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1. Introduction

Drift–diffusion systems arewidely used for themodeling of various phenomena in continuummechanics and biology. For
instance, the system of evolution equations describing the interaction of charged particles in the mean field approximation,
known as the Nernst–Planck–Debye–Hückel system (see (8) below), is used in plasma physics, electrolyte theory as well as
semiconductor modeling [1,2]. Two-component generalizations of the classical Keller–Segel system in chemotaxis theory
(e.g. [3]) are used to describe two species interacting via a diffused sensitivity agent which can be either a chemoattractant
or a chemorepellent for each of the populations. The interaction of massive particles of two kinds through the gravitational
potential generated by themselves can also bemodeled by such amean field model; see (7) below [4,5]. Also, the system (9)
below has been introduced in [6]; cf. [7,5].

A general class of multicomponent systems of many species with the densities ui, i = 1, . . . , k, interacting via several
sensitivity agents of densities vj, j = 1, . . . , ℓ, has been studied in [8]. These populations may also collaborate or compete
with each other. Wolansky proposed the following system of parabolic equations:

νi
∂

∂t
ui = ∆ui −


j

ϑij∇ · (ui∇vj), (1)

σj
∂

∂t
vj = ∆vj − αvj +


j

γijui + fj, (2)
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describing the diffusion of species, their interactions, and the production and diffusion of sensitivity agents. In the case of
bounded domains, the system (1)–(2) is to be supplemented with appropriate boundary conditions (either Neumann or no-
flux for ui’s, and either Neumann or free for vj’s). He showed that under an algebraic condition of the absence of conflicts
between species, the system (1)–(2) considered in two space dimensions has a variational structure, and the steady states
can be studied using generalizations of the Moser–Trudinger inequality; see [9,8].

We will consider two-component systems with i = 1, 2, interacting through one sensitivity agent, j = 1, which diffuses
instantaneously: σj = 0, so (2) is an elliptic equation. Our analysis will be carried out in two space dimensions, in the
whole space R2, which is critical for a balance of diffusion and drift properties. In particular, due to the scaling properties,
blowup conditions are expected to be expressed in terms of critical masses (or charges), i.e. the L1 norms of ui. Moreover,
the existence of integrable self-similar solutions can be proved in some range of masses. Thus, our object of study is the
parabolic–elliptic system

∂

∂t
u1 = ∇ · (∇u1 + ϑ1u1∇v), (3)

∂

∂t
u2 = ∇ · (∇u2 + ϑ2u2∇v), (4)

−∆v = γ1u1 + γ2u2, (5)

where u1, u2 ≥ 0 are densities of two species, and the masses (or charges) are
R2

ui dx = Mi, i = 1, 2. (6)

Here, for simplicity, ϑi, γi ∈ {−1, 1} but we may consider more general cases ϑi, γi ∈ R \ {0} in essentially the same way.
However, if some of ϑi, γi are allowed to vanish, the classical single-component Keller–Segel system [3,10,11] arises for

ϑ1 = −1, ϑ2 = 0, γ1 = 1, γ2 = 0

(note that the equation for u2 decouples), while

ϑ1 = 1, ϑ2 = 0, γ1 = 1, γ2 = 0

corresponds to a model of a cloud of identically charged particles [1]. Here ϑiγi < 0 means that the particles of the ith
species attract each other, while ϑiγi > 0 signifies their mutual repulsion. Finally, (ϑ1γ1)(ϑ2γ2) < 0 results in a conflict of
interest; cf. [8].

A priori, there are sixteen possible choices of signs for ϑi, γi. Clearly, exchanging the variables u1, u2 results in equivalent
systems. Similarly, changing simultaneously the sign of all the parameters ϑ1, ϑ2, γ1, γ2 also gives the equivalent systems,
denoted below by ∼.

Proceeding in this way we obtain the following list of the sixteen quadruples ⟨ϑ1, ϑ2, γ1, γ2⟩ corresponding to six
genuinely different systems, four of them without conflicts of interest, called here

gravitational: ⟨−1, −1, 1, 1⟩ ∼ ⟨1, 1, −1, −1⟩, (7)
electric: ⟨1, −1, 1, −1⟩ ∼ ⟨−1, 1, −1, 1⟩, (8)
K–O : ⟨−1, 1, 1, −1⟩ ∼ ⟨1, −1, −1, 1⟩, (9)
repulsive: ⟨−1, −1, −1, −1⟩ ∼ ⟨1, 1, 1, 1⟩, (10)

and also two kinds of systems with conflicts of interest:

mixed: ⟨−1, −1, 1, −1⟩ ∼ ⟨−1, −1, −1, 1⟩ ∼ ⟨1, 1, −1, 1⟩ ∼ ⟨1, 1, 1, −1⟩, (11)
uniform: ⟨−1, 1, 1, 1⟩ ∼ ⟨1, −1, 1, 1⟩ ∼ ⟨1, −1, −1, −1⟩ ∼ ⟨−1, 1, −1, −1⟩. (12)

The names that we coined for them are related to the type of interaction potential generated by the different components in
the system. The system (7) corresponds to particles of two different masses that attract each other through the Newtonian
potential. The system (8) describes particles of opposite charges interacting through the Coulombic potential. The system
(9) is similar to (8) but the potential generated by the particles acts in the opposite direction compared to (8). The system
(10) corresponds to particles of two different kinds that repel each other. The systems (8), (9) are well known, and are
called Debye–Hückel and Kurokiba–Ogawa systems, respectively. For short, we call them simply electric and K–O systems,
respectively.

2. Blowup of solutions

In this section we formulate simple algebraic criteria in terms of either masses or charges M1, M1 which are sufficient
for a finite time blowup of nonnegative solutions of the Cauchy problem for the systems without conflicts of interest, with
prescribed initial valuesu1(·, 0) andu2(·, 0) that satisfy (6). Formally,mass conservation andpositivity preserving properties
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are satisfied for (3)–(5). We refer the readers to [6,7,1,12] for the rigorous proofs of those properties for the systems (8) and
(9), respectively. These proofs extend easily to the general situation.

We note that in some systems, solutions may blow up for suitably chosen initial data that do not even satisfy such a
general sufficient condition in terms of masses; see [13, Theorems 5 and 6].

Lemma 2.1. Suppose that ⟨u1, u2⟩ is a solution of (3)–(5)with ϑ1γ2 = ϑ2γ1 (hence without conflicts of interest), with the initial
data 0 ≤ u1(·, 0), u2(·, 0) ∈ L1(R2, (1 + |x|2) dx), and that the terms

mi(t) =


R2

|x|2ui(x, t) dx, i = 1, 2, (13)

denote the second moments of the measures ui dx. Then the following differential equation holds:

d
dt

(m1(t) + m2(t)) = 4(M1 + M2) +
1
2π


ϑ1γ1M2

1 + (ϑ1γ2 + ϑ2γ1)M1M2 + ϑ2γ2M2
2


. (14)

Proof. Multiplying (3) and (4) by |x|2, and summing them, we get after integration by parts

d
dt

(m1(t) + m2(t)) = −2


(∇u1 + ∇u2) · x dx − 2


(ϑ1u1(x, t) + ϑ2u2(x, t))∇v(x, t) · x dx

= 4(M1 + M2) − 2


(ϑ1u1(x, t) + ϑ2u2(x, t)) × (γ1u1(y, t)

+ γ2u2(y, t))
−1
2π

(x − y) · x
|x − y|2

dx dy

since E(z) = −
1
2π log |z| is the fundamental solution of−∆ in R2. Next, we symmetrize the double integral, exchanging the

variables x and y to obtain

d
dt

(m1(t) + m2(t)) = 4(M1 + M2) +
ϑ1γ1

2π


u1(x, t)u1(y, t) dx dy

+
ϑ1γ2 + ϑ2γ1

2π


u1(x, t)u2(y, t) dx dy +

ϑ2γ2

2π


u2(x, t)u2(y, t) dx dy

= 4(M1 + M2) +
1
2π


ϑ1γ1M2

1 + (ϑ1γ2 + ϑ2γ1)M1M2 + ϑ2γ2M2
2


;

note that (x − y) · x + (y − x) · y = |x − y|2 and ϑ1γ2 = ϑ2γ1. �

Remark. In the above simple virial computation (similar to that in [14]) moments of order 2 can be replaced (in any
dimension) by moments of lower order, as was done in [12], and the assumption on the existence of suitable moments
can be removed by taking a cutoff of the weight function |x|2 in the two-dimensional case; see [6]. Blowup phenomena for
systems (7) and (9) in the higher dimensional case are studied in [15].

Proposition 2.2. If the initial data satisfy the condition

8π(M1 + M2) + ϑ1γ1M2
1 + (ϑ1γ2 + ϑ2γ1)M1M2 + ϑ2γ2M2

2 < 0, (15)

then any nonnegative solution ⟨u1, u2⟩ of the Cauchy problem for (3)–(5) with ϑ1γ2 = ϑ2γ1 (and hence without conflicts of
interest) cannot be global in time.

Proof. Indeed, under the assumption (15), by Lemma 2.1 the differential inequality

d
dt

(m1(t) + m2(t)) ≤ −ε

holds with a strictly positive ε, so the sum of moments of nonnegative functions u1, u2 becomes negative in a finite time.
This is a contradiction with the existence of globally defined nonnegative solutions of (3)–(5). �

Corollary 2.3. For the gravitational system (7), condition (15) becomes

8π < M1 + M2. (16)

For the K–O system (9) the sufficient condition for a blowup reads (cf. [6])

8π <
(M1 − M2)

2

M1 + M2
. (17)
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For the electric (8) and repulsive (10) systems, the sufficient blowup condition (15) cannot be satisfied for any nonnegative initial
data.

It is interesting to compare the (sufficient) conditions for blowup with (necessary) conditions for the global in time
existence of solutions. We aim at doing this for special scale invariant solutions in the next section, and we will show that
these conditions are in a sense complementary. For arbitrary solutions the questions of global in time existence for various
single-component and two-component systems have been studied in, e.g., [11] (for the Keller–Segel system), [6,7] (K–O),
[5,4] (gravitational and K–O), [1] (single Debye), and [16] (a version of gravitational system).

3. Self-similar solutions

It is easy to see that the scaling ui(x, t) → λ2ui(λx, λ2t) for each λ > 0 leaves invariant the system (3)–(5), and preserves
the L1 norms of ui’s in two space dimensions. Thus, it is natural to look for solutions which are scale invariant, i.e. are of the
form

ui(x, t) =
1
t
Ui


x

√
t


, i = 1, 2, v(x, t) = V


x

√
t


for some functions Ui, V of two variables. Moreover, to simplify our considerations we assume that the Ui’s are radially
symmetric (for some systems like Keller–Segel and Debye–Hückel ones it can be done with no loss of generality; see e.g.
[11,2]). It is standard to find that the cumulated densities

Φi(y) =
1
2π


B(0,y)

Ui dx, Ψ (y) =
1
2π


B(0,y)

V dx

(cf. related calculations in [10,17]) satisfy the system of two ordinary differential equations

Φ ′′

1 (y) +
1
4
Φ ′

1 −
ϑ1

2y
Φ ′

1(γ1Φ1 + γ2Φ2) = 0, (18)

Φ ′′

2 (y) +
1
4
Φ ′

2 −
ϑ2

2y
Φ ′

2(γ1Φ1 + γ2Φ2) = 0, (19)

with ′
=

d
dy ; note that Ψ is eliminated from the system, resulting in (18)–(19).

The self-similar solutions can be interpreted as solutions of the Cauchy problem issuing from the initial data ui(·, 0) =

Miδ0, i = 1, 2, if, of course, we are able to show the uniqueness of the solutions of the Cauchy problem with such singular
initial data. The advantage of that formulation is that we now have a system of two ordinary differential equations of order 2
with singular coefficients, but this is no longer nonlocal. The system (18)–(19) is supplementedwith the boundary conditions
at 0 and at ∞:

Φi(0) = 0, Φi(∞) =
Mi

2π
, i = 1, 2. (20)

First, it is useful to recall results for a single equation related to each of (18), (19).

Proposition 3.1. (i) The boundary value problem

Z ′′
+

1
4
Z ′

+
1
2y

Z ′Z = 0, (21)

Z(0) = 0, Z(∞) = N > 0,

has a unique solution Z = Z(y) > 0 (y > 0) for each N ∈ (0, 4).
(ii) Moreover, if Z(y) ≥ 0 satisfies

Z ′′
+

1
4
Z ′

+
1
2y

Z ′Z ≤ 0, Z(0) = 0, (22)

then lim supy→∞ Z(y) < 4.
(iii) The boundary value problem

W ′′
+

1
4
W ′

−
1
2y

W ′W = 0, (23)

W (0) = 0, W (∞) = N > 0,

has a unique solution for each N > 0. Moreover, 0 ≤ W ′(0) < 1
2 holds for any solution W ≥ 0 which exists for all y ≥ 0.
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Proof. (i) The problem (21) has been studied in connection with the existence of self-similar solutions for the Keller–Segel
model in [18]. We recall some properties of (21) important for further applications of Proposition 3.1 while the detailed
proofs can be inferred from [18, Section 4].

First, note that Z(∞) > 0 implies Z(y) > 0 for each y > 0 and Z ′(0) > 0. Despite the coefficient 1
y being singular at

y = 0 in (21), this equation enjoys the uniqueness of solutions for the Cauchy problem, i.e. with the conditions Z(y0) = 0,
Z ′(y0) = z0 > 0 for each fixed y0 ≥ 0; cf. [18, p. 1579]. Moreover, Z ′(0) ∈ (0, ∞) and Z(∞) ∈ (0, 4) are in bijective
correspondence, i.e. different values of Z ′(0) correspond to different values of Z(∞), and for each N ∈ (0, 4) there is a
unique value of the initial slope Z ′(0) > 0 such that Z(∞) = N .

(ii) The inequality (22) with Z ≥ 0, Z ′
≥ 0 leads to

(4yZ ′)′ − 4Z ′
+ yZ ′

+ 2Z ′Z ≤ 0.

This, after an integration over (0, ∞), results in

−4Z(∞) +


∞

0
yZ ′(y) dy + Z2(∞) ≤ 0,

so Z(∞) < 4. We used above the monotonicity of Z ′
≥ 0 and its integrability on (0, ∞) leading to limy→∞ yZ ′(y) = 0. In

fact, (N − Z(y)) and yZ ′(y) decay exponentially to 0 as y → ∞; see Lemma 4.1 in [18] and its proof.
(iii) The system (23) corresponds to the single-component electric system studied in, e.g., [2,19]. The crucial observation

is that: ifW ′(0) < 1
2 thenW is concave. Then, from

W ′′(y)
W ′(y)

=
1
2


W (y)
y

−
1
2


one infers that limy→∞ W (y) exists. The existence of solutions is established via the Banach contraction fixed point theorem
for

W (y) = 4W ′(0)

1 − e−y/4

+
1
2

 y

0


e−t/4

 t

0
es/4s−1W (s)W ′(s) ds


dt.

Here, again (N − W (y)) and yW ′(y) decay to 0 exponentially as y → ∞: cf. [19, Lemma 4.2]. �

A similar approach can be applied to the system (18)–(19) (either a construction of solutions via the shooting method
with the parameters ai = Φ ′(0) or a direct analysis of the Cauchy problem; cf. [18,17] for related systems) but, of course,
the range of parametersM1, M2 for which there exist self-similar solutions is not a priori known.

Remark. An obvious observation (which applies to the electric, K–O and also mixed systems) is that:
If γ1γ2 < 0, then for eachM1 = M2 = M > 0 there is a self-similar solution with

Φ1(y) = Φ2(y) =
M
2π


1 − e−y/4

describing two species that do not interact on average, i.e. in the mean field approximation used in those models.

The following proposition gives some necessary conditions for the existence of self-similar solutions with prescribed
masses.

Proposition 3.2. If ⟨U, V ⟩ is a self-similar solution of the system (3)–(5) and ϑ1γ2 = ϑ2γ1 (and hence there is no conflict of
interest in the system), then

8π(M1 + M2) + ϑ1γ1M2
1 + ϑ2γ2M2

2 + (ϑ1γ2 + ϑ2γ1)M1M2 > 0. (24)

Remark. The condition (24) – necessary for the existence of a radial global in time self-similar solution – is complementary
to (15) – sufficient for the blowup.

Proof. The system (18)–(19) is equivalent to

4yΦ ′′

1 + yΦ ′

1 − 2ϑ1Φ
′

1(γ1Φ1 + γ2Φ2) = 0, (25)

4yΦ ′′

2 + yΦ ′

2 − 2ϑ2Φ
′

2(γ1Φ1 + γ2Φ2) = 0, (26)

which, in turn, implies

4y(Φ1 + Φ2)
′′
+ y(Φ1 + Φ2)

′
− 2(ϑ1Φ

′

1 + ϑ2Φ
′

2)(γ1Φ1 + γ2Φ2) = 0 (27)
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with the boundary conditions

(Φ1 + Φ2)(0) = 0, (Φ1 + Φ2)(∞) =
1
2π

(M1 + M2) (28)

following from (20). Integrating (27) over [0, ∞) we formally get

4y(Φ1 + Φ2)
′
|
∞

0 −4


∞

0
(Φ1 + Φ2)

′ dy + y


(Φ1 + Φ2) −
1
2π

(M1 + M2)

 ∞
0

+


∞

0


1
2π

(M1 + M2) − (Φ1 + Φ2)


dy − ϑ1γ1Φ

2
1 |

∞

0 −ϑ2γ2Φ
2
2 |

∞

0 −2ϑ1γ2


∞

0
Φ ′

1Φ2 dy

− 2ϑ2γ1


∞

0
Φ1Φ

′

2 dy = 0.

Observe that


∞

0 (Φ1 + Φ2)
′ dy =

1
2π (M1 + M2),


∞

0 (Φ ′

1Φ2 + Φ1Φ
′

2) dy =
1

4π2 M1M2.
Since the quantities


∞

0

 1
2π M1 − Φi


dy – equivalent to the secondmoments of the densities Ui – are positive, we arrive

at the conclusion (24) if, of course, ϑ1γ2 = ϑ2γ1. To justify this formal calculation let us observe that for nondecreasing
solutions Φ1, Φ2 of (25)–(26) which satisfy (28) we have

∞

0


Mi

2π
− Φi(y)


dy =


∞

0
yΦ ′

i (y) dy < ∞

(the moments of the Φi’s are finite and yΦ ′

i (y) → 0 as y → ∞). This is a specific property of self-similar solutions because
even for the Keller–Segel system there exist (radially symmetric steady state) solutions with infinite second moment such
that yΦ ′(y) does not decay to 0.

Indeed, from (27) we infer that Z = Φ1 + Φ2 satisfies Z ′
≥ 0 and4yZ ′′

+ yZ ′
 ≤ 2Z ′Z .

Therefore, |4y log Z ′
+ y| ≤

1
4π (M1 + M2)| log y| + C , and

0 ≤ Z ′(y)ey/4 ≤ C (y| log y| + y + 1)

so Z ′(y) and
 1
4π (M1 + M2) − Z(y)


decay to 0 exponentially as y → ∞. �

Corollary 3.3. For the gravitational system (7) the condition M1 + M2 < 8π is a necessary and sufficient condition for the
existence of self-similar solutions.

Proof. The necessary condition (24) reads 8π(M1 + M2) > (M1 + M2)
2. As we have already computed in the proof of

Proposition 3.2, Z = Φ1 + Φ2 satisfies (21) which proves that M1 + M2 < 8π is the optimal range of existence of self-
similar solutions. Having Z , we see that the linear equation for Φ1Φ

′′

1 +
1
4Φ

′

1 +
1
2yΦ

′

1Z = 0 can be uniquely solved with any
prescribed 0 ≤ Φ1(∞) < Z(∞). Finally, Φ2 = Z − Φ1. �

Remark. It can be shown using the constructions in [11] that radial self-similar solutions with M1 > 0, M2 > 0 and
M1 + M2 < 8π majorize radial rearrangements (of suitable translations) of solutions of the Cauchy problem with u1(·, 0),
u2(·, 0) of massM1,M2, respectively. Thus, the global in time solutions exist if and only ifM1 + M2 < 8π ; cf. also [16] for a
related problem. Of course, the classical result for the one-component Keller–Segel model is a particular case of the above
withM2 ≡ 0.

For Keller–Segel [11,18] and electric systems ([19,20,2] in higher dimensions and [1] in bounded two-dimensional
domains) our conditions for blowup and for the existence of self-similar solutions are complementary. Moreover, in the
case of the whole space R2, self-similar solutions determine the (intermediate) asymptotics of global radially symmetric
solutions which, in turn, control the global in time existence of general solutions. We expect a similar property to hold in
certain cases here, except for K–O systems, as the results in [13,4] show.

Proposition 3.4. The necessary condition for the existence of self-similar solutions for the K–O system (9) reads |M1−M2| < 8π .

Proof. The condition (24) gives (M1 − M2)
2 < 8π(M1 + M2). The more restrictive condition |M1 − M2| < 8π is a

consequence of the following reasoning. Suppose that Φ ′

1(0) > Φ ′

2(0); then Z = Φ1 − Φ2 satisfies Z(0) = 0, Z ′(0) > 0
and Z ′′

+
1
4Z

′
+

1
2yZ(Φ ′

1 + Φ ′

2) = 0 with Z > 0, Z ′
≤ Φ ′

1 + Φ ′

2. By Proposition 3.1(ii) we have limy→∞ Z(y) < 4 which
means that M1 − M2 < 8π . Similarly, if Φ ′

2(0) > Φ ′

1(0), then Z = Φ2 − Φ1 again satisfies Z(0) = 0, Z ′(0) > 0 and
Z ′′

+
1
4Z

′
+

1
2yZ(Φ ′

1 + Φ ′

2) = 0. This also leads to Z(∞) < 4, and thus finishes the proof. �
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Proposition 3.5. For the systems (8) and (10) (for which the condition (24) is not restrictive at all), self-similar solutions exist
for each pair of nonnegative ⟨M1,M2⟩.

Proof. For the system (10) the function W = Φ1 + Φ2 satisfies Eq. (23), and therefore, the boundary value problem with
W (0) = 0 andW (∞) =

1
2π (M1 + M2) has a unique positive solutionW by Proposition 3.1(iii). Then, the linear equation

Φ ′′

1 +
1
4
Φ ′

1 −
1
2y

Φ ′

1W = 0

has a solution with Φ1(0) = 0 and a prescribed value of Φ1(∞) =
M1
2π ≤ W (∞).

For the system (8) withM1 > M2 (no loss of generality), the functionW = Φ1 − Φ2 satisfies

W ′′
+

1
4
W ′

−
1
2y


Φ ′

1 + Φ ′

2


W = 0.

Thus, by comparison arguments, W with the prescribed W (∞) =
1
2π (M1 − M2) does exist by Proposition 3.1(iii). Indeed,

this is a subsolution of Eq. (23) with prescribedW (0) = 0 andW (∞), sinceW ′
≤ Φ ′

1 + Φ ′

2, and so

W ′′
+

1
4
W ′

−
1
2y

W ′W ≥ 0.

Finally, the linear equation

Φ ′′

1 +
1
4
Φ ′

1 −
1
2y

Φ ′

1W = 0

is solved with the conditions Φ1(0) = 0 and Φ1(∞) =
M1
2π . The positivity properties of Φ ′

1, Φ
′

2 are easy to check. �

Numerical studies of self-similar solutions performed in [20] for the problem (8) suggest some nontrivial restrictions on
the range of values of Φ ′

1(0), Φ
′

2(0) for which those special solutions do exist.
Like in Proposition 3.4, we can check that the following result holds true.

Proposition 3.6. For the mixed systems (11) (i.e. those with conflicts of interest and such that ϑ1ϑ2 > 0 and γ1γ2 < 0), the
self-similar solutions exist if and only if the one-sided bounds are satisfied:

(i) for ϑ1γ1 < 0: 0 ≤ M1 < M2 + 8π ;
(ii) for ϑ1γ1 > 0: 0 ≤ M2 < M1 + 8π .

Proof. The function Z = Φ1 − Φ2 satisfies the equation

Z ′′
+

1
4
Z ′

−
ϑ1γ1

2y
ZZ ′

= 0.

As a consequence, in the case (i), by Proposition 3.1(i) and (iii), such a Z exists if and only if Z(∞) ∈ (−∞, 4).
In the case (ii), similarly, Z = Φ2 − Φ1, which satisfies

Z ′′
+

1
4
Z ′

+
ϑ1γ1

2y
ZZ ′

= 0,

exists if and only if Z(∞) ∈ (−∞, 4).
To reconstruct Φ1 we solve then the linear problem

Φ ′′

1 +
1
4
Φ ′

1 ±
1
2y

Φ ′

1Z = 0

with Φ1(0) = 0 and Φ1(∞) =
1
2π M1. Finally, we put Φ1 = Φ1 ∓ Z , depending on whether we are considering case (i) or

(ii). �
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