
\end{aligned}
$$

By the expansion of V_{λ}, we have

$$
\begin{aligned}
\partial_{\left(\xi_{m}^{\prime}\right)_{l}} V_{\lambda}= & \partial_{\left(\xi_{m}^{\prime}\right)_{l}}\left(\sum _ { m = 1 } ^ { k } \left(P U_{\mu_{m}, \xi_{m}}(\varepsilon y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} P w_{\mu_{m}, \xi_{m}}^{0}(\varepsilon y)\right.\right. \\
& \left.\left.+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} P w_{\mu_{m}, \xi_{m}}^{1}(\varepsilon y)\right)-p \gamma^{p}\right) \\
= & \partial_{\left(\xi_{m}^{\prime}\right)_{l}}\left(w_{m}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{m}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{m}^{1}(y)+\theta(y)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\partial_{\left(\xi_{m}^{\prime}\right) l} w_{m}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} \partial_{\left(\xi_{m}^{\prime}\right) l} w_{m}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} \partial_{\left(\xi_{m}^{\prime}\right)_{l}} w_{m}^{1}(y)+\partial_{\left(\xi_{m}^{\prime}\right)_{l}} \theta(y) \\
& =-Z_{l m}+\frac{p-1}{p} \frac{1}{\gamma^{p}} \partial_{\left(\xi_{m}^{\prime}\right)_{l}} w_{m}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} \partial_{\left(\xi_{m}^{\prime}\right) l} w_{m}^{1}(y)+\partial_{\left(\xi_{m}^{\prime}\right) l} \theta(y)
\end{aligned}
$$

Hence, for $j \neq m$, we have

$$
\int_{\Omega_{\varepsilon}} \eta_{j} Z_{i j} \partial_{\left(\xi_{m}^{\prime}\right) l} V_{\lambda}(\xi)=\left(-\int_{B\left(\xi_{j}^{\prime}, R\right)} \eta_{j} Z_{i j} Z_{l m}\right)\left(1+O\left(\frac{1}{\gamma^{p}}\right)\right)=O(\varepsilon)
$$

while for $j=m$ and $i \neq l$, by symmetry we get

$$
\begin{aligned}
\int_{\Omega_{\varepsilon}} \eta_{j} Z_{i j} \partial_{\left(\xi_{m}^{\prime}\right) l} V_{\lambda}(\xi)= & \left(-\int_{B\left(\xi_{j}^{\prime}, R\right)} \eta_{j} Z_{i j}\left(Z_{l m}+\frac{p-1}{p} \frac{1}{\gamma^{p}} \partial_{\left(\xi_{m}^{\prime}\right)_{l}} w_{m}^{0}(y)\right)\right) \\
& \times\left(1+O\left(\frac{1}{\gamma^{2 p}}\right)\right)=O\left(\frac{1}{\gamma^{p}}\right) .
\end{aligned}
$$

If now $j=m$ and $i=l$, we get

$$
\int_{\Omega_{\varepsilon}} \eta_{j} Z_{i j} \partial_{\left(\xi_{m}^{\prime}\right) l} V_{\lambda}(\xi)=\left(-\int_{B\left(\xi_{m}^{\prime}, R\right)} \eta_{m} Z_{l m} Z_{l m}\right)\left(1+O\left(\frac{1}{\gamma^{p}}\right)\right) .
$$

We thus conclude that

$$
\sum_{i=1}^{2} \sum_{j=1}^{k} \int_{\Omega_{\varepsilon}} c_{i j} \eta_{j} Z_{i j} \partial_{\left(\xi_{m}^{\prime}\right) l} V_{\lambda}(\xi)=-c_{l m} \int_{B\left(\xi_{m}^{\prime}, R\right)} \eta_{m} Z_{l m} Z_{l m}+O\left(\frac{1}{\gamma^{p}}\right)
$$

On the other hand, given (4.2), we have that

$$
\left|\sum_{i=1}^{2} \sum_{j=1}^{k} \int_{\Omega_{\varepsilon}} c_{i j} \eta_{j} Z_{i j} \partial_{\left(\xi_{m}^{\prime}\right) l} \phi(\xi)\right| \leq C \sum_{i, j}\left|c_{i j}\right|\left\|\partial_{\left(\xi_{m}^{\prime}\right) l} \phi\right\|_{\infty} \leq o(1) \sum_{i, j}\left|c_{i j}\right|
$$

Thus, if $D_{\xi} F_{\lambda}(\xi)=0$, for $i, l=1,2, j=1,2, \cdots, k$, we then have

$$
\begin{equation*}
c_{l m}\left(\int_{\Omega_{\varepsilon}} \eta_{m} Z_{l m} Z_{l m}\right)(1+o(1))=0, \quad m=1, \ldots, k, l=1,2 . \tag{5.7}
\end{equation*}
$$

This concludes the proof of the lemma.
Next we give an asymptotic estimate of $F_{\lambda}(\xi)$ defined in (5.3). We have the following result.

Lemma 5.2. Let $\delta>0$ be fixed. There exist positive numbers λ_{0} and C, such that μ_{j} are given by (2.17), the following expansion holds

$$
\begin{equation*}
\lambda^{-1} \varepsilon^{\frac{2(2-p)}{p}} F_{\lambda}(\xi)=\frac{8 k \pi}{(2-p) p}[-2+p \log 8]-\frac{16 k \pi}{p} \log \varepsilon-\frac{4 \pi}{2-p} \varphi_{k}(\xi)+|\log \varepsilon|^{-1} \theta_{\lambda}(\xi) \tag{5.8}
\end{equation*}
$$

uniformly for any points $\xi_{j}, j=1, \cdots, k$ in Ω, satisfying (2.1), where

$$
\begin{equation*}
\varphi_{k}(\xi)=\varphi_{k}\left(\xi_{1}, \cdots, \xi_{k}\right)=\sum_{j=1}^{k} H\left(\xi_{j}, \xi_{j}\right)+\sum_{i \neq j} G\left(\xi_{i}, \xi_{j}\right) \tag{5.9}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\lambda^{-1} \varepsilon^{\frac{2(2-p)}{p}} \nabla_{\left(\xi_{m}\right)_{l}} F_{\lambda}(\xi)=-\frac{4 \pi}{(2-p) p} \nabla_{\left(\xi_{m}\right)_{l}} \varphi_{k}(\xi)+|\log \varepsilon|^{-1} \theta_{\lambda}(\xi) \tag{5.10}
\end{equation*}
$$

In (5.8) and (5.10), the function θ_{λ} denotes a smooth function of the points ξ, which is uniformly bounded, as $\lambda \rightarrow 0$, for points ξ satisfying (2.1).

Proof. We have

$$
\begin{align*}
F_{\lambda}(\xi) & =J_{\lambda}\left(U_{\lambda}(\xi)+\tilde{\phi}(\xi)\right) \\
& =\frac{1}{2} \int_{\Omega}\left|\nabla\left(U_{\lambda}(\xi)+\tilde{\phi}(\xi)\right)\right|^{2} d x-\frac{\lambda}{p} \int_{\Omega} e^{\left(U_{\lambda}(\xi)+\tilde{\phi}(\xi)\right)^{p}} d x \tag{5.11}
\end{align*}
$$

Using the change of variables (5.4), namely $\left(U_{\lambda}+\tilde{\phi}\right)(x, \xi)=\gamma+\frac{1}{p \gamma^{p-1}}\left(\left(V_{\lambda}+\phi\right)\left(\frac{x}{\varepsilon}, \frac{\xi}{\varepsilon}\right)\right)$, together with (5.5) and (5.6), we have that

$$
J_{\lambda}\left(U_{\lambda}(\xi)+\tilde{\phi}(\xi)\right)-J_{\lambda}\left(U_{\lambda}(\xi)\right)=\frac{1}{p^{2} \gamma^{2(p-1)}}\left[I_{\lambda}\left(V_{\lambda}+\phi\right)-I_{\lambda}\left(V_{\lambda}\right)\right]
$$

Since by construction $I_{\lambda}^{\prime}\left(V_{\lambda}+\phi\right)[\phi]=0$, we have

$$
\begin{aligned}
& J_{\lambda}\left(U_{\lambda}(\xi)+\tilde{\phi}(\xi)\right)-J_{\lambda}\left(U_{\lambda}(\xi)\right) \\
& \quad=\frac{1}{p^{2} \gamma^{2(p-1)}} \int_{0}^{1} D^{2} I_{\lambda}\left(V_{\lambda}+t \phi\right) \phi^{2}(1-t) d t \\
& \quad=\frac{1}{p^{2} \gamma^{2(p-1)}} \int_{0}^{1}\left[\int_{\Omega_{\varepsilon}}\left(E_{\lambda}+N(\phi)\right) \phi+\int_{\Omega_{\varepsilon}}\left[g_{\lambda}^{\prime}\left(V_{\lambda}\right)-g_{\lambda}^{\prime}\left(V_{\lambda}+t \phi\right)\right] \phi^{2}\right](1-t) d t
\end{aligned}
$$

Since $\left\|E_{\lambda}\right\|_{*} \leq \frac{c}{|\log \varepsilon|^{3}},\|\phi\|_{\infty} \leq \frac{c}{|\log \varepsilon|^{2}},\|N(\phi)\|_{*} \leq \frac{c}{|\log \varepsilon|^{4}}$ and (2.36), we get that

$$
\begin{equation*}
\left|J_{\lambda}\left(U_{\lambda}(\xi)+\tilde{\phi}(\xi)\right)-J_{\lambda}\left(U_{\lambda}(\xi)\right)\right| \leq \frac{C}{\gamma^{2(p-1)}|\log \varepsilon|^{3}} \tag{5.12}
\end{equation*}
$$

Next we expand

$$
\begin{equation*}
J_{\lambda}\left(U_{\lambda}(\xi)\right)=\frac{1}{2} \int_{\Omega}\left|\nabla\left(U_{\lambda}(\xi)\right)\right|^{2} d x-\frac{\lambda}{p} \int_{\Omega} e^{\left(U_{\lambda}(\xi)\right)^{p}} d x \tag{5.13}
\end{equation*}
$$

First we expand the term $\int_{\Omega}\left|\nabla U_{\lambda}\right|^{2}$. By (2.23) we have

$$
\begin{align*}
\frac{1}{2} \int_{\Omega}\left|\nabla\left(U_{\lambda}(\xi)\right)\right|^{2}= & \frac{1}{2} \frac{1}{p^{2} \gamma^{2(p-1)}}\left\{\sum_{j=1}^{k} \int_{\Omega}\left|\nabla P U_{\mu_{j}, \xi_{j}}\right|^{2}+\sum_{l \neq j} \int_{\Omega} \nabla P U_{\mu_{l}, \xi_{l}} \nabla P U_{\mu_{j}, \xi_{j}}\right. \\
& +\frac{p-1}{p} \frac{1}{\gamma^{p}} \sum_{j=1}^{k} \int_{\Omega} \nabla P U_{\mu_{j}, \xi_{j}}(x) \nabla P w_{\mu_{j}, \xi_{j}}^{0}(x) \\
& +\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} \sum_{j=1}^{k} \int_{\Omega} \nabla P U_{\mu_{j}, \xi_{j}} \nabla P w_{\mu_{j}, \xi_{j}}^{1} \\
& +\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}}\left[\sum_{j=1}^{k} \int_{\Omega}\left|\nabla P w_{\mu_{j}, \xi_{j}}^{0}\right|^{2}+\sum_{l \neq j} \int_{\Omega} \nabla P w_{\mu_{l}, \xi_{l}}^{0} \nabla P w_{\mu_{j}, \xi_{j}}^{0}\right] \\
& +\left(\frac{p-1}{p}\right)^{3} \frac{1}{\gamma^{3 p}} \sum_{j=1}^{k} \int_{\Omega} \nabla P w_{\mu_{j}, \xi_{j}}^{0} \nabla P w_{\mu_{j}, \xi_{j}}^{1} \\
& \left.+\left(\frac{p-1}{p}\right)^{4} \frac{1}{\gamma^{4 p}}\left[\sum_{j=1}^{k} \int\left|\nabla w_{\mu_{j}, \xi_{j}}^{1}\right|^{2}+\sum_{l \neq j} \int_{\Omega} \nabla P w_{\mu_{l}, \xi_{l}}^{1} \nabla P w_{\mu_{j}, \xi_{j}}^{1}\right]\right\} \tag{5.14}
\end{align*}
$$

Let us estimate the first two terms. We observe that the remaining terms are $O\left(\frac{1}{\gamma^{2(p-1)} \gamma^{p}}\right)$. First, we note that $P U_{\mu_{j}, \xi_{j}}$ satisfies

$$
-\Delta P U_{\mu_{j}, \xi_{j}}=\varepsilon^{2} e^{U_{\mu_{j}, \xi_{j}}}, \quad \text { in } \Omega, \quad P U_{\mu_{j}, \xi_{j}}=0 \quad \text { on } \partial \Omega .
$$

Then we have

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla P U_{\mu_{j}, \xi_{j}}(x)\right|^{2} \\
& \quad=\varepsilon^{2} \int_{\Omega} e^{U_{\mu_{j}, \xi_{j}}} P U_{\mu_{j}, \xi_{j}}(x)
\end{aligned}
$$

$$
\begin{align*}
& =\varepsilon^{2} \int_{\Omega} e^{U_{\mu_{j}, \xi_{j}}}\left(U_{\mu_{j}, \xi_{j}}(x)+H\left(x, \xi_{j}\right)-\log \left(8 \mu_{j}^{2}\right)+O\left(\mu_{j}^{2} \varepsilon^{2}\right)\right) \\
& =\int_{\Omega} \frac{8 \varepsilon^{2} \mu_{j}^{2}}{\left(\varepsilon^{2} \mu_{j}^{2}+\left|x-\xi_{j}\right|^{2}\right)^{2}}\left(\log \frac{1}{\left(\varepsilon^{2} \mu_{j}^{2}+\left|x-\xi_{j}\right|^{2}\right)^{2}}+H\left(x, \xi_{j}\right)+O\left(\mu_{j}^{2} \varepsilon^{2}\right)\right) \\
& =\int_{\Omega} \frac{8 \varepsilon^{-2} \mu_{j}^{-2}}{\left(1+\left|\frac{x-\xi_{j}}{\varepsilon \mu_{j}}\right|^{2}\right)^{2}}\left(\log \frac{\varepsilon^{-4} \mu_{j}^{-4}}{\left(1+\left|\frac{x-\xi_{j}}{\varepsilon \mu_{j}}\right|^{2}\right)^{2}}+H\left(x, \xi_{j}\right)+O\left(\mu_{j}^{2} \varepsilon^{2}\right)\right) \\
& =\int_{\Omega_{\varepsilon \mu_{j}}} \frac{8}{\left(1+|z|^{2}\right)^{2}}\left(\log \frac{1}{\left(1+|z|^{2}\right)^{2}}+H\left(\xi_{j}+\varepsilon \mu_{j} z, \xi_{j}\right)-4 \log \left(\varepsilon \mu_{j}\right)\right)+O\left(\mu_{j}^{2} \varepsilon^{2}\right) \\
& =\int_{\Omega_{\varepsilon \mu_{j}}} \frac{8}{\left(1+|z|^{2}\right)^{2}} \log \frac{1}{\left(1+|z|^{2}\right)^{2}}+\int_{\Omega_{\varepsilon \mu_{j}}} \frac{8}{\left(1+|z|^{2}\right)^{2}}\left(H\left(\xi_{j}+\varepsilon \mu_{j} z, \xi_{j}\right)-H\left(\xi_{j}, \xi_{j}\right)\right) \\
& \tag{5.15}\\
& +\int_{\Omega_{\varepsilon \mu_{j}}} \frac{8}{\left(1+|z|^{2}\right)^{2}} H\left(\xi_{j}, \xi_{j}\right)-4 \log \left(\varepsilon \mu_{j}\right) \int_{\Omega_{\varepsilon \mu_{j}}} \frac{8}{\left(1+|y|^{2}\right)^{2}}+O\left(\mu_{j}^{2} \varepsilon^{2}\right) .
\end{align*}
$$

But

$$
\begin{equation*}
\int_{\Omega_{\varepsilon \mu_{j}}} \frac{8}{\left(1+|y|^{2}\right)^{2}}=8 \pi+O(\varepsilon) \tag{5.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega_{\varepsilon \mu_{j}}} \frac{8}{\left(1+|y|^{2}\right)^{2}} \log \frac{1}{\left(1+|y|^{2}\right)^{2}}=-16 \pi+O(\varepsilon) . \tag{5.17}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\int_{\Omega_{\varepsilon \mu_{j}}} \frac{8}{\left(1+|y|^{2}\right)^{2}}\left(H\left(\xi_{j}+\varepsilon \mu_{j} y, \xi_{j}\right)-H\left(\xi_{j}, \xi_{j}\right)\right)=\int_{\Omega_{\varepsilon \mu_{j}}} \frac{1}{\left(1+|y|^{2}\right)^{2}} O\left(\varepsilon^{\alpha}|y|^{\alpha}\right)=O(\varepsilon) . \tag{5.18}
\end{equation*}
$$

Therefore from (5.15)-(5.18), we have

$$
\begin{align*}
& \int_{\Omega}\left|\nabla P U_{\mu_{j}, \xi_{j}}(x)\right|^{2} d x \\
& \quad=-16 \pi+8 \pi H\left(\xi_{j}, \xi_{j}\right)-32 \pi \log \varepsilon-16 \pi \log \left(8 \mu_{j}^{2}\right)+16 \pi \log (8)+O\left(\frac{1}{\gamma^{p}}\right) \tag{5.19}
\end{align*}
$$

Now, we calculate that

$$
\begin{align*}
\sum_{l \neq j} & \int_{\Omega} \nabla P U_{\mu_{l}, \xi_{l}} \nabla P U_{\mu_{j}, \xi_{j}} d x \\
= & \sum_{l \neq j} \int_{\Omega} \varepsilon^{2} e^{U_{\mu_{l}, \xi_{l}}} P U_{\mu_{j}, \xi_{j}} \\
= & \sum_{l \neq j} \int_{\Omega} \frac{8 \varepsilon^{2} \mu_{l}^{2}}{\left(\varepsilon^{2} \mu_{l}^{2}+\left|x-\xi_{l}\right|^{2}\right)^{2}}\left(\log \frac{8 \mu_{j}^{2}}{\left(\varepsilon^{2} \mu_{j}^{2}+\left|x-\xi_{j}\right|^{2}\right)^{2}}+H\left(x, \xi_{j}\right)\right. \\
& \left.-\log \left(8 \mu_{j}^{2}\right)+O\left(\mu_{j}^{2} \varepsilon^{2}\right)\right) \\
= & \sum_{l \neq j} \int_{\Omega} \frac{8 \varepsilon^{2} \mu_{l}^{2}}{\left(\varepsilon^{2} \mu_{l}^{2}+\left|x-\xi_{l}\right|^{2}\right)^{2}}\left(\log \frac{1}{\left(\varepsilon^{2} \mu_{j}^{2}+\left|x-\xi_{j}\right|^{2}\right)^{2}}+H\left(x, \xi_{j}\right)+O\left(\mu_{j}^{2} \varepsilon^{2}\right)\right) \\
= & \sum_{l \neq j} \int_{\Omega_{\varepsilon \mu_{l}}} \frac{8}{\left(1+|z|^{2}\right)^{2}}\left(\log \frac{1}{\left(\varepsilon^{2} \mu_{j}^{2}+\left|\varepsilon \mu_{l} z+\xi_{l}-\xi_{j}\right|^{2}\right)^{2}}+H\left(\xi_{l}+\varepsilon \mu_{l} z, \xi_{j}\right)\right)+O\left(\mu_{j}^{2} \varepsilon^{2}\right) \\
= & \sum_{l \neq j} \int_{\Omega_{\varepsilon \mu_{l}}} \frac{8}{\left(1+|z|^{2}\right)^{2}} G\left(\xi_{l}, \xi_{j}\right)+O\left(\mu_{j}^{2} \varepsilon^{2}\right) \\
= & 8 \pi \sum_{l \neq j} G\left(\xi_{l}, \xi_{j}\right)+O\left(\mu_{j}^{2} \varepsilon^{2}\right) . \tag{5.20}
\end{align*}
$$

Thus, from (5.14), (5.19), (5.20) and (2.22) we have

$$
\begin{align*}
\frac{1}{2} \int_{\Omega}\left|\nabla U_{\lambda}(x)\right|^{2} d x= & \frac{1}{p^{2} \gamma^{2(p-1)}}\left\{-8 k \pi-16 k \pi \log \varepsilon+8 k \pi \log (8)-8 k \pi \frac{2(p-1)}{2-p}(1-\log 8)\right. \\
& \left.-\frac{4 p \pi}{2-p}\left(\sum_{j=1}^{k} H\left(\xi_{j}, \xi_{j}\right)+\sum_{i \neq j}^{k} G\left(\xi_{i}, \xi_{j}\right)\right)+O\left(\frac{1}{|\log \varepsilon|}\right)\right\} \tag{5.21}
\end{align*}
$$

Finally, let us evaluate the second term in the energy

$$
\begin{align*}
\frac{\lambda}{p} \int_{\Omega} e^{\left(U_{\lambda}\right)^{p}} d x= & \frac{\lambda}{p} \int_{\Omega} e^{\gamma^{p}\left(1+\frac{1}{p \gamma^{p}}\left(V_{\lambda}\right)\left(\frac{x}{\varepsilon}\right)\right)^{p}} d x \\
= & \frac{\lambda}{p} \sum_{j=1}^{k} \int_{B\left(\xi_{j}, \tilde{\delta}\right)} e^{\gamma^{p}\left(1+\frac{1}{p \gamma^{p}}\left(V_{\lambda}\right)\left(\frac{x}{\varepsilon}\right)\right)^{p}} d x \\
& +\frac{\lambda}{p} \int_{\Omega \backslash \bigcup_{j=1}^{k} B\left(\xi_{j}, \tilde{\delta}\right)} e^{\gamma^{p}\left(1+\frac{1}{p \gamma^{p}}\left(V_{\lambda}\right)\left(\frac{x}{\varepsilon}\right)\right)^{p}} d x \\
:= & I+I I . \tag{5.22}
\end{align*}
$$

First we observe that

$$
\begin{equation*}
I I=\lambda \Theta_{\lambda}(\xi) \tag{5.23}
\end{equation*}
$$

with $\Theta_{\lambda}(\xi)$ a function, uniformly bounded, as $\lambda \rightarrow 0$. On the other hand,

$$
\begin{align*}
I & =\frac{1}{p^{2} \gamma^{2(p-1)}} \sum_{j=1}^{k} \int_{B\left(\xi_{j}^{\prime}, \tilde{\delta} / \varepsilon\right)} e^{\gamma^{p}\left[\left(1+\frac{1}{p \gamma^{p}}\left(V_{\lambda}\right)(y)\right)^{p}-1\right]} d y \\
& =\frac{1}{p^{2} \gamma^{2(p-1)}} \sum_{j=1}^{k} \int_{B\left(\xi_{j}^{\prime}, \tilde{\delta} / \varepsilon\right)} e^{\left\{w_{j}(y)+\frac{p-1}{p} \frac{1}{\gamma^{p}} w_{j}^{0}(y)+\left(\frac{p-1}{p}\right)^{2} \frac{1}{\gamma^{2 p}} w_{j}^{1}(y)+\theta(y)\right\}}\left(1+O\left(\frac{1}{\gamma^{p}}\right)\right) d y \\
& =\frac{1}{p^{2} \gamma^{2(p-1)}} \sum_{j=1}^{k} \int_{B\left(0, \frac{\tilde{\delta}}{\mu_{j} \varepsilon}\right)} \frac{8}{\left(1+|y|^{2}\right)^{2}}\left(1+O\left(\frac{1}{\gamma^{p}}\right)\right) d y \\
& =\frac{1}{p^{2} \gamma^{2(p-1)}} 8 k \pi\left(1+|\log \varepsilon|^{-1} \Theta_{\lambda}(\xi)\right) \tag{5.24}
\end{align*}
$$

with $\Theta_{\lambda}(\xi)$ a function, uniformly bounded, as $\lambda \rightarrow 0$. From (5.22)-(5.24) we get

$$
\begin{equation*}
\frac{\lambda}{p} \int_{\Omega} e^{\left(U_{\lambda}\right)^{p}} d x=\frac{1}{p^{2} \gamma^{2(p-1)}} 8 k \pi\left(1+|\log \varepsilon|^{-1} \Theta_{\lambda}(\xi)\right) \tag{5.25}
\end{equation*}
$$

Therefore, from (5.11), (5.12), (5.13), (5.21), (5.25) and (1.14) and by the choice of the parameters μ_{j} in (2.22), and (1.14), we can write the whole asymptotic expansion of $F_{\lambda}(\xi)$, namely (5.8) holds.

Let us now prove the validity of (5.10). Fix $m \in\{1, \ldots, k\}$ and $l \in\{1,2\}$. Arguing as in the proof of Lemma 5.1, we have

$$
\begin{equation*}
\partial_{\left(\xi_{m}\right) l} F_{\lambda}(\xi)=\frac{1}{p^{2} \gamma^{2(p-1)}} \varepsilon^{-1}\left[\sum_{i=1}^{2} \sum_{j=1}^{k} c_{i j} \int_{\Omega_{\varepsilon}} \eta_{j} Z_{i j} \partial_{\left(\xi_{m}^{\prime}\right)_{l}} V_{\lambda}\right]\left(1+O\left(\frac{1}{\gamma^{p}}\right)\right) \tag{5.26}
\end{equation*}
$$

On the one hand, if we multiply equation in (4.1) against $\partial_{\left(\xi_{m}^{\prime}\right) l} V_{\lambda}$, we get

$$
\int_{\Omega_{\varepsilon}}\left(\Delta v_{\xi}+g\left(v_{\xi}\right)\right) \partial_{\left(\xi_{m}^{\prime}\right) l} V_{\lambda}=\sum_{i=1}^{2} \sum_{j=1}^{k} c_{i j} \int_{\Omega_{\varepsilon}} \eta_{j} Z_{i j} \partial_{\left(\xi_{m}^{\prime}\right) V_{\lambda}} V_{\lambda}
$$

where $v_{\xi}=\left(V_{\lambda}+\phi\right)\left(y, \xi^{\prime}\right)=\left(V_{\lambda}+\phi\right)\left(\frac{x}{\varepsilon}, \frac{\xi}{\varepsilon}\right)$. On the other hand, we have that

$$
\partial_{\left(\xi_{m}\right)_{l}} U_{\lambda}(x)=\frac{\varepsilon^{-1}}{p \gamma^{p-1}} \partial_{\left(\xi_{m}^{\prime}\right)_{l}} V_{\lambda}\left(\frac{x}{\varepsilon}\right) .
$$

Putting together these informations, we have that

$$
\partial_{\left(\xi_{m}\right)_{l}} F_{\lambda}(\xi)=\left(\int_{\Omega}\left[\Delta\left(U_{\lambda}+\tilde{\phi}\right)+\lambda\left(U_{\lambda}+\tilde{\phi}\right)^{p-1} e^{\left(U_{\lambda}+\tilde{\phi}\right)^{p}}\right] \partial_{\left(\xi_{m}\right)_{l}} U_{\lambda}\right)(1+o(1))
$$

Furthermore, since $\|\tilde{\phi}\|_{\infty} \leq \frac{C}{\gamma^{p-1}}\|\phi\|_{\infty}$, by definition of U_{λ} we have that

$$
(U+\tilde{\phi})(x)=U_{\lambda}(x)\left(1+O\left(\frac{1}{\gamma^{p}}\right)\right) \quad \text { in } \Omega .
$$

Hence, by means of integrations by parts, and the boundary conditions satisfied by U_{λ}, we get that

$$
\partial_{\left(\xi_{m}\right)_{l}} F_{\lambda}(\xi)=\left(\int_{\Omega}\left[\Delta U_{\lambda}+\lambda U_{\lambda}^{p-1} e^{U_{\lambda}^{p}}\right] \partial_{\left(\xi_{m}\right)_{l}} U_{\lambda}\right)\left(1+O\left(\frac{1}{\gamma^{p}}\right)\right),
$$

where $O(1)$ here denotes a smooth function of the points ξ, which is uniformly bounded as $\lambda \rightarrow 0$. We thus conclude that

$$
\begin{aligned}
\partial_{\left(\xi_{m}\right) l} F_{\lambda}(\xi) & =\left(\int_{\Omega}\left[-\nabla U_{\lambda} \nabla \partial_{\left(\xi_{m}\right)_{l}} U_{\lambda}+\lambda U_{\lambda}^{p-1} e^{U_{\lambda}^{p}} \partial_{\left(\xi_{m}\right)_{l}} U_{\lambda}\right]\right)\left(1+O\left(\frac{1}{\gamma^{p}}\right)\right) \\
& =-\partial_{\left(\xi_{m}\right) l} J_{\lambda}\left(U_{\lambda}\right)\left(1+O\left(\frac{1}{\gamma^{p}}\right)\right)
\end{aligned}
$$

Computations analogous to the ones we performed to get expansion (5.8) give us the validity of (5.10). This concludes the proof of the lemma.

6. Proof of the main results

In this section, we will prove the main result.
Proof of Theorem 1.2. From Lemma 5.1, the function

$$
U_{\lambda}(\xi)+\tilde{\phi}(\xi)=\frac{1}{p \gamma^{p-1}}\left(p \gamma^{p}+\left(V_{\lambda}+\phi\right)\left(\frac{x}{\varepsilon}\right)\right)
$$

where V_{λ} defined by (2.17) and $\phi(\xi)$ is the unique solution of problem (4.1), is a solution of problem (1.1) if we adjust ξ so that it is a critical point of $F_{\lambda}(\xi)$ defined by (5.3). This is equivalent to finding a critical point of

$$
\tilde{F}_{\lambda}(\xi):=A \lambda^{-1} \varepsilon^{\frac{2(2-p)}{p}} F_{\lambda}(\xi)+B+C \log \varepsilon,
$$

for suitable constants A, B and C. On the other hand, from Lemma 5.2, for $\xi \in \mathcal{M}$, we have that,

$$
\tilde{F}_{\lambda}(\xi)=\varphi_{k}(\xi)+O\left(|\log \varepsilon|^{-1}\right) \Theta_{\lambda}(\xi)
$$

where φ_{k} is given by (1.5), and $\Theta_{\lambda}(\xi)$ is uniformly bounded in the considered region as $\lambda \rightarrow 0$.

Let us observe that if $M>\mathcal{C}$, then assumptions (1.18), (1.19) still hold for the function $\min \left\{M, \varphi_{k}(\xi)\right\}$ as well as for $\min \left\{M, \varphi_{k}(\xi)+O\left(|\log \varepsilon|^{-1}\right) \Theta_{\lambda}(\xi)\right\}$. It follows that the function $\min \{M, \tilde{F}(\xi)\}$ satisfies for all λ small assumptions (1.18), (1.19) in \mathcal{D} and therefore has a critical value $\mathcal{C}_{\lambda}<M$ which is close to the value \mathcal{C} in this region. If $\xi_{\lambda} \in \mathcal{D}$ is a critical point at this level for $\tilde{F}_{\lambda}(\xi)+\beta$, then since

$$
\tilde{F}_{\lambda}\left(\xi_{\lambda}\right) \leq \mathcal{C}_{\lambda}<M
$$

we have that there exists a $\delta>0$ such that $\left|\xi_{\lambda, j}-\xi_{\lambda, i}\right|>\delta, \operatorname{dist}\left(\xi_{\lambda, j}, \partial \Omega\right)>0$. This implies C^{1}-closeness of $\tilde{F}_{\lambda}(\xi)$ and $\varphi_{k}(\xi)$ at this level, hence $\nabla \varphi_{k}\left(\xi_{\lambda}\right) \rightarrow 0$. The function $u_{\lambda}=U\left(\xi_{\lambda}\right)+$ $\tilde{\phi}\left(\xi_{\lambda}\right)$ is therefore a solution as predicted by the theorem.

Expansion (1.20) follows from (1.14) and (5.25), while (1.21) holds as a direct consequence of the construction of U_{λ}. Expansion (1.22) is a consequence of (5.8).

Proof of Theorem 1.1. According to the result of Theorem 1.2, the proof of Theorem 1.2 reduces to show that, for any $k \geq 1$ the function φ_{k} has a non-trivial critical value in some open set \mathcal{D}, compactly contained in Ω^{k}. This fact has already been established in [14] for the function $\left(-\varphi_{k}\right)$ in the context of construction of solutions to the Liouville problem

$$
\Delta u+\varepsilon^{2} e^{u}=0, \quad \text { in } \Omega, \quad u=0, \quad \text { on } \partial \Omega
$$

for a not simply connected domain Ω in \mathbb{R}^{2}. For completeness, we recall here the principal ingredients employed in the proof of the existence of a non-trivial critical value for $\left(-\varphi_{k}\right)$ and we refer the reader to [14] for a complete proof of each step.

Let \mathcal{D} be given by

$$
\mathcal{D}=\left\{x \in \Omega^{k}: \operatorname{dist}\left(x, \partial \Omega^{k}\right)>\delta\right\}
$$

for some positive and small δ to be chosen. Let Ω_{1} be a bounded non-empty component of $\mathbb{R}^{2} \backslash \bar{\Omega}$ and let γ be a closed, smooth Jordan curve contained in Ω which encloses Ω_{1}. Let S be the image of $\gamma, B_{0}=\emptyset$ and $B=S^{k}$. Define

$$
\begin{equation*}
\mathcal{C}=\inf _{\Phi \in \Gamma} \sup _{z \in B}\left(-\varphi_{k}\right)(\Phi(z)) \tag{6.1}
\end{equation*}
$$

where

$$
\Gamma=\{\Phi(z)=\Psi(1, z): \Psi:[0,1] \times B \rightarrow \mathcal{D} \text { continuous and } \Psi(0, z)=z\}
$$

Observe that, since $\sum_{j} H\left(\xi_{j}, \xi_{j}\right)$ is bounded in \mathcal{D} and $\sum_{i \neq j} G\left(\xi_{i}, \xi_{j}\right)$ is bounded below, the function $\left(-\varphi_{k}\right)$ is bounded above in \mathcal{D}.

With an argument based on degree theory, in Lemma 7.1 in [14], it is proven that:
There exists $K>0$, independent of δ in the definition of \mathcal{D}, such that $\mathcal{C} \geq-K$.
This fact ensures the validity of (1.18).

A delicate analysis of the behavior of H and G contained in Lemma 7.2 and Lemma 7.3 in [14] is the key step to show the validity of the following result:

Given $K>0$, there exists $\delta>0$ such that, if $\left(\xi_{1}, \ldots, \xi_{k}\right) \in \partial \mathcal{D}$, and $\left|\varphi_{k}\left(\xi_{1}, \ldots, \xi_{k}\right)\right| \leq K$, then there exists a vector τ, tangent to $\partial \mathcal{D}$, such that $\nabla \varphi_{k}\left(\xi_{1}, \ldots, \xi_{k}\right) \cdot \tau \neq 0$.

This fact is proved in Lemma 7.4 in [14] and it shows the validity of (1.19). Having established (1.18) and (1.19), we conclude that φ_{k} has a non-trivial critical value in \mathcal{D}, which gives the proof of Theorem 1.1.

References

[1] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 17 (1990) 393-413.
[2] Adimurthi, S. Prashanth, Failure of Palais-Smale condition and blow-up analysis for the critical exponent problem in \mathbb{R}^{2}, Proc. Indian Acad. Sci. Math. Sci. 107 (1997) 283-317.
[3] Adimurthi, O. Druet, Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality, Comm. Partial Differential Equations 29 (2004) 295-322.
[4] Adimurthi, M. Struwe, Global compactness properties of semilinear elliptic equations with critical exponential growth, J. Funct. Anal. 175 (2000) 125-167.
[5] F.V. Atkinson, L.A. Peletier, Ground states and Dirichlet problems for $-\Delta u=f(u)$ in \mathbb{R}^{2}, Arch. Ration. Mech. Anal. 96 (1986) 147-165.
[6] T. Aubin, Non Linear Analysis on Manifolds. Monge-Ampére Equations, Springer-Verlag, New York, 1983.
[7] A. Bahri, J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988) 255-294.
[8] S. Baraket, F. Pacard, Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations 6 (1) (1998) 1-38.
[9] H. Brezis, F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x) e^{u}$ in two dimensions, Comm. Partial Differential Equations 16 (8-9) (1991) 1223-1253.
[10] H. Castro, Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent, J. Differential Equations 246 (8) (2009) 2991-3037.
[11] D. Chae, O. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual ChernSimons theory, Comm. Math. Phys. 215 (2000) 119-142.
[12] W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991) 615-623.
[13] D.G. de Figueiredo, O. Miyagaki, B. Ruf, Elliptic equations in \mathbb{R}^{2} with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995) 139-153.
[14] M. del Pino, M. Kowalczyk, M. Musso, Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations 24 (2005) 47-81.
[15] M. del Pino, M. Musso, B. Ruf, New solutions for Trudinger-Moser critical equations in \mathbb{R}^{2}, J. Funct. Anal. 258 (2010) 421-457.
[16] O. Druet, Multibump analysis in dimension 2: quantification of blow-up levels, Duke Math. J. 132 (2) (2006) 217-269.
[17] P. Esposito, M. Musso, A. Pistoia, Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differential Equations 227 (2006) 29-68.
[18] P. Esposito, M. Musso, A. Pistoia, On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity, Proc. Lond. Math. Soc. (3) 94 (2) (2007) 497-519.
[19] P. Esposito, A. Pistoia, J. Wei, Concentrating solutions for the Hénon equation in \mathbb{R}^{2}, J. Anal. Math. 100 (2006) 249-280.
[20] P. Esposito, M. Grossi, A. Pistoia, On the existence of blowing-up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2) (2005) 227-257.
[21] A. Floer, A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (3) (1986) 397-408.
[22] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 471-497.
[23] Y.Y. Li, I. Shafrir, Blow-up analysis for solutions of $-\Delta u=V e^{u}$ in dimension two, Indiana Univ. Math. J. 43 (4) (1994) 1255-1270.
[24] J. Liouville, Sur L'Equation aux Difference Partielles $\frac{d^{2} \log \lambda}{d u d v} \pm \frac{\lambda}{2 a^{2}}=0$, C. R. Acad. Sci. Paris 36 (1853) 71-72.
[25] L. Ma, J.C. Wei, Convergence for a Liouville equation, Comment. Math. Helv. 76 (2001) 506-514.
[26] M. Musso, J. Wei, Stationary solutions to a Keller-Segel chemotaxis system, Asymptot. Anal. 49 (3-4) (2006) 217-247.
[27] S.I. Pohozhaev, The Sobolev embedding in the case $p l=n$, in: Proc. Tech. Sci. Conf. on Adv. Sci. Research 1964-1965, Moskov. Energet. Inst., Mathematics Section, Moscow, 1965, pp. 158-170.
[28] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 11 (1971) 1077-1092.
[29] K. Nagasaki, T. Suzuki, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptot. Anal. 3 (1990) 173-188.
[30] T. Ogawa, T. Suzuki, Two-dimensional elliptic equation with critical nonlinear growth, Trans. Amer. Math. Soc. 350 (12) (1998) 4897-4918.
[31] T. Ogawa, T. Suzuki, Nonlinear elliptic equations with critical growth related to the Trudinger inequality, Asymptot. Anal. 12 (1) (1996) 25-40.
[32] M. Struwe, Positive solutions of critical semilinear elliptic equations on non-contractible planar domains, J. Eur. Math. Soc. (JEMS) 2 (2000) 329-388.
[33] C. Tarsi, Uniqueness of positive solutions of nonlinear elliptic equations with exponential growth, Proc. Roy. Soc. Edinburgh Sect. A 133 (6) (2003) 1409-1420.
[34] N. Trudinger, On imbedding into Orlicz space and some applications, J. Math. Mech. 17 (1967) 473-484.
[35] V.I. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR 138 (1961) 805-808 (in Russian); English transl.: Soviet Math. Dokl. 2 (1961) 746-749.

[^0]: The research of the first author has been partly supported by Postdoctoral Fondecyt Grant 3140403. The research of the second author has been partly supported by FONDECYT Grant 1120151 and CAPDE-Anillo ACT-125, Chile.

 * Corresponding author.

 E-mail addresses: shbdeng65@gmail.com (S. Deng), mmusso@mat.puc.cl (M. Musso).

