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Abstract

We construct positive and sign changing multipeak solutions to the pure critical exponent problem in
a bounded domain with a shrinking hole, having a peak which concentrates at some point inside the shrink-
ing hole (i.e. outside the domain) and one or more peaks which concentrate at interior points of the domain.
These are, to our knowledge, the first multipeak solutions in a domain with a single small hole.
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1. Introduction

In this paper we investigate the existence of solutions, both positive and sign changing, to the
problem {

−�u= |u| 4
N−2 u in Ω \ ε(ω+ ξ0),

u= 0 on ∂
(
Ω \ ε(ω+ ξ0)

)
,

(1)

where Ω is a connected bounded smooth domain in R
N , ξ0 ∈Ω , ω is a closed bounded neigh-

borhood of 0 in R
N with smooth boundary, N � 3, and ε > 0 is small enough.

The exponent of the nonlinearity is 2∗ − 1 where 2∗ := 2N
N−2 is the so-called critical Sobolev

exponent. This problem has a rich geometric structure: it is invariant under the group of Möbius
transformations; in particular, it is invariant under dilations. This fact is responsible for the lack of
compactness of the Sobolev embedding H 1

0 (D) ↪→ L2∗
(D) even when D is a bounded domain,

and produces a dramatic change in the behavior of this problem with respect to the subcritical
one. Indeed, whereas for q ∈ (2,2∗) problem

−�u= |u|q−2u in D, u= 0 on ∂D, (2)

has infinitely many solutions in every bounded smooth domain D of R
N , for q = 2∗ Po-

hožaev [20] showed that it has only the trivial solution if D is strictly starshaped. Moreover,
for q = 2∗ this problem does not have a nontrivial least energy solution unless D = R

N . Solv-
ability for q = 2∗ is, thus, a difficult issue.

There are some well known existence results for q = 2∗. The first one was given by Kazdan
and Warner [13] who showed that, ifD is an annulus, then (2) has infinitely many radial solutions.
Later, without any symmetry assumption, Coron [10] proved the existence of a positive solution
to (2) if D is annular shaped, i.e.{

x ∈ R
N : 0<R1 < |x|<R2

} ⊂D and 0 /∈D, (3)

and R2/R1 is small enough. Substantial improvement was obtained by Bahri and Coron [3] (see
also [2]) who showed that, if the reduced homology of D with coefficients in Z2 is nontrivial,
then problem (2) has at least one positive solution.

Concerning Coron’s result, an interesting issue is the study of the asymptotic behavior of
Coron’s solution for R2 fixed and R1 → 0, in other words, when D has a small hole whose
diameter tends to zero. If the hole is the ball of radius R1, then the solution found by Coron
concentrates around the hole and it converges, in the sense of measure, to a Dirac delta centered
at the center of the hole as R1 → 0. We refer the reader to [14,15,21] where the study of existence
of positive multipeak solutions to (2) in domains with several small circular holes and their
asymptotic behavior as the size of the holes goes to zero has been carried out.

Recently, Clapp and Weth [9] extended Coron’s result. They showed that, if D has a small
enough hole, then (2) has at least two solutions. But nothing can be said about the sign of the
second one. Existence of sign changing solutions for symmetric domains with a small hole was
first shown by Clapp and Weth [8]. Musso and Pistoia [16] proved that, if the domain has certain
symmetries and a small spherical hole, then the number of sign changing solutions becomes ar-
bitrarily large as the radius of the sphere goes to zero. Recently, Clapp and Pacella [7] considered
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Fig. 1.

annular shaped domains D which are invariant under a finite group Γ of orthogonal transforma-
tions of R

N and established the existence of multiple sign changing solutions even if the hole is
large provided the cardinality of the minimal Γ -orbit of D is also large. Finally, if the domain D
has two small holes, then Musso and Pistoia [18] proved that problem (2) has at least one pair of
sign changing solutions.

Results obtained so far suggest that solutions to problem (1) should concentrate at points out-
side the domain. In this paper we shall construct positive and sign changing multipeak solutions
to (1) having a peak which concentrates at some point inside the shrinking hole ε(ω + ξ0) (i.e.
outside the domain) and one or more peaks which concentrate at interior points of the domain
Ω \ ε(ω+ ξ0), for certain points ξ0 ∈Ω . These are, to our knowledge, the first known solutions
to problem (1) exhibiting this kind of concentration behavior, and the first multipeak solutions in
a domain with a single small hole.

Our first three results concern existence of positive multipeak solutions. Set

AN := [
N(N − 2)

]N
2

∫
RN

(
1 + |y|2)−(N+2)/2

dy.

Theorem 1. Assume that ∂Ω is not connected. There exists ρ0 > 0, depending only on Ω , such
that, for each point ξ0 ∈Ω with dist(ξ0, ∂Ω)� ρ0, there exist ζ ∗ ∈Ω \ {ξ0} and ε0 > 0 with the
following property: for every ε ∈ (0, ε0) there is a positive solution uε to problem (1) satisfying

|∇uε|2 dx ⇀AN

(
δξ0 + δζ ∗

)
in the sense of measures, as ε → 0.

Under some symmetry assumptions on the domain, we obtain multiplicity of positive multi-
peak solutions. The domains considered in Theorems 2 and 3 are illustrated by Figs. 1 and 2,
respectively.

Theorem 2. Assume that, for some n�N ,

(x1, . . . , xn, xn+1, . . . , xN) ∈Ω ⇔ (x1, . . . , xn,−xn+1, . . . ,−xN) ∈Ω, (4)

(x1, . . . , xn, xn+1, . . . , xN) ∈ ω ⇔ (x1, . . . , xn,−xn+1, . . . ,−xN) ∈ ω. (5)

There exists ρ0 > 0, depending only on Ω , such that, for each ξ0 ∈ Ω ∩ (Rn × {0}) with
dist(ξ0, ∂Ω)� ρ0 and each connected componentC ofΩ∩(Rn×{0})with nonconnected bound-
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Fig. 2.

ary, such that ξ0 /∈ C if n= 1, there exist ζ ∗
C ∈ C \ {ξ0} and ε0 > 0 with the following property:

for every ε ∈ (0, ε0) and every C there is a positive solution uC,ε to problem (1) satisfying

|∇uC,ε|2 dx ⇀AN(δξ0 + δζ ∗
C
) in the sense of measures, as ε → 0.

Theorem 3. Let Ω := B(0,1) \ T (r, ρ), where

B(0,1) := {
x ∈ R

N : |x|< 1
}
,

T (r, ρ) := {
x ∈ R

N : dist
(
x,S(r)

)
< ρ

}
,

S(r) := {
(x1, x2,0, . . . ,0) ∈ R

N : x2
1 + x2

2 = r2}, r ∈
(

1

2
,1

)
.

Let ξ0 = 0 and assume that ω satisfies

(x1, x2, x3, . . . , xN) ∈ ω ⇔ (x1, x2,−x3, . . . ,−xN) ∈ ω.

Then, for each integer k � 1 there exists ρ0 ∈ ( 1
2 ,1) such that, if r + ρ ∈ (ρ0,1), there exist

r∗ ∈ (r + ρ,1) and ε0 > 0 with the following property: for every ε ∈ (0, ε0) there is a positive
solution uε to problem (1) satisfying

|∇uε|2 dx ⇀AN

(
δ0 +

k−1∑
j=0

δζj

)
in the sense of measures, as ε → 0,

where ζj := r∗(cos 2πj
k
, sin 2πj

k
,0, . . . ,0).

Concerning existence of sign changing multipeak solutions to (1), we prove the following two
results.
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Theorem 4. Assume that x ∈Ω iff −x ∈Ω and let ξ0 = 0. Then there exist ζ ∗ ∈Ω \{0} and ε0 >

0 such that, for each ε ∈ (0, ε0), there is a pair ±uε of sign changing solutions to problem (1)
satisfying

|∇uε|2 ⇀AN(δ0 − δζ ∗ − δ−ζ ∗) in the sense of measures, as ε → 0.

Theorem 5. Let Ω := B(0,1) and ξ0 = 0. If N is odd, assume that ω satisfies

(x1, x2, x3, . . . , xN) ∈ ω iff (x1, x2,−x3, . . . ,−xN) ∈ ω.

Then, for every integer k � 1 there exist r∗ ∈ (0,1) and ε0 > 0 such that, for each ε ∈ (0, ε0),
there exists a pair ±uε of sign changing solutions to problem (1) satisfying

|∇uε|2 dx ⇀AN

(
δ0 −

k−1∑
j=0

δζj

)
in the sense of measures, as ε → 0,

where ζj := r∗(cos 2πj
k
, sin 2πj

k
,0, . . . ,0).

One may ask whether the solutions given by the above results are solely created by the topol-
ogy of Ω or whether there is really an effect of the hole. In other words, do these solutions persist
for ε = 0? The answer is that, in general, they do not persist. In fact, Ben Ayed, El Mehdi and
Hammami [4] showed that for thin annuli the least energy of a positive solution goes to infin-
ity as the width of the annulus goes to zero. In particular, a thin annulus does not have 2-peak
solutions, so the solutions provided by Theorem 1 for small ε blow up as ε → 0.

This paper is organized as follows. In Section 2, we describe the construction of a first approx-
imation for a solution to problem (1) and we give the scheme of the proof of our results, which is
based in a finite-dimensional reduction. Section 3 is devoted to the proof of our main results. In
particular, we state and prove a general existence result for solutions to problem (1) under some
general symmetry assumptions. This result, together with a topological lemma, are the tools to
construct positive and sign changing solutions to (1), as asserted in the previous theorems. In
Section 4 we give the expansion of the energy functional associated to the problem at the ansatz.
Finally, Section 5 is devoted to the study of the associated nonlinear problem which provides the
finite-dimensional reduction.

2. An approximate solution and scheme of the proof

In this section we describe a first approximation of the solution to problem (1). To simplify
notation, we shall assume from now on that ξ0 = 0.

Let δ be a positive real number and z be a point in R
N . The basic element to construct a

solution to problem (1) is the so called standard bubble Uδ,z defined by

Uδ,z(x)= αN
δ
N−2

2

(δ2 + |x − z|2)N−2
2

, δ > 0, z ∈ R
N,

with αN := [N(N − 2)]N−2
4 . It is well known (see [1,6,24]) that these functions are the positive

solutions of the equation −�u= up in R
N , where p := N+2 . These are the basic cells to build
N−2
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an actual solution of (1) after we perform a suitable correction to fit in the boundary condition.
To this purpose, we replace Uδ,z by its projection PεUδ,z onto H 1

0 (Ω \ εω), defined by{−�PεUδ,z =U
p
δ,z in Ω \ εω,

PεUδ,z = 0 on ∂(Ω \ εω).

We will look for a solution to (1) of the form

u= Vλ,ζ + φ, Vλ,ζ := PεUμ,ξ +
k∑

j=1

νjPεUλj ,ζj , (6)

where Vλ,ζ represents the leading term and φ is a lower order term. Here νj = ±1, λ =
(μ,λ1, . . . , λk) ∈ (0,∞)k+1 and ζ = (ξ, ζ1, . . . , ζk) ∈ Ωk+1. We will choose points ξ, ζj ∈ Ω

and parameters μ,λj ∈ (0,∞), j = 1, . . . , k, as follows:

μ := d
√
ε, η < d < η−1 and ξ := μτ, τ ∈ R

N, |τ |< η, (7)

and for j = 1, . . . , k,

λj :=Λj

√
ε, η <Λj < η−1, (8)

|ζj |> 2η, dist(ζj , ∂Ω) > 2η, |ζj − ζs |> 2η if j �= s, (9)

for some positive small fixed η. Set Λ̄ := (Λ1, . . . ,Λk) ∈ (0,∞)k and ζ̄ := (ζ1, . . . , ζk) ∈Ωk .
In terms of φ, problem (1) becomes{

Lλ,ζ (φ)=Nλ,ζ (φ)+Rλ,ζ in Ω \ εω,
φ = 0 on ∂(Ω \ εω), (10)

where

Lλ,ζ (φ) := −�φ − f ′(Vλ,ζ )φ,

Nλ,ζ (φ) := f (Vλ,ζ + φ)− f (Vλ,ζ )− f ′(Vλ,ζ )φ,

Rλ,ζ := f (Vλ,ζ )+�Vλ,ζ .

Here f (u) := |u| 4
N−2 u. We denote by K̂λj ,ζj the kernel of the operator −�−pU

p−1
λj ,ζj

onL2(RN),
and consider the spaces

Kλ,ζ := span

{
f ′(Vλ,ζ )Pεθ : θ ∈

k⋃
j=0

K̂λj ,ζj

}
,

K⊥
λ,ζ :=

{
φ ∈H 1

0 (Ω \ εω):
∫

φψ = 0 for all ψ ∈ Kλ,ζ

}
,

Ω\εω
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where Pεθ denotes the orthogonal projection of θ onto H 1
0 (Ω \ εω), i.e. �Pεθ =�θ in Ω \ εω,

Pεθ = 0 on ∂(Ω \ εω).
To prove the existence of a solution to (10), we first solve the problem

(℘λ,ζ )

⎧⎨⎩
Lλ,ζ (φ)=Nλ,ζ (φ)+Rλ,ζ +ψ,

ψ ∈ Kλ,ζ ,

φ ∈ K⊥
λ,ζ .

(11)

Now, in order to solve this problem we recall [5] that K̂δ,z has dimension N + 1 and is spanned
by the functions

Z0
δ,z(x) := ∂Uδ,z

∂δ
(x)= αN

N − 2

2
δ(N−4)/2 |x − z|2 − δ2

(δ2 + |x − z|2)N/2
, x ∈ R

N,

Zi
δ,z(x) := ∂Uδ,z

∂zi
(x)= −αN(N − 2)δ(N−2)/2 xi − zi

(δ2 + |x − z|2)N/2
, x ∈ R

N,

for i = 1, . . . ,N . So solving problem (℘λ,ζ ) in (11) is equivalent to finding φ and coefficients cij ,
i = 0, . . . ,N , j = 0, . . . , k, such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lλ,ζ (φ)=Nλ,ζ (φ)+Rλ,ζ +
∑
i,j

cij f
′(Vλ,ζ )PεZi

λj ,ζj
in Ω \ εω,

φ = 0 on ∂(Ω \ εω),∫
Ω\εω

φf ′(Vλ,ζ )PεZi
λj ,ζj

= 0 i = 0, . . . ,N, j = 0, . . . , k.
(12)

For technical reasons, it is useful to scale the problem. Let

Ωε := Ω \ εω√
ε

and y = x√
ε

∈Ωε.

Then u is a solution to (1) if and only if the function û(y) := ε
1

p−1 u(
√
εy) solves the problem

{
−�v = |v| 4

N−2 v in Ωε,

v = 0 on ∂Ωε.
(13)

In this expanded variables, the solution we are looking for looks like û(y)= V̂λ,ζ + φ̂(y), where

V̂λ,ζ (y) := ε
1

p−1V λ√ ,
ζ√ (

√
εy) and φ̂(y) := ε

1
p−1φ(

√
εy), y ∈Ωε.
ε ε
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Now, in terms of φ̂, problem (12) becomes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L̂λ,ζ (φ̂)= N̂λ,ζ (φ̂)+ R̂λ,ζ +
∑
i,j

cij f
′(V̂λ,ζ )Ẑi

j in Ωε,

φ̂ = 0 on ∂Ωε,∫
Ωε

φ̂f ′(V̂λ,ζ )Ẑi
j = 0 i = 0, . . . ,N, j = 0, . . . , k,

(14)

where Ẑi
j (y) := ε

1
p−1PεZ

i
λj√
ε
,
ζj√
ε

(
√
εy) and

L̂λ,ζ (φ̂) := −�φ̂ − f ′(V̂λ,ζ )φ̂,

N̂λ,ζ (φ̂) := f (V̂λ,ζ + φ̂)− f (V̂λ,ζ )− f ′(V̂λ,ζ )φ̂,

R̂λ,ζ := f (V̂λ,ζ )−
k∑

j=0

f (U λj√
ε
,
ζj√
ε

).

We point out that φ̂ solves (14) if and only if φ solves (12). The solution to problem (14) will
be obtained as a fixed point of a certain contraction map, which will be defined thanks to the
solvability of the following linear problem. Fix points and parameters as in (7)–(9). Given a
function h, we consider the problem of finding φ̂ such that for certain real numbers cij the fol-
lowing is satisfied⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L̂λ,ζ (φ̂)= h+
∑
i,j

cij f
′(V̂λ,ζ )Ẑi

j in Ωε,

φ̂ = 0 on ∂Ωε,∫
Ωε

φ̂f ′(V̂λ,ζ )Ẑi
j = 0 i = 0, . . . ,N, j = 0, . . . , k.

(15)

In order to perform an invertibility theory for L̂λ,ζ subject to the above orthogonality conditions,
we introduce L∞∗ (Ωε) and L∞∗∗(Ωε) to be, respectively, the spaces of functions defined on Ωε

with finite ‖ · ‖∗-norm (respectively ‖ · ‖∗∗-norm), where

‖ψ‖∗ = sup
x∈Ωε

[∣∣w−β(x)ψ(x)
∣∣+ ∣∣w−(β+ 1

N−2 )(x)Dψ(x)
∣∣],

with

w(x)= (
1 + |x − ξ ′|2)−N−2

2 +
∑
j

(
1 + ∣∣x − ζ ′

j

∣∣2)−N−2
2 ,

β = 1 if N = 3 and β = 2
N−2 if N � 4. Similarly we define, for any dimension N � 3,

‖ψ‖∗∗ = sup
∣∣w− 4

N−2 (x)ψ(x)
∣∣.
x∈Ωε
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The operator L̂λ,ζ is indeed uniformly invertible with respect to the above weighted L∞-norm,
for all ε small enough. This fact is established in the next proposition. We refer the reader to
[11,17] for the proof.

Proposition 6. Let η > 0 be fixed. There are numbers ε0 > 0, C > 0, such that, for points and
parameters satisfying (7)–(9), problem (15) admits a unique solution φ̂ =: Tλ,ζ (h) for all 0 <
ε < ε0 and all h ∈ Cα(Ω̄ε). Moreover,∥∥Tλ,ζ (h)∥∥∗ � C‖h‖∗∗,

∥∥∂d,Λ̄,τ,ζ̄ Tλ,ζ (h)∥∥∗ � C‖h‖∗∗ (16)

and

|ci | � C‖h‖∗∗. (17)

The solvability of problem (14) is established in the following proposition.

Proposition 7. Let η > 0 be fixed. There are numbers ε0 > 0, C > 0, such that, for points and
parameters satisfying (7)–(9) there exists a unique solution φ̂ = φ̂(d, Λ̄, τ, ζ̄ ) to problem (14),
such that the map (d, Λ̄, τ, ζ̄ )→ φ̂(d, Λ̄, τ, ζ̄ ) is of class C1 for the ‖ · ‖∗-norm and

‖φ̂‖∗ � Cε
N−2

2 , (18)

‖∇(d,Λ̄,τ,ζ̄ )φ̂‖∗ � Cε
N−2

2 . (19)

The proof of the previous proposition will be postponed to Section 5. Here we just mention
that the size of φ̂ and its derivatives, given in (18) and (19), is strictly related to the size of

‖R̂λ,ζ‖∗∗, which turns out to be of order ε
N−2

2 in all the different existence results we obtain, as
shown in the proof of Proposition 7.

Looking back at (14), we conclude that, in the expanded variable, the function V̂λ,ζ + φ̂ is an
actual solution to (13), or equivalently that the function Vλ,ζ + φ in (6) is an actual solution to
our original problem (1), if we show that, for a proper election of (d, Λ̄, τ, ζ̄ ), the constants cij
are all zero. This reduces our problem to a finite-dimensional one.

Let Jε :H 1
0 (Ω \ εω)→ R be the energy functional given by

Jε(u)= 1

2

∫
Ω\εω

|Du|2 − 1

p+ 1

∫
Ω\εω

|u|p+1. (20)

It is well known that critical points of Jε are solutions to (1).
We introduce the function J ∗

ε : (0,∞)k+1 × R
N ×Ωk → R given by

J ∗
ε (d, Λ̄, τ, ζ̄ ) := Jε(Vλ,ζ + φ)

where φ is the unique solution to problem (℘λ,ζ ) in (11) given by Proposition 7.
Using standard tools one can prove the following results.

Lemma 8. uε = Vλ,ζ + φ is a solution of problem (1), i.e. cij = 0 in (12) for all i, j , if and only

if (d, Λ̄, τ, ζ̄ ) is a critical point of J ∗
ε .

A direct consequence of estimates (18) and (19) is the following expansion.
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Proposition 9. Let η > 0 be fixed and assume (7)–(9) hold true. Then we have the following
expansion

J ∗
ε (d, Λ̄, τ, ζ̄ )= Jε(Vλ,ζ )+ o

(
ε
N−2

2
)
, (21)

where, as ε goes to zero, the term o(ε
N−2

2 ) is C1-uniform over all (d, Λ̄, τ, ζ̄ )’s satisfying (7)–(9).

Finally, we conclude this section with the asymptotic expansion of the main part of the energy
Jε(Vλ,ζ ), which will be obtained in Section 4.

The expansion of Jε(Vλ,ζ ) is given in terms of the Green function of the Laplace operator
vanishing at the boundary ∂Ω , defined by

G(x,y)= κN

(
1

|x − y|N−2
−H(x,y)

)
, (22)

with κN := 1
(N−2)|∂B| , where |∂B| denotes the surface area of the unit sphere in R

N . The function
H denotes the regular part of the Green function, which for all y ∈Ω satisfies

�H(x,y)= 0 in Ω, H(x, y)= κN
1

|x − y|N−2
, x ∈ ∂Ω. (23)

The function H(x,x) is called the Robin function of Ω at x. It is useful to point out the following
properties of G and H :

0 �G(x,y)� κN
1

|x − y|N−2
for any x, y ∈Ω, (24)

lim
x→∂Ω

H(x, x)= +∞ (25)

and

H(x,x)� min
x∈ΩH(x, x)=:HΩ > 0. (26)

Proposition 10. Let η > 0 be fixed and assume that (7)–(9) hold. Then we have the following
expansion

Jε(Vλ,ζ )= (k + 1)a1 − ε
N−2

2 Ψ (d, Λ̄, τ, ζ̄ )+ o
(
ε
N−2

2
)
, (27)

where Ψ is defined by

Ψ (d, Λ̄, τ, ζ̄ ) := F(τ)
1

dN−2
+ a2H(0,0)dN−2

+ a2

[
k∑

j=1

H(ζj , ζj )Λ
N−2
j −

k∑
j,s=1
s �=j

νj νsG(ζj , ζs)Λ
N−2

2
j Λ

N−2
2

s

]

− 2a2

k∑
νjG(0, ζj )Λ

N−2
2

j d
N−2

2 , (28)

j=1
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where

F(τ) := α
p+1
N cω

1

(1 + |τ |2)N−2
2

∫
RN

1

|y + τ |N−2

1

(1 + |y|2)N+2
2

dy,

a1 and a2 are positive constants and, as ε goes to zero, the term o(ε
N−2

2 ) is C1-uniform over all
(d, Λ̄, τ, ζ̄ )’s satisfying (7)–(9).

Roughly speaking, we may say that any critical point of Ψ stable with respect C1-perturbation
generates a solution to (1) which has a positive blow-up point at the origin and k positive (if
νj = +1) or negative (if νj = −1) blow-up points ζj ∈Ω \ {0}.

3. Multipeak solutions

Let Γ be a closed subgroup of the group O(N) of orthogonal transformations of R
N . We

denote by

Γ x := {γ x: γ ∈ Γ }

the Γ -orbit of x ∈ R
N . A subset X of R

N is said to be Γ -invariant if Γ x ⊂X for every x ∈X,

and a function u :X → R is Γ -invariant if it is constant on every Γ -orbit of X.
The Green function satisfies the following.

Lemma 11. If Ω is Γ -invariant then

G(γ x,γy)=G(x,y) and H(γ x,γy)=H(x,y),

for all x, y ∈Ω , γ ∈ Γ .

Proof. Fix x ∈Ω , γ ∈ Γ . The map y �→H(x,γ−1y) is harmonic and, since γy ∈ ∂Ω for every
y ∈ ∂Ω , it satisfies

H
(
x, γ−1y

) = 1

|x − γ−1y|N−2
= 1

|γ x − y|N−2
∀y ∈ ∂Ω.

Therefore,

H(γ x, y)=H
(
x, γ−1y

) ∀x, y ∈Ω, γ ∈ Γ.

This proves our claim. �
Let Γ be a group of the form Γ := Γ1 × Γ2, where Γ1 is a closed subgroup of O(n) and Γ2

is a closed subgroup of O(m), n+m=N , acting on R
N = R

n × R
m by

(γ1, γ2)(y, z) := (γ1y, γ2z) ∀γ1 ∈ Γ1, γ2 ∈ Γ2, y ∈ R
n, z ∈ R

m.

From now on, we assume that these groups have the following properties:
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(I) Γ1 is a finite group which acts freely on R
n \ {0}, that is, γy �= y for every γ ∈ Γ1, y ∈ R

n.
(II) Γ2 acts without fixed points on R

m \ {0}, that is, for every z ∈ R
m \ {0} there exists γ ∈ Γ2

such that γ z �= z.

To simplify notation we write Γ1 for the subgroup Γ1 × {1} of Γ and Γ2 for the subgroup
{1} × Γ2 of Γ . Property (II) implies that the fixed point space of the Γ2-action on RN is{

x ∈ R
N : γ x = x ∀γ ∈ Γ2

} = R
n × {0}, (29)

thus

Γy = Γ1y ∀y ∈ R
n × {0},

and, since Γ1 acts freely on R
n \ {0}, its cardinality #Γy is the order |Γ1| of the group Γ1.

For ζ ∈ (Ω \ {0})∩ (Rn × {0}) we define

α(ζ ) :=H(ζ, ζ )−
∑

γ∈Γ1\{1}
G(ζ, γ ζ ).

Set

Ω1 := {
ζ ∈ (

Ω \ {0})∩ (
R
n × {0}): α(ζ ) �= 0

}
,

and let ϕ :Ω1 → R be defined by

ϕ(ζ ) :=H(0,0)− |Γ1|G2(0, ζ )

α(ζ )
.

By Lemma 11, both α and ϕ are Γ1-invariant, that is,

α(γ ζ )= α(ζ ) for all γ ∈ Γ1, ζ ∈ (
Ω \ {0})∩ (

R
n × {0}),

ϕ(γ ζ )= ϕ(ζ ) for all γ ∈ Γ1, ζ ∈Ω1. (30)

The following holds.

Theorem 12. Assume that Ω is Γ -invariant and ω is Γ2-invariant, and let ζ ∗ ∈ Ω1 be a C1-
stable critical point of ϕ.

(i) If α(ζ ∗) > 0 and ϕ(ζ ∗) > 0, then there exists ε0 > 0 such that, for each ε ∈ (0, ε0), there is
a positive Γ2-invariant solution uε to problem (1) which satisfies

|∇uε|2 dx ⇀AN

(
δ0 +

∑
γ∈Γ1

δγ ζ ∗

)
in the sense of measures, as ε → 0.
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(ii) If α(ζ ∗) < 0, then there exists ε0 > 0 such that, for each ε ∈ (0, ε0), there is a sign changing
Γ2-invariant solution uε to problem (1) which satisfies

|∇uε|2 dx ⇀AN

(
δ0 −

∑
γ∈Γ1

δγ ζ ∗

)
in the sense of measures, as ε → 0.

Proof. We look for a Γ2-invariant solution to problem (1) of the form

u= V + φ, V := PεUμ,ξ +
∑
γ∈Γ1

νPεUλ,γ ζ (31)

with ν ∈ {1,−1}, and μ,λ ∈ (0,∞), ξ, ζ ∈ Ω ∩ (Rn × {0}), such that conditions (7)–(9) hold
with λj = λ and ζj = γj ζ , that is,

μ := d
√
ε, λ :=Λ

√
ε, η < d,Λ< η−1, (32)

ξ := μτ, τ ∈ R
N, |τ |< η, (33)

|ζ |> 2η, dist(ζ, ∂Ω) > 2η, |ζ − γ ζ |> 2η ∀γ ∈ Γ1, γ �= 1, (34)

for some η > 0. In this case, by Lemma 11, the function Ψ defined in (28) reduces to

Ψ (d,Λ, τ, ζ ) := F(τ)
1

dN−2
+ a2H(0,0)dN−2

+ a2

[
kH(ζ, ζ )− k

∑
γ∈Γ1\{1}

G(ζ, γ ζ )

]
ΛN−2

− 2a2νkG(0, ζ )Λ
N−2

2 d
N−2

2 ,

where k := |Γ1| and, abusing notation, we have set Λ := (Λ, . . . ,Λ) and ζ := (ζ, γ2ζ, . . . , γkζ )

for some chosen ordering of the elements of Γ1 = {γ1 := 1, γ2, . . . , γk}. We will now show that,
for some η > 0, the restriction of Ψ to the set

Sη := {
(d, Λ̄, τ, ζ̄ ) ∈ (0,∞)k+1 × (

R
n × {0})× (

Ω ∩ (
R
n × {0}))k: (32)–(34) hold

}
has a critical point which is stable with respect to C1-perturbation. The claim will then follow
from Propositions 10, 9, and Lemma 13 below.

It is easy to check that, if

νG(0, ζ )

α(ζ )
> 0 and ϕ(ζ ) :=H(0,0)− kG2(0, ζ )

α(ζ )
> 0, (35)

there exist unique d(ζ ),Λ(ζ ) > 0, τ(ζ ) ∈ R
n, such that

∇(d,Λ̄,τ )Ψ
(
d(ζ ),Λ(ζ ), τ (ζ ), ζ

) = 0. (36)

In fact, τ(ζ )= 0,
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d(ζ )=
[
F(0)

a2

α(ζ )

H(0,0)α(ζ )− kG2(0, ζ )

] 1
2(N−2)

,

Λ(ζ )=
[
νG(0, ζ )

α(ζ )

] 2
N−2

d(ζ ).

If follows from (24) and (26) that conditions (35) hold if, either ν = 1, α(ζ ) > 0 and ϕ(ζ ) > 0,
or if ν = −1 and α(ζ ) < 0. An easy computation shows that

Ψ
(
d(ζ ),Λ(ζ ), τ (ζ ), ζ

) = 2
(
a2F(0)k

)1/2
ϕ(ζ )1/2.

Therefore, if ζ ∗ is a C1-stable critical point of ϕ satisfying (35) then, by (30), γ ζ ∗ is a C1-stable
critical point of ϕ for all γ ∈ Γ1 and, by (36), (d(ζ ∗),Λ(ζ ∗),0, ζ ∗) is a critical point of the
restriction of Ψ to the set Sη for some η > 0. Moreover, since D2

(d,Λ̄,τ )
Ψ (d(ζ ),Λ(ζ ), τ (ζ ), ζ ) is

invertible, the critical point (d(ζ ∗),Λ(ζ ∗),0, ζ ∗) is C1-stable. This concludes the proof. �
Lemma 13. If (d, Λ̄, τ, ζ̄ ) is a critical point of the restriction

J ∗
ε |(0,∞)k+1×(Rn×{0})×(Ω∩(Rn×{0}))k

then u= Vλ,ζ + φ is a Γ2-invariant solution to problem (1).

Proof. It suffices to show that J ∗
ε is Γ2-invariant with respect to the Γ2-action on (0,∞)k+1 ×

R
N ×Ωk given by γ (d, Λ̄, τ, ζ̄ ) := (d, Λ̄, γ τ, γ ζ̄ ), where γ ζ̄ := (γ ζ1, . . . , γ ζk). Indeed, prop-

erty (II) implies that the fixed point set of this action is (0,∞)k+1 × (Rn × {0}) × (Ω ∩
(Rn × {0}))k . Therefore, by the principle of symmetric criticality [19,25], we conclude that,
if (d, Λ̄, τ, ζ̄ ) is a critical point of the restriction

J ∗
ε |(0,∞)k+1×(Rn×{0})×(Ω∩(Rn×{0}))k ,

then it is a critical point of J ∗
ε . The claim now follows from Lemma 8.

To prove that J ∗
ε is Γ2-invariant first observe that, since Ω and ω are Γ2-invariant, the domain

Ω \ εω is Γ2-invariant for every ε > 0, and one has an action of Γ2 on H 1
0 (Ω \ εω) given by

(γ u)(x) := u(γ−1x). This action preserves the Sobolev and the Lp+1 norms, i.e.∫
Ω\εω

∇(γ u)∇(γ v)=
∫

Ω\εω
∇u∇v and

∫
Ω\εω

|γ u|p+1 =
∫

Ω\εω
|u|p+1

for all γ ∈ Γ2, u,v ∈ H 1
0 (Ω \ εω). Therefore, the functional Jε defined in (20) is Γ2-invariant

with respect to this action, i.e.

Jε(γ u)= Jε(u) for all γ ∈ Γ2, u ∈H 1
0 (Ω \ εω). (37)

Secondly, we claim that for any γ ∈ Γ2

(φ,ψ) solves (℘λ,ζ ) ⇔ (γ φ, γψ) solves (℘λ,γ ζ ), (38)
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where problems (℘λ,ζ ) and (℘λ,γ ζ ) are defined in (11), and γ ζ := (γ ξ, γ ζ1, . . . , γ ζk). Indeed,
first notice that

Uλj ,γ ζj (x)=Uλj ,ζj

(
γ−1x

) =: γUλj ,ζj (x) for all γ ∈ Γ2, (39)

j = 0, . . . , k, ζ0 := ξ . Since∫
RN

∇(γ θ)∇(γ v)=
∫

RN

∇(θ)∇(v)= p

∫
RN

U
p−1
λj ,ζj

θv

= p

∫
RN

(γUλj ,ζj )
p−1(γ θ)(γ v) for all v ∈ C∞

c

(
R
N
)
,

we have that θ ∈ K̂λj ,ζj iff γ θ ∈ K̂λj ,γ ζj . Similar arguments show that ψ ∈ Kλ,ζ iff γψ ∈ Kλ,γ ζ ,
that φ ∈ K⊥

λ,ζ iff γφ ∈ K⊥
λ,γ ζ , and that

Lλ,ζ (φ)=Nλ,ζ (φ)+Rλ,ζ +ψ

holds iff

Lλ,γ ζ (γ φ)=Nλ,γ ζ (γ φ)+Rλ,γ ζ + γψ

holds. Therefore (38) follows.
This allows us to conclude J ∗

ε is Γ2-invariant. Indeed, since the solution (φ,ψ) to problem
(℘λ,ζ ) in (11) is unique, (38) guarantees that (γ φ, γψ) is the unique solution to problem (℘λ,γ ζ ).
It follows from (37) and (39) that

J ∗
ε (d, Λ̄, γ τ, γ ζ̄ )= Jε(Vλ,γ ζ + γφ)= Jε

(
γ (Vλ,ζ + φ)

)
= Jε(Vλ,ζ + φ)= J ∗

ε (d, Λ̄, τ, ζ̄ ) for all γ ∈ Γ2,

as claimed. �
To prove Theorem 2 we need the following topological lemma.

Lemma 14. Let D be a connected bounded smooth domain in R
n, n � 2, with nonconnected

boundary. Then there exists a point x0 ∈ R
n \D with the following property: for every v ∈ R

n,
v �= 0, there exist t2 > t1 > 0 such that x0 + t1v and x0 + t2v are in different components of ∂D,
and x0 + tv ∈D for every t ∈ (t1, t2).

Proof. Let K1, . . . ,Kk be the connected components of ∂D, k � 2. Then Kj is an (n − 1)-
dimensional compact connected submanifold of R

n. By Alexander’s and Poincaré’s duality
theorems [23, Chapter 6, Section 2, Theorems 16 and 18],

H̃0
(
R
n \Kj ;Z

) ∼=Hn−1(Kj ;Z)∼=H0(Kj ;Z)∼= Z,
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where H∗(·;Z) and H ∗(·;Z) denote singular homology and cohomology with integer coeffi-
cients. Hence, R

n \Kj has precisely two connected components Dj and Uj , with Dj bounded
and Uj unbounded. Note that, if Dj ∩Ds �= ∅ and j �= s then, either Dj ⊂Ds , or Ds ⊂Dj . Now,
since D is bounded, it must be contained in one of the Dj ’s and, since D is connected, such Dj

is unique. So, after reordering, we conclude that

D =D1 \ (D2 ∪ · · · ∪Dk),

Dj ⊂D1 for all j = 2, . . . , k,

Dj ∩Ds = ∅ for all j, s = 2, . . . , k, j �= s.

Let x0 ∈D2 and let v ∈ R
n, v �= 0. Define

t1 := max{t > 0: x0 + tv ∈D2} and t2 := min{t > t1: x0 + tv ∈ ∂D}.

It is easy to check that they have the desired properties. �
Proof of Theorem 2. Let Γ1 := {1}, and Γ2 := {1,−1} acting by multiplication on R

N−n. We
will prove that the function ϕ : (Ω \ {0})∩ (Rn × {0})→ R defined by

ϕ(ζ ) :=H(0,0)− G2(0, ζ )

H(ζ, ζ )

has a critical point of mountain pass type ζ ∗ ∈ C, which is stable with respect toC1-perturbations,
such that ϕ(ζ ∗) > 0 if 0 is close enough to ∂Ω . Note that, in this case, α(ζ ) :=H(ζ, ζ ) > 0 for
all ζ . The claim then follows from Theorem 12.

First note that, since Ω is Γ -invariant and R
n × {0} is the fixed point set of the Γ -action

on R
N , the normal to ∂Ω at each point x ∈ ∂Ω ∩ (Rn ×{0}) lies in R

n ×{0}. Hence, Ω ∩ (Rn ×
{0}) is a bounded smooth domain in R

n×{0}. Consider the function f : (Ω \{0})∩(Rn×{0})→
R defined by

f (ζ ) :=
{
G2(0,ζ )
H(ζ,ζ )

if ζ ∈ (Ω \ {0})∩ (Rn × {0}),
0 if ζ ∈ ∂Ω ∩ (Rn × {0}).

Note that f (ζ )→ 0 as dist(ζ, ∂Ω)→ 0. Let C0 be the connected component of Ω ∩ (Rn × {0})
containing 0. We consider two cases.

Case 1: C �= C0. Fix two points ξ1, ξ2 ∈ ∂C in different connected components of ∂C, and
consider the set

Θ := {
σ ∈ C0([0,1],C)

: σ(0)= ξ1, σ (1)= ξ2
}
.

It is not difficult to check that there exists ζ ∗ ∈ C such that

f (ζ ∗)= inf max f
(
σ(t)

)

σ∈Θ t∈[0,1]
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Fig. 3.

and ζ ∗ is a critical point of mountain pass type of the function f which is stable with respect to
C1-perturbation (see [12]). Therefore, ζ ∗ is a C1-stable critical point of the function ϕ.

Now, let us estimate f (ζ ∗). Since Ω ∩ (Rn × {0}) is a bounded smooth domain in R
n × {0},

we have that C ∩C0 = ∅. Hence,

rC := dist(C,C0) > 0.

By (24) and (26), there is a constant a := κ2
N

HΩ
> 0 such that, for any ζ ∈ C,

f (ζ )= G2(0, ζ )

H(ζ, ζ )
� a|ζ |−2(N−2) � ar

−2(N−2)
C .

In particular,

f (ζ ∗)� ar
−2(N−2)
C .

Therefore, by (25), there exists ρ0 > 0, depending only on Ω , such that

ϕ(ζ ∗)�H(0,0)− ar
−2(N−2)
C > 0

if dist(0, ∂Ω) < ρ0.

Case 2: C = C0. Let x0 ∈ (Rn × {0}) \ C0 be as in Lemma 14, choose v ∈ R
n × {0}, v �= 0,

orthogonal to x0, and let t2 > t1 > 0 be such that ξ1 := x0 + t1v and ξ2 := x0 + t2v lie in different
components of ∂C0 and x0 + tv ∈ C0 for every t ∈ (t1, t2), see Fig. 3.

Consider the set

Θ := {
σ ∈ C0([0,1],C0 \ {0}): σ(0)= ξ1, σ (1)= ξ2

}
.

As in the previous case, there exists ζ ∗ ∈ C such that

f (ζ ∗)= inf
σ∈Θ max

t∈[0,1]
f
(
σ(t)

)
,

ζ ∗ is a C1-stable critical point of the function f and, hence, also of ϕ.
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To estimate f (ζ ∗), set

r0 := dist(x0,C0) > 0,

and consider the path τ ∈ Θ given by τ(t) := (1 − t)ξ1 + tξ2, t ∈ [0,1]. From (24) and (26),
since x0 is orthogonal to v, we obtain that

f
(
τ(t)

) = G2(0, τ (t))

H(τ(t), τ (t))
� a

∣∣τ(t)∣∣−2(N−2) � a|x0|−2(N−2) � ar
−2(N−2)
0

with a := κ2
N

HΩ
> 0 and, consequently,

f (ζ ∗)� max
t∈[0,1]

f
(
τ(t)

)
� ar

−2(N−2)
0 .

So, by (25), there exists ρ0 > 0, depending only on Ω , such that

ϕ(ζ ∗)�H(0,0)− ar
−2(N−2)
0 > 0

if dist(0, ∂Ω) < ρ0.
This concludes the proof. �

Remark 15. Observe that Theorem 2 remains true if instead of (4) and (5) we assume that Ω
and ω are Γ2-invariant for some closed subgroup Γ2 of O(N − n) satisfying property (II) above.

Proof of Theorem 1. Since Ω is assumed to be connected, Theorem 1 follows from Theorem 2
taking n=N . �
Proof of Theorem 3. Let Γ1 := {e2πij/k ∈ C: j = 0, . . . , k − 1}, acting on R

2 ≡ C by complex
multiplication, and let Γ2 := {1,−1}, acting by multiplication on R

N−2. For every ζ ∈ C with
|ζ | ∈ ( 1

2 ,1) using (24) we obtain

G(0, ζ )� κN
1

|ζ | � 2κN =: c1,

and, for j = 1, . . . , k − 1,

G
(
ζ, e2πij/kζ

)
� κN

1

|ζ − e2πij/kζ | � 2κN
|1 − e2πi/k| =: c2.

The Robin function H depends on r and ρ. Nevertheless it is not difficult to check that

lim
r+ρ→1

H(0,0)
[

min|ζ |∈(r+ρ,1)H(ζ, ζ )− (k − 1)c2

]
= +∞.

Consequently, there exists ρ0 ∈ ( 1 ,1) such that, if r + ρ ∈ (ρ0,1) then
2
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α(ζ )=H(ζ, ζ )−
k−1∑
j=1

G
(
ζ, e2πij/kζ

)
� min|ζ |∈(r+ρ,1)H(ζ, ζ )− (k − 1)c2 > 0 for all |ζ | ∈ (r + ρ,1),

and

ϕ(ζ )=H(0,0)− kG2(0, ζ )

α(ζ )

�H(0,0)− kc2
1

min|ζ |∈(r+ρ,1) H(ζ, ζ )− (k − 1)c2

> 0 for all |ζ | ∈ (r + ρ,1).

Let C := {ζ ∈Ω ∩ (R2 ×{0}): |ζ | ∈ (r+ρ,1)}. Arguing as in the proof of Theorem 2, we prove
that the function

f (ζ ) :=
{
kG2(0,ζ )
α(ζ )

if ζ ∈ C,

0 if ζ ∈ ∂C

has a critical point ζ ∗ ∈ C which is stable with respect to C1-perturbation. Therefore, ζ ∗ is a
C1-stable critical point of ϕ with α(ζ ∗) > 0 and ϕ(ζ ∗) > 0. Since Ω is O(2)-invariant we may
take ζ ∗ := ρ∗(1,0, . . . ,0). The result now follows from Theorem 12. �

Theorems 4 and 5 are special cases of the following result.

Theorem 16. Assume that Ω is Γ -invariant and ω is Γ2-invariant, and that |Γ1| � 2. Then there
exists ε0 > 0 such that, for each ε ∈ (0, ε0), there exists a pair ±uε of Γ2-invariant sign changing
solutions to problem (1) satisfying

|∇uε|2 dx ⇀AN

(
δ0 −

∑
γ∈Γ1

δγ ζ ∗
)

in the sense of measures, as ε → 0,

for some ζ ∗ ∈ (Ω \ {0})∩ (Rn × {0}).
Proof. Since Γ1 acts without fixed points on S

n−1 := {x ∈ R
n: |ζ | = 1}, one has that

min
ζ∈Sn−1

min
γ∈Γ1\{1} |ζ − γ ζ | = a0 > 0.

Hence, for every γ ∈ Γ1 \ {1} and every ζ ∈ (Ω \ {0})∩ (Rn × {0}), we obtain that

G(ζ, γ ζ )� κN

|ζ − γ ζ |N−2
� κN

aN−2
0 |ζ |N−2

and, therefore,

α(ζ ) :=H(ζ, ζ )−
∑

G(ζ, γ ζ )�H(ζ, ζ )− κN

aN−2|ζ |N−2
.

γ∈Γ1\{1} 0
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This, together with (25), implies that

lim|ζ |→0
α(ζ )= −∞ and lim

ζ→∂Ω
α(ζ )= +∞.

Let

O := {
ζ ∈ (

Ω \ {0})∩ (
R
n × {0}): α(ζ ) < 0

}
.

Then O is open in R
n and

inf
ζ∈O

ϕ(ζ )= inf
ζ∈O

[
H(0,0)− |Γ1|G2(0, ζ )

α(ζ )

]
�H(0,0).

Since

ϕ(ζ )→ +∞ as dist(ζ, ∂O)→ 0,

there exists ζ ∗ ∈ O such that

ϕ(ζ ∗)= inf
ζ∈O

ϕ(ζ ).

ζ ∗ is a C1-stable critical point of ϕ with ϕ(ζ ∗) < 0. The result now follows from Theo-
rem 12. �
Proof of Theorem 4. Apply Theorem 16 with n = N , Γ1 = {−1,1} acting by multiplication
on R

N , and Γ2 = {1}. �
Proof of Theorem 5. If N is odd, apply Theorem 16 with n = 2, Γ1 := {e2πij/k ∈ C: j =
0, . . . , k − 1} acting on R

2 ≡ C by complex multiplication, and Γ2 := {1,−1} acting by mul-
tiplication on R

N−2. If N is even, apply Theorem 16 with n = N , Γ1 := {e2πij/k ∈ C: j =
0, . . . , k − 1} acting on RN ≡ CN/2 by complex multiplication, and Γ2 := {1}. �
4. The expansion of the energy

This section is devoted to prove Proposition 10.
First, we describe the asymptotic expansion of the projection of the standard bubble cen-

tered at a point which is inside the hole of our domain. The following result holds (see [17,
Lemma 2.1]).

Lemma 17. Problem ⎧⎨⎩−�u= 0 in R
N \ω,

u= 1 on ∂ω,
u ∈ D1,2

(
RN \ω) (40)
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has a unique solution ϕω. Moreover,

c1

|x|N−2
� ϕω(x)� c2

|x|N−2
∀x ∈ R

N \ω

for some positive constants c1, c2. Furthermore,

lim|x|→+∞|x|N−2ϕω(x)= cω

with

cω = 1

(N − 2)|SN−1|
∫

RN\ω

∣∣∇ϕω(x)∣∣2 dx.
Observe that, if ω = B(0,1) then ϕω(x) = 1

|x|N−2 . The following expansion holds (see [17,
Lemma 2.2]).

Lemma 18. Let

Rε
d,τ (x) := PεUμ,ξ (x)−Uμ,ξ (x)+ αNμ

N−2
2 H(x, ξ)+ αN

1

μ
N−2

2 (1 + |τ |2)N−2
2

ϕω

(
x

ε

)
.

Then there exists a positive constant c such that for any x ∈Ω \ εω

∣∣Rε
d,τ (x)

∣∣ � cε
N−2

4

(
ε
N−1

2

|x|N−2
+ ε

)
if N � 4, (41)

∣∣Rε
d,τ (x)

∣∣ � cε
1
4

(
ε

|x| + √
ε

)
if N = 3, (42)

∣∣∂dRε
d,τ (x)

∣∣ � cε
N−2

4

(
ε
N−1

2

|x|N−2
+ ε

)
if N � 4, (43)

∣∣∂dRε
d,τ (x)

∣∣ � cε
1
4

(
ε

|x| + √
ε

)
if N = 3 (44)

∣∣∂τiRε
d,τ (x)

∣∣ � cε
N
4

(
ε
N−2

2

|x|N−2
+ ε

N−3
2

)
if N � 3, (45)

Proof. The function R :=Rε
d,τ solves −�R = 0 in Ω \ εω with

R(x)= αN

[
− μ

N−2
2

(μ2 + |x − ξ |2)N−2
2

+ μ
N−2

2

|x − ξ |N−2
+ 1

μ
N−2

2 (1 + |τ |2)N−2
2

ϕω

(
x

ε

)]
,

x ∈ ∂Ω,

R(x)= αN

[
− μ

N−2
2

2 2 N−2 +μ
N−2

2 H(x, ξ)+ 1
N−2 2 N−2

]
, x ∈ ∂εω.
(μ + |x − ξ | ) 2 μ 2 (1 + |τ | ) 2
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Therefore (41) and (42) follow, because

ε−N−2
4 R(x)=O

(
ε+ ε

N−2
2

)
, x ∈ ∂Ω and ε−N−2

4 R(x)=O
(
ε−N−3

2
)
, x ∈ ∂εω.

The function Rd(x)= ∂dR
ε
d,τ (x) solves −�Rd = 0 in Ω \ εω with

Rd(x)= αN
N − 2

2
μ

N−4
2 ε

1
2

[
μ2 − |x − ξ |2

(μ2 + |x − ξ |2)N2
− 2μ

(x − ξ, τ )

(μ2 + |x − ξ |2)N2

+ 1

|x − ξ |N−2
+ 2μ

(x − ξ, τ )

|x − ξ |N − 1

μN−2(1 + |τ |2)N−2
2

ϕω

(
x

ε

)]
, x ∈ ∂Ω,

Rd(x)= αN
N − 2

2
μ

N−4
2 ε

1
2

[
μ2 − |x − ξ |2

(μ2 + |x − ξ |2)N2
− 2μ

(x − ξ, τ )

(μ2 + |x − ξ |2)N2

+H(x, ξ)+ 2μ

N − 2

(∇yH(x, ξ), τ
)− 1

μN−2(1 + |τ |2)N−2
2

]
, x ∈ ∂εω.

Therefore (43) and (44) follow, because

ε−N−2
4 Rd(x)=O

(
ε+ ε

N−2
2

)
, x ∈ ∂Ω and ε−N−2

4 Rd(x)=O
(
ε−N−3

2
)
, x ∈ ∂εω.

The function Ri(x)= ∂τiR
ε
d,τ (x) solves −�Ri = 0 in Ω \ εω with

Ri(x)= αN(N − 2)μ
N
2

[
(x − ξ)i

(μ2 + |x − ξ |2)N2
− (x − ξ)i

|x − ξ |N2
− 1

μN−1

τi

(1 + |τ |2)N2
ϕω

(
x

ε

)]
,

x ∈ ∂Ω,

Ri(x)= αN(N − 2)μ
N
2

[
(x − ξ)i

(μ2 + |x − ξ |2)N2
+ ∂yiH(x, ξ)

N − 2
− 1

μN−1

τi

(1 + |τ |2)N2
]
,

x ∈ ∂εω.

Therefore (45) follows, because

ε−N
4 Ri(x)=O

(
ε+ ε

N−3
2

)
, x ∈ ∂Ω and ε−N

4 Ri(x)=O
(
ε−N−2

2
)
, x ∈ ∂εω.

This finishes the proof. �
The asymptotic expansion of the projection of the standard bubble centered at a point inside

the domain is, by now, a standard fact. We refer the reader to [22]. We state the result in the
following.

Lemma 19. Let η > 0 be fixed. If (8) and (9) hold, then the following facts hold true. Let

rε (x) := PεUλ,ζ (x)−Uλ,ζ (x)+ αNλ
N−2

2 H(x, ζ ).
Λ,ζ
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Then, for any x ∈Ω \ εω,

0 � rεΛ,ζ (x)� cλ
N+2

2 , (46)

for some positive and fixed constant c. Furthermore, for any x ∈Ω \ εω
∣∣∂ΛrεΛ,ζ (x)∣∣ � cε

N+2
4 if N � 4,

∣∣∂ΛrεΛ,ζ (x)∣∣ � cε
3
4 if N = 3 (47)

and for i = 1, . . . ,N

∣∣∂ζi rεΛ,ζ (x)∣∣ � cε
N+2

4 , (48)

for some positive and fixed constant c.

We have now all the elements needed to perform the expansion (27).

Proof of Proposition 10. For the sake of simplicity, we will prove estimate (27) when k = 1.
Let η > 0 be fixed and assume (7)–(9) hold with λ, ζ instead of λ1, ζ1. We will prove that

Jε(PεUμ,ξ ± PεUλ,ζ )

= 2a1 − F(τ)

(
ε

μ

)N−2(
1 + o(1)

)
− a2

(
H(0,0)μN−2 +H(ζ, ζ )λN−2 ∓ 2G(0, ζ )λ

N−2
2 μ

N−2
2

)(
1 + o(1)

)
, (49)

uniformly in the C1-sense for (τ, ζ, d,Λ) satisfying (7)–(9). The constants that appear in (49)
are given by

a1 := α
p+1
N

∫
RN

1

(1 + |y|2)N dy, (50)

a2 := 1

2
α
p+1
N

∫
RN

1

(1 + |y|2)N+2
2

dy, (51)

We have that

Jε(PεUμ,ξ ± PεUλ,ζ )

= 1

2

∫
Ω\εω

∣∣∇(PεUμ,ξ ± PεUλ,ζ )
∣∣2 − 1

p+ 1

∫
Ω\εω

|PεUμ,ξ ± PεUλ,ζ |p+1

= 1

2

∫
PεUμ,ξU

p
μ,ξ + 1

2

∫
PεUλ,ζU

p
λ,ζ ±

∫
PεUλ,ζU

p
μ,ξ
Ω\εω Ω\εω Ω\εω
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− 1

p+ 1

∫
Ω\εω

|PεUμ,ξ ± PεUλ,ζ |p+1

= 1

N

∫
Ω\εω

U
p+1
μ,ξ + 1

2

∫
Ω\εω

(PεUμ,ξ −Uμ,ξ )U
p
μ,ξ

+ 1

N

∫
Ω\εω

U
p+1
λ,ζ + 1

2

∫
Ω\εω

(PεUλ,ζ −Uλ,ζ )U
p
λ,ζ ±

∫
Ω\εω

PεUλ,ζU
p
μ,ξ

− 1

p+ 1

∫
Ω\εω

(|PεUμ,ξ ± PεUλ,ζ |p+1 −U
p+1
μ,ξ −U

p+1
λ,ζ

)
. (52)

Now, setting x = μy we obtain

∫
Ω\εω

U
p+1
μ,ξ = α

p+1
N

∫
Ω\εω

μN

(μ2 + |x − ξ |2)N dx

= α
p+1
N

∫
Ω\εω
μ

1

(1 + |y − τ |2)N dy

= α
p+1
N

∫
RN

1

(1 + |y|2)N dy +O

((
ε

μ

)N
+μN

)
. (53)

By Lemma 18 we have that∫
Ω\εω

(PεUμ,ξ −Uμ,ξ )U
p
μ,ξ dx

= −αp+1
N

∫
Ω\εω

(
μ

N−2
2 H(x, ξ)+ 1

μ
N−2

2 (1 + |τ |2)N−2
2

ϕω

(
x

ε

))
μ

N+2
2

(μ2 + |x − ξ |2)N+2
2

dx

+
∫

Ω\εω
Rε
d,τU

p
μ,ξ dx. (54)

Now, setting x − ξ = μy we have

∫
Ω\εω

μ
N−2

2 H(x, ξ)
μ

N+2
2

(μ2 + |x − ξ |2)N+2
2

dx

=
∫

Ω\εω−ξ

μN−2H(μy + ξ, ξ)
1

(1 + |y|2)N+2
2

dy
μ
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= μN−2H(0,0)

(∫
RN

1

(1 + |y|2)N+2
2

dy + o(1)

)
. (55)

Moreover, we get

1

μ
N−2

2 (1 + |τ |2)N−2
2

∫
Ω\εω

ϕω

(
x

ε

)
μ

N+2
2

(μ2 + |x − ξ |2)N+2
2

dx

= 1

(1 + |τ |2)N−2
2

∫
Ω\εω−ξ

μ

ϕω

(
μ

ε
(y + τ)

)
1

(1 + |y|2)N+2
2

dy

=
(
ε

μ

)N−2 1

(1 + |τ |2)N−2
2

∫
Ω\εω−ξ

μ

fε(y)
1

|y + τ |N−2

1

(1 + |y|2)N+2
2

dy

=
(
ε

μ

)N−2(
cω

1

(1 + |τ |2)N−2
2

∫
RN

1

|y + τ |N−2

1

(1 + |y|2)N+2
2

dy + o(1)

)
. (56)

Here we have set fε(y) := (
μ
ε
)N−2|y + τ |N−2ϕω(

μ
ε
(y + τ)) and applied Lebesgue’s dominated

convergence theorem and Lemma 17. Therefore∫
Ω\εω

(PεUμ,ξ −Uμ,ξ )U
p
μ,ξ dx

= −αp+1
N c3H(0,0)μN−2(1 + o(1)

)− F(τ)

(
ε

μ

)N−2(
1 + o(1)

)
, (57)

where

c3 :=
∫

RN

1

(1 + |y|2)N+2
2

dy

and

F(τ) := α
p+1
N cω

1

(1 + |τ |2)N−2
2

∫
RN

1

|y + τ |N−2

1

(1 + |y|2)N+2
2

dy.

A standard computation proves∫
Ω\εω

U
p+1
λ,ζ = α

p+1
N

∫
RN

1

(1 + |y|2)N dy +O
(
λN

) = α
p+1
N c1 +O

(
λN

)
(58)

and also
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∫
Ω\εω

(PεUλ,ζ −Uλ,ζ )U
p
λ,ζ dx

= −αp+1
N

∫
Ω\εω

λ
N−2

2 H(x, ζ )
λ
N+2

2

(λ2 + |x − ζ |2)N+2
2

dx +
∫

Ω\εω
rε,λU

p
λ,ζ dx

= −αp+1
N λN−2H(ζ, ζ )

(∫
RN

1

(1 + |y|2)N+2
2

dy + o(1)

)

= −αp+1
N c3λ

N−2H(ζ, ζ )
(
1 + o(1)

)
. (59)

Now we have to estimate the interaction. Setting μy = x − ξ we obtain∫
Ω\εω

U
p
μ,ξPεUλ,ζ dx

= α
p+1
N

∫
Ω\εω

μ
N+2

2

(μ2 + |x − ξ |2)N+2
2

×
[

λ
N−2

2

(λ2 + |x − ζ |2)N−2
2

− λ
N−2

2 H(x, ζ )+ rε,λ(x)

]
dx

= α
p+1
N λ

N−2
2 μ

N−2
2

∫
{Ω\εω}−ξ

μ

1

(1 + |y|2)N+2
2

×
[

1

(λ2 + |μy + ξ − ζ |2)N−2
2

−H(μy + ξ, ζ )

]
dy

+ α
p+1
N μ

N−2
2

∫
{Ω\εω}−ξ

μ

1

(1 + |y|2)N+2
2

rε,μ(μy + ξ) dy

= α
p+1
N λ

N−2
2 μ

N−2
2 G(ζ, ξ)

∫
RN

1

(1 + |y|2)N+2
2

+ o
(
λ
N−2

2 μ
N−2

2
)

= α
p+1
N c3λ

N−2
2 μ

N−2
2 G(ζ, ξ)

(
1 + o(1)

)
. (60)

It remains to estimate the term

1

p+ 1

∫
Ω\εω

(|PεUμ,ξ ± PεUλ,ζ |p+1 −U
p+1
μ,ξ −U

p+1
λ,ζ

)
.

Let η > 0 be fixed such that B(0, η) ∩ B(ζ, η)= ∅. If ε is small enough then εω ⊂ B(0, η) and
we can write
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∫
Ω\εω

(|PεUμ,ξ ± PεUλ,ζ |p+1 −U
p+1
μ,ξ −U

p+1
λ,ζ

)
=

∫
B(0,η)\εω

. . . +
∫

B(ζ,η)

. . . +
∫

Ω\{B(0,η)∪B(ζ,η)}
. . . . (61)

It is easy to check that ∫
Ω\{B(0,η)∪B(ζ,η)}

. . . =O

( ∫
Ω\{B(0,η)∪B(ζ,η)}

(
U
p+1
μ,ξ +U

p+1
λ,ζ

))

=O
(
μN + λN

)
. (62)

Via a Taylor expansion we have, for some t ∈ [0,1],∫
B(0,η)\εω

(|PεUμ,ξ ± PεUλ,ζ |p+1 −U
p+1
μ,ξ −U

p+1
λ,ζ

)
dx

=
∫

B(0,η)\εω

(∣∣Uμ,ξ + (PεUμ,ξ −Uμ,ξ ± PεUλ,ζ )
∣∣p+1 −U

p+1
μ,ξ

)
dx −

∫
B(0,η)\εω

U
p+1
λ,ζ dx

= (p+ 1)
∫

B(0,η)\εω
U
p
μ,ξ (PεUμ,ξ −Uμ,ξ ± PεUλ,ζ ) dx

+ p(p+ 1)

2

∫
B(0,η)\εω

∣∣Uμ,ξ + t (PεUμ,ξ −Uμ,ξ ± PεUλ,ζ )
∣∣p

× (PεUμ,ξ −Uμ,ξ ± PεUλ,ζ ) dx −
∫

B(0,η)\εω
U
p+1
λ,ζ dx. (63)

Setting again μy = x − ξ , we have that∫
B(0,η)\εω

U
p
μ,ξPεUλ,ζ dx

= α
p+1
N

∫
B(0,η)\εω

μ
N+2

2

(μ2 + |x − ξ |2)N+2
2

×
[

λ
N−2

2

(λ2 + |x − ζ |2)N−2
2

− λ
N−2

2 H(x, ζ )+ rε,λ(x)

]
dx

= α
p+1
N λ

N−2
2 μ

N−2
2

∫
{B(0,η)\εω}−ξ

1

(1 + |y|2)N+2
2

μ
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×
[

1

(λ2 + |μy + ξ − ζ |2)N−2
2

−H(μy + ξ, ζ )

]
dy

+ α
p+1
N μ

N−2
2

∫
{B(0,η)\εω}−ξ

μ

1

(1 + |y|2)N+2
2

rε,μ(μy + ξ) dy

= α
p+1
N λ

N−2
2 μ

N−2
2 G(ζ, ξ)

∫
RN

1

(1 + |y|2)N+2
2

+ o
(
λ
N−2

2 μ
N−2

2
)

= α
p+1
N c3λ

N−2
2 μ

N−2
2 G(ζ, ξ)

(
1 + o(1)

)
. (64)

The term
∫
B(0,η)\εω U

p
μ,ξ (PεUμ,ξ −Uμ,ξ ) dx was estimated in (57). The remaining terms are of

lower order.
In a similar way, via a Taylor expansion we have, for some t ∈ [0,1],∫

B(ζ,η)

(|PεUμ,ξ ± PεUλ,ζ |p+1 −U
p+1
μ,ξ −U

p+1
λ,ζ

)
dx

=
∫

B(ζ,η)

(∣∣Uλ,ζ + (PεUλ,ζ −Uλ,ζ ± PεUμ,ξ )
∣∣p+1 −U

p+1
λ,ζ

)
dx −

∫
B(ζ,η)

U
p+1
μ,ξ dx

= (p+ 1)
∫

B(ζ,η)

U
p
λ,ζ (PεUλ,ζ −Uλ,ζ ± PεUμ,ξ ) dx

+ p(p+ 1)

2

∫
B(ζ,η)

∣∣Uλ,ζ + t (PεUλ,ζ −Uλ,ζ ± PεUμ,ξ )
∣∣p

×(PεUλ,ζ −Uλ,ζ ± PεUμ,ξ ) dx −
∫

B(ζ,η)

U
p+1
μ,ξ dx. (65)

Setting now λy = x − ζ , we have∫
B(ζ,η)

U
p
λ,ζ PεUμ,ξ dx

= α
p+1
N

∫
B(ζ,η)

λ
N+2

2

(λ2 + |x − ζ |2)N+2
2

×
[

μ
N−2

2

(μ2 + |x − ξ |2)N−2
2

−μ
N−2

2 H(x, ξ)− 1

μ
N−2

2

ϕω

(
x

ε

)
+Rε,μ(x)

]
dx

= α
p+1
N λ

N−2
2 μ

N−2
2

∫
1

(1 + |y|2)N+2
2

B(0,η/λ)
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×
[

1

(μ2 + |λy + ζ − ξ |2)N−2
2

−H(λy + ζ, ξ)

]
dy

− α
p+1
N λ

N−2
2

∫
B(0,η/λ)

1

(1 + |y|2)N+2
2

[
1

μ
N−2

2

ϕω

(
λy + ζ

ε

)
+Rε,μ(λy + ζ )

]
dy

= α
p+1
N λ

N−2
2 μ

N−2
2 G(ζ, ξ)

∫
RN

1

(1 + |y|2)N+2
2

+ o
(
λ
N−2

2 μ
N−2

2
)

= α
p+1
N c3λ

N−2
2 μ

N−2
2 G(ζ, ξ)

(
1 + o(1)

)
. (66)

The term
∫
B(ζ,η)

U
p
λ,ζ (PεUλ,ζ −Uλ,ζ ) dx was estimated in (59).

Collecting all the previous estimates, we get that expansion (49) holds true uniformly for
(d,Λ, τ, ζ ) satisfying (7)–(9).

Arguing in a similar way and using estimates (44), (47) and (48), we prove that the expansion
holds true also uniformly in the C1-sense. This proves our claim. �
5. The associated nonlinear problem

This section is devoted to prove Proposition 7.
First, we estimate the ‖ ‖∗∗-norm of N̂λ,ζ (ϑ). It is convenient, and sufficient for our purposes,

to assume ‖ϑ‖∗ < 1. In order to estimate ‖N̂λ,ζ (ϑ)‖∗∗ we need to distinguish two cases: N � 6
and N > 6.

If N � 6, then p � 2 and we can estimate∣∣w− 4
N−2 N̂λ,ζ (ϑ)

∣∣ � Cw(p−2)β+2β− 4
N−2 ‖ϑ‖2∗,

hence ∥∥N̂λ,ζ (ϑ)
∥∥∗∗ � C‖ϑ‖2∗.

Assume now that N > 6. If |ϑ | � 1
2 |V̂λ,ζ |, we see directly that |N̂λ,ζ (ϑ)| � C|ϑ |p and hence

∣∣w− 4
N−2 N̂λ,ζ (ϑ)

∣∣ � Cwp−2‖ϑ‖p∗ � Cε−N−6
2 ‖ϑ‖p∗ .

Let us consider now the case |ϑ | � 1
2 |V̂λ,ζ |. In the region where dist(y, ∂Ωε)� δε− 1

2 for some

δ > 0, one has that V̂λ,ζ (y)� αδw(y) for some αδ > 0; hence in this region, we have

∣∣w− 4
N−2 N̂λ,ζ (ϑ)

∣∣ � Cw2β−1‖ϑ‖2∗ � Cε(2β−1) N−2
2 ‖ϑ‖2∗.

On the other hand, when dist(y, ∂Ωε) � δε− 1
2 , the following facts occur: w(y), V̂λ,ζ (y) =

O(ε
N−2

2 ), and

V̂λ,ζ (y)= Cε
N−1

2 dist(y, ∂Ωε)
(
1 + o(1)

)
as y → ∂Ωε.
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This second assertion is a consequence of the fact that the Green function of the domain
Ω vanishes linearly with respect to dist(x, ∂Ω) as x → ∂Ω . These two facts imply that, if

dist(y, ∂Ωε)� δε− 1
2 , then

∣∣w− 4
N−2 N̂λ,ζ (ϑ)

∣∣ �w− 4
N−2 |V̂λ,ζ |p−2|ϑ |2

� Cw− 4
N−2

(
ε
N−1

2 dist(y, ∂Ωε)
)p−2 dist(y, ∂Ωε)2

∣∣Dϑ(y)∣∣2
� Cw− 4

N−2 +2β+ 2
N−2 ε

N−1
2 (p−2)− p

2 ‖ϑ‖2∗ � Cε−N−4
2 ‖ϑ‖2∗.

Combining these relations we get

∥∥N̂λ,ζ (ϑ)
∥∥∗∗ �

{
C‖ϑ‖2∗ if N � 6,

C(ε−N−4
2 ‖ϑ‖2∗ + εp−2‖ϑ‖p∗ ) if N > 6.

Next we estimate the term R̂λ,ζ . In the region |y− ζi√
ε
|> δ√

ε
, for any i = 0,1, . . . , k and some

positive small δ, direct computations show that |R̂λ,ζ | � Cε
N+2

2 . Assume now that |y− ζi√
ε
| � δ√

ε

for some i = 0,1, . . . , k. Then, in this region, using either Lemma 18 or Lemma 19, we get

|R̂λ,ζ | � Cε
N−2

2 U
p−1
λi√
ε
,
ζi√
ε

.

Using the boundedness of λi√
ε
, we conclude that

‖R̂λ,ζ‖∗∗ � Cε
N−2

2 . (67)

Now, we are in position to prove that problem (14) has a unique solution φ̂ = φ̃ + ψ̃ , with
ψ̃ := Tλ,ζ (R̂λ,ζ ) (see Proposition 6), having the required properties.

Problem (14) is equivalent to solving a fixed point problem. Indeed, φ̂ = φ̃ + ψ̃ is a solution
of (14) if and only if

φ̃ = Tλ,ζ
(
N̂λ,ζ (φ̃ + ψ̃)

) =:Aλ,ζ (φ̃),

because ψ̃ = Tλ,ζ (R). We shall prove that the operator Aλ,ζ defined above is a contraction inside
a properly chosen region.

First observe that, from the definition of ψ̃ , from (67) and from Proposition 6, we infer that

‖ψ̃‖∗∗ � C
(|λ log ε| + ε

N−2
2

)
and for ‖ϑ‖∗ � 1,

∥∥N̂λ,ζ (ψ̃ + ϑ)
∥∥∗∗ �

{
C(‖ϑ‖2∗ + εN−2) if N � 6,

−N−4
2 2 p−2 p N

2
(68)
C(ε ‖ϑ‖∗ + ε ‖ϑ‖∗ + ε ) if N > 6.
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Let us set

Fε := {
ϑ ∈H 1

0 (Ωε): ‖ϑ‖∗ � δε
N−2

2
}
.

From Proposition 6 and (68) we conclude that, for ε sufficiently small and any ϑ ∈ Fε we have∥∥Aλ,ζ (ϑ)
∥∥∗ � ε

N−2
2 .

Now we will show that the map Aλ,ζ is a contraction for any ε small enough. That will imply
that Aλ,ζ has a unique fixed point in Fε and, hence, that problem (14) has a unique solution.

For any ϑ1, ϑ2 in Fε we have∥∥Aλ,ζ (ϑ1)−Aλ,ζ (ϑ2)
∥∥∗ � C

∥∥N̂λ,ζ (ψ̃ + ϑ1)− N̂λ,ζ (ψ̃ + ϑ2)
∥∥∗∗,

hence we just need to check that N̂λ,ζ is a contraction in its corresponding norms. By definition
of N̂λ,ζ

DϑN̂λ,ζ (ϑ)= p
[
f ′(V̂λ,ζ + ϑ)− f ′(V̂λ,ζ )

]
.

Hence we get ∣∣N̂λ,ζ (ψ̃ + ϑ1)− N̂λ,ζ (ψ̃ + ϑ2)
∣∣ � CV̂

p−2
λ,ζ |ϑ̄ ||ϑ1 − ϑ2|

for some ϑ̄ in the segment joining ψ̃ + ϑ1 and ψ̃ + ϑ2. Hence, we get for small enough ‖ϑ̄‖∗,

ω− 4
N−2

∣∣N̂λ,ζ (ψ̃ + ϑ1)− N̂λ,ζ (ψ̃ + ϑ2)
∣∣ � Cεp−2+2β‖ϑ̄‖∗‖ϑ1 − ϑ2‖∗.

We conclude that there exists c ∈ (0,1) such that∥∥N̂λ,ζ (ψ̃ + ϑ1)− N̂λ,ζ (ψ̃ + ϑ2)
∥∥∗∗ � c‖ϑ1 − ϑ2‖∗.

Arguing like in [11], we obtain the estimate (19). This concludes the proof.
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