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1. Introduction

We are interested in the following semilinear elliptic boundary value problem
—Au=uP + Al u>0 in (2 (1.1)
u=0 on 02, ’

where 2 is a smooth bounded domain in R3, A is a positive parameter and p > ¢ > 1.

Existence and multiplicity of solutions to (1.1) have been studied intensively by many researchers for the
exponents p and ¢ in different ranges.

Let us mention the question of existence and multiplicity of solutions to (1.1) for ¢ = 1. In the following,
A1 > 0 denotes the first eigenvalue of —A under Dirichlet boundary condition.
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(a) f 1 < p <5, for 0 < A < A, then a solution can be found by the standard constrained minimization
procedure thanks to compactness of Sobolev embedding H}(£2) — LPFL(02).

(b) If p > 5, this case is more delicate, since for p = 5 the embedding loses compactness while for p > 5
Sobolev embedding fails. Pohozaev [16] proved that if 2 is strictly star-shaped, then there is no solution
to (1.1) for A < 0 and p > 5. For the supercritical case, del Pino, Dolbeault and Musso [9], established
existence and multiplicity of solutions to problem (1.1) when p is supercritical but sufficiently close to 5.
For p = 5, the great contribution to this case was the pioneering work of Brézis and Nirenberg [3]. They
obtained that if ¢ = 1, (1.1) has a solution if and only if A € ($A1, A1) when 2 is a ball. The authors also
considered the case ¢ > 1. More precisely, if 1 < ¢ < 3, there exists a solution if and only if A > 0 is large
enough. If 3 < ¢ < 5, (1.1) has a solution for every A > 0. In addition, when {2 is a ball, they gave the
following conjecture, which is based on numerical computations.

If ¢ = 3, there is some A such that

e for A\ > )\, there is a unique solution of (1.1);

o for A < 5\, there is no solution of (1.1).

If 1 < ¢ < 3, there is some A such that

e for A\ > X, there are two solutions of (1.1);

e for A\ = ), there is a unique solution of (1.1);

e for A < ), there is no solution of (1.1).

Afterwards, Atkinson and Peletier [1] proved the nonuniqueness of solutions to (1.1) conjectured by Brézis
and Nirenberg for p = 5 and 1 < ¢ < 3. For the problem in a ball in R", not restricting to integer values
of N, they established for 2 < N < 4, p = % and 1 < ¢ < %, that there exists some A > 0 such that
(1.1) has at least two solutions for any A > A, and it has no solution for A < A. Rey [18] provided another
partial answer to above conjecture. He obtained that for p =5 and 2 < ¢ < 3, A > 0 large enough, problem
(1.1) has at least Cat(£2) + 1 solutions, where {2 is any smooth and bounded domain in R? and Cat({?2)
denotes Ljusternik—Schnirelman category of (2.

The purpose of this paper is to establish multiplicity of solutions to problem (1.1) when p approaches to
the critical exponent from below. Namely, we consider

{ —Au=u"f + X, u>0 in £2; (1.2)
u=20 on 042,

where (2 is a smooth bounded domain in R?, 1 < ¢ < 3, A > 0 and £ > 0. In the following, we write p = 5—¢.
It is known that solutions to problem (1.2) correspond to the critical points of the following functional

1 1 A
J(u) == Vul? — —— p+1——/ a+l HY(0). 1.3
W= [19uf = [lupt = 2 [, we @) (13)
2 [0} 9]

In order to state our results, we introduce some notations. Let us consider Green’s function G(z,y),
solution for any given y € {2 of

—A;G(z,y) = oy(x) in £2; (1.4)
G(z,y) =0 on 012, '
and its regular part H(x,y) = m — G(z,y). Then H(x,y) satisfies
—A H(z,y)=0 in {2 r
{H($7y) = 47T|xlfy| on 942. ( . )
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The Robin’s function of {2 is defined as R(x) = H(x,x). So R(z) is smooth, R(z) — 400 as z — 92, and it
is positive by the maximum principle. Thus R(x) has a minimum in {2, and hence it has at least one critical
point &y € (2.

Our main results can be stated as follows.

Theorem 1.1. Let 1 < q < 3, we have:

(i) For any o > 0 small, there exists \g = Ao(q, €0, 2) > 0, such that problem (1.2) has a mountain pass
solution uy, for all A > Ao, and 0 < e < g9, that satisfies J(u1) < @772.

(it) For any given A > 0, there exists e1 = £1(\) > 0, such that for e € (0,¢1), there exists a large solution
ug of (1.2) of the form

(Ae)?
(Ae)? + o — &J2)2

I\

us(x) =3

(1+0(1)), (1.6)
satisfying

J(ug) = ?wQ - \1/—65772510g€ + O(e), (1.7)

where &, — & with R(&) = mingen R(€), Ax — Ay with Ag = (128R(&)) ™" and o(1) — 0 uniformly in 2
as e — 0.

Corollary 1.1. Given 1 < g < 3. For all X sufficiently large there exists E(A) > 0 such that for any € € (0, &)
there exist two distinct solutions uy and ug of (1.2), such that J(uq1) < @79 < J(ug).
Remark 1.1. In the case that {2 is the unit ball B(0, 1), we have {, = 0 and R(0) = 1/(4~).

Theorem 1.2. Assume that 2 < q < 3, and consider the problem (1.2) with

(1.8)

{k—%“ if2<q<3,
Xe~zllog(e)|™! ifg=2.

Then there exists Ao > 0 depending on q, and £2, such that for any 0 < X < Ao, there exist two positive
numbers A* (X) < A% (X), such that there exists & small enough such that for all € € (0,€) there are two
solutions uy of the form

(Afe)s

uy(z) = 33 T
0 =3 e+ =)

(1+0(1)), (1.9)
satisfying

Luu+)>nuu_)>A%§w% (1.10)

where o(1) — 0 uniformly as € = 0, and § — & with R(&) = mingeco R(€), AL — A+ ase — 0.

From the proof of Theorem 1.2, we actually obtain explicit formulae for the numbers Ay and A. Next
we show the case 2 < ¢ < 3, for ¢ = 2, we can proceed similarly.
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Let us consider the function

_8-q _5=q 172 (q+1) L(F)
f(A) =128R(&)bA —-bA , Wherebfgf)_q Y F(q2;2)'

We call \¢ the maximum value of f(A), that is

o= e ) = (12800 < (220) 7 2

which is attained at Ay, given by

Ao = g—:g(ms}z(go))‘l.

Thus for any ), such that 0 < X < Xg, the equation X\ = f(A) has exactly two solutions satisfying
(128R(£0)) " < A_(N) < Ag < A4 (V). (1.11)

Note that the solutions of (1.2) in the (A, u) space can be identified with a set in the (A, m)-plane, where
m = u(&p) = ||ul|co. This gives an interpretation of our results in terms of a bifurcation diagram for positive
solutions and € > 0 small.

Consequently, the result in Theorem 1.2 can be portrayed as representing approximately the upper
turning point as

P~ (Xo&ie’%q,?)i(/lo)iéé‘i%),

while the set is itself near this point approximated by the graph

A= e_qu(3% (emQ)_l) for m ~ e~ 2.
The next corollary, gives the existence of at least three solution for (1.2).

Corollary 1.2. Given 2 < q < 3. For any € > 0 sufficiently small there exists A = \(€) large such that there
exist three distinct solutions uy and uy of (1.2), such that J(uy) < @ﬂQ < J(uo) < J(uq).

We regard € > 0 as a small parameter, solution us in Theorem 1.1 will be constructed by Lyapunov—
Schmidt reduction procedure. This method has been used broadly by many authors to study existence and
multiplicity of bubble solutions to elliptic equations, which was first developed by Bahri and Coron [2]. We
refer to the survey of del Pino and Musso [8], also we can see [7,11,13-15,19,20] and the references therein.

Finally, we mention some contributions to the elliptic equation with two powers in the whole space R.
J. Campos [5] considered the existence of bubble-tower solutions to

—Au=uN3E 4yl > 0in RY; u(z) =0 as|z] = oo, (1.12)
where % < q < % with N > 3 and € > 0 small. These solutions behave like a superposition of

“bubbles” of different blow-up orders centered at the origin. Recently, Davila, del Pino and Guerra [6]
studied nonuniqueness of positive solution of the following problem

—Au+u=u’+ X u?, u>0inR% u(z) =0 as |z| = oo. (1.13)
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More precisely, the authors obtained at least three solutions to problem (1.13) if 1 < ¢ < 3, A > 0 is
sufficiently large and fixed, and p < 5 is close enough to 5.

2. Energy asymptotic expansion

We recall that, according to [4], the functions

1
1 w2 3
wye(x) =3t ———— u>0, {€R’,
" (1 + 1o — €P)F
are the only radial solutions of the problem
—Aw=w", w>0in R (2.1)

As & € {2 and p goes to zero, these functions provide us with approximate solutions to the problem that
we are interested in. However, in view of the Dirichlet boundary condition, the approximate solution needs
to be improved.

From now on we assume that £ € {2 and is far from the boundary of {2, that is, there exists ¢ > 0 such
that

d(§,082) = 6. (2.2)
Let U, ¢(z) be the unique solution of
—AU, ¢ = wié in £2; Uue =0 on 012 (2.3)
We have the following estimates.
Lemma 2.1. Let d(§,052) > 6 with some 6 > 0, for u > 0 small enough, one has
(a) 0 <Upe(x) <wpe(z),
(b) Uy (@) = wy¢(x) — 433 H(,€) + O(?).
Proof. By the maximum principle, we obtain (a). Now we define
D(z) =U,e(x) —wue(x) + 471‘3%,[1,%1‘1(56,5).
Observe that for x € 0f2, as u — 0,

1 1

- ~pdlz— €78
RGO

D(z) = 3ipu?

Then D(z) satisfies
~AD=0 in;  D=0(u?) asp—0ondn. (2.4)
Therefore (b) follows from the maximum principle. O

In the following we write U = U, ¢, we now compute the energy expansion J(U), where J(U) is given
by (1.3).
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Lemma 2.2. Let d(&,052) > &, assume that p > 0 is small enough, then if 2 < g < 3,
JU) = ag + a1pR(§) — azelog u + aze — )\a4u5%q + O(A,uq_;l) +O0(p?) + o(e).

Ifq:27

J(U) = ag + a1pR(E) — azelog u + aze + /\a5u% log 11 + O(/\u%) + O(/f) + o(e).

Ifl<qg<?2,

J(U) = ag + a pR(E) — aselog i + ase — Nagp™ > z —l—O()\u )+O( %) +o(e),

where o(g) is uniform in the Cl-sense on the point & satisfying (2.2) ase — 0, a;, i =0,1,...,

positive constants.

Proof. We write J(U) = J5(U) + (J,(U) — J5(U)) + JA(U), where

A
p+1 _ q+1
/| /U and J,\(U)———q 1/1) .

0

Since U satisfies —AU = wii in 2 and U = 0 on 042, we write U = 7, ¢ + w, ¢, then we have

1 1
Js(U) = 5/wf;,gU— E/Uﬁ

2

Q
1 6 1 5 1 6 6 5
=3 /wu,g ) /wu,gﬂuf 6 /[(WM,E +wpe)” — Wy e — 61‘7#,5”#,5]

Q 1?) Q

=1 I +R.

By the mean value theorem, we find

1
R = 75//(10”75 + tﬁu,£)477315(1 —t)dtdx = O(p?).
2 0

We now expand other terms in the right hand side of (2.8).

1 3 1 3 1
I = — 7 - _ 5 _ 3
3 (/3 (14 [2[2)? @ / i (L4 [2[2)? dZ) 0 O(u >7
R3

R3\ Q;f

2
37" Moreover from Lemma 2.1, we have

1 5 1
w2 / 34 W”u,s(uz +&)dz

where ag =

(2.7)

6, are some
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where a; = 2733 Jgs w3 0(2) dz = 8v/37%. Thus we get

Js(U) = ao + a1pR(€) + O(u?).

On the other hand, we have

= (—azlog u + as)e + o(e),

where ay = 15 [ps w$ o(2) dz = ” and ag = 35 [ w§ (2)[61og(wi(2)) — 1] dz.
Finally we compute Jy(U). If 2 <q <3,

where a4 = q+1 Jrs

where a5 = 2371, here we use the fact IS e 2)3/2 dr =log(a + V1 + a?) —

1-1—(12
A 101 5
IU) = _H—l/[u}m(v’ﬂ)—47T3ZWH(96,§)JrO(;ﬁ)]q+1
2
PRSI\ 1 1 1 N q+1
= 31 - 431G o(p?
! q+1/{ e g reee o)

q+1

=\ 2 a6—|—0()\,u 2 ),

where

1

ag = —— q+ (4 3 Q+1/Gq+1 T 5)

- dz+ O(Au?) = hagp? log pp+ O (A2 ),

Ifl1<gqg<?2,

185

(2.10)

(2.11)

(2.12)

(2.13)

From (2.9)(2.12), we obtain C-estimate of the energy expansion. By the same way, C'-estimate also

holds. O

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. First we note that (1.2) has a mountain pass solution u; for any
¢ > 0. Next we build solution uy of (1.2) when & > 0 small enough by using Lyapunov—Schmidt reduction

procedure.
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3.1. Approzimate solution and the linearized problem

If u is a solution of (1.2), taking the change of variables

2
= ¢~ =" yen.,
W) = Fuley), m= g e

where 2. = £. Then v(y) satisfies

—Av = f.(v), v>0 in {2; (3.1)
v=0 on 0f2., '
where and in the following we denote f.(v) = vP + Ae®v? with o = %.
Define the function
o) — <! it o€ o :
V(y)—VAvf’(y)*€2Uu,§(€y)7 - E, § - E, yG 58] (3 )
where U, ¢ is the solution of (2.3). Then V (y) satisfies
—AV(y) = wi’l’g, (y) in £2; V(y) =0 on 0f2.. (3.3)
Note that assumption (2.2) is equivalent to
)
d(¢',00;) > = (3.4)
We assume that
A 1
<A< =, (35)
0
with § > 0 small but fixed.
From Lemma 2.1, for ¢ and A satisfying (3.4) and (3.5), we have
0<V(y) Swse(y) in L. (3.6)
V(y) = wae(y) — 47r3iA%6H(sy,€§’) + 0(53) in 2., ase — 0. (3.7)
We next look for a solution of (3.1) of the form
u(y) = V() + ¢(y),
where V is given by (3.2) and ¢ is a small term. We can rewrite (3.1) as
Lo(6) = N(¢)+ R in 2 5s)
¢ = on 0f2., '

where

Le(¢) = =Ad— fLl(V)p,  N(¢)=[fe(V+¢) = fo(V) = fL(V)g,  R=AV+[(V).

We first consider the linearized problem at V' and we invert it in an orthogonal space. More precisely, we
consider the following problem: h € L (f2.) being given, find a solution ¢ which satisfies
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3
—Ap— (5—e)V - A VI g =h+ Y cowh o Zi in 2
i=0
=0 on 0f2; (3.9)
/qswjg,zi =0 i=0,1,2,3,
02
for some numbers ¢; (i = 0,1,2,3), where Z; are defined by
oV ov
Zo = 20 =, i=1,23.
0 N ) [ af;’ 7 )4y

Then Z;(i =0, 1,2, 3) satisfy

—AZ; = 5w§175,2i in £2; Z; =0 on 02,

with Zo = 2% and Z; = 294 for i = 1,2,3.

Our next aim is to prove that problem (3.9) has a unique solution with uniform bounds in some appro-
priate norms. For f a function in (2., we define the following weighted L°°-norms

2, 9=2
11l = sup (1+ [y = €'") 7 |f@)], (3.10)
ye2e
and
2, ¢
[ fllee = sup (1+ |y =€) *[f(v)], (3.11)
yEeS2,
where 6 satisfies
2<0<3. (3.12)
Observe that the first norm | - || is equivalent to le(gfz) flloo and the second norm || - ||« is equivalent to

||w/_195,f||0Q uniformly with respect to A and ¢’
We have the following result.

Proposition 3.1. Let A > 0 be fixed and &', A satisfy (3.4), (3.5), then there exists g > 0 and a constant
C > 0 independent of €, such that for all 0 < & < gg and all h € L (§2.) with ||h|l« < +00, problem (3.9)
has a unique solution ¢ := T.(h) with ||¢|l« < +oo. Moreover,

16ll+ < CllAlles,  es] < Cllallw (3.13)

The argument of its proof follows from the ideas of del Pino et al. in [10] and Rey et al. in [19].
We first prove a priori estimate for solutions of the following problem

3
—Ap— (5 p=h+ Y cwheZ inf;
=0
$=0 on 0f2; (3.14)

/qswjé/zi =0 ¢=0,1,2,3.
Qs
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Lemma 3.1. Under the assumptions of Proposition 3.1. Then there exists C' > 0 such that if € > 0 is
sufficiently small, for any h, ¢ satisfying (3.14), we have

[6lls < Clikllsxs  leil < Cllhll
The proof follows from the following lemma.
Lemma 3.2. Assume ¢. solves (3.1]) for h = he. If [|hellsx — 0 as e — 0, then ||¢c||« — 0.

Proof. For 0 < p < 6 — 2, we define

0—2—p

£l = sup (1+ ]y — €'
Yy,

| f(y)|.

Claim. ||¢.||, = 0 as e — 0.

Indeed, by contradiction, we may assume that ||¢.||, = 1. Multiplying the first equation in (3.14) by Z;
and integrating on (2., we get

3
/(*AZJ‘ ~ (6 -V 7). - /her = ¢ /wﬁ,g/ZiZj.
2. 0. =0 0.
By the definition of Z; and (3.7), we can find

/ (~AZ; - (5 - )V*2)) 6. = o([16:Il,)-
2

e

Moreover, we have
[ 12; <l [ w0 (2 +0) = O(nel.0)
QE -Qe
and
/wigfzizj = 6ij (i + 0(1)),
0.
where 0;; is Kronecker’s delta and v;, (i = 0,1,2,3) are strictly positive constants. Consequently, we find
¢;i = O(|lhellx) + o(ll¢el5)- (3.15)
In particular, ¢; = o(1) as ¢ — 0.
Moreover, the first equation in (3.14) can be written as
3
¢e() = / Ge(z,y) [(5 =WV (Y)ge(y) + hely) + D ciwh o (¥)Zily) | dy, (3.16)
o, i=0

where G.(x,y) is the Green’s function of —A in (2. with Dirichlet boundary condition, which satisfies
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Ge(z,y) = eG(ex,ey) <

lz—y|’

In the following, we use the basic estimate, which was proved in the Appendix B in [20]: for any 0 < o < 1,
there is a constant C' > 0 such that

1 du < C
Yy s .
| E=y T = e

Hence we have

‘/ (2 9V (1) (y dy‘s /|x_ Jul )60

1 1
< Clé / : L dy
H ||p |:c 7y‘ (1 + |y _§/|2)§(4—€) (1 + |y*§/|2)8—22
1 1
< Olo. / d
o | ooy -G -enarv-epr e ary-epres
< Clo| / FyE
e | 1@ -0+ y—epro2
< Cllgell,(1+ e —€P) "=, (3.17)
1 1
Gele,y dy‘gc he / dy
‘/ ( el | o=y —em?
2.
< Cfhe| / ! dy
| & ) ATl
< Clheles (1 + |x—g'|2)*%, (3.18)
and
1 1 dy

[ ceimtemzmn| <0 [ et
2. Y

€

C/ ! ! d
= e Gy O e Y

_C’(1+|x—§'|2)7%. (3.19)

Then from (3.16)(3.19), we get

_o6-=2
|6<(2)] < Cl1ellp+ lhellon + lesl) (1 + | =€) 7, (3.20)
which yields that

2l

(1o =€) 7 Joe@)| <O+ |z — €))% (3.21)
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Moreover, ||¢c||, = 1 and (3.21) imply that there exist R > 0, v > 0 independent of ¢ such that

PellLoe (Br(ery) > - (3.22)

Set ¢.(y) = d(y — &), by elliptic estimates, passing to a subsequence of (¢.)., still denote (¢.)., such
that ((;755)E converges uniformly on any compact set of R? to a nontrivial solution of

—A¢p = 5wjﬁ70¢7§ for some A > 0.

It is well known that [17],

Z

5= 3wA 0 Z (9111/1 0
=1
Recall that

/asgwjg,zi =0, fori=0,1,2,3.
Qs

By dominated convergence, we have

ow 2 ow 2
ao/( 8;1170) wﬁ,O =0 and ai/< 8727()) wj,o =0, fori=1,23.
R3 i

So a; = 0 for i = 0,1,2,3 and ¢ = 0, this contradicts (3.22). Therefore we get ||¢c|, — 0 as e — 0. Finally,
from (3.15) and (3.20), we have

16ells < C(llhellex + lidello)-

Hence ||¢||« — 0 as ¢ — 0. We complete the proof. O

Lemma 3.3. Let A > 0 be fized and &', A satisfy (3.4), (3.5). There exists C > 0 such that if € > 0 is
sufficiently small, for any h, ¢ satisfying (3.9), we have

811« < CllAllas,  les] < Cllalle
Proof. We claim that ||V ||, < Ce?73||¢|.. Since V < w4 ¢/, we only need to show that

Ce’1 ¢

|** -

wed
In fact,

6 _
[whdell,, = sup (1+ |y —€17)* Jwae )" |o()]
yef.
1]l sup (1+ |y — &) |wae )| < o]l sup (1+ |y — &)’
YyEN, yEN,

IN

3— _
< |gll+ sup [y — &' < Ce? | g
YyEN2e

By the first estimate in Lemma 3.1, we get
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]l < Cllhllo + Ce?|[VITe|,, < Cllhllax + Ce*F 73]

Recall that o = °5% + O(e), we have that a + ¢ — 3 > 0. Thus we get [|¢[ls < C||A]ws.
Similarly, we can get |¢;| < Cl|h|ls. O

Proof of Proposition 3.1. By Lemma 3.3, we get the estimates in (3.13). Now we prove existence and
uniqueness of solution to (3.9). Consider the Hilbert space

H= {(bEH[%(QE)/(bwi,g’ZZ :07 l:O>172a3}
2,

=

with inner product

0.0) = [ vovu.

02

Then problem (3.9) is equivalent to find ¢ € H such that

(p, 1)) = /[(5 — )V p+ A\ge® VT ¢+ hlp, for Vo € H. (3.23)

02

By the Riesz representation theorem, (3.23) is equivalent to solve
o=K(9)+h (3.24)

with & € H depending linearly on h, and K : H — H being a compact operator. Fredholm’s alternative
guarantees that there is a unique solution to problem (3.24) for any h provided that

¢ =K(9) (3.25)

has only the zero solution in H. (3.25) is equivalent to problem (3.9) with h = 0. If A = 0, the first estimate
in (3.13) implies that ¢ = 0. This completes the proof. O

For later purpose, it is important to understand the differentiability of the operator 7. with respect to
A, &' Consider the L (resp. L23) functions defined on {2, with || - ||« norm (resp. || - ||+« norm). We have
the following result.

Proposition 3.2. Under the conditions of Proposition 3.1, the map (A, &) — T.(h) is C* with respect to A,
&' in the considered region and the L° norm. Moreover,

|osT-()], < Cllblle |96 T=(R)], < Ol (3.26)

Proof. T. is C! with respect to A and ¢’ follows from the smoothness of K and h, which occur in the
implicit definition (3.24) of ¢ = T.(h), with respect to these variables. Differentiating (3.9) with respect to
& (k=1,2,3),set ¢ =T.(h), Y = 0¢ ¢ and d; = Og; ¢i, k = 1,2,3, then Y satisfies

3
—AY = (5—e)VITTY = A VITY = h+ ) dawd o Zi in 0
=0 (3.27)
Y =0 on dfX; /[¢a§; (WheZi) +Ywh o Zi] =0, i=0,---,3,

2.
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where
3

h=05-e)d—-e)VZip+ Aqlq — VeV Zip + Y _ ;0 (wh o1 Zi).
=0

Setn=Y — Z?:o b;Z;, where b; € R is chosen such that an 77“’?175'21‘ = 0, that is, b; satisfies

3

ij/wjg/ZiZj = /ijﬁ,g,Zi.

=00 2.

Since this system is almost diagonal, it has a unique solution and we have
|b;1 < C[|]+

Moreover, 7 satisfies

3
—An— (5—e)Vi e = NVl =g + Z diwjg,Zi in (2,;
i=0

n=0 on df2; /nw‘jyg,zizo i=0,1,2,3,

QE
with
3 —
9= bi[-AZ;—(5—-e)V*°Z; — Age"VI™' Z;] + h.
j=0

By Proposition 3.1, we have that n = T.(g) and ||n]l« < C||g|| -
By simple calculations, we have

3
llgllse < Z |bj|H—AZj —(5— 5>V4—EZJ, _ )\anVq_lzj
Jj=0

EES

EES

3
o+ leil]| 0 (whee Z:)
1=0

+C|| V3= Zi

. T Ce|vi?z
< C(Ibs] + 1ll« + leil) < Cllhllaxs

here we use |b;| < C|9][«, |9l < C|h[[ and |c;| < C[[h][sx.
Thus

[l < CliR]lex-

By (3.29), (3.31) and || Z;||+« < C, we obtain that

3

19¢ ¢l < D 10l Zil« + llnlls < Cll|e.
§=0

Similarly, we can get the estimate for ||04¢||. in (3.26). O

(3.28)

(3.29)

(3.30)

(3.31)
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8.2. The nonlinear problem

In this subsection, our purpose is to study the nonlinear problem. First, we estimate || R||.x, ||0aR] xx
and [0 R

Lemma 3.4. Assume 1 < ¢ < 3, let A\ > 0 be fized and &', A satisfy (3.4), (3.5), then choosing 2 < 6 < 3
appropriately in the norms (3.10), (5.11), there exists a constant C' > 0 independent of &', A, such that

| R]|x < Ce, |OAR|| s < Ce, |0¢ R|re < Ce, (3.32)
for e > 0 small enough.
Proof. Recall that R = V57¢ — wi’l’g, + Xe®V9. By (3.7), V =wa ¢ + O(e). Consequently,

Vo —wl o < VP75 —wi S

+ |’LUA ¥ wié/ < Og(wj’_;/ + w§’17€/|1ogw/175/|).
Thus for 2 < 0 < 3,

[Vo~e — i e

o SO (VP =l o) < CES};P“JZ,%' (wig +whellogwael) < Ce.
Moreover,

[AeeV, < CAe|wi% Ve < Ore® sup|w/1£,

_ [ O if ¢ > 6;
| OXe®ta0 if g < 0.

Note that a = % +0(e) >1for 1 < g< 3. We choose 2 < 0 < %, so a + q — 6 > 1. Therefore we get
the first estimate in (3.32). Furthermore

OAR = (5—e)V* ™ Zy — bw)y ¢ Zo + A\ge® VI~ Zy,
and
e R=(5—e)V'"Z —bw) o Zi + A\ge® VI~ Z;, i=1,2,3.
By similar computations as ||R||.., we can get the rest estimates in (3.32). O

Now we consider the following problem

3
—Ap— (5—e)V* - A VT o= N(¢) + R+ > _ciwh o Z; in £ (3.33)
=0
with
¢=0 ondf., and /gbw‘}m/& =0 i=0,1,2,3. (3.34)
QE

Proposition 3.3. There exists C > 0 independent of £, A satisfying (3.4), (3.5), such that for e > 0 small
enough, there exists a unique solution ¢ = ¢(A, &) of problem (3.33)-(3.34), satisfying

¢« < Ce. (3.35)
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Proof. By Proposition 3.1, problem (3.33)—(3.34) can be written as the fixed point problem
¢ = T-(N(¢) + R) := A(9).
Define
Fu = {6 € Hy(92:) N L=(92:):[|¢]|. < Me}

with M > 0 large but fixed which will be chosen later. Then A, sends Fj; into itself.
Indeed, by Proposition 3.1, we have

[4=(@)]], = IT=(N(0) + R) ||, < C(IN ()], + [I1R]].)- (3.36)
Moreover,
1
IN@)]. (V +t9) — fL(V)]d dt
! sk
<c zmg/hgv+w sl ol
< C([lwa [(vV + o)™ —Wﬁwm+MW%@KV+WVA—V“WuNww(wﬂ
Since

lwze [(V 416" = V|| < Cllune (wiiglol + 161" |

< Olluf el N9l + Cllwge” 972 ol
SCEQ 1— E||¢H*+CEHHH{(9 2)(4—e)— 2,0}||¢||i—e. (338)

On the other hand, by Lemma 2.2 in [12], we have

- - VITRIgl + el if2<g <3,
Vot ot <cf! ’
VAol = VI S O v o216 g1y i1 <q <2
Thus for 1 < ¢ < 2,

lwz2 [(V + o) = Ve . < Cmin{wae 0726, wae | €2 E0D 72 |gl|2}
< Cmin{e70Y g, e D=2 g 071} (3.39)

For 2 < ¢ < 3,

w2 [(V+ 1) = Vel < Cllwp [whalel + 617 ||
< Cett075) g, + Ce?=Da—D=2| g1, (3.40)

From (3.37)-(3.40), if 1 < g < 3, for ¢ € Fps, then we have

|N(9)],, < Cel¢]l.  with some T > 0. (3.41)

*ok
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Thus by (3.32), (3.36) and (3.41), we find for ¢ € Fyy,
|4=(9)||, < C(e7[|]l« + &) < C(Me™ + 1)e.

Choosing M large such that C(Me™ + 1) < M. It implies that A.(Far) C Fur.
Next we show that A. is a contraction map. For ¢1, ¢o € Fay,

[4:(61) — A (92)|, < C|[N(d1) = N(62)]]..
= C||[fL(V + té1 + (1 = 1)2) — FL(V)] (61 — 62)|,.,
< Cllwr% [fAV + ) = FL(V)] (61 — 62)|
< Oflwi% [£(V + ) = LDl liér — é2ll-,

where ¢ = td; 4 (1 — t)dy € Fay for t € (0,1). It can be easily checked that

|Ac(¢1) — Ac(d2)

, S Ce|[o1 — ¢all«, with some 7 > 0.

This yields that A, has a unique fixed point in Fj;. Hence problem (3.33)-(3.34) has a unique solution ¢
such that ||¢||. < Ce, for some C > 0. O

Proposition 3.4. The solution ¢(A,&') constructed in Proposition 3.5 is C' with respect to A and €' in the
considered region. Moreover,

1040l < Ce,  [|0grdl < Ce. (3.42)
Proof. We write
B(A,¢,¢) = ¢ —T.(N(¢) + R), (3.43)
we have
B(A,¢,¢) =0, (3.44)
and
93 B(A, €, 0)[Y] = ¢ — O[T (N () + R) ]9 = ¢ — T[94(N(9)) ] (3.45)

By a direct calculation, we get

1= 96 (N (@) ]|, < Cll9s (N (@) ¢l < Cllwieds (N (@) Il < CeTl L,

with 7 > 0. Therefore

105 B(4, ¢, ) [v]

LS @+

It follows that for £ > 0 small enough, 04B(A,¢’, ¢) is invertible in || - ||« with uniformly bounded inverse.
It also depends continuously on its parameters. Let us differentiate (3.43) with respect to & and by (3.45),
we have

e B(A, &, ¢) = —(0aT:)(N(A,E,0) + R) — T (0 N) (A, &', ¢) + O R), (3.46)
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where all the previous expressions depend continuously on their parameters. Hence the implicit function
theorem implies that ¢ = ¢(A,¢’) is C! with respect to A, & in the considered region.
Moreover, differentiating (3.44) with respect to &', we get

Oet=~(04B(4,€,0)) " 0 B(A,€,0).
By (3.46), (3.26) and (3.13), we get
19gr ¢l < C(IN(@)]],, + I Bllws +[|(0 N) (A, 0)]],, + 10¢ Rl|s) < Ce.
Similarly, we can get ||04¢]|« < Ce. O

8.8. The reduced functional

We have solved the nonlinear problem (3.33)—(3.34). In order to find a solution to problem (3.1), we need
to find A and £ such that

ci(A4,8)=0 fori=0,1,2,3. (3.47)

The energy functional to problem (3.1) is given by

1 1 @
;ﬁwm—NWALwW1

2 p+1 g+1

2. 2. 2.

Set

I(AE) = 1(Vae (y) + dae (v), (3.48)
where V¢ is defined in (3.2) and ¢4, is solved by Proposition 3.3. We have the following fact.

Lemma 3.5. Let &' and A satisfy (5.4) and (3.5). Then Z(A,€") is of class C*. Moreover, for all € > 0
sufficiently small, the function v(y) = Va e (y) + da.e (y) is a solution to problem (3.1) if and only if (A,£)
is a critical point of T(A,¢&').

Proof. As a consequence of Proposition 3.4, we can get the map (A,&") — Z(A,¢') is of class C'. For
k € {1,2,3}, we have

9, Z(A,€') = DI(Vag + daer) {

3 3
3V ’ a ’
= E Ci/wi,§/Zi|: ag/’g g§k§:| E Cl/w/l &-/Z Zk 1+0( ))
02

WVae | Opae
23 9,

here we use the fact that |9 ¢a,¢ (|« = O(e). Similarly, we find

6/11(/1 f ch/w/lglz ZO( +0( ))

where 0(1) — 0 as ¢ — 0 uniformly for the norm || - ||«. It defines an almost diagonal linear equation system
for ¢;. Thus (A,&') is a critical point of Z(A,¢’) if and only if ¢; = 0 for 4 = 0, 1,2, 3. This ends the proof of
lemma. 0O
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Lemma 3.6. As ¢ — 0, we have the following expansion

I(A, 5/) — I(VA{/) = 0(5),
where o(g) is in the C'— sense uniformly on &', A satisfying (3./)and (5.5).

Proof. For notation simplicity, we write V4 ¢ by V, and ¢ by ¢. By the Taylor expansion and the fact
that DI(Vaer + ¢aer)[¢] = 0, we have

1

T(AE) ~I(Vag) = I(V +6) — (V) = / DIV + 1) (o, )t di
0

< C/IV’“ — (V4o dy + Ce® /!V‘” = (V+0) o dy

Q 2.

+ [IRlleldy+ [IN ()0l dy.
2. 0.

and since | Rlle. < C¢, [IN(§)llsn < Ce7 9]l and ]l < Ce, we get
Z(AE) = I(V) = ole),
where o(¢) is uniform in the C'-sense for ¢’, A satisfying (3.4), (3.5). By a similar way, we can obtain
Dipen(Z(A,€) —1(V)) = o(e).
This ends the proof of lemma. O

Proof of Theorem 1.1. We first prove (7). We follow the proof in [3], where the case p = 5 is considered.
Taking £¢ fix and small, we can rewrite the proof of Corollary 2.4 in [3] for variable p in the range [5 —&¢, 5]
and clearly choose a A\ that depends only on £q, ¢ and {2. Then [3, Theorem 2.1], also holds for p € [5—&q, 5],
and existence of a solution uy of problem (1.2), follows for all A > Ag. In [3, Remark 2.2], they prove that
for this problem, we have J(u;) < @772.

Now we prove (ii). By Lemma 3.5, we know that u(ey) = e (Va,¢/(y) +¢a,¢(y)) is a solution to problem
(1.2) if and only if (A,¢’) is a critical point of Z(4,&’). So we have to show existence of the critical point of
(A, 8.

It is easy to check that

I(Vag) =21 (e275U) = J(U) + o(e), (3.49)

since 2k — 1 = O(¢e). This together with Lemma 3.6 and Lemma 2.2, and recalling that pu = Ae, we have
that for 1 < g < 3,

Z(A, &) = ao + ep(A, €) — aseloge + aze + o(e), (3.50)
where

p(4,8) = a1 AR(£) — azlog A,
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with constants aj,as > 0 being given in Lemma 2.2, and o(e) is uniform in the C!— sense for ¢/, A in the
considered region.

Define
T 7 1 / ao
T(A,¢) = Z(A¢) — 2 —a
€ €
Then we have
Z(4,¢) = p(4,6) +o(1), (3.51)
where ¢ = g and o(1) is in the C'— sense uniformly on &', A satisfying (3.4), (3.5). Since the function
R(€) has at least one critical point, denoted by &, with R(&y) > 0, then (Ag, &), with Ay = alg—’f&)), is a

nondegenerate critical point of ¢(A,§). It follows that the local degree deg(V(4,€),0,0) is well defined
and is nonzero, where O is arbitrary small neighborhood of (Ag, &). So deg(VZ(A,£'),0,0) # 0 for e > 0
small enough. Hence we find a critical point (A, &) of f(/l,&’)7 such that (A, &) — (Ao, &) with & = %0
as € = 0. Then (A4, &) is also a critical point of Z(A,¢’). Thus we get that

xr
u2(x) = E—H(VA*@; + ¢A*,£;) (g)

is the solution of problem (1.2). Recall that x = pi = 1+ i+ o(e), then by above construction and

-1
Lemma 2.2, we can get (1.6) and (1.7). O
4. Proof of Theorem 1.2

Proof of Theorem 1.2. For 2 < ¢ < 3, taking A = Xe— 2 and i = Ae in the energy expansion (2.5), we
have

J(U) = ag + ¥ (A, €) — ageloge + aze + o(e), (4.1)
where
F(A,€) = a1 AR(E) — aglog A — hagA™="
First, & — ¥(A, &) has a minimum point &, that is 9z¥ (A, €)|¢=¢, = 0. On the other hand, the function
A o(A) == F(A, &) = a1 AR(&) — azlog A — XagA ="

has two non-degenerate critical points A_ < A, for each 0 < A < \g. In fact

-5— 3—q
¢'(A) = aR(&) — az A = 22— Lagn*F"
and this can be written,
() = 290, A [f(A) - N], where f(4) = —— D R(g) A — 22 4%
14 9 ’ 5—qay 0 5—qay

is negative for small and large A. The function ¢(A) takes positive values if and only if 0 < X < Ag where
Ao = max s f(A). In this case, the equation ¢’(A) = 0 has two positive solutions A4 ()).
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Finally, if we define b = % 22 and use the expressions of a1, az, we obtain that f(4) = 128R(§0)b/1_3_Tq -
Y/
Note also that ¥(A_, &) < ¥ (A, &) and so J(u_) < J(uy) for sufficiently small ¢ > 0. O

Proof of Corollary 1.1. Choose any £y small. By Theorem 1.1 (i), there exists Ag, such that for any A > Ag
there exists a solution u; for any e € [0,g]. Now for any fix A > Ao there exists a solution uy for & € (0,1).
Then for this A there are two solutions u; and ug of (1.2) for any € € (0, min{e;, e0}). O

Proof of Corollary 1.2. Choose any ¢ small. By Theorem 1.1 (i), there exists Ao, such that for all A > Ao
there is a solution u; for any € € [0,&0]. By Theorem 1.2, choosing A € (0,);) and ¢ < g5 < & such that
A =Xe~ "z’ > Ao, then there exist two solutions u_ and u.. for any & € (0, 3). Then for £ € (0, min{e2, £0}),
there are three solutions u; and u_ and wuy of (1.2), with the desired energy properties. O

Remark 4.1 (The case ¢ = 2). In this case, the expansion of the energy is given by formula (2.6). We can
rewrite the proof of Theorem 1.2 using this expansion with A = et |loge|~! and yu = Ae. Then, we obtain

J(U) = ag — aseloge + eW¥(A, &) + aze + o(e) (4.2)
where
U(A,€) = a1 AR(E) — aglog A — XasA?
We note that this expansion is similar to (4.1), that is, changing a4 for as, and so Theorem 1.2 follows.
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