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We consider the following singularly perturbed Neumann problem

−ε2�u + u − up = 0 in Ω, u > 0 in Ω,

∂u

∂ν
= 0 on ∂Ω,

where p is subcritical and Ω is a smooth and bounded domain
in R

n . We construct a new class of solutions which consist of
large number of spikes concentrating on an interior straight-line
intersecting with ∂Ω orthogonally. Our results show that higher-
dimensional concentration can exist without resonance condition.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and statement of main results

We consider the following singularly perturbed elliptic problem

−ε2�u + u − up = 0 in Ω, u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω, (1.1)

where Ω is a smooth bounded domain in R
N with its unit outer normal ν , N � 2, 1 < p < N+2

N−2 for
N � 3, while p > 1 for N = 2, and ε > 0 is a small parameter.

Even though simple-looking, problem (1.1) has a rich and interesting structure of solutions. For
the last fifteen years, it has received considerable attention. In particular, the various concentration
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phenomena exhibited by the solutions of (1.1) seem both mathematically intriguing and scientifically
useful. We refer to three survey articles [27,28] and [33] for backgrounds and references.

In the pioneering papers [29,30], Ni and Takagi proved the existence of least energy solutions
to (1.1), that is, a solution uε with minimal energy. Furthermore, they showed in [29,30] that, for each
ε > 0 sufficiently small, uε has a spike at the most curved part of the boundary, i.e., the region where the mean
curvature attains maximum value.

Since the publication of [30], problem (1.1) has received a great deal of attention and significant
progress has been made. More specifically, solutions with multiple boundary peaks as well as multiple
interior peaks have been established. (See [1,5,7–16,19,20,31,32,34,35] and the references therein.) In
particular, it was established in Gui and Wei [13] that for any two given integers k � 0, l � 0 and k+ l > 0,
problem (1.1) has a solution with exactly k interior spikes and l boundary spikes for every ε sufficiently small.
Furthermore, Lin, Ni and Wei [21] showed that there are at least CN

(ε| logε|)N number of interior spikes.

(We point out that positive solutions having multiple interior or boundary spikes have been exhibited
in many works to a wide variety of semilinear elliptic problems, including Cahn–Hilliard equations.
We refer to [4,3,34,35], and the references therein.)

It seems natural to ask if problem (1.1) has solutions which “concentrate” on higher-dimensional
sets, e.g. curves, or surfaces. In this regard, we mention that it has been conjectured for a long time
that problem (1.1) actually possesses solutions which have m-dimensional concentration sets for every 0 �
m � N − 1. (See e.g. [27].) Progress in this direction, although still limited, has also been made in [2,
22,24–26]. In particular, we mention the results of Malchiodi and Montenegro [24,25] on the existence
of solutions concentrating on the whole boundary provided that the sequence ε satisfies some gap
condition. The latter condition is called resonance.

In this paper, we consider solutions concentrating on interior curves. Formal arguments show that
concentrating curves must have zero mean curvature, i.e., must be geodesics. Malchiodi [22] con-
structed solutions concentrating on geodesics of the boundary along a subsequence εn → 0. If the
geodesic is contained inside the domain, then it must be a straight-line. In this regard, we men-
tion that the first work was due to Wei and Yang [36] who proved the existence of spike layer on
a line intersecting with the boundary orthogonally. In [36], a geometric condition of non-degeneracy
was derived. Furthermore, the domain is assumed to be two-dimensional and a resonance condition
was needed, i.e., the existence of solutions was established only along a sequence of ε → 0. (The
geometric condition was first derived for line interfaces of Allen–Cahn equation by Kowalczyk [17].)

In all the papers above on higher-dimensional concentrations [22–25], the first approximation so-
lution is the one-dimensional homoclinics and so resonance is inevitable. An interesting question
persists: can one remove the resonance condition? We shall prove in this paper that it is possible to
remove the resonance condition by using different higher-dimensional approximate solutions.

We consider the situation of [36], but now in a general n-dimensional domain. Our aim is to
construct other new solutions with large number of spikes concentrating along a straight-line. We
generalize the results of [36] in several ways: firstly, we put large number of spikes on the line (the
distance between the spikes is O (ε| logε|)). Because of this, we remove the gap condition in [36]. Our
results hold for all ε small. Secondly, we consider a straight-line in an n-dimensional domain. (We
believe that similar idea may be used to remove the resonance conditions in [22–25].)

We assume that Ω contains a segment Γ0 which intersects orthogonally the boundary of Ω in ex-
actly two points Q 1 and Q 2 and whose length is L. We assume that Γ0 satisfies some non-degeneracy
condition which we describe below.

After rotations and translations we may assume that Q 1 = 0 and Q 2 = (0, L) ∈ R
N−1 × R and that

Γ0 is described by

Γ0 = {(
x′, xN

) ∈ R
N−1 × R: x′ = 0, 0 < xN < L

}
.

We assume that the boundary ∂Ω near Q 1 and Q 2 is given by the graphs of two smooth functions
Gi : BRN−1 (0,ρ) → R, where BRN−1 (0,ρ) denotes the ball of radius ρ and center 0 in R

N−1, for
some ρ > 0 small. Furthermore, we assume that G1(0) = 0, G2(0) = L, ∇Gi(0) = 0 and D2Gi(0) non-
degenerate, for i = 1,2. It is not restrictive to further assume that D2G1(0) is in diagonal form, namely
D2G1(0) = diag(λ1, . . . , λN−1), where λi represent the principal curvatures of ∂Ω at Q 1.
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A curve C1-close to Γ0 with end points on ∂Ω can be parameterized as follows

γ (t) = (
h(t), tG2

(
h(L)

) + (L − t)G1
(
h(0)

))
, 0 < t < L,

where h : [0, L] → R
N−1 is a smooth function with h([0, L]) ⊆ BRN−1 (0,ρ).

Then the length functional L is given by

|γ | = L(h) =
L∫

0

√∣∣G2
(
h(L)

) − G1
(
h(0)

)∣∣2 + ∣∣h′(t)
∣∣2

dt.

It is straightforward to show that Γ0 is a critical point for L, namely D L(0) = 0, since Γ0 intersects
orthogonally the boundary. Furthermore, the second variation of the length functional at 0 is given by
the quadratic form

D2 L(0)[h]2 =
L∫

0

∣∣h′(t)
∣∣2

dt + G ′′
2(0)

[
h(L)

]2 − G ′′
1(0)

[
h(0)

]2
.

The segment Γ0 is said to be non-degenerate if D2 L(0) is invertible in the set H1,2
0 ((0, L);R

N−1).
This amounts to the fact that the problem

−h′′(t) = 0 in (0, L), G ′′
1(0)

[
h(0)

] + h′(0) = 0, G ′′
1(0)

[
h(L)

] + h′(L) = 0

has only the trivial solution h(t) = 0.
This fact is equivalent to the condition

determinant

[
I G ′′

1(0)

I + LG ′′
2(0) G ′′

2(0)

]
�= 0, (1.2)

where I denotes the Identity Matrix of dimension N − 1.
Indeed, from h′′(t) = 0 we get that h(t) = āt + b̄, for some vectors ā and b̄ in R

N−1. Thus the
boundary conditions give

G ′′
1(0)b̄ + ā = 0, G ′′

2(0)[āL + b̄] + ā = 0.

Under the condition (1.2), the above system has only the solution ā = 0, b̄ = 0.
Let N = 2. In this case G ′′

1(0) = λ1 and G ′′
2(0) = −μ1, where λ1 and μ1 denote the curvatures of

∂Ω respectively at P1 and P2. Then condition (1.2) becomes

λ1 + μ1 − Lλ1μ1 �= 0.

Let N = 3, G ′′
1(0) = [ λ1 0

0 λ2

]
, with λ1λ2 �= 0, and G ′′

2(0) = [ g11 g12
g12 g22

]
, with g11 g22 − g2

12 �= 0. The con-
dition (1.2) becomes in this case

[λ1 − g11 + Lλ1 g11][λ2 − g22 + Lλ2 g22] − g2
12

[
1 − (λ1 + λ2)L + λ1λ2L2] �= 0.
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Let ω be the unique solution to

⎧⎨
⎩

�w − w + w p = 0, w > 0 in R
N ,

w(0) = max
y∈RN

w(y), w → 0 at ∞. (1.3)

The existence of ω is standard and follows from well-known arguments in the calculus of variation
while the uniqueness follows from results of Kwong [18]. ω is also non-degenerate, we refer to Ap-
pendix C of [30].

Our main result states that under the non-degeneracy condition (1.2), we can put large number of
spikes (at a distance O (ε| logε|)) on the Γ0. More precisely we have

Theorem 1.1. Assume Ω contains a segment Γ0 which intersects orthogonally the boundary of Ω in exactly
two points Q 1 and Q 2 and whose length is L. We assume that Γ0 satisfies the non-degeneracy condition (1.2)
described above. There exists ε0 > 0 such that, for any 0 < ε < ε0 and for any integer k with

lim
ε→0

k = ∞ (1.4)

and

k � α

ε| lnε| (1.5)

where α > 0 is a constant depending on Ω , on N and on the length L of the segment Γ0 , then there exists
a solution uε to problem (1.1). Furthermore there exist k points Q ε

j uniformly distributed along the curve Γ0

such that

uε(x) =
k∑

j=1

ω

( x − Q ε
j

ε

)
+ o(1) (1.6)

where o(1) → 0 as ε → 0 uniformly over compacts of R
N . Moreover,

dist
(

Q ε
1 , Q 1

) ∼ L

2εk
, dist

(
Q ε

k , Q 2
) ∼ L

2εk

and

dist
(

Q ε
j , Q ε

j+1

) ∼ L

εk
, for 1 � j < k.

Remark 1.1. In [16], Kowalczyk proved the existence of fixed number of spikes on a line intersecting
with the boundary, under a geometric condition which is different from here. On the other hand,
in [6], D’Aprile and Pistoia proved the following result: assume that Ω is a two-dimensional convex
domain. Let L be a line intersecting with the boundary orthogonally. Then for any K fixed and large,
there exist K spikes on the line. The results of [6] is a corollary of Theorem 1.1. In fact since the
domain is convex, the non-degeneracy condition holds automatically. Our Theorem 1.1 allows any non-
degenerate line-segment inside the domain, convex or not.

Remark 1.2. If we rescale the domain Ω to Ω
ε , then the distance between the spikes is O (log 1

ε ).
We are arranging k-copies of ω on a long line-segment. The main difficulty is to show that this
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arrangement is non-degenerate. We notice that similar idea has been used by Malchiodi in constructing
new entire solutions to

�u − u + up = 0, u > 0 in R
2. (1.7)

Malchiodi [23] has recently constructed positive (infinite energy) solutions of (1.7) by perturbing a
configuration of infinitely many copies of the positive solution ω arranged along three rays meeting
at a common point. It is an interesting question if there corresponds to a tripe junction solutions in a
bounded domain.

2. Ansatz and sketch of the proof

By the scaling x = εz, problem (1.1) becomes

−�u + u − up = 0 in Ωε, u > 0 in Ωε,
∂u

∂ν
= 0 on ∂Ωε, (2.1)

where Ωε = { x
ε : x ∈ Ω}. In these expanding variables, the segment Γ0 becomes Γ ε

0 := {(x′, xN ): x′ = 0,
0 < xN < L

ε }.
Let � > 0 be a real number and k an integer so that

k� = L

ε
. (2.2)

Observe that under condition (1.5) we have that � → ∞ as ε → 0.
Define

P j =
[(

j − 1

2

)
� + aN j

]
eN + �ā j, j = 1, . . . ,k, (2.3)

where eN = (0, . . . ,0,1) and ā j = (a1 j,a2 j, . . . ,aN−1 j,0) ∈ R
N , aN j ∈ R. The points

P j − aN jeN − �ā j

are k points distributed along the scaled segment Γ0
ε at constant distance � one from the other. Let

us define the vectors a j , j = 1, . . . ,k, to be

a j = (a1 j,a2 j, . . . ,aN j), for all j = 1, . . . ,k. (2.4)

We will assume that the vectors a j are uniformly bounded, as ε → 0, namely

‖a j‖ � δ for all j = 1, . . . ,k. (2.5)

We will denote by P the set of all points P j , namely

P = {P j: j = 1, . . . ,k}. (2.6)

Let us define the function

U (x) =
k∑

j=1

U j(x), with U j(x) = [
ω j(x) − ϕ j(x)

]
(2.7)
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where

ω j(x) = ω(x − P j)

and

−�ϕ j + ϕ j = 0 in Ωε,
∂ϕ j

∂ν
= ∂ω(x − P j)

∂ν
on ∂Ωε.

Next lemma, whose proof is contained in [21], provides a qualitative description of the function ϕ j .

Lemma 2.1. Assume that M| lnε| � d(P j, ∂Ωε) � δ
ε , for some constant M depending on N and a constant

δ > 0 sufficiently small. Then

ϕ j(x) = −(
1 + o(1)

)
ω

(
x − P∗

j

) + o
(
εN+1) (2.8)

where P∗
j = P j + 2d(P j, ∂Ωε)ν P̄ j

, ν P̄ j
denotes the unit normal at P̄ j on ∂Ωε , and P̄ j is the unique point on

∂Ωε such that d(P j, P̄ j) = d(P j, ∂Ωε).

We look for a solution of (2.1) of the form u = U + φ. We set

L(φ) = −�φ + φ − pU p−1φ, (2.9)

E = U p −
k∑

j=1

ω
p
j (2.10)

and

N(φ) = (U + φ)p − U p − pU p−1φ. (2.11)

Problem (2.1) gets re-written as

L(φ) = E + N(φ) in Ωε,
∂φ

∂ν
= 0 on ∂Ωε.

Consider a cut off function χ ∈ C∞(0,∞) such that

χ(s) ≡ 1 for s � −1, and χ(s) ≡ 0 for s � 0. (2.12)

We fix a constant ζ > 0 (independent of �) so that the balls of radius �−ζ
2 , centered at different points

of P are mutually disjoint, for all � large enough. We define the compactly supported functions

Z ji(x) := χ
(
2|x − P j| − � + ζ

)
∂xi w(x − P j) (2.13)

for j = 1, . . . ,k and i = 1, . . . , N . Observe that, by construction (in fact given the choice of ζ ), we have

∫
Ωε

Zij(x)Zrs(x)dx = 0, (2.14)

if i �= r or if j �= s.
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Consider the following intermediate nonlinear projected problem: given the points P j in (2.3),
satisfying (2.5), find a function φ in some proper space and numbers c ji such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(φ) = E + N(φ) +
k∑

j=1

N∑
i=1

c ji Z ji in Ωε,

∂φ

∂ν
= 0 on ∂Ωε,∫

Ωε

φ Z ji = 0 for j = 1, . . . ,k, i = 1, . . . , N.

(2.15)

We show unique solvability of problem (2.15) by means of a fixed point argument. Furthermore we
prove that the solution φ depends smoothly on the points P j .

To do so, in Section 3 we develop a solvability theory for the linear projected problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lφ = h +
k∑

j=1

N∑
i=1

c ji Z ji in Ωε,

∂φ

∂ν
= 0 on ∂Ωε,∫

Ωε

φ Z ji = 0 for j = 1, . . . ,k, i = 1, . . . , N,

(2.16)

for a given right-hand side h in some proper space. Roughly speaking, the linear operator L is a super
position of the linear operators

L jφ = �φ − φ + pωp−1(x − P j)φ, P j ∈ P.

Once we have the unique solvability of problem (2.15), which is proved in Section 4, it is clear that
u = U + φ is indeed an exact solution to our original problem (1.1), with the qualitative properties
described in Theorem 1.1, if we can prove that the constants c ji appearing in (2.15) are all zero. This
can be done adjusting properly the parameters a j , j = 1, . . . ,k, as will be shown in Section 5, where
the proof of Theorem 1.1 will be also given.

3. Linear theory

Our main result in this section states bounded solvability of problem (2.16), uniformly in small ε,
in points P j , uniformly separated from each other at distance O (�). Indeed we assume that the points
P j given by (2.3) satisfy constraints (2.5).

Given 0 < η < 1, consider the norms

‖h‖∗ = sup
x∈Ωε

∣∣∣∣∑
j

eη|x−P j |h(x)

∣∣∣∣ (3.1)

where P j ∈ P with P defined in (2.6).

Proposition 3.1. Let δ > 0 be fixed. There exist positive numbers η ∈ (0,1), ε0 and C, such that for all ε � ε0 ,
for all integers k and positive real numbers � given by (2.2) and satisfying (1.5), for any points P j , j = 1, . . . ,k,
given by (2.3) and satisfying (2.5), there is a unique solution (φ, c ji) to problem (2.16). Furthermore

‖φ‖∗ � C‖h‖∗. (3.2)
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The proof of the above proposition, which we postpone to the end of this section, is based on
Fredholm alternative theorem for compact operator and an a priori bound for solution to (2.16) that
we state (and prove) next.

Proposition 3.2. Let δ > 0 be fixed. Let h be with ‖h‖∗ bounded and assume that (φ, c ji) is a solution to (2.16).
Then there exist positive numbers ε0 and C, such that for all ε � ε0 , for all integers k and positive real num-
bers � given by (2.2) and satisfying (1.5), for any points P j , j = 1, . . . ,k, given by (2.3) and satisfying (2.5),
one has

‖φ‖∗ � C‖h‖∗. (3.3)

Proof. We argue by contradiction. Assume there exist φ solution to (2.16) and

‖h‖∗ → 0, ‖φ‖∗ = 1.

We prove that

c ji → 0. (3.4)

Multiplying the equation in (2.16) against Z ji and integrating in Ωε , we get

∫
Ωε

Lφ Z ji(x) =
∫
Ωε

h Z ji + c ji

∫
Ωε

Z 2
ji,

since (2.14) holds true. Given the exponential decay at infinity of ∂xi ω and the definition of Z ji in
(2.13), we get

∫
Ωε

Z 2
ji =

∫
RN

(∂x1ω)2 + O
(
e−δ�

)
as � → ∞, (3.5)

for some δ > 0. On the other hand∣∣∣∣
∫
Ωε

h Z ji

∣∣∣∣ � C‖h‖∗
∫
Ωε

∂xi ω(x − P j)e−η|x−P j | � C‖h‖∗.

Here and in what follows, C stands for a positive constant independent of ε, as ε → 0 (or equivalently
independent of � as � → ∞). Finally, if we write Z̃ ji(x) = ∂xi ω(x − P j) and χ = χ(2|x − P j | − � + ζ ),
we have

−
∫
Ωε

Lφ Z ji(x) =
∫

B(P j ,
�−ζ

2 )

[
� Z̃ ji − Z̃ ji + pωp−1(x − P j) Z̃ ji

]
χ

(
2|x − P j| − � + ζ

)
φ

+
∫

∂ B(P j ,
�−ζ

2 )

φ∇(
χ

(
2|x − P j| − � + ζ

)
Z̃ ji

) · n

−
∫

B(P j ,
�−ζ

)

φ
(

Z̃ ji�χ
(
2|x − P j| − � + ζ

) + 2∇χ
(
2|x − P j| − � + ζ

)∇ Z̃ j
)

2
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+ p

∫
B(P j ,

�−ζ
2 )

(
U p−1 − ωp−1(x − P j)

)
φ Z̃ jiχ

(
2|x − P j| − � + ζ

)
. (3.6)

Next we estimate all the terms of the previous formula.
Since

� Z̃ ji − Z̃ ji + pωp−1(x − P j) Z̃ ji = 0

we get the first term is 0. Furthermore, we have

∣∣∣∣
∫

∂ B(P j ,
�−ζ

2 )

φ∇(
χ

(
2|x − P j| − � + ζ

)
Z̃ ji

) · n
∣∣∣∣

� C‖φ‖∗
∫

∂ B(P j ,
�−ζ

2 )

e−(1+η)|x−P j ||x − P j|− N−1
2 dx

� Ce−(1+ξ) �
2 ‖φ‖∗

for some proper ξ > 0. The third integral can be estimated as follows

∣∣∣∣
∫

B(P j ,
�−ζ

2 )

φ
(

Z̃ ji�χ
(
2|x − P j| − � + ζ

) + 2∇χ
(
2|x − P j| − � + ζ

)∇ Z̃ ji
)∣∣∣∣

� C‖φ‖∗

�−ζ
2∫

�−ζ
2 −1

e−(1+η)ss
N−1

2 ds � Ce−(1+ξ) �
2 ‖φ‖∗,

again for some ξ > 0. Finally, we observe that in B(P j,
�−ζ

2 )

∣∣U p−1(x) − ωp−1(x − P j)
∣∣ � ωp−2(x − P j)

[ ∑
xi �=P j

ω(x − xi)

]
.

Having this, we conclude that

∣∣∣∣p

∫
B(P j ,

�−ζ
2 )

(
U p−1(x) − ωp−1(x − P j)

)
φ Z̃ jiχ

(
2|x − P j| − � + ζ

)∣∣∣∣ � Ce−(1+ξ) �
2 ‖φ‖∗

for a proper ξ > 0, depending on N and p. We thus conclude that

|c ji| � C
[
e−(1+ξ) �

2 ‖φ‖∗ + ‖h‖∗
]
. (3.7)

Thus we get the validity of (3.4), since we are assuming ‖φ‖∗ = 1 and ‖h‖∗ → 0.
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Let now η ∈ (0,1). It is easy to check that the function

W :=
k∑

j=1

e−η|·−P j |

satisfies

LW � 1

2

(
η2 − 1

)
W ,

in Ωε \ ⋃
j=1,...,k B(P j,ρ) provided ρ is fixed large enough (independently of �). Hence the function

W can be used as a barrier to prove the pointwise estimate

|φ|(x) � C

(
‖Lφ‖∗ +

∑
j

‖φ‖L∞(∂ B(P j ,ρ))

)
W (x), (3.8)

for all x ∈ Ωε \ ⋃
j B(P j,ρ).

Granted these preliminary estimates, the proof of the result goes by contradiction. Let us assume
there exist a sequence of � tending to ∞ and a sequence of solutions of (2.16) for which the inequality
is not true. The problem being linear, we can reduce to the case where we have a sequence �(n)

tending to ∞ and sequences h(n) , φ(n), c(n) such that

∥∥h(n)
∥∥∗ → 0 and

∥∥φ(n)
∥∥∗ = 1.

But (3.4) implies that we also have

∥∥c(n)
∥∥∗ → 0.

Then (3.8) implies that there exists P (n) ∈ P (see (2.6) for the definition of P ) such that

∥∥φ(n)
∥∥

L∞(B(P (n),ρ))
� C, (3.9)

for some fixed constant C > 0. Using elliptic estimates together with Ascoli–Arzela’s theorem, we can
find a sequence P (n) and we can extract, from the sequence φ(n)(· − P (n)) a subsequence which will
converge (on compact) to φ∞ a solution of

(
� − 1 + pw p−1)φ∞ = 0,

in R
N , which is bounded by a constant times e−η|x| , with η > 0. Moreover, recall that φ(n) satisfies

the orthogonality conditions in (2.16). Therefore, the limit function φ∞ also satisfies

∫
RN

φ∞∇w dx = 0.

But the solution w being non-degenerate, this implies that φ∞ ≡ 0, which is certainly in contradiction
with (3.9) which implies that φ∞ is not identically equal to 0.

Having reached a contradiction, this completes the proof of the proposition. �
We can now prove Proposition 3.1.
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Proof of Proposition 3.1. Consider the space

H =
{

u ∈ H1(Ωε):
∫
Ωε

u Z ji = 0, j = 1, . . . ,k, i = 1, . . . , N

}
.

Notice that the problem (2.16) in φ gets re-written as

φ + K (φ) = h̄ in H (3.10)

where h̄ is defined by duality and K : H → H is a linear compact operator. Using Fredholm’s alter-
native, showing that Eq. (3.10) has a unique solution for each h̄ is equivalent to showing that the
equation has a unique solution for h̄ = 0, which in turn follows from Proposition 3.2. The estimate
(3.2) follows directly from Proposition 3.2. This concludes the proof of Proposition 3.1.

In the following, if φ is the unique solution given by Proposition 3.1, we set

φ = A(h). (3.11)

Estimate (3.2) implies

∥∥A(h)
∥∥∗ � C‖h‖∗. � (3.12)

4. The nonlinear projected problem

For small ε, large �, and fixed points P j given by (2.3) satisfying constraints (2.5) we show solv-
ability in φ, c ji of the nonlinear projected problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(φ) = E + N(φ) +
N∑

i=1

k∑
j=1

c ji Z ji in Ωε,

∂φ

∂ν
= 0 on ∂Ωε,∫

Ωε

φ Z ji = 0 for j = 1, . . . ,k, i = 1, . . . , N.

(4.1)

We have the validity of the following result.

Proposition 4.1. Let δ > 0 be fixed. There exist positive numbers ε0 , C , and ξ > 0 such that for all ε � ε0 , for
all integers k and positive real numbers � given by (2.2) and satisfying (1.5), for any points P j , j = 1, . . . ,k,
given by (2.3) and satisfying (2.5), there is a unique solution (φ, c ji) to problem (2.15). This solution depends
continuously on the parameters of the construction (namely a j , j = 1, . . . ,k) and furthermore

‖φ‖∗ � Ce− (1+ξ)
2 �. (4.2)

Proof. The proof relies on the contraction mapping theorem in the ‖ · ‖∗-norm above introduced.
Observe that φ solves (2.15) if and only if

φ = A
(

E + N(φ)
)

(4.3)
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where A is the operator introduced in (3.11). In other words, φ solves (2.15) if and only if φ is a fixed
point for the operator

T (φ) := A
(

E + N(φ)
)
.

Given r > 0, define

B =
{
φ ∈ C2(Ωε): ‖φ‖∗ � re− (1+ξ)

2 �,

∫
Ωε

φ Z ji = 0

}
.

We will prove that T is a contraction mapping from B into itself.
To do so, we claim that

‖E‖∗ � Ce− (1+ξ)
2 � (4.4)

and

∥∥N(φ)
∥∥∗ � C

[‖φ‖2∗ + ‖φ‖p∗
]
, (4.5)

for some fixed function C independent of �, as � → ∞. We postpone the proof of the estimates above
to the end of the proof of this proposition. Assuming the validity of (4.4) and (4.5) and taking into
account (3.12), we have for any φ ∈ B

∥∥T (φ)
∥∥∗ � C

[∥∥E + N(φ)
∥∥∗

]
� C

[
e− (1+ξ)

2 � + r2e−(1+ξ)� + r pe− p(1+ξ)
2 �

]

� re− (1+ξ)
2 �

for a proper choice of r in the definition of B, since p > 1.
Take now φ1 and φ2 in B. Then it is straightforward to show that

∥∥T (φ1) − T (φ2)
∥∥∗ � C

∥∥N(φ1) − N(φ2)
∥∥∗

� C
[‖φ1‖min(1,p−1)∗ + ‖φ2‖min(1,p−1)∗

]‖φ1 − φ2‖∗

� o(1)‖φ1 − φ2‖∗.

This means that T is a contraction mapping from B into itself.
To conclude the proof of this proposition we are left to show the validity of (4.4) and (4.5). We

start with (4.4).
Fix j ∈ {1, . . . ,k} and consider the region |x− P j | � �

2+σ , where σ is a small positive number to be
chosen later. In this region the error E , whose definition is in (2.10), can be estimated in the following
way
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∣∣E(x)
∣∣ � C

[
ωp−1(x − P j)

∑
Pi �=P j

ω(x − Pi) +
∑

Pi �=P j

ωp(x − Pi)

]

� Cωp−1(x − P j)
∑

Pi �=P j

e−( 1
2 + σ

2(2+σ )
)�

� Cωp−1(x − P j)e−( 1
2 + σ

4(2+σ )
)�e− σ

4(2+σ )
�

� Cωp−1(x − P j)e− 1+ξ
2 � (4.6)

for a proper choice of ξ > 0.
Consider now the region |x − P j | > �

2+σ , for all j. Since 0 < μ < p − 1, we write μ = p − 1 − M .
From the definition of E , we get in the region under consideration

∣∣E(x)
∣∣ � C

[∑
j

ωp(x − P j)

]
� C

[∑
j

e−μ|x−P j |
]

e−(p−μ) �
2+σ

�
[∑

j

e−μ|x−P j |
]

e− 1+M
2+σ � �

[∑
j

e−μ|x−P j |
]

e− 1+ξ
2 � (4.7)

for some ξ > 0, if we chose M and σ small enough. From (4.6) and (4.7) we get (4.4).
We now prove (4.5). Let φ ∈ B. Then

∣∣N(φ)
∣∣ �

∣∣(U + φ)p − U p − pU p−1φ
∣∣ � C

(
φ2 + |φ|p)

. (4.8)

Thus we have

∣∣∣∣∑
j

eη|x−P j |N(φ)

∣∣∣∣ � C‖φ‖∗
(|φ| + |φ|p−1)

� C
(‖φ‖2∗ + ‖φ‖p∗

)
.

This gives (4.5).
A direct consequence of the fixed point characterization of φ given above together with the fact

that the error term E depends continuously (in the ∗-norm) on the parameters a j , j = 1, . . . ,k, is
that the map (a1, . . . ,ak) → φ into the space C(Ω̄ε) is continuous (in the ∗-norm). This concludes
the proof of the proposition. �

Given points P j defined by (2.3), satisfying constraint (2.5), Proposition 4.1 guarantees the exis-
tence (and gives estimates) of a unique solution φ, c ji , j = 1, . . . ,k, i = 1, . . . , N , to problem (2.15). It
is clear then that the function u = U + φ is an exact solution to our problem (1.1), with the required
properties stated in Theorem 1.1 if we show that there exists a configuration for the points P j that
gives all the constants c ji in (2.15) equal to zero. In order to do so we first need to find the correct
conditions on the points to get c ji = 0. This condition is naturally given by projecting in L2(Ωε) the
equation in (2.15) into the space spanned by Z ji , namely by multiplying the equation in (2.15) by Z ji

and integrate all over Ωε . We will do it in detail in the next final section.
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5. Projection of the error and proof of Theorem 1.1

Define the following k × k matrix

T :=

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 −1
0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ Mk×k. (5.1)

The inverse of T is the matrix whose entries are given by

(
T −1)

i j = min(i, j) − i j

k + 1
.

We define the vectors S↓ and S↑ by

T S↓ :=

⎛
⎜⎜⎝

0
...

0
1

⎞
⎟⎟⎠ ∈ R

k, T S↑ :=

⎛
⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎠ ∈ R

k. (5.2)

It is immediate to check that

S↓ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
k+1

2
k+1

...
k−1
k+1

k
k+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
k, S↑ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

k
k+1
k−1
k+1

...
2

k+1
1

k+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
k. (5.3)

We will reorder the parameters aij , for i = 1, . . . , N and j = 1, . . . ,k in the following way: for any
j = 1, . . . , N ,

a∗
j =

⎛
⎜⎜⎜⎜⎝

a j1

a j2

...

a jk

⎞
⎟⎟⎟⎟⎠ ∈ R

k. (5.4)

Proposition 5.1. Let φ be the solution of (2.15) which has been obtained in Proposition 4.1. The coefficients ci j
are all equal to 0 if and only if the vectors a∗

j defined in (5.4) are solutions of the nonlinear system

a∗
j =

(
1 + L

k
λ j

)
a1 j S↑ +

[(
1 − L

k
g jj

)
akj − L

k

∑
i �= j

gi jaki

]
S↓ + e−δ2� A + Q ∈ R

k

for any j = 1, . . . , N − 1
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a∗
N = −a1N S↑ − akN S↓ + e−δ2� A + Q ∈ R

k (5.5)

where δ2 > 0, A = A(a1, . . . ,ak) and Q = Q (a1, . . . ,ak) denote smooth vector valued functions (which vary
from line to line), uniformly bounded as ε → 0 (or equivalently as � → ∞) and the Taylor expansion of Q
with respect to a1, . . . ,ak does not involve any constant nor any linear term. Here the vectors a j , j = 1, . . . ,k,
are defined in (2.4) and they satisfy constraints (2.5).

Proof. Observe that all ci j are zero if and only if

∫
Ωε

(
Lφ + E + N(φ)

)
Zij dx = 0 for all i, j.

Using the lemmas below, it is easy to check that this reduces to the solvability of a nonlinear system
in a∗

j , that can be written in the desired form using the inverse of the matrices T .
Observe that the norms of the inverses of the matrix T blow up at most linearly in k, as k → ∞.

Under our assumptions (1.5), this can be absorbed since the error tends to 0 exponentially fast in
terms of �. �

Define κ := 1 + N−1
2�

.

Lemma 5.1. The following expansions hold

−e��
N−1

2

CN,p

∫
Ωε

E Z1 j dx =
(

a2 j − a1 j + L

k
λ ja1 j

)
+ e−δ2� A + Q , (5.6)

for j = 1, . . . , N − 1, and

−e��
N−1

2

CN,p

∫
Ωε

E Z1N dx = κ(3a1N − a2N) + e−δ2� A + Q . (5.7)

For h = 2, . . . ,k − 1

−e��
N−1

2

CN,p

∫
Ωε

E Zhj dx = (ah−1, j − 2ahj + ah+1, j) + e−δ2� A + Q , (5.8)

for j = 1, . . . , N − 1, and

−e��
N−1

2

CN,p

∫
Ωε

E ZhN dx = κ(−ah−1,N + 2ah,N − ah+1,N) + e−δ2� A + Q . (5.9)

Finally

−e��
N−1

2

CN,p

∫
Ωε

E Zkj dx =
(

ak−1, j − akj − L

k
G ′′

2(0)[āk][e j]
)

+ e−δ2� A + Q , (5.10)

for j = 1, . . . , N − 1, and
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−e��
N−1

2

CN,p

∫
Ωε

E ZkN dx = κ(3ak,N − ak−1,N) + e−δ2� A + Q , (5.11)

where δ2 > 0, A = A(a1, . . . ,ak), Q = Q (a1, . . . ,ak) denote smooth vector valued functions (which vary
from line to line), uniformly bounded as � → ∞ and the Taylor expansion of Q with respect to a1, . . . ,ak does
not involve any constant nor any linear term.

Proof. Given P ∈ P , we would like to estimate

∫
Ωε

E Zij dx.

An important estimate that we will use several times to compute the above expression is the
following: There exists a constant CN,p > 0 only depending on N and p such that the following
expansion holds

p

∫
RN

w(· − y)w p−1∂x j ωdx = −CN,pψ
(|y|)y · e j + O

(
e−δ3|y|), (5.12)

where δ3 > 1 is a constant which depends on p and N . In (5.12) the function ψ is defined as follows:
for all s > 0,

ψ(s) := e−ss− N+1
2 .

The proof of (5.12) is by now standard, we refer to [23] and [21] for details.
Observe that, given e ∈ R

N with |e| = 1 and a ∈ R
N , the following expansion holds

ψ
(|�̃e+ a|)(�̃e+ a) = e−�̃�̃− N−1

2

(
e− κ̃a‖ + 1

�̃
a⊥

)
+ e−�̃�̃− N−1

2 O
(|a|2) (5.13)

as �̃ → ∞. Here, we have decomposed a= a‖ + a⊥ where a‖ is collinear to e and a⊥ is orthogonal
to e.

We have all the elements now to proceed in the computations of estimates (5.6)–(5.11).

Estimates (5.6) and (5.7). Observe that, given the structure of U , the fact that the function w decays
exponentially and the result in Lemma 2.1, we can write using Taylor’s expansion

∫
Ωε

E Z1 j dx = p

∫
Ωε

ω
p−1
1 [−ϕ1 + ω2]Z1 j dx + e−δ3� A (5.14)

where δ3 > 1 and A = A(a1, . . . ,ak) is uniformly bounded as � → ∞ for vectors a j satisfying (2.5).
Let P̄1 be the only point on ∂Ωε such that d(P1, ∂Ωε) = d(P1, P̄1) and define P∗

1 to be P∗
1 − P1 =

2( P̄1 − P1). Again Lemma 2.1 gives that ϕ1(x) = −ω(x − P∗
1) + o(εN+1). Then, since P1 = �

2 eN +
aN1eN + �ā1 with ā1 = (a11,a21, . . . ,aN−1,1) and |ai1| � δ, we have

P∗
1 − P1 = −(� + 2aN1)eN + �2(G ′′

1(0)[εā1],0
) + (

O
(
ε2�2), O (ε�)

)
.

Thus we get from (5.12) and (5.13), for j = 1, . . . , N − 1,
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−p

∫
Ωε

ω
p−1
1 ϕ1 Z1 j dx = p

∫
Ωε

ω
p−1
1 ω

(
x − P∗

1

)
Z1 j dx

= −CN,p�− N−1
2 e−�

[
ε�D2G1(0)[ā1] · e j

]
+ e−δ3� A + �− N+1

2 e−� Q

= −CN,p�− N−1
2 e−�

[
L

k
λ ja1 j

]
+ e−δ3� A + �− N+1

2 e−� Q (5.15)

while for j = N , we have

−p

∫
Ωε

ω
p−1
1 ϕ1 Z1N dx = p

∫
Ωε

ω
p−1
1 ω

(
x − P∗

1

)
Z1 j dx

= −CN,p�− N−1
2 e−�[−1 + 2a1Nκ] + e−δ3� A + �− N+1

2 e−� Q .

In the above computations we use the fact that by definition L
ε = k�.

On the other hand, a direct use of (5.12) and (5.13) gives, for j = 1, . . . , N − 1,

p

∫
Ωε

ω
p−1
1 ω2 Z1 j dx = −CN,p�− N−1

2 e−�[a2 j − a1 j] + e−δ3� A + �− N+1
2 e−� Q

and, for j = N ,

p

∫
Ωε

ω
p−1
1 ω2 Z1N dx = −CN,p�− N−1

2 e−�
[
1 − (a2N − a1N)κ

]

+ e−δ3� A + �− N+1
2 e−� Q .

Putting together the above computation in (5.14) we get the validity of (5.6) and (5.7).

Estimates (5.8) and (5.9). Let 1 < h < k. In this case, we have

∫
Ωε

E Zhj dx = p

∫
Ωε

U p−1
h [ωh−1 + ωh+1]Zhj dx + e−δ3� A (5.16)

where δ3 > 1 and A = A(a1, . . . ,ak) is uniformly bounded as ε → 0 for vectors a j satisfying (2.5).
This fact is again a consequence of the exponential decay of ω at infinity, and of the result contained
in Lemma 2.1.

In this case, a direct computation gives (5.8) and (5.9).

Estimates (5.10) and (5.11). Arguing as in the case of the proof of estimates (5.6) and (5.7), we get

∫
Ωε

E Zkj dx = p

∫
Ωε

ω
p−1
k [−ϕk + ωk−1]Zkj dx + e−δ3� A (5.17)

where δ3 > 1 and A = A(a1, . . . ,ak) is uniformly bounded as � → ∞ for vectors a j satisfying (2.5).
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Let P̄k be the only point on ∂Ωε such that d(Pk, ∂Ωε) = d(Pk, P̄k) and define P∗
k to be P∗

1 − Pk =
2( P̄k − Pk). Again Lemma 2.1 gives that ϕk(x) = −ω(x − P∗

k )+ o(εN+1). Then, since Pk = (k − 1
2 )�eN +

aNkeN + �āk with ā1 = (a11,a21, . . . ,aN−11) and |ai1| � δ, we have

P∗
k − P1 = (� − 2aNk)eN − �2(G ′′

2(0)[εāk],0
) + (

O
(
ε2�2), O (ε�)

)
.

Thus, recalling that L
ε = k�, we get from (5.12) and (5.13), for j = 1, . . . , N − 1,

−p

∫
Ωε

ω
p−1
k ϕk Zkj dx = p

∫
Ωε

ω
p−1
k ω

(
x − P∗

k

)
Zkj dx

= −CN,p�− N−1
2 e−�

[−ε�D2G2(0)[āk · e j]
]

+ e−δ3� A + �− N+1
2 e−� Q

= CN,p�− N−1
2 e−�

[
L

k
D2G2(0)[āk · e j]

]

+ e−δ3� A + �− N+1
2 e−� Q

while for j = N , we have

−p

∫
Ωε

ω
p−1
k ϕk ZkN dx = p

∫
Ωε

ω
p−1
1 ω

(
x − P∗

k

)
Zkj dx

= −CN,p�− N−1
2 e−�[1 + 2akNκ]

+ e−δ3� A + �− N+1
2 e−� Q .

On the other hand, a direct use of (5.12) and (5.13) gives, for j = 1, . . . , N − 1,

p

∫
Ωε

ω
p−1
k ωk−1 Zkj dx = −CN,p�− N−1

2 e−�[a(k−1) j − akj]

+ e−δ3� A + �− N+1
2 e−� Q

and, for j = N ,

p

∫
Ωε

ω
p−1
k ωk−1 ZkN dx = −CN,p�− N−1

2 e−�
[−1 − (a(k−1)N − akN)κ

]

+ e−δ3� A + �− N+1
2 e−� Q .

This concludes the proof of (5.10) and (5.11). �
The next result is easier to get. It reads:
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Lemma 5.2. The following expansions hold

e��
N−1

2

∫
RN

(Lφ)Z ji dx = e−δ2� A

and

e��
N−1

2

∫
RN

N(φ)Z ji dx = e−δ2� A,

where δ2 > 0 and A = A(a1, . . . ,ak) denote smooth vector valued functions (which vary from line to line),
uniformly bounded as � → ∞.

Proof. The proof of the first estimate follows the line of the proof of Proposition 3.2 (see formula
(3.6) and the subsequent estimates, together with (4.2)).

The proof of the second estimate follows from estimates (4.5) and (4.2). �
We now explain how (5.5) can be solved. We claim that this system is equivalent to

a∗
j = e−δ̃2� A + Q (5.18)

where δ̃2 > 0 and A = A(a1, . . . ,ak) and Q = Q (a1, . . . ,ak) satisfy the usual assumptions.
Indeed, by using the explicit expression for S↓ and S↑ given by (5.3), we get that solving the

system (5.5) reduces to find a solution to the following nonlinear system in the 2N variables a1 j , akj ,
for j = 1, . . . , N

(−1 + Lλ j)a1 j +
(

1 − L

k
g jj

)
akj − L

k

∑
i �= j

gi jaki = e−δ3� A + Q ,

(
1 + L

k
λ j

)
a1 j + (−1 − Lg jj)akj − L

∑
i �= j

gi jaki = e−δ3� A + Q

for j = 1, . . . , N − 1, and

(2k + 1)a1N + akN = e−δ3� A + Q ,

a1N + (2k + 1)akN = e−δ3� A + Q ,

for some 0 < δ3 � δ2. This system can be solved provided the following 2(N − 1) × 2(N − 1) matrix

Bk :=
(−I + LG ′′

1(0) I − L
k G ′′

2(0)

I + L
k G ′′

1(0) −I − LG ′′
2(0)

)

has non-zero determinant. In the above expression I denotes the identity matrix of dimension N − 1.

Denote by B the matrix
( −I+LG ′′

1(0) I

I −I−LG ′′
2(0)

)
and observe that

det B = (−L)N−1 det

(
G ′′

1(0) I
′′ ′′

)
= const �= 0
G2(0) I + LG2(0)



900 W. Ao et al. / J. Differential Equations 251 (2011) 881–901
since we are assuming the non-degeneracy condition (1.2). Thus we have, since we are assuming (1.4),
namely that k → ∞ as ε → 0,

det Bk = det B ×
(

1 + L

k
tr

(
B−1

(
0 −G ′′

2(0)

G ′′
1(0) 0

))
+ O

(
1

k2

))

= det B
(

1 + O

(
1

k

))
�= 0.

This completes the proof of the claim.
It is now straightforward to prove, using Browder’s fixed point theorem, that

Lemma 5.3. There exist C > 0 and ε0 > 0 such that, for all 0 < ε < ε0 (or equivalently � large), there exists a
solution of (5.18) such that

∣∣a∗
j

∣∣ � Ce−δ̃2� for all j = 1, . . . , N.

This last result completes the proof of Theorem 1.1.
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