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We consider the following Dirichlet boundary value problem

{
−Δu = u5−ε + λuq , u > 0 in Ω;
u = 0 on ∂Ω,

(0.1)

where Ω is a smooth bounded domain in R3, 1 < q < 3, the parameters λ > 0 and 
ε > 0. By Lyapunov–Schmidt reduction method and the Mountain Pass Theorem, 
we prove that in suitable ranges for the parameters λ and ε, problem (0.1) has at 
least two solutions. Additionally if 2 ≤ q < 3, we prove the existence of at least three 
solutions. Consequently, we prove a non-uniqueness result for a subcritical problem 
with an increasing nonlinearity.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in the following semilinear elliptic boundary value problem

{
−Δu = up + λuq, u > 0 in Ω;
u = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in R3, λ is a positive parameter and p > q > 1.
Existence and multiplicity of solutions to (1.1) have been studied intensively by many researchers for the 

exponents p and q in different ranges.
Let us mention the question of existence and multiplicity of solutions to (1.1) for q = 1. In the following, 

λ1 > 0 denotes the first eigenvalue of −Δ under Dirichlet boundary condition.
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(a) If 1 < p < 5, for 0 < λ < λ1, then a solution can be found by the standard constrained minimization 
procedure thanks to compactness of Sobolev embedding H1

0 (Ω) ↪→ Lp+1(Ω).
(b) If p ≥ 5, this case is more delicate, since for p = 5 the embedding loses compactness while for p > 5

Sobolev embedding fails. Pohozaev [16] proved that if Ω is strictly star-shaped, then there is no solution 
to (1.1) for λ ≤ 0 and p ≥ 5. For the supercritical case, del Pino, Dolbeault and Musso [9], established 
existence and multiplicity of solutions to problem (1.1) when p is supercritical but sufficiently close to 5. 
For p = 5, the great contribution to this case was the pioneering work of Brézis and Nirenberg [3]. They 
obtained that if q = 1, (1.1) has a solution if and only if λ ∈ (1

4λ1, λ1) when Ω is a ball. The authors also 
considered the case q > 1. More precisely, if 1 < q ≤ 3, there exists a solution if and only if λ > 0 is large 
enough. If 3 < q < 5, (1.1) has a solution for every λ > 0. In addition, when Ω is a ball, they gave the 
following conjecture, which is based on numerical computations.

If q = 3, there is some λ̃ such that
• for λ > λ̃, there is a unique solution of (1.1);
• for λ ≤ λ̃, there is no solution of (1.1).
If 1 < q < 3, there is some λ̃ such that
• for λ > λ̃, there are two solutions of (1.1);
• for λ = λ̃, there is a unique solution of (1.1);
• for λ < λ̃, there is no solution of (1.1).
Afterwards, Atkinson and Peletier [1] proved the nonuniqueness of solutions to (1.1) conjectured by Brézis 

and Nirenberg for p = 5 and 1 < q < 3. For the problem in a ball in RN , not restricting to integer values 
of N , they established for 2 < N < 4, p = N+2

N−2 and 1 < q < 6−N
N−2 , that there exists some λ̃ > 0 such that 

(1.1) has at least two solutions for any λ > λ̃, and it has no solution for λ < λ̃. Rey [18] provided another 
partial answer to above conjecture. He obtained that for p = 5 and 2 < q < 3, λ > 0 large enough, problem 
(1.1) has at least Cat(Ω) + 1 solutions, where Ω is any smooth and bounded domain in R3 and Cat(Ω)
denotes Ljusternik–Schnirelman category of Ω.

The purpose of this paper is to establish multiplicity of solutions to problem (1.1) when p approaches to 
the critical exponent from below. Namely, we consider

{
−Δu = u5−ε + λuq, u > 0 in Ω;
u = 0 on ∂Ω,

(1.2)

where Ω is a smooth bounded domain in R3, 1 < q < 3, λ > 0 and ε > 0. In the following, we write p = 5 −ε. 
It is known that solutions to problem (1.2) correspond to the critical points of the following functional

J(u) = 1
2

∫
Ω

|∇u|2 − 1
p + 1

∫
Ω

|u|p+1 − λ

q + 1

∫
Ω

|u|q+1, u ∈ H1
0 (Ω). (1.3)

In order to state our results, we introduce some notations. Let us consider Green’s function G(x, y), 
solution for any given y ∈ Ω of

{
−ΔxG(x, y) = δy(x) in Ω;
G(x, y) = 0 on ∂Ω,

(1.4)

and its regular part H(x, y) = 1
4π|x−y| −G(x, y). Then H(x, y) satisfies

{−ΔxH(x, y) = 0 in Ω;
H(x, y) = 1 on ∂Ω.

(1.5)

4π|x−y|
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The Robin’s function of Ω is defined as R(x) = H(x, x). So R(x) is smooth, R(x) → +∞ as x → ∂Ω, and it 
is positive by the maximum principle. Thus R(x) has a minimum in Ω, and hence it has at least one critical 
point ξ0 ∈ Ω.

Our main results can be stated as follows.

Theorem 1.1. Let 1 < q < 3, we have:
(i) For any ε0 > 0 small, there exists λ0 = λ0(q, ε0, Ω) > 0, such that problem (1.2) has a mountain pass 

solution u1, for all λ ≥ λ0, and 0 ≤ ε ≤ ε0, that satisfies J(u1) <
√

3
4 π2.

(ii) For any given λ > 0, there exists ε1 = ε1(λ) > 0, such that for ε ∈ (0, ε1), there exists a large solution 
u2 of (1.2) of the form

u2(x) = 3 1
4

(Λ∗ε)
1
2

((Λ∗ε)2 + |x− ξ∗|2)
1
2

(
1 + o(1)

)
, (1.6)

satisfying

J(u2) =
√

3
4 π2 −

√
3

16 π2ε log ε + O(ε), (1.7)

where ξ∗ → ξ0 with R(ξ0) = minξ∈Ω R(ξ), Λ∗ → Λ0 with Λ0 = (128R(ξ0))−1 and o(1) → 0 uniformly in Ω̄
as ε → 0.

Corollary 1.1. Given 1 < q < 3. For all λ sufficiently large there exists ε̃(λ) > 0 such that for any ε ∈ (0, ̃ε)
there exist two distinct solutions u1 and u2 of (1.2), such that J(u1) <

√
3

4 π2 < J(u2).

Remark 1.1. In the case that Ω is the unit ball B(0, 1), we have ξ0 = 0 and R(0) = 1/(4π).

Theorem 1.2. Assume that 2 ≤ q < 3, and consider the problem (1.2) with

λ =
{
λε−

3−q
2 if 2 < q < 3,

λε−
1
2 |log(ε)|−1 if q = 2.

(1.8)

Then there exists λ0 > 0 depending on q, and Ω, such that for any 0 < λ < λ0, there exist two positive 
numbers Λ∗

−(λ) < Λ∗
+(λ), such that there exists ε̃ small enough such that for all ε ∈ (0, ̃ε) there are two 

solutions u± of the form

u±(x) = 3 1
4

(Λ∗
±ε)

1
2

((Λ∗
±ε)2 + |x− ξε|2)

1
2

(
1 + o(1)

)
, (1.9)

satisfying

J(u+) > J(u−) >
√

3
4 π2, (1.10)

where o(1) → 0 uniformly as ε → 0, and ξε → ξ0 with R(ξ0) = minξ∈Ω R(ξ), Λ∗
± → Λ± as ε → 0.

From the proof of Theorem 1.2, we actually obtain explicit formulae for the numbers λ0 and Λ±. Next 
we show the case 2 < q < 3, for q = 2, we can proceed similarly.
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Let us consider the function

f(Λ) = 128R(ξ0)bΛ− 3−q
2 − bΛ− 5−q

2 , where b = 1
8
π1/2

5 − q

(q + 1)
3 q−1

4

Γ ( q+1
2 )

Γ ( q−2
2 )

.

We call λ0 the maximum value of f(Λ), that is

λ0 := max
Λ>0

f(Λ) = b
(
128R(ξ0)

) 5−q
2

(
3 − q

5 − q

) 5−q
2 2

3 − q
,

which is attained at Λ0, given by

Λ0 = 5 − q

3 − q

(
128R(ξ0)

)−1
.

Thus for any λ, such that 0 < λ < λ0, the equation λ = f(Λ) has exactly two solutions satisfying

(
128R(ξ0)

)−1
< Λ−(λ) < Λ0 < Λ+(λ). (1.11)

Note that the solutions of (1.2) in the (λ, u) space can be identified with a set in the (λ, m)-plane, where 
m = u(ξ0) = ‖u‖∞. This gives an interpretation of our results in terms of a bifurcation diagram for positive 
solutions and ε > 0 small.

Consequently, the result in Theorem 1.2 can be portrayed as representing approximately the upper 
turning point as

P ε ∼
(
λ0ε

− 3−q
2 , 3 1

4 (Λ0)−
1
2 ε−

1
2
)
,

while the set is itself near this point approximated by the graph

λ = ε−
3−q
2 f

(
3 1

2
(
εm2)−1) for m ∼ ε−

1
2 .

The next corollary, gives the existence of at least three solution for (1.2).

Corollary 1.2. Given 2 < q < 3. For any ε > 0 sufficiently small there exists λ = λ(ε) large such that there 
exist three distinct solutions u1 and u± of (1.2), such that J(u1) <

√
3

4 π2 < J(u−) < J(u+).

We regard ε > 0 as a small parameter, solution u2 in Theorem 1.1 will be constructed by Lyapunov–
Schmidt reduction procedure. This method has been used broadly by many authors to study existence and 
multiplicity of bubble solutions to elliptic equations, which was first developed by Bahri and Coron [2]. We 
refer to the survey of del Pino and Musso [8], also we can see [7,11,13–15,19,20] and the references therein.

Finally, we mention some contributions to the elliptic equation with two powers in the whole space RN . 
J. Campos [5] considered the existence of bubble-tower solutions to

−Δu = u
N+2
N−2±ε + uq, u > 0 in R

N ; u(z) → 0 as |z| → ∞, (1.12)

where N
N−2 < q < N+2

N−2 with N ≥ 3 and ε > 0 small. These solutions behave like a superposition of 
“bubbles” of different blow-up orders centered at the origin. Recently, Dávila, del Pino and Guerra [6]
studied nonuniqueness of positive solution of the following problem

−Δu + u = up + λuq, u > 0 in R
3; u(z) → 0 as |z| → ∞. (1.13)
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More precisely, the authors obtained at least three solutions to problem (1.13) if 1 < q < 3, λ > 0 is 
sufficiently large and fixed, and p < 5 is close enough to 5.

2. Energy asymptotic expansion

We recall that, according to [4], the functions

wμ,ξ(x) = 3 1
4

μ
1
2

(μ2 + |x− ξ|2) 1
2

μ > 0, ξ ∈ R
3,

are the only radial solutions of the problem

−Δw = w5, w > 0 in R
3. (2.1)

As ξ ∈ Ω and μ goes to zero, these functions provide us with approximate solutions to the problem that 
we are interested in. However, in view of the Dirichlet boundary condition, the approximate solution needs 
to be improved.

From now on we assume that ξ ∈ Ω and is far from the boundary of Ω, that is, there exists δ > 0 such 
that

d(ξ, ∂Ω) ≥ δ. (2.2)

Let Uμ,ξ(x) be the unique solution of

−ΔUμ,ξ = w5
μ,ξ in Ω; Uμ,ξ = 0 on ∂Ω. (2.3)

We have the following estimates.

Lemma 2.1. Let d(ξ, ∂Ω) ≥ δ with some δ > 0, for μ > 0 small enough, one has
(a) 0 < Uμ,ξ(x) ≤ wμ,ξ(x),
(b) Uμ,ξ(x) = wμ,ξ(x) − 4π3 1

4μ
1
2H(x, ξ) + O(μ 5

2 ).

Proof. By the maximum principle, we obtain (a). Now we define

D(x) = Uμ,ξ(x) − wμ,ξ(x) + 4π3 1
4μ

1
2H(x, ξ).

Observe that for x ∈ ∂Ω, as μ → 0,

D(x) = 3 1
4μ

1
2

[
1

|x− ξ| −
1

(μ2 + |x− ξ|2) 1
2

]
∼ μ

5
2 |x− ξ|−3.

Then D(x) satisfies

−ΔD = 0 in Ω; D = O
(
μ

5
2
)

as μ → 0 on ∂Ω. (2.4)

Therefore (b) follows from the maximum principle. �
In the following we write U = Uμ,ξ, we now compute the energy expansion J(U), where J(U) is given 

by (1.3).
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Lemma 2.2. Let d(ξ, ∂Ω) ≥ δ, assume that μ > 0 is small enough, then if 2 < q < 3,

J(U) = a0 + a1μR(ξ) − a2ε logμ + a3ε− λa4μ
5−q
2 + O

(
λμ

q+1
2
)

+ O
(
μ2) + o(ε). (2.5)

If q = 2,

J(U) = a0 + a1μR(ξ) − a2ε logμ + a3ε + λa5μ
3
2 logμ + O

(
λμ

3
2
)

+ O
(
μ2) + o(ε). (2.6)

If 1 < q < 2,

J(U) = a0 + a1μR(ξ) − a2ε logμ + a3ε− λa6μ
q+1
2 + O

(
λμ

5−q
2
)

+ O
(
μ2) + o(ε), (2.7)

where o(ε) is uniform in the C1-sense on the point ξ satisfying (2.2) as ε → 0, ai, i = 0, 1, . . . , 6, are some 
positive constants.

Proof. We write J(U) = J5(U) + (Jp(U) − J5(U)) + Jλ(U), where

Jp(U) = 1
2

∫
Ω

|∇U |2 − 1
p + 1

∫
Ω

Up+1 and Jλ(U) = − λ

q + 1

∫
Ω

Uq+1.

Since U satisfies −ΔU = w5
μ,ξ in Ω and U = 0 on ∂Ω, we write U = πμ,ξ + wμ,ξ, then we have

J5(U) = 1
2

∫
Ω

w5
μ,ξU − 1

6

∫
Ω

U6

= 1
3

∫
Ω

w6
μ,ξ −

1
2

∫
Ω

w5
μ,ξπμ,ξ −

1
6

∫
Ω

[
(πμ,ξ + wμ,ξ)6 − w6

μ,ξ − 6w5
μ,ξπμ,ξ

]
:= I − II + R. (2.8)

By the mean value theorem, we find

R = −5
∫
Ω

1∫
0

(wμ,ξ + tπμ,ξ)4π2
μ,ξ(1 − t) dtdx = O

(
μ2).

We now expand other terms in the right hand side of (2.8).

I = 1
3

(∫
R3

3 3
2

1
(1 + |z|2)3 dz −

∫
R3\Ω−ξ

μ

3 3
2

1
(1 + |z|2)3 dz

)
= a0 + O

(
μ3),

where a0 =
√

3π2

4 . Moreover from Lemma 2.1, we have

II = 1
2μ

1
2

∫
Ω−ξ

μ

3 5
4

1
(1 + |z|2) 5

2
πμ,ξ(μz + ξ) dz

= 1
2

∫
Ω−ξ

μ

w5
1,0(z)

[
−4π3 1

4μ
[
R(ξ) + O

(
μ|z|

)
+ o(μ)

]
+ O

(
μ3)]dz

= −μR(ξ)a1 + O
(
μ2),
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where a1 = 2π3 1
4
∫
R3 w

5
1,0(z) dz = 8

√
3π2. Thus we get

J5(U) = a0 + a1μR(ξ) + O
(
μ2).

On the other hand, we have

Jp(U) − J5(U) = ε

[
1
6

∫
Ω

U6 logU − 1
36

∫
Ω

U6
]

+ o(ε)

= ε

[
1
6

∫
Ω

w6
μ,ξ logwμ,ξ −

1
36

∫
Ω

w6
μ,ξ + O(μ logμ)

]
+ o(ε)

= (−a2 logμ + a3)ε + o(ε), (2.9)

where a2 = 1
12

∫
R3 w

6
1,0(z) dz =

√
3π2

16 and a3 = 1
36

∫
R3 w

6
1,0(z)[6 log(w1,0(z)) − 1] dz.

Finally we compute Jλ(U). If 2 < q < 3,

Jλ(U) = − λ

q + 1

∫
Ω

Uq+1 dx = − λ

q + 1

∫
Ω

wq+1
μ,ξ dx + O

(
λμ

q+1
2
)

= −λa4μ
5−q
2 + O

(
λμ

q+1
2
)
, (2.10)

where a4 = 1
q+1

∫
R3 w

q+1
1,0 (z) dz = 3

q+1
4 π

3
2 Γ ( q−2

2 )
(q+1)Γ ( q+1

2 ) . If q = 2,

Jλ(U) = −λ

3μ
3
2

∫
Ω−ξ

μ

3 3
4

1
(1 + |z|2) 3

2
dz + O

(
λμ

3
2
)

= λa5μ
3
2 logμ + O

(
λμ

3
2
)
, (2.11)

where a5 = 2π3− 1
4 , here we use the fact 

∫ a

0
r2

(1+r2)3/2 dr = log(a +
√

1 + a2) − a√
1+a2 . If 1 < q < 2,

Jλ(U) = − λ

q + 1

∫
Ω

[
wμ,ξ(x) − 4π3 1

4μ
1
2H(x, ξ) + O

(
μ

5
2
)]q+1

= −μ
q+1
2

λ

q + 1

∫
Ω

{
3 1

4

[
1

(μ2 + |x− ξ|2) 1
2
− 1

|x− ξ|

]
+ 4π3 1

4G(x, ξ) + O
(
μ2)}q+1

= −λμ
q+1
2 a6 + O

(
λμ

5−q
2
)
, (2.12)

where

a6 = 1
q + 1

(
4π3 1

4
)q+1

∫
Ω

Gq+1(x, ξ) dx. (2.13)

From (2.9)–(2.12), we obtain C0-estimate of the energy expansion. By the same way, C1-estimate also 
holds. �
3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. First we note that (1.2) has a mountain pass solution u1 for any 
ε > 0. Next we build solution u2 of (1.2) when ε > 0 small enough by using Lyapunov–Schmidt reduction 
procedure.
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3.1. Approximate solution and the linearized problem

If u is a solution of (1.2), taking the change of variables

v(y) = εκu(εy), κ = 2
p− 1 , y ∈ Ωε,

where Ωε = Ω
ε . Then v(y) satisfies {

−Δv = fε(v), v > 0 in Ωε;
v = 0 on ∂Ωε,

(3.1)

where and in the following we denote fε(v) = vp + λεαvq with α = 2(p−q)
p−1 .

Define the function

V (y) ≡ VΛ,ξ′(y) = ε
1
2Uμ,ξ(εy), Λ = μ

ε
, ξ′ = ξ

ε
, y ∈ Ωε, (3.2)

where Uμ,ξ is the solution of (2.3). Then V (y) satisfies

−ΔV (y) = w5
Λ,ξ′(y) in Ωε; V (y) = 0 on ∂Ωε. (3.3)

Note that assumption (2.2) is equivalent to

d
(
ξ′, ∂Ωε

)
≥ δ

ε
. (3.4)

We assume that

δ̂ < Λ <
1
δ̂
, (3.5)

with δ̂ > 0 small but fixed.
From Lemma 2.1, for ξ′ and Λ satisfying (3.4) and (3.5), we have

0 < V (y) ≤ wΛ,ξ′(y) in Ωε. (3.6)

V (y) = wΛ,ξ′(y) − 4π3 1
4Λ

1
2 εH

(
εy, εξ′

)
+ O

(
ε3) in Ωε, as ε → 0. (3.7)

We next look for a solution of (3.1) of the form

v(y) = V (y) + φ(y),

where V is given by (3.2) and φ is a small term. We can rewrite (3.1) as{
Lε(φ) = N(φ) + R in Ωε;
φ = 0 on ∂Ωε,

(3.8)

where

Lε(φ) = −Δφ− f ′
ε(V )φ, N(φ) = fε(V + φ) − fε(V ) − f ′

ε(V )φ, R = ΔV + fε(V ).

We first consider the linearized problem at V and we invert it in an orthogonal space. More precisely, we 
consider the following problem: h ∈ L∞(Ωε) being given, find a solution φ which satisfies
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−Δφ− (5 − ε)V 4−εφ− λqεαV q−1φ = h +

3∑
i=0

ciw
4
Λ,ξ′Zi in Ωε;

φ = 0 on ∂Ωε;∫
Ωε

φw4
Λ,ξ′Zi = 0 i = 0, 1, 2, 3,

(3.9)

for some numbers ci (i = 0, 1, 2, 3), where Zi are defined by

Z0 = ∂V

∂Λ
, Zi = ∂V

∂ξ′i
, i = 1, 2, 3.

Then Zi(i = 0, 1, 2, 3) satisfy

−ΔZi = 5w4
Λ,ξ′Z̃i in Ωε; Zi = 0 on ∂Ωε,

with Z̃0 = ∂wΛ,ξ′
∂Λ , and Z̃i = ∂wΛ,ξ′

∂ξ′i
for i = 1, 2, 3.

Our next aim is to prove that problem (3.9) has a unique solution with uniform bounds in some appro-
priate norms. For f a function in Ωε, we define the following weighted L∞-norms

‖f‖∗ = sup
y∈Ωε

(
1 +

∣∣y − ξ′
∣∣2) θ−2

2
∣∣f(y)

∣∣, (3.10)

and

‖f‖∗∗ = sup
y∈Ωε

(
1 +

∣∣y − ξ′
∣∣2) θ

2
∣∣f(y)

∣∣, (3.11)

where θ satisfies

2 < θ < 3. (3.12)

Observe that the first norm ‖ · ‖∗ is equivalent to ‖w−(θ−2)
Λ,ξ′ f‖∞ and the second norm ‖ · ‖∗∗ is equivalent to 

‖w−θ
Λ,ξ′f‖∞ uniformly with respect to Λ and ξ′.
We have the following result.

Proposition 3.1. Let λ > 0 be fixed and ξ′, Λ satisfy (3.4), (3.5), then there exists ε0 > 0 and a constant 
C > 0 independent of ε, such that for all 0 < ε < ε0 and all h ∈ L∞(Ωε) with ‖h‖∗∗ < +∞, problem (3.9)
has a unique solution φ := Tε(h) with ‖φ‖∗ < +∞. Moreover,

‖φ‖∗ ≤ C‖h‖∗∗, |ci| ≤ C‖h‖∗∗. (3.13)

The argument of its proof follows from the ideas of del Pino et al. in [10] and Rey et al. in [19].
We first prove a priori estimate for solutions of the following problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−Δφ− (5 − ε)V 4−εφ = h +
3∑

i=0
ciw

4
Λ,ξ′Zi in Ωε;

φ = 0 on ∂Ωε;∫
Ωε

φw4
Λ,ξ′Zi = 0 i = 0, 1, 2, 3.

(3.14)
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Lemma 3.1. Under the assumptions of Proposition 3.1. Then there exists C > 0 such that if ε > 0 is 
sufficiently small, for any h, φ satisfying (3.14), we have

‖φ‖∗ ≤ C‖h‖∗∗, |ci| ≤ C‖h‖∗∗.

The proof follows from the following lemma.

Lemma 3.2. Assume φε solves (3.14) for h = hε. If ‖hε‖∗∗ → 0 as ε → 0, then ‖φε‖∗ → 0.

Proof. For 0 < ρ < θ − 2, we define

‖f‖ρ = sup
y∈Ωε

(
1 +

∣∣y − ξ′
∣∣2) θ−2−ρ

2
∣∣f(y)

∣∣.
Claim. ‖φε‖ρ → 0 as ε → 0.

Indeed, by contradiction, we may assume that ‖φε‖ρ = 1. Multiplying the first equation in (3.14) by Zj

and integrating on Ωε, we get

∫
Ωε

(
−ΔZj − (5 − ε)V 4−εZj

)
φε −

∫
Ωε

hεZj =
3∑

i=0
ci

∫
Ωε

w4
Λ,ξ′ZiZj .

By the definition of Zj and (3.7), we can find∫
Ωε

(
−ΔZj − (5 − ε)V 4−εZj

)
φε = o

(
‖φε‖ρ

)
.

Moreover, we have ∫
Ωε

hεZj ≤ ‖hε‖∗∗
∫
Ωε

wθ
Λ,ξ′

(
Z̃j + O(ε)

)
= O

(
‖hε‖∗∗

)
,

and ∫
Ωε

w4
Λ,ξ′ZiZj = δij

(
γi + o(1)

)
,

where δij is Kronecker’s delta and γi, (i = 0, 1, 2, 3) are strictly positive constants. Consequently, we find

ci = O
(
‖hε‖∗∗

)
+ o

(
‖φε‖ρ

)
. (3.15)

In particular, ci = o(1) as ε → 0.
Moreover, the first equation in (3.14) can be written as

φε(x) =
∫
Ωε

Gε(x, y)
[
(5 − ε)V 4−ε(y)φε(y) + hε(y) +

3∑
i=0

ciw
4
Λ,ξ′(y)Zi(y)

]
dy, (3.16)

where Gε(x, y) is the Green’s function of −Δ in Ωε with Dirichlet boundary condition, which satisfies
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Gε(x, y) = εG(εx, εy) ≤ C

|x− y| .

In the following, we use the basic estimate, which was proved in the Appendix B in [20]: for any 0 < σ < 1, 
there is a constant C > 0 such that∫

R3

1
|z − y|

1
(1 + |y|)2+σ

dy ≤ C

(1 + |z|)σ .

Hence we have∣∣∣∣∫
Ωε

Gε(x, y)V 4−ε(y)φε(y) dy
∣∣∣∣ ≤ C

∫
Ωε

1
|x− y|

∣∣w4−ε
Λ,ξ′(y)φε(y)

∣∣ dy
≤ C‖φε‖ρ

∫
Ωε

1
|x− y|

1
(1 + |y − ξ′|2) 1

2 (4−ε)
1

(1 + |y − ξ′|2) θ−2−ρ
2

dy

≤ C‖φε‖ρ
∫
Ωε

1
|(x− ξ′) − (y − ξ′)|

1
(1 + |y − ξ′|)2+θ−2

1
(1 + |y − ξ′|)2−ρ−ε

dy

≤ C‖φε‖ρ
∫
R3

1
|(x− ξ′) − (y − ξ′)|

1
(1 + |y − ξ′|)2+θ−2 dy

≤ C‖φε‖ρ
(
1 + |x− ξ′|2

)− θ−2
2 , (3.17)∣∣∣∣∫

Ωε

Gε(x, y)hε(y) dy
∣∣∣∣ ≤ C‖hε‖∗∗

∫
Ωε

1
|x− y|

1
(1 + |y − ξ′|2) θ

2
dy

≤ C‖hε‖∗∗
∫
R3

1
|(x− ξ′) − (y − ξ′)|

1
(1 + |y − ξ′|)2+θ−2 dy

≤ C‖hε‖∗∗
(
1 +

∣∣x− ξ′
∣∣2)− θ−2

2 , (3.18)

and ∣∣∣∣∫
Ωε

Gε(x, y)w4
Λ,ξ′(y)Zi(y) dy

∣∣∣∣ ≤ C

∫
Ωε

1
|x− y|

1
(1 + |y − ξ′|2) 5

2
dy

≤ C

∫
Ωε

1
|x− y|

1
(1 + |y − ξ′|)2+θ−2

1
(1 + |y − ξ′|)5−θ

dy

≤ C
(
1 +

∣∣x− ξ′
∣∣2)− θ−2

2 . (3.19)

Then from (3.16)–(3.19), we get

∣∣φε(x)
∣∣ ≤ C

(
‖φε‖ρ + ‖hε‖∗∗ + |ci|

)(
1 +

∣∣x− ξ′
∣∣2)− θ−2

2 , (3.20)

which yields that

(
1 +

∣∣x− ξ′
∣∣2) θ−2−ρ

2
∣∣φε(x)

∣∣ ≤ C
(
1 +

∣∣x− ξ′
∣∣2)− ρ

2 . (3.21)
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Moreover, ‖φε‖ρ = 1 and (3.21) imply that there exist R > 0, γ > 0 independent of ε such that

‖φε‖L∞(BR(ξ′)) > γ. (3.22)

Set φ̄ε(y) = φε(y − ξ′), by elliptic estimates, passing to a subsequence of (φ̄ε)ε, still denote (φ̄ε)ε, such 
that (φ̄ε)ε converges uniformly on any compact set of R3 to a nontrivial solution of

−Δφ̄ = 5w4
Λ,0φ̄ for some Λ > 0.

It is well known that [17],

φ̄ = α0
∂wΛ,0

∂Λ
+

3∑
i=1

αi
∂wΛ,0

∂yi
.

Recall that ∫
Ωε

φεw
4
Λ,ξ′Zi = 0, for i = 0, 1, 2, 3.

By dominated convergence, we have

α0

∫
R3

(
∂wΛ,0

∂Λ

)2

w4
Λ,0 = 0 and αi

∫
R3

(
∂wΛ,0

∂yi

)2

w4
Λ,0 = 0, for i = 1, 2, 3.

So αi = 0 for i = 0, 1, 2, 3 and φ̄ = 0, this contradicts (3.22). Therefore we get ‖φε‖ρ → 0 as ε → 0. Finally, 
from (3.15) and (3.20), we have

‖φε‖∗ ≤ C
(
‖hε‖∗∗ + ‖φε‖ρ

)
.

Hence ‖φε‖∗ → 0 as ε → 0. We complete the proof. �
Lemma 3.3. Let λ > 0 be fixed and ξ′, Λ satisfy (3.4), (3.5). There exists C > 0 such that if ε > 0 is 
sufficiently small, for any h, φ satisfying (3.9), we have

‖φ‖∗ ≤ C‖h‖∗∗, |ci| ≤ C‖h‖∗∗.

Proof. We claim that ‖V q−1φ‖∗∗ ≤ Cεq−3‖φ‖∗. Since V ≤ wΛ,ξ′ , we only need to show that∥∥wq−1
Λ,ξ′φ

∥∥
∗∗ ≤ Cεq−3‖φ‖∗.

In fact,

∥∥wq−1
Λ,ξ′φ

∥∥
∗∗ = sup

y∈Ωε

(
1 +

∣∣y − ξ′
∣∣2) θ

2
∣∣wΛ,ξ′(y)

∣∣q−1∣∣φ(y)
∣∣

≤ ‖φ‖∗ sup
y∈Ωε

(
1 +

∣∣y − ξ′
∣∣2)∣∣wΛ,ξ′(y)

∣∣q−1 ≤ ‖φ‖∗ sup
y∈Ωε

(
1 +

∣∣y − ξ′
∣∣2)1− q−1

2

≤ ‖φ‖∗ sup
y∈Ωε

∣∣y − ξ′
∣∣3−q ≤ Cεq−3‖φ‖∗.

By the first estimate in Lemma 3.1, we get
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‖φ‖∗ ≤ C‖h‖∗∗ + Cεα
∥∥V q−1φ

∥∥
∗∗ ≤ C‖h‖∗∗ + Cεα+q−3‖φ‖∗.

Recall that α = 5−q
2 + O(ε), we have that α + q − 3 > 0. Thus we get ‖φ‖∗ ≤ C‖h‖∗∗.

Similarly, we can get |ci| ≤ C‖h‖∗∗. �
Proof of Proposition 3.1. By Lemma 3.3, we get the estimates in (3.13). Now we prove existence and 
uniqueness of solution to (3.9). Consider the Hilbert space

H =
{
φ ∈ H1

0 (Ωε) :
∫
Ωε

φw4
Λ,ξ′Zi = 0, i = 0, 1, 2, 3

}

with inner product

〈φ, ψ〉 =
∫
Ωε

∇φ∇ψ.

Then problem (3.9) is equivalent to find φ ∈ H such that

〈φ, ψ〉 =
∫
Ωε

[
(5 − ε)V 4−εφ + λqεαV q−1φ + h

]
ψ, for ∀ψ ∈ H. (3.23)

By the Riesz representation theorem, (3.23) is equivalent to solve

φ = K(φ) + h̃ (3.24)

with h̃ ∈ H depending linearly on h, and K : H → H being a compact operator. Fredholm’s alternative 
guarantees that there is a unique solution to problem (3.24) for any h provided that

φ = K(φ) (3.25)

has only the zero solution in H. (3.25) is equivalent to problem (3.9) with h = 0. If h = 0, the first estimate 
in (3.13) implies that φ = 0. This completes the proof. �

For later purpose, it is important to understand the differentiability of the operator Tε with respect to 
Λ, ξ′. Consider the L∞

∗ (resp. L∞
∗∗) functions defined on Ωε with ‖ · ‖∗ norm (resp. ‖ · ‖∗∗ norm). We have 

the following result.

Proposition 3.2. Under the conditions of Proposition 3.1, the map (Λ, ξ′) �→ Tε(h) is C1 with respect to Λ, 
ξ′ in the considered region and the L∞

∗ norm. Moreover,∥∥∂ΛTε(h)
∥∥
∗ ≤ C‖h‖∗∗,

∥∥∂ξ′Tε(h)
∥∥
∗ ≤ C‖h‖∗∗. (3.26)

Proof. Tε is C1 with respect to Λ and ξ′ follows from the smoothness of K and h̃, which occur in the 
implicit definition (3.24) of φ = Tε(h), with respect to these variables. Differentiating (3.9) with respect to 
ξ′k (k = 1, 2, 3), set φ = Tε(h), Y = ∂ξ′kφ and di = ∂ξ′kci, k = 1, 2, 3, then Y satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−ΔY − (5 − ε)V 4−εY − λqεαV q−1Y = h̄ +
3∑

i=0
diw

4
Λ,ξ′Zi in Ωε;

Y = 0 on ∂Ωε;
∫ [

φ∂ξ′k
(
w4

Λ,ξ′Zi

)
+ Y w4

Λ,ξ′Zi

]
= 0, i = 0, · · · , 3,

(3.27)
Ωε
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where

h̄ = (5 − ε)(4 − ε)V 3−εZiφ + λq(q − 1)εαV q−2Ziφ +
3∑

i=0
ci∂ξ′k

(
w4

Λ,ξ′Zi

)
.

Set η = Y −
∑3

j=0 bjZj , where bj ∈ R is chosen such that 
∫
Ωε

ηw4
Λ,ξ′Zi = 0, that is, bj satisfies

3∑
j=0

bj

∫
Ωε

w4
Λ,ξ′ZiZj =

∫
Ωε

Y w4
Λ,ξ′Zi. (3.28)

Since this system is almost diagonal, it has a unique solution and we have

|bj | ≤ C‖φ‖∗. (3.29)

Moreover, η satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−Δη − (5 − ε)V 4−εη − λqεαV q−1η = g +

3∑
i=0

diw
4
Λ,ξ′Zi in Ωε;

η = 0 on ∂Ωε;
∫
Ωε

ηw4
Λ,ξ′Zi = 0 i = 0, 1, 2, 3,

(3.30)

with

g =
3∑

j=0
bj
[
−ΔZj − (5 − ε)V 4−εZj − λqεαV q−1Zj

]
+ h̄.

By Proposition 3.1, we have that η = Tε(g) and ‖η‖∗ ≤ C‖g‖∗∗.
By simple calculations, we have

‖g‖∗∗ ≤
3∑

j=0
|bj |

∥∥−ΔZj − (5 − ε)V 4−εZj − λqεαV q−1Zj

∥∥
∗∗

+ C
∥∥V 3−εZiφ

∥∥
∗∗ + Cεα

∥∥V q−2Ziφ
∥∥
∗∗ +

3∑
i=0

|ci|
∥∥∂ξ′k(w4

Λ,ξ′Zi

)∥∥
∗∗

≤ C
(
|bj | + ‖φ‖∗ + |ci|

)
≤ C‖h‖∗∗,

here we use |bj | ≤ C‖φ‖∗, ‖φ‖∗ ≤ C‖h‖∗∗ and |ci| ≤ C‖h‖∗∗.
Thus

‖η‖∗ ≤ C‖h‖∗∗. (3.31)

By (3.29), (3.31) and ‖Zj‖∗ ≤ C, we obtain that

‖∂ξ′kφ‖∗ ≤
3∑

j=0
|bj |‖Zj‖∗ + ‖η‖∗ ≤ C‖h‖∗∗.

Similarly, we can get the estimate for ‖∂Λφ‖∗ in (3.26). �
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3.2. The nonlinear problem

In this subsection, our purpose is to study the nonlinear problem. First, we estimate ‖R‖∗∗, ‖∂ΛR‖∗∗
and ‖∂ξ′R‖∗∗.

Lemma 3.4. Assume 1 < q < 3, let λ > 0 be fixed and ξ′, Λ satisfy (3.4), (3.5), then choosing 2 < θ < 3
appropriately in the norms (3.10), (3.11), there exists a constant C > 0 independent of ξ′, Λ, such that

‖R‖∗∗ ≤ Cε, ‖∂ΛR‖∗∗ ≤ Cε, ‖∂ξ′R‖∗∗ ≤ Cε, (3.32)

for ε > 0 small enough.

Proof. Recall that R = V 5−ε − w5
Λ,ξ′ + λεαV q. By (3.7), V = wΛ,ξ′ + O(ε). Consequently,∣∣V 5−ε − w5

Λ,ξ′
∣∣ ≤ ∣∣V 5−ε − w5−ε

Λ,ξ′

∣∣ +
∣∣w5−ε

Λ,ξ′ − w5
Λ,ξ′

∣∣ ≤ Cε
(
w4−ε

Λ,ξ′ + w5
Λ,ξ′ |logwΛ,ξ′ |

)
.

Thus for 2 < θ < 3,∥∥V 5−ε − w5
Λ,ξ′

∥∥
∗∗ ≤ C

∥∥w−θ
Λ,ξ′

(
V 5−ε − w5

Λ,ξ′
)∥∥

∞ ≤ Cε sup
Ωε

w−θ
Λ,ξ′

(
w4−ε

Λ,ξ′ + w5
Λ,ξ′ |logwΛ,ξ′ |

)
≤ Cε.

Moreover,

∥∥λεαV q
∥∥
∗∗ ≤ Cλεα

∥∥w−θ
Λ,ξ′V

q
∥∥
∞ ≤ Cλεα sup

Ωε

∣∣wq−θ
Λ,ξ′

∣∣ ≤ {
Cλεα if q > θ;
Cλεα+q−θ if q ≤ θ.

Note that α = 5−q
2 + O(ε) > 1 for 1 < q < 3. We choose 2 < θ < 3+q

2 , so α + q − θ > 1. Therefore we get 
the first estimate in (3.32). Furthermore

∂ΛR = (5 − ε)V 4−εZ0 − 5w4
Λ,ξ′Z̃0 + λqεαV q−1Z0,

and

∂ξ′iR = (5 − ε)V 4−εZi − 5w4
Λ,ξ′Z̃i + λqεαV q−1Zi, i = 1, 2, 3.

By similar computations as ‖R‖∗∗, we can get the rest estimates in (3.32). �
Now we consider the following problem

−Δφ− (5 − ε)V 4−εφ− λqεαV q−1φ = N(φ) + R +
3∑

i=0
ciw

4
Λ,ξ′Zi in Ωε; (3.33)

with

φ = 0 on ∂Ωε, and
∫
Ωε

φw4
Λ,ξ′Zi = 0 i = 0, 1, 2, 3. (3.34)

Proposition 3.3. There exists C > 0 independent of ξ′, Λ satisfying (3.4), (3.5), such that for ε > 0 small 
enough, there exists a unique solution φ = φ(Λ, ξ′) of problem (3.33)–(3.34), satisfying

‖φ‖∗ ≤ Cε. (3.35)
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Proof. By Proposition 3.1, problem (3.33)–(3.34) can be written as the fixed point problem

φ = Tε

(
N(φ) + R

)
:= Aε(φ).

Define

FM =
{
φ ∈ H1

0 (Ωε) ∩ L∞(Ωε) : ‖φ‖∗ ≤ Mε
}

with M > 0 large but fixed which will be chosen later. Then Aε sends FM into itself.
Indeed, by Proposition 3.1, we have∥∥Aε(φ)

∥∥
∗ =

∥∥Tε

(
N(φ) + R

)∥∥
∗ ≤ C

(∥∥N(φ)
∥∥
∗∗ + ‖R‖∗∗

)
. (3.36)

Moreover,

∥∥N(φ)
∥∥
∗∗ =

∥∥∥∥∥
1∫

0

[
f ′
ε(V + tφ) − f ′

ε(V )
]
φdt

∥∥∥∥∥
∗∗

≤ C

∥∥∥∥∥w−2
Λ,ξ′

1∫
0

∣∣f ′
ε(V + tφ) − f ′

ε(V )
∣∣ dt∥∥∥∥∥

∞

‖φ‖∗

≤ C
(∥∥w−2

Λ,ξ′
[(
V + |φ|

)4−ε − V 4−ε
]∥∥

∞ + λεα
∥∥w−2

Λ,ξ′
[(
V + |φ|

)q−1 − V q−1]∥∥
∞
)
‖φ‖∗. (3.37)

Since ∥∥w−2
Λ,ξ′

[
(V + |φ|)4−ε − V 4−ε

]∥∥
∞ ≤ C

∥∥w−2
Λ,ξ′

(
w3−ε

Λ,ξ′ |φ| + |φ|4−ε
)∥∥

∞

≤ C
∥∥wθ−1−ε

Λ,ξ′

∥∥
∞‖φ‖∗ + C

∥∥w(θ−2)(4−ε)−2
Λ,ξ′

∥∥
∞‖φ‖4−ε

∗

≤ Cεθ−1−ε‖φ‖∗ + Cεmin{(θ−2)(4−ε)−2,0}‖φ‖4−ε
∗ . (3.38)

On the other hand, by Lemma 2.2 in [12], we have

∣∣|V + φ|q−1 − |V |q−1∣∣ ≤ C

{
|V |q−2|φ| + |φ|q−1 if 2 ≤ q < 3;
min{|V |q−2|φ|, |φ|q−1} if 1 < q < 2.

Thus for 1 < q < 2,∥∥w−2
Λ,ξ′

[(
V + |φ|

)q−1 − V q−1]∥∥
∞ ≤ C min

{
‖wΛ,ξ′‖q−4+θ−2

∞ ‖φ‖∗, ‖wΛ,ξ′‖(θ−2)(q−1)−2
∞ ‖φ‖q−1

∗
}

≤ C min
{
εq+θ−6‖φ‖∗, ε(θ−2)(q−1)−2‖φ‖q−1

∗
}
. (3.39)

For 2 ≤ q < 3, ∥∥w−2
Λ,ξ′

[(
V + |φ|

)q−1 − V q−1]∥∥
∞ ≤ C

∥∥w−2
Λ,ξ′

[
wq−2

Λ,ξ′ |φ| + |φ|q−1]∥∥
∞

≤ Cεq+θ−6‖φ‖∗ + Cε(θ−2)(q−1)−2‖φ‖q−1
∗ . (3.40)

From (3.37)–(3.40), if 1 < q < 3, for φ ∈ FM , then we have∥∥N(φ)
∥∥ ≤ Cετ‖φ‖∗ with some τ > 0. (3.41)
∗∗



W. Chen, I. Guerra / J. Math. Anal. Appl. 424 (2015) 179–200 195
Thus by (3.32), (3.36) and (3.41), we find for φ ∈ FM ,∥∥Aε(φ)
∥∥
∗ ≤ C

(
ετ‖φ‖∗ + ε

)
≤ C

(
Mετ + 1

)
ε.

Choosing M large such that C(Mετ + 1) ≤ M . It implies that Aε(FM ) ⊂ FM .
Next we show that Aε is a contraction map. For φ1, φ2 ∈ FM ,∥∥Aε(φ1) −Aε(φ2)

∥∥
∗ ≤ C

∥∥N(φ1) −N(φ2)
∥∥
∗∗

= C
∥∥[f ′

ε

(
V + tφ1 + (1 − t)φ2

)
− f ′

ε(V )
]
(φ1 − φ2)

∥∥
∗∗

≤ C
∥∥w−θ

Λ,ξ′
[
f ′
ε(V + φ̃) − f ′

ε(V )
]
(φ1 − φ2)

∥∥
∞

≤ C
∥∥w−2

Λ,ξ′
[
f ′
ε(V + φ̃) − f ′

ε(V )
]∥∥

∞‖φ1 − φ2‖∗,

where φ̃ = tφ1 + (1 − t)φ2 ∈ FM for t ∈ (0, 1). It can be easily checked that∥∥Aε(φ1) −Aε(φ2)
∥∥
∗ ≤ Cετ‖φ1 − φ2‖∗, with some τ > 0.

This yields that Aε has a unique fixed point in FM . Hence problem (3.33)–(3.34) has a unique solution φ
such that ‖φ‖∗ ≤ Cε, for some C > 0. �
Proposition 3.4. The solution φ(Λ, ξ′) constructed in Proposition 3.3 is C1 with respect to Λ and ξ′ in the 
considered region. Moreover,

‖∂Λφ‖∗ ≤ Cε, ‖∂ξ′φ‖∗ ≤ Cε. (3.42)

Proof. We write

B
(
Λ, ξ′, φ

)
= φ− Tε

(
N(φ) + R

)
, (3.43)

we have

B
(
Λ, ξ′, φ

)
= 0, (3.44)

and

∂φB
(
Λ, ξ′, φ

)
[ψ] = ψ − ∂φ

[
Tε

(
N(φ) + R

)]
ψ = ψ − Tε

[
∂φ

(
N(φ)

)
ψ
]
. (3.45)

By a direct calculation, we get∥∥Tε

[
∂φ

(
N(φ)

)
ψ
]∥∥

∗ ≤ C
∥∥∂φ(N(φ)

)
ψ
∥∥
∗∗ ≤ C

∥∥w−2
Λ,ξ′∂φ

(
N(φ)

)∥∥
∞‖ψ‖∗ ≤ Cετ‖ψ‖∗,

with τ > 0. Therefore ∥∥∂φB(
Λ, ξ′, φ

)
[ψ]

∥∥
∗ ≤

(
1 + Cετ

)
‖ψ‖∗.

It follows that for ε > 0 small enough, ∂φB(Λ, ξ′, φ) is invertible in ‖ · ‖∗ with uniformly bounded inverse. 
It also depends continuously on its parameters. Let us differentiate (3.43) with respect to ξ′ and by (3.45), 
we have

∂ξ′B
(
Λ, ξ′, φ

)
= −(∂ξ′Tε)

(
N
(
Λ, ξ′, φ

)
+ R

)
− Tε

(
(∂ξ′N)

(
Λ, ξ′, φ

)
+ ∂ξ′R

)
, (3.46)
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where all the previous expressions depend continuously on their parameters. Hence the implicit function 
theorem implies that φ = φ(Λ, ξ′) is C1 with respect to Λ, ξ′ in the considered region.

Moreover, differentiating (3.44) with respect to ξ′, we get

∂ξ′φ = −
(
∂φB

(
Λ, ξ′, φ

))−1
∂ξ′B

(
Λ, ξ′, φ

)
.

By (3.46), (3.26) and (3.13), we get

‖∂ξ′φ‖∗ ≤ C
(∥∥N(φ)

∥∥
∗∗ + ‖R‖∗∗ +

∥∥(∂ξ′N)
(
Λ, ξ′, φ

)∥∥
∗∗ + ‖∂ξ′R‖∗∗

)
≤ Cε.

Similarly, we can get ‖∂Λφ‖∗ ≤ Cε. �
3.3. The reduced functional

We have solved the nonlinear problem (3.33)–(3.34). In order to find a solution to problem (3.1), we need 
to find Λ and ξ′ such that

ci
(
Λ, ξ′

)
= 0 for i = 0, 1, 2, 3. (3.47)

The energy functional to problem (3.1) is given by

I(v) = 1
2

∫
Ωε

|∇v|2 − 1
p + 1

∫
Ωε

|v|p+1 − λ
εα

q + 1

∫
Ωε

|v|q+1

Set

I
(
Λ, ξ′

)
= I

(
VΛ,ξ′(y) + φΛ,ξ′(y)

)
, (3.48)

where VΛ,ξ′ is defined in (3.2) and φΛ,ξ′ is solved by Proposition 3.3. We have the following fact.

Lemma 3.5. Let ξ′ and Λ satisfy (3.4) and (3.5). Then I(Λ, ξ′) is of class C1. Moreover, for all ε > 0
sufficiently small, the function v(y) = VΛ,ξ′(y) +φΛ,ξ′(y) is a solution to problem (3.1) if and only if (Λ, ξ′)
is a critical point of I(Λ, ξ′).

Proof. As a consequence of Proposition 3.4, we can get the map (Λ, ξ′) �→ I(Λ, ξ′) is of class C1. For 
k ∈ {1, 2, 3}, we have

∂ξ′kI
(
Λ, ξ′

)
= DI(VΛ,ξ′ + φΛ,ξ′)

[
∂VΛ,ξ′

∂ξ′k
+ ∂φΛ,ξ′

∂ξ′k

]

=
3∑

i=0
ci

∫
Ωε

w4
Λ,ξ′Zi

[
∂VΛ,ξ′

∂ξ′k
+ ∂φΛ,ξ′

∂ξ′k

]
=

3∑
i=0

ci

∫
Ωε

w4
Λ,ξ′ZiZk

(
1 + o(1)

)
,

here we use the fact that ‖∂ξ′kφΛ,ξ′‖∗ = O(ε). Similarly, we find

∂ΛI
(
Λ, ξ′

)
=

3∑
i=0

ci

∫
Ωε

w4
Λ,ξ′ZiZ0

(
1 + o(1)

)
,

where o(1) → 0 as ε → 0 uniformly for the norm ‖ · ‖∗. It defines an almost diagonal linear equation system 
for ci. Thus (Λ, ξ′) is a critical point of I(Λ, ξ′) if and only if ci = 0 for i = 0, 1, 2, 3. This ends the proof of 
lemma. �
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Lemma 3.6. As ε → 0, we have the following expansion

I
(
Λ, ξ′

)
− I(VΛ,ξ′) = o(ε),

where o(ε) is in the C1− sense uniformly on ξ′, Λ satisfying (3.4)and (3.5).

Proof. For notation simplicity, we write VΛ,ξ′ by V , and φΛ,ξ′ by φ. By the Taylor expansion and the fact 
that DI(VΛ,ξ′ + φΛ,ξ′)[φ] = 0, we have

I
(
Λ, ξ′

)
− I(VΛ,ξ′) = I(V + φ) − I(V ) =

1∫
0

D2I(V + tφ)[φ, φ]t dt

≤ C

∫
Ωε

∣∣V p−1 − (V + φ)p−1∣∣φ2 dy + Cλεα
∫
Ωε

∣∣V q−1 − (V + φ)q−1∣∣φ2 dy

+
∫
Ωε

|R||φ| dy +
∫
Ωε

∣∣N(φ)
∣∣|φ| dy,

and since ‖R‖∗∗ ≤ Cε, ‖N(φ)‖∗∗ ≤ Cετ‖φ‖∗ and ‖φ‖∗ ≤ Cε, we get

I
(
Λ, ξ′

)
− I(V ) = o(ε),

where o(ε) is uniform in the C1-sense for ξ′, Λ satisfying (3.4), (3.5). By a similar way, we can obtain

D(Λ,ξ′)
(
I
(
Λ, ξ′

)
− I(V )

)
= o(ε).

This ends the proof of lemma. �
Proof of Theorem 1.1. We first prove (i). We follow the proof in [3], where the case p = 5 is considered. 
Taking ε0 fix and small, we can rewrite the proof of Corollary 2.4 in [3] for variable p in the range [5 − ε0, 5]
and clearly choose a λ0 that depends only on ε0, q and Ω. Then [3, Theorem 2.1], also holds for p ∈ [5 −ε0, 5], 
and existence of a solution u1 of problem (1.2), follows for all λ ≥ λ0. In [3, Remark 2.2], they prove that 
for this problem, we have J(u1) <

√
3

4 π2.
Now we prove (ii). By Lemma 3.5, we know that u(εy) = ε−κ(VΛ,ξ′(y) +φΛ,ξ′(y)) is a solution to problem 

(1.2) if and only if (Λ, ξ′) is a critical point of I(Λ, ξ′). So we have to show existence of the critical point of 
I(Λ, ξ′).

It is easy to check that

I(VΛ,ξ′) = ε2κ−1J
(
ε

1
2−κU

)
= J(U) + o(ε), (3.49)

since 2κ − 1 = O(ε). This together with Lemma 3.6 and Lemma 2.2, and recalling that μ = Λε, we have 
that for 1 < q < 3,

I
(
Λ, ξ′

)
= a0 + εϕ(Λ, ξ) − a2ε log ε + a3ε + o(ε), (3.50)

where

ϕ(Λ, ξ) = a1ΛR(ξ) − a2 logΛ,



198 W. Chen, I. Guerra / J. Math. Anal. Appl. 424 (2015) 179–200
with constants a1, a2 > 0 being given in Lemma 2.2, and o(ε) is uniform in the C1− sense for ξ′, Λ in the 
considered region.

Define

Ĩ
(
Λ, ξ′

)
= 1

ε
I
(
Λ, ξ′

)
− a0

ε
− a3.

Then we have

Ĩ
(
Λ, ξ′

)
= ϕ(Λ, ξ) + o(1), (3.51)

where ξ′ = ξ
ε and o(1) is in the C1− sense uniformly on ξ′, Λ satisfying (3.4), (3.5). Since the function 

R(ξ) has at least one critical point, denoted by ξ0, with R(ξ0) > 0, then (Λ0, ξ0), with Λ0 = a2
a1R(ξ0) , is a 

nondegenerate critical point of ϕ(Λ, ξ). It follows that the local degree deg(∇ϕ(Λ, ξ), O, 0) is well defined 
and is nonzero, where O is arbitrary small neighborhood of (Λ0, ξ0). So deg(∇Ĩ(Λ, ξ′), O, 0) �= 0 for ε > 0
small enough. Hence we find a critical point (Λ∗, ξ′∗) of Ĩ(Λ, ξ′), such that (Λ∗, ξ′∗) → (Λ0, ξ′0) with ξ′0 = ξ0

ε

as ε → 0. Then (Λ∗, ξ′∗) is also a critical point of I(Λ, ξ′). Thus we get that

u2(x) = ε−κ(VΛ∗,ξ′∗ + φΛ∗,ξ′∗)
(
x

ε

)
is the solution of problem (1.2). Recall that κ = 2

p−1 = 1
2 + 1

8ε + o(ε), then by above construction and 
Lemma 2.2, we can get (1.6) and (1.7). �
4. Proof of Theorem 1.2

Proof of Theorem 1.2. For 2 < q < 3, taking λ = λε−
3−q
2 and μ = Λε in the energy expansion (2.5), we 

have

J(U) = a0 + εΨ̃(Λ, ξ) − a2ε log ε + a3ε + o(ε), (4.1)

where

Ψ̃(Λ, ξ) = a1ΛR(ξ) − a2 logΛ− λa4Λ
5−q
2 .

First, ξ �→ Ψ̃(Λ, ξ) has a minimum point ξ0, that is ∂ξΨ̃(Λ, ξ)|ξ=ξ0 = 0. On the other hand, the function

Λ �→ ϕ(Λ) := Ψ̃(Λ, ξ0) = a1ΛR(ξ0) − a2 logΛ− λa4Λ
5−q
2

has two non-degenerate critical points Λ− < Λ+ for each 0 < λ < λ0. In fact

ϕ′(Λ) = a1R(ξ0) − a2Λ
−1 − λ

5 − q

2 a4Λ
3−q
2

and this can be written,

ϕ′(Λ) = 5 − q

2 a4Λ
3−q
2
[
f(Λ) − λ

]
, where f(Λ) = 2

5 − q

a1

a4
R(ξ0)Λ− 3−q

2 − 2
5 − q

a2

a4
Λ− 5−q

2

is negative for small and large Λ. The function ϕ′(Λ) takes positive values if and only if 0 < λ < λ0 where 
λ0 = maxΛ>0 f(Λ). In this case, the equation ϕ′(Λ) = 0 has two positive solutions Λ±(λ).
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Finally, if we define b = 2
5−q

a2
a4

and use the expressions of a1, a2, we obtain that f(Λ) = 128R(ξ0)bΛ− 3−q
2 −

bΛ− 5−q
2 .

Note also that Ψ̃(Λ−, ξ0) < Ψ̃(Λ+, ξ0) and so J(u−) < J(u+) for sufficiently small ε > 0. �
Proof of Corollary 1.1. Choose any ε0 small. By Theorem 1.1 (i), there exists λ0, such that for any λ > λ0
there exists a solution u1 for any ε ∈ [0, ε0]. Now for any fix λ̂ > λ0 there exists a solution u2 for ε ∈ (0, ε1). 
Then for this λ̂ there are two solutions u1 and u2 of (1.2) for any ε ∈ (0, min{ε1, ε0}). �
Proof of Corollary 1.2. Choose any ε0 small. By Theorem 1.1 (i), there exists λ0, such that for all λ > λ0
there is a solution u1 for any ε ∈ [0, ε0]. By Theorem 1.2, choosing λ ∈ (0, λ1) and ε < ε2 ≤ ε̃ such that 
λ = λε−

3−q
2 > λ0, then there exist two solutions u− and u+ for any ε ∈ (0, ε2). Then for ε ∈ (0, min{ε2, ε0}), 

there are three solutions u1 and u− and u+ of (1.2), with the desired energy properties. �
Remark 4.1 (The case q = 2). In this case, the expansion of the energy is given by formula (2.6). We can 
rewrite the proof of Theorem 1.2 using this expansion with λ = λε−

1
2 | log ε|−1 and μ = Λε. Then, we obtain

J(U) = a0 − a2ε log ε + εΨ̃(Λ, ξ) + a3ε + o(ε) (4.2)

where

Ψ̃(Λ, ξ) = a1ΛR(ξ) − a2 logΛ− λa5Λ
3
2 .

We note that this expansion is similar to (4.1), that is, changing a4 for a5, and so Theorem 1.2 follows.
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