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Let Ω ⊂ R
N be a bounded regular domain of R

N and 1 < p < ∞. The paper is divided
into two main parts. In the first part, we prove the following improved Hardy Inequality
for convex domains. Namely, for all φ ∈ W 1,p

0 (Ω), we have

Z
Ω
|∇φ|pdx −

„
p − 1

p

«p Z
Ω

|φ|p
dp

dx ≥ C

Z
Ω
|∇φ|p

„
log

„
D

d

««−p

dx,

where d(x) = dist(x, ∂Ω), D > supx∈Ω̄ d(x) and C is a positive constant depending only
on p, N and Ω. The optimality of the exponent of the logarithmic term is also proved.
In the second part, we consider the following class of elliptic problem8>>><

>>>:

−∆u =
uq

d2
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where 0 < q ≤ 2∗ − 1. We investigate the question of existence and nonexistence of
positive solutions depending on the range of the exponent q.
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1. Introduction

The starting point of this work is the following Hardy inequality stating that given
a smooth bounded domain Ω of RN and 1 < p < N , then

Λp

∫
Ω

|φ|p
dp

dx ≤
∫

Ω

|∇φ|pdx for all φ ∈W 1,p
0 (Ω), (1.1)

where

d(x) = dist(x, ∂Ω)

and 0 < Λp ≤ (p−1
p )p. In the case where the domain Ω is convex, then Λp = (p−1

p )p

and it is never achieved, see for instance [5,16,17]. We refer also to [12] for details and
more general Hardy type inequalities.

Many improvements of (1.1) have been found. In [8], the authors obtain a
remainder term for the Hardy inequality, namely they show that for any 1 < p < N

and p ≤ q < p∗ ≡ Np
N−p , there exists a positive constant C ≡ C(p, q,N,Ω) such that

∫
Ω

|∇φ|pdx−
(
p− 1
p

)p ∫
Ω

|φ|p
dp

dx ≥ C

(∫
Ω

|φ|qdx
) p

q

, ∀φ ∈W 1,p
0 (Ω).

In the case where q = p∗, then∫
Ω

|∇φ|pdx−
(
p− 1
p

)p ∫
Ω

|φ|p
dp

dx ≥ CD−β
int

(∫
Ω

dα|φ|qdx
) p

q

∀φ ∈ W 1,p
0 (Ω),

where Dint=supx∈Ωd(x, ∂Ω), α> 0 is any positive constant and c= c(p, q,N, α)> 0.
Another approach was elaborated in [2] with d(x) replaced by dK(x) =

dist(x,K) where K is a piecewise smooth surface of codimension k, 1 ≤ k ≤ N . In
[2], it is proved that, for any D > supx∈Ω d(x,K) and for all u ∈W 1,p

0 (Ω),∫
Ω

|∇φ|pdx−
∣∣∣∣k − p

p

∣∣∣∣
p ∫

Ω

|φ|p
dp

K

dx ≥ p− 1
2p

∣∣∣∣k − p

p

∣∣∣∣
p−2 ∫

Ω

|φ|p
dp

K

(
log
(
D

dK

))−2

dx

(1.2)

for all φ ∈ W 1,p
0 (Ω). In our setting, we are interested in the case K = ∂Ω and so

k = 1. Also in [2] the authors proved that for 1 ≤ q < p and β > 1+ p
q , the following

inequality holds true

∫
Ω

|∇φ|pdx−
(
p− 1
p

)p ∫
Ω

|φ|p
dp

dx ≥ c

(∫
Ω

|∇φ|qd p
q −1

(
log
(
D

d

))−β

dx

) p
q

,

(1.3)

for all φ ∈ W 1,p
0 (Ω), where c > 0 is a universal constant. The exponent of the

logarithm term in this inequality is optimal.
The first goal of this paper is to improve the above inequality (1.3). In fact, we

prove the following result.
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Theorem 1.1. Let Ω ⊂ RN be a convex bounded domain. Suppose that 1 < p <∞
and let D > supx∈Ω̄ d(x). Then for all φ ∈ C∞

0 (Ω):

(1) if p < 2, there exists a positive constant C such that∫
Ω

|∇φ|pdx−
(
p− 1
p

)p ∫
Ω

|φ|p
dp

dx ≥ C

∫
Ω

|∇φ|p
(

log
(
D

d

))−p

dx, (1.4)

(2) if p ≥ 2, then there exists a positive constant C such that∫
Ω

|∇φ|pdx−
(
p− 1
p

)p ∫
Ω

|φ|p
dp

dx ≥ C

∫
Ω

|∇φ|p
(

log
(
D

d

))−2

dx. (1.5)

Estimates (1.4), (1.5) are sharp in the sense that the exponents of the term log(D
d )

in right-hand sides cannot be bigger than p and 2 respectively.

The aim of the second part of this paper is to study a class of nonlinear ellip-
tic equations with a singular potential, more precisely we consider the following
problem: 


−∆u =

uq

d2
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.6)

where Ω ⊂ RN is a smooth bounded domain and 0 < q ≤ 2∗ − 1, where 2∗ = 2N
N−2

for N ≥ 3.
The case q = 1 is widely studied in the literature and it is strongly related to the

Hardy inequality (1.1) and the geometry of the domain Ω. If Ω is a regular bounded
domain with −∆d ≥ 0 in the sense of distribution, then Λ2 = 1

4 and it never is
achieved [2]. Hence the problem (1.6) has no positive solution. Notice that if Ω is a
convex bounded domain, then the above condition is satisfied, see for instance [2].

If Λ2 <
1
4 , then Λ2 is achieved and the problem (1.6) with q = 1, up to a positive

constant in the right-hand side, has a positive bounded solution u ∈W 1,2
0 (Ω) such

that

C1d
α(x) ≤ u(x) ≤ c2d

α(x) for all x ∈ Ω,

where α = 1+
√

1−4Λ2
2 . We refer to [16] for more details and for an example for

explicit domains where the Hardy constant is attainted.
For q 	= 1, the situation is totally different and it is, in some ways, surprising.
Let us describe some previous results when we replace d2(x) by the weight |x|2.

If 0 ∈ Ω then we have existence of positive solutions only if q < 1. If q > 1, then the
equation has no weak (distributional) solution, see [3]. In the case where 0 ∈ ∂Ω,
the situation is different. Indeed, for q < 1, the problem has bounded solutions with
finite energy. For q > 1, in [7] it is shown that the existence of solutions depends
on the geometry of the domain. In fact, if the domain is starshaped with respect
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to the origin, there are no finite energy solutions. However, in dumbbell domains
they proved, using truncation arguments, that the equation has positive bounded
solutions.

For the problem (1.6) instead, the situation is quite different. Indeed, for q < 1
we prove a complete blow-up for a natural approximation scheme.

Theorem 1.2. Assume that q < 1 and let un be the unique positive solution to the
problem 



−∆un =
uq

n(
d(x) +

1
n

)2 in Ω,

un > 0 in Ω,

un = 0 on ∂Ω.

(1.7)

Then un(x) → ∞ for all x ∈ Ω.

As a consequence we show that the problem (1.6) has no very weak solution, in
a suitable sense that we describe next.

Definition 1.3. Let h(x, u) be a Caratheodory function in Ω × R. We say that
u ∈ L1(Ω) is a very weak solution to the equation{−∆u = h(x, u) in Ω,

u = 0 on ∂Ω,

if h(x, u) ∈ L1(d,Ω) and for all ψ ∈ C2(Ω) with ψ = 0 on ∂Ω, we have∫
Ω

u(−∆ψ)dx =
∫

Ω

fψdx.

As a consequence of the blow-up result in Theorem 1.2, we have the following
nonexistence result.

Theorem 1.4. Assume that 0 < q < 1. Then Eq. (1.6) has no very weak positive
solution in the sense of Definition 1.3.

For q < 0, we know from the result of [9] that the problem (1.6) has no regular
solution u ∈ C2(Ω) ∩ C(Ω), however Theorem 1.4 provides a strong nonexistence
result.

If we replace the weight d2 by ds for some s positive, we can prove the existence
of a very weak solution in the sense of Definition 1.3. More precisely we have the
next existence result.

Theorem 1.5. Assume that 0 < q < 1. Then for all s < 2, the problem

−∆u =

uq

ds
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

has a positive solution u in the sense of Definition 1.3.
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Going back to Eq. (1.6) in the range 1 < q < 2∗−1 and using blow-up arguments,
we are able to show the existence of a solution as a limit of mountain pass solutions
of approximated problems.

Theorem 1.6. Assume that 1 < q < 2∗ − 1, then the problem (1.6) has a bounded
positive solution u ∈W 1,2

0 (Ω).

For the critical case q = 2∗−1 and if Ω = B1(0) is the unit ball in RN , we prove
existence of a bounded radial positive solution.

Theorem 1.7. Let Ω = BR(0). Assume that N ≥ 3 and q = 2∗ − 1 or N = 1, 2
and q > 1. Then problem (1.6) has a positive radial solution u.

The paper is organized as follows. In Sec. 2, we give some preliminary tools that
will be used systematically in the rest of the paper. In particular, inequality (2.2)
which can be seen as an extension of the Hardy inequality.

Section 3 will be devoted to the “improved Hardy inequality”. We first prove
(1.4) and (1.5), see Theorem 1.1. In the last part of the proof we show the optimality
of the exponent of the logarithmic term in (1.4) and (1.5).

Problem (1.6) with q < 1 will be studied in Sec. 4. We begin by proving a
complete blow-up for solutions of the approximated problems. As a consequence,
we get the nonexistence result. Then, we show that this nonexistence result is
strongly related to the weight d2 in the sense that if we replace d2 by ds for some
s < 2, then the problem has at least a distributional solution. Some estimates on
the behavior of the solution near the boundary are also obtained.

The case 1 < q < 2∗ − 1 is considered in Sec. 5. Then using the mountain
pass theorem, we get the existence of a solution to a family of approximated prob-
lems. Hence, to get the desired existence result, we pass to the limit using blow-up
techniques and the nonexistence results obtained by Gidas–Spruck in [10].

In Sec. 6, we analyze the critical case q = 2∗ − 1, then if Ω = BR(0), using the
concentration-compactness argument, we are able to show the existence of a radial
positive solution.

In the last section we collect some open problems.

2. Preliminaries and Previous Results

In this section, we collect some preliminaries and useful known results. We begin by
the following vectorial inequalities that will be used systematically in the first part
of the paper. We first recall the following lemma (see [13, 18] for complete proofs)

Lemma 2.1. Assume that 1 < p < ∞, then there exists a positive constant c ≡
c(p) > 0 such that for all a, b ∈ RN we have:

(1) If p < 2, then

|a− b|p − |a|p ≥ c
|b|2

(|a| + |b|)2−p
− p|a|p−2a · b. (2.1)

1450033-5

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

M
IC

H
IG

A
N

 o
n 

10
/1

3/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

May 30, 2014 14:50 WSPC/S0219-1997 152-CCM 1450033

B. Abdellaoui et al.

(2) If p ≥ 2, then

|a− b|p − |a|p ≥ c|a|p−2|b|2 − p|a|p−2a · b,
|a− b|p − |a|p ≥ c|b|p − p|a|p−2a · b. (2.2)

Then, we recall the following extension of Hardy inequality obtained in [12].

Theorem 2.2. Let Ω be bounded domain in RN and suppose that D > supx∈Ω d(x).
Then there exists a positive constant C0 = C(N, p) such that for all u ∈ C∞

0 (Ω),∫
Ω

|u|p
d

(
log
(
D

d

))−p

dx ≤ C0

∫
Ω

|∇u|pdp−1dx.

When dealing with the problem (1.6), the next comparison principle will be of
great utility, see [4] for the proof.

Lemma 2.3 (Comparison principle). Let f be a continuous function such that
f(.,u)

u is decreasing. Assume that u, v ∈W 1,2
0 (Ω) satisfy

−∆u ≥ f(x, u), u > 0, in Ω,

−∆v ≤ f(x, v), v > 0, in Ω.

Then u ≥ v in Ω.

The following weak version of the Harnack inequality is obtained in [3].

Lemma 2.4. Let h ∈ L∞(Ω) be a nonnegative function and assume that v

solves {
−∆v = h(x) in Ω,

v = 0 on ∂Ω.

Then

v(x)
d(x)

≥ c(Ω)
∫

Ω

h(x)d(x) dx, for all x ∈ Ω.

In the following C will denote a constant which may vary from line to line.
Sometimes, when needed, we will explicit the dependence of the constant C on
some of the parameters.

3. An Improved Hardy Inequality

Proof of Theorem 1.1. We divide the proof into four steps.

(1) The case p = 2. Let φ ∈ C∞
0 (Ω), by a direct computation we get

1
2
∇
(
φ2

d

)
∇d =

φ∇φ∇d
d

− 1
2
φ2

d2
|∇d|2,

1450033-6
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thus

|∇φ|2 − 1
4
φ2

d2
=
∣∣∣∣∇φ− 1

2
φ

d
∇d
∣∣∣∣
2

+
1
2
∇
(
φ2

d

)
∇d.

Since −∆d ≥ 0 in D′(Ω), then

∫
Ω

(
|∇φ|2 − 1

4
φ2

d2

)
dx ≥

∫
Ω

∣∣∣∣∇φ− 1
2
φ

d
∇d
∣∣∣∣
2

dx. (3.1)

Recall that D > supx∈Ω̄ d(x), thus (log(D
d ))−α ∈ L∞(Ω) for all α > 0. Hence

we get the existence of a positive constant C such that

∣∣∣∣∇φ− 1
2
φ

d
∇d
∣∣∣∣
2

≥ C

(
log
(
D

d

))−2 ∣∣∣∣∇φ− 1
2
φ

d
∇d
∣∣∣∣
2

.

Therefore

∣∣∣∣∇φ− 1
2
φ

d
∇d
∣∣∣∣
2

≥ C

(
log
(
D

d

))−2
(
|∇φ|2 +

1
4

∣∣∣∣φ∇dd
∣∣∣∣
2

− φ

d
∇d∇φ

)
.

By integration and using Young’s inequality, it follows that

∫
Ω

∣∣∣∣∇φ − 1
2
φ

d
∇d
∣∣∣∣
2

dx ≥ C

{
(1 − ε)

∫
Ω

|∇φ|2
(

log
(
D

d

))−2

dx

− Cε

∫
Ω

φ2

d2

(
log
(
D

d

))−2

dx

}
. (3.2)

Using inequality (1.2) with p = 2 and taking in consideration (3.1) and (3.2),
the result follows in this case.

(2) The case p > 2. Let φ ∈ C∞
0 (Ω) and define u = φ

d
p−1

p

.

From [8], we get the existence of a positive constant C1 ≡ C1(p,N) such
that

∫
Ω

|∇φ|pdx−
(
p− 1
p

)p ∫
Ω

|φ|p
dp

dx ≥ C1

∫
Ω

dp−1|∇u|pdx.

Since ∇u = d−( p−1
p )(∇φ− p−1

p
φ
d∇d), then the last inequality became

∫
Ω

|∇φ|pdx−
(
p− 1
p

)p ∫
Ω

|φ|p
dp

dx ≥ C1

∫
Ω

∣∣∣∣∇φ− p− 1
p

φ

d
∇d
∣∣∣∣
p

dx. (3.3)

1450033-7
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Using the fact that p > 2, following the arguments of the first case, we get
the existence of positive constants which are independent of φ such that

∣∣∣∣∇φ− p− 1
p

φ

d
∇d
∣∣∣∣
p

≥ C

(
log
(
D

d

))−2 ∣∣∣∣∇φ− p− 1
p

φ

dp
∇d
∣∣∣∣
p

.

By (2.2), hence

∣∣∣∣∇φ− p− 1
p

φ

d
∇d
∣∣∣∣
p

≥ C

(
log
(
D

d

))−2
{
|∇φ|p + c(p)

(
p− 1
p

)p ∣∣∣∣φ∇dd
∣∣∣∣
p

− p

∣∣∣∣
(
p− 1
p

)
φ

d
∇d
∣∣∣∣
p−1

|∇φ|
}
,

where c(p) > 0. Thus by integration and using Young’s inequality, we get

∫
Ω

∣∣∣∣∇φ−
(
p− 1
p

)
φ

d
∇d
∣∣∣∣
p

dx ≥ C

{
(1 − ε)

∫
Ω

|∇φ|p
(

log
(
D

d

))−p

dx

− Cε

∫
Ω

φp

dp

(
log
(
D

d

))−p

dx

}
. (3.4)

Using again (1.2), combining estimates (3.3) and (3.4), we reach (1.5) and then
we conclude.

(3) The case 1 < p < 2. From [2], we know that

∫
Ω

|∇φ|pdx−
(
p− 1
p

)p∫
Ω

|φ|p
dp

dx ≥ C1

∫
Ω

X2−p

∣∣∣∣∇φ−
(
p− 1
p

)
φ

d
∇d
∣∣∣∣
p

dx,

(3.5)

where X ≡ X(d(x)
R ) with X(t) = (1 − log t)−1 and R = supx∈Ω d(x).

Since D > R, we can find β > 0 such that

X2−p ≥ β

(
log
(
D

d

))−p

. (3.6)

Thus combining (3.5) and (3.6), we obtain that

∫
Ω

|∇φ|pdx−
(
p− 1
p

)p ∫
Ω

|φ|p
dp

dx

≥ C3

∫
Ω

(
log
(
D

d

))−p ∣∣∣∣∇φ−
(
p− 1
p

)
φ

d
∇d
∣∣∣∣
p

dx

for a constant C3 > independent of φ.
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Nonlinear elliptic problem related to the Hardy inequality with singular term at the boundary

Using (2.1), we obtain

(
log
(
D

d

))−p ∣∣∣∣∇φ− p− 1
p

φ

d
∇d
∣∣∣∣
p

≥ C

(
log
(
D

d

))−p
(
|∇φ|p − p

∣∣∣∣
(
p− 1
p

)
φ

d
∇d
∣∣∣∣
p−1

|∇φ|
)
.

Therefore, by Young’s inequality,

∫
Ω

(
log
(
D

d

))−p ∣∣∣∣∇φ−
(
p− 1
p

)
φ

d
∇d
∣∣∣∣
p

dx

≥ C

{
(1 − ε)

∫
Ω

|∇φ|p
(

log
(
D

d

))−p

dx− Cε

∫
Ω

φp

dp

(
log
(
D

d

))−p

dx

}
,

which implies,

∫
Ω

(
log
(
D

d

))−p ∣∣∣∣∇φ−
(
p− 1
p

)
φ

d
∇d
∣∣∣∣
p

dx+
∫

Ω

φp

dp

(
log
(
D

d

))−p

dx

≥ C

∫
Ω

|∇φ|p
(

log
(
D

d

))−p

dx. (3.7)

Now, using Theorem 2.2 with u = φ

d
p−1

p

, we get

∫
Ω

φp

dp

(
log
(
D

d

))−p

dx ≤ C

∫
Ω

∣∣∣∣∇φ− p− 1
p

φ

d
∇d
∣∣∣∣
p

dx. (3.8)

Thus, by (3.7) and (3.8), it follows that

∫
Ω

|∇φ|pdx−
(
p− 1
p

)p ∫
Ω

|φ|p
dp

dx

≥ C1

∫
Ω

∣∣∣∣∇φ−
(
p− 1
p

)
φ

d
∇d
∣∣∣∣
p

dx

+C2

∫
Ω

((
log
(
D

d

))−p ∣∣∣∣∇φ −
(
p− 1
p

)
φ

d
∇d
∣∣∣∣
p
)
dx

≥ C

∫
Ω

|∇φ|p
(

log
(
D

d

))−p

dx.

Hence the result follows at once.
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Optimality of exponents. To prove the optimality of exponents of log(D
d )

in the right-hand side of inequalities (1.4) and (1.5), we use closely the argu-
ments introduced in [8].

Without loss of generality assume that 0 ∈ ∂Ω and we consider Bδ(0), the
ball centered at the origin with δ sufficiently small.

For ε > 0, we set wε = d
p−1

p +ε(log(D
d ))θ, where θ > 0, to be chosen later.

Let φ ∈ C2
0(Ω), be such that 0 ≤ φ ≤ 1, supp(φ) ⊂ Bδ(0) and φ = 1 in

B δ
2
(0).
Define Uε(x) ≡ φ(x)wε(x), then supp(Uε) ⊂ Bδ(0).
Let us begin by proving the optimality in the case p ≥ 2. We argue by

contradiction. Suppose the existence of positive constants C and γ such that∫
Ω

|∇u|pdx−
(
p− 1
p

)p ∫
Ω

|u|p
dp

dx ≥ C

∫
Ω

|∇u|p
(

log
(
D

d

))−2−γ

dx

holds for all u ∈W 1,p
0 (Ω). Since Uε ∈W 1,p

0 (Ω) for all ε > 0, it follows that

∫
Ω

|∇Uε|pdx−
(
p− 1
p

)p ∫
Ω

|Uε|p
dp

dx ≥ C

∫
Ω

|∇Uε|p
(

log
(
D

d

))−2−γ

dx.

(3.9)

Let us analyze each term in the above inequality.
If θ < 1

p , then following closely the arguments in [8], there results that

∫
Ω

|∇Uε|pdx −
(
p− 1
p

)p ∫
Ω

|Uε|p
dp

dx ≤ cε1−pθ. (3.10)

Now we estimate the second member of right-hand side in (3.9).
Notice that ∇Uε = wε∇φ+ φ∇wε, then∫

Ω

|∇Uε|p
(

log
(
D

d

))−2−γ

dx ≥
∫

B δ
2
(0)

|∇Uε|p
(

log
(
D

d

))−2−γ

dx

≥
∫

B δ
2
(0)

|∇wε|p
(

log
(
D

d

))−2−γ

dx

≥
∫

B δ
2
(0)

d−1+pε

(
log
(
D

d

))p(θ−1)−2−γ

×
∣∣∣∣
(
p− 1
p

)
log
(
D

d

)
− θ

∣∣∣∣
p

dx.

Using (2.2), there results that∣∣∣∣
(
p− 1
p

)
log
(
D

d

)
− θ

∣∣∣∣
p

≥ c(p)
(

log
(
D

d

))p

− pθ

(
log
(
D

d

))p−1

.
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Nonlinear elliptic problem related to the Hardy inequality with singular term at the boundary

Hence∫
Ω

|∇Uε|p
(

log
(
D

d

))−2−γ

dx ≥ c(p)
∫

B δ
2
(0)

d−1+pε

(
log
(
D

d

))pθ−2−γ

dx

− c(p, θ)
∫

B δ
2
(0)

d−1+pε

(
log
(
D

d

))pθ−3−γ

dx

=: I1 − I2.

By using the change of variables r = Ds
1
ε in I1 and I2, we obtain

I1 − I2 = ε−pθ+γ+1Dpε

[
c(p)

∫ ( δ
2D )ε

0

sp−1

(
log
(

1
s

))pθ−2−γ

ds

− c(p, θ)ε
∫ ( δ

2D )ε

0

sp−1

(
log
(

1
s

))pθ−3−γ

ds

]
. (3.11)

Combining (3.10) and (3.11), we reach that

Dpε

[
c(p)

∫ ( δ
2D )ε

0

sp−1

(
log
(

1
s

))pθ−2−γ

ds

−c(p, θ)ε
∫ ( δ

2D )ε

0

sp−1

(
log
(

1
s

))pθ−3−γ

ds

]
≥ Cε−γ . (3.12)

Since p > 1, then, for all γ > 0, as ε→ 0, we have

c(p)
∫ 1

0

sp−1

(
log
(

1
s

))pθ−2−γ

ds+c(p, θ)
∫ 1

0

sp−1

(
log
(

1
s

))pθ−3−γ

ds <∞,

hence we reach a contradiction with (3.12) and the result follows in this case.
(4) The case p < 2 follows using the same arguments.

Remark 1. In the case where p = 2, then we can define a new space H as the
completion of C∞

0 (Ω) with respect to the norm

‖φ‖2
H =

∫
Ω

(
|∇φ|2 − 1

4
φ2

d2

)
dx.

It is clear that H is a Hilbert space. By Theorem 1.1, it follows that

W 1,2
0 (Ω) � H �W 1,q

0 (Ω) ∀ q < 2.

4. The Problem (1.6) with q < 1

First, we give the proof of Theorem 1.2 about the blow-up for the approximated
problem.
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Proof of Theorem 1.2 in the case 0 < q < 1. Notice that the existence and the
uniqueness of un follow using classical minimizing arguments and the comparison
principle in Lemma 2.3. It is clear that {un}n is an increasing sequence in n.

We argue by contradiction. We assume that there exists some x0 ∈ Ω such that
un(x0) ≤ C for all n. Then, by Lemma 2.4 it follows that

un(x0)
d(x0)

≥ C

∫
Ω

uq
n(

d(y) +
1
n

)2 d(y)dy.

Hence we conclude that ∫
Ω

uq
n(

d(y) +
1
n

)2 d(y)dy ≤ C.

Since {un}n is an increasing sequence in n, we get the existence of a measurable
function u such that un ↑ u a.e. in Ω and

uq
n(

d(y) +
1
n

)2 d(y) →
uq

d(y)
strongly in L1(Ω).

Let ρ be the unique solution to the problem

−∆ρ = 1, ρ ∈W 1,2
0 (Ω). (4.1)

It is clear that ρ ∈ C1(Ω) and ρ � d. Using ρ as a test function in (1.7) we reach
that ∫

Ω

undx =
∫

Ω

uq
n(

d(x) +
1
n

)2 ρdx ≤ C

∫
Ω

uq
n(

d(x) +
1
n

)2 d(x)dx ≤ C.

Hence ‖un‖L1(Ω) ≤ C and then un → u strongly in L1(Ω). In the same way and by
an approximation argument we can take ρ

us
n
, 0 < s < 1, as a test function in (1.7).

We obtain that

1
1 − s

∫
Ω

u1−s
n dx = s

∫
Ω

|∇un|2
us+1

n

ρdx+
∫

Ω

uq−s
n(

d(x) +
1
n

)2 ρdx.

Since u1−s
n → u1−s strongly in L1(Ω), then∫

Ω

uq−s
n(

d(x) +
1
n

)2 ρdx ≤ C.

Therefore, using Fatou’s lemma we obtain that∫
Ω

uq−s

d(x)
dx ≤ C for all 0 < s < 1.

1450033-12
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As a conclusion we have proved that

uq

d
∈ L1(Ω) and

uq−s

d
∈ L1(Ω) for all 0 < s < 1.

Fix s such that q < s < 1, then since s−q
s + q

s = 1,

F ≡
(
uq

d

) s−q
s

∈ L
s

s−q (Ω) and G ≡
(
uq−s

d

) q
s

∈ L
s
q (Ω).

Therefore, using Hölder’s inequality we reach that FG ∈ L1(Ω). On the other
hand notice that FG = 1

d /∈ L1(Ω), a contradiction. We then conclude that un(x) →
∞ for all x ∈ Ω.

Remark 2. In the case where q = 0, if we consider the problem

−∆w =
1
ds
, (4.2)

where s ≤ 2, we can prove the following assertions:

(1) If s < 2, then the problem (4.2) has a unique positive bounded solution w ∈
W 1,2

0 (Ω).
(2) If s = 2, then there is nonpositive bounded solution.

Notice that, if s > 1, then 1
ds /∈ L1(Ω)∪M(Ω) where M(Ω) is the space of bounded

Radon measures.

For simplicity of writing, we set σ = −q.

Proof of Theorem 1.2 when q < 0. Let un ∈ L∞(Ω) be the unique positive
solution to the problem



−∆un =
1

uσ
n

(
d(x) +

1
n

)2 in Ω,

un > 0 in Ω,

un = 0 on ∂Ω.

(4.3)

We claim that un(x0) → ∞ for all x0 ∈ Ω.
The main idea is to construct a suitable subsolution blowing up at each point

of Ω.
For s ≥ 0, we set

H(s) =
(

log(s+ 1) − s

s+ 1

) 1
1+σ

,

then

H ′(s) =
1

σ + 1
s

(s+ 1)2
H−σ(s)

1450033-13
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and

H ′′(s) = − σ

σ + 1

(
s

(s+ 1)2

)2

H−2σ−1(s) +
1

σ + 1
s− 1

(s+ 1)3
H−σ(s).

Define vn = H(C0nφ1) where φ1 is first eigenfunction of the Laplacian and C0 is a
positive constant that we will choose later.

In what follows, C will denote a constant which can vary from line to line and
that is independent of n.

By a direct computations, we reach that

−∆vn = C0nH
′(C0nφ1)(−∆φ1) − C2

0n
2H ′′(Cnφ1)|∇φ1|2

≤ C0λ1nφ1H
′(C0nφ) + C2

0n
2|H ′′(C0nφ1)||∇φ1|2.

Notice that

C0nφ1H
′(C0nφ1) =

1
σ + 1

(C0nφ1)2

((C0nφ1) + 1)2
H−σ(C0nφ1) ≤ 1

Hσ(C0nφ1)

≤ C(
(C0φ1) +

1
n

)2

Hσ(C0nφ1)

.

On the other hand, we have

|C2n2H ′′(C0nφ1)|∇φ1|2| ≤ σC

σ + 1
C2

0(
(C0φ1) +

1
n

)2

Hσ(C0nφ1)

×


 C0φ1

Cφ1 +
1
n




2

H−σ−1(C0nφ1)

+
CC2

0

σ + 1
1(

(C0φ1) +
1
n

)2

Hσ(C0nφ1)

.

Using the fact that ( s
s+1 )2H−q−1(s) ≤ C, it follows that

|C2
0n

2H ′′(C0nφ1)|∇φ1|2| ≤ CC2
0

σ + 1
1(

(C0φ1) +
1
n

)2

Hσ(C0nφ1)

.

Going back to the problem of vn, we reach that

−∆vn ≤ C(
(C0φ1) +

1
n

)2

vσ
n

.
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Since φ1(x) ≥ C1d(x), then choosing C0 such that C0φ1(x) ≥ d(x), it follows that

−∆vn ≤ C(
d(x) +

1
n

)2

vσ
n

.

We set ṽn = 1

C
1

q+1
vn, then ṽn satisfies

−∆ṽn ≤ 1(
d(x) +

1
n

)2

ṽσ
n

.

Thus ṽn is a subsolution to problem (4.3) and then by the comparison principle in
Lemma 2.3, we conclude that ṽn ≤ un. It is clear that ṽn(x0) → ∞ for all x0 ∈ Ω.
Hence we conclude.

Proof of Theorem 1.4. We argue by contradiction. We assume that the problem
(1.6) has a nonnegative solution u in the sense of Definition 1.3. By the strong
maximum principle u > 0 in Ω. Then, we consider the unique solution un to the
approximated problem (1.7). It is clear that u is a supersolution to problem (1.7).
Hence using a variation of the comparison principle in Lemma 2.3 we obtain that

un ≤ un+1 ≤ u for all n.

Hence we get the existence of u ∈ L1(Ω) such that un → u strongly in L1(Ω). This
is a contradiction with the result of Theorem 1.2. Thus we conclude.

Remark 3. Notice that the existence of un follows by minimizing the functional

Jn(v) =
1
2

∫
Ω

|∇v|2dx− 1
q + 1

∫
Ω

|v|q+1(
d(x) +

1
n

)2 dx

in W 1,2
0 (Ω). It is clear that

Jn(un) = min
{v∈W 1,2

0 (Ω)\{0}}
Jn(v) = − 1 − q

2(1 + q)

∫
Ω

uq+1
n(

d(x) +
1
n

)2 dx < 0.

We claim that Jn(un) → −∞ as n → ∞. Indeed, define w = φα
1 where φ1 is the

first eigenfunction and 1
2 < α < 1

q+1 , thus

∇w = αφα−1
1 ∇φ1.

Recall that φ1 � d(x), then since 2(α− 1) > −1

|∇w|2 = α2φ
2(α−1)
1 |∇φ1|2 ∈ L1(Ω).
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Hence we conclude that

Jn(un) ≤ Jn(w) =
1
2

∫
Ω

|∇w|2dx− 1
q + 1

∫
Ω

wq+1(
d(x) +

1
n

)2 dx

≤ C − 1
q + 1

∫
Ω

φ
α(q+1)
1(

d(x) +
1
n

)2 dx.

On the other hand, it is clear that

φ
α(q+1)
1(

d(x) +
1
n

)2 � dα(q+1)(
d(x) +

1
n

)2 .

Then by the monotone convergence theorem we reach that

dα(q+1)(
d(x) +

1
n

)2 ↑ dα(q+1)−2.

Since α < 1
q+1 , we conclude that∫

Ω

dα(q+1)−2 = ∞.

To prove Theorem 1.5 we need the following result.

Proposition 4.1. Assume that 0 < r < 1, then the problem

−∆w =

1
wr

in Ω,

w > 0 in Ω,

w = 0 on ∂Ω,

(4.4)

has a unique positive solution w such that w ∈ W 1,2
0 (Ω) ∩ L∞(Ω), moreover, there

exist two positive constants C1, C2 such that

C1d(x) ≤ w ≤ C2d(x). (4.5)

The proof of Proposition 4.1 follows using sub-supersolution arguments.

Proof of Theorem 1.5. We follow by approximation. Let un be the unique pos-
itive solution to the problem



−∆un =
uq

n(
d(x) +

1
n

)s in Ω,

un > 0 in Ω,

un = 0 on ∂Ω.

(4.6)
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Let w be the solution of problem (4.4) with r = s−1 < 1 if 1 < s < 2 and r ∈ (0, 1)
is arbitrary if 0 < s ≤ 1. Using w as a test function in (4.6), we reach that∫

Ω

un

wr
dx =

∫
Ω

uq
nw(

d(x) +
1
n

)s dx.

Using estimate (4.5), the definition of r and the Hölder inequality, we obtain that∫
Ω

un

dr
dx ≤ C

∫
Ω

uq
n

dr
dx ≤ C

(∫
Ω

un

dr
dx

)q (∫
Ω

1
dr
dx

)1−q

.

Since, in any case, r < 1, then 1
dr ∈ L1(Ω), thus

∫
Ω

un

dr dx ≤ C.
Using the fact that the sequence {un}n is monotone in n, we get the existence

of a measurable function u such that un

dr → u
dr strongly in L1(Ω). It is clear that

uq
n(

d(x) +
1
n

)s ↑ u
q

ds
strongly in L1(d(x),Ω)

thus u is a distributional solution to problem (4.6). It is not difficult to prove that
u is a solution to (4.6) in the sense of Definition 1.3. Notice that if s < q+3

4 ,
we can prove that u ∈ W 1,2

0 (Ω), moreover, using elliptic regularity we reach that
u ∈ L∞(Ω).

Remark 4. (1) Using the fact that −∆uσ ≥ σ
u1−σ−qds for any 0 < σ < 1 − q, we

obtain that u ≥ Cd
2

1−q .
(2) Notice that if q+1 < s < 2, then uq

ds /∈ L1(Ω), hence by Lemma (2.4), it follows
that

un(x)
d(x)

≥ C

∫
Ω

uq
n(

d(x) +
1
n

)s d(y)dy for all x ∈ Ω

which implies that u(x) ≥ Cd(x) for all x ∈ Ω. Thus

uq

ds
≥ C

ds−q
/∈ L1(Ω)

since s− q > 1.
(3) If 1 + q < s < 2, then for all 2−s

1−q < θ < 1, there exists C(θ) > 0 such that

u ≥ C(θ)dθ in Ω.

This follows using the fact that if 2−s
1−q < θ < 1, then

−∆φθ
1 ≤ C

φqθ
1

ds
,

where φ1 is the first eigenfunction of the Laplacian. Thus by the comparison
principle in Lemma 2.3 and up to a constant we reach the desired estimate.
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Remark 5. If we consider the problem

−∆u =

1
uσds(x)

in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(4.7)

where s < 2, then using sub-supersolution arguments and a priori estimates, we
can prove that, for all σ > 0, the problem (4.7) has a unique bounded positive
solution. We refer to [9] for more details and extensions.

5. The Problem (1.6) with 1 < q < 2∗ − 1

Proof of Theorem 1.6. As in Sec. 4, we argue by approximation. Let un ∈
L∞(Ω) ∩W 1,2

0 (Ω) be the “mountain pass solution” to the approximated problem


−∆un =
uq

n(
d(x) +

1
n

)2 in Ω,

un > 0 in Ω,

un = 0 on ∂Ω.

(5.1)

Notice that un is a critical point of the functional

Jn(v) =
1
2

∫
Ω

|∇v|2dx− 1
q + 1

∫
Ω

|v|q+1(
d(x) +

1
n

)2 dx.

Using [1], we obtain that Jn(un) = cn where

cn = inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

and

Γ = {γ ∈ C([0, 1],W 1,2
0 (Ω)),R with γ(0)=0 and γ(1)= v1 ∈W 1,2

0 (Ω), Jn(v1) < 0}.
It is not difficult to prove that there exists v1 ∈ C∞

0 (Ω) such that Jn(v1) � 0
uniformly in n.

Since cn = p−1
p+1

∫
Ω
|∇un|2dx, then using the fact that 0 ≤ cn ≤

maxt∈[0,∞) J(tv1) ≤ C for all n, we reach that the sequence {un}n is bounded

in W 1,2
0 (Ω).

We claim that

‖un‖L∞(Ω) ≤ C for all n.

To prove the claim we use blow-up technique as in [6, 10]. Let {xn}n ⊂ Ω be
such that ‖un‖L∞(Ω) = un(xn) and suppose by contradiction that un(xn) → ∞ as
n → ∞. Since {xn}n is a bounded sequence, we get the existence of x ∈ Ω such
that (up to a subsequence) xn → x.
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We divide the proof in two cases:

Case 1: x ∈ Ω. We set vn(z) = un(µnz+xn)
Mn

where Mn = un(xn) and µn = M
1−q
2

n ,
then vn solves 



−∆vn =
vq

n(
d(µnz + xn) +

1
n

)2 in Ωn,

vn > 0 in Ωn,

vn = 0 on ∂Ωn,

where Ωn = 1
µn

(Ω − xn) is given by the transformation x �→ z = x−xn

µn
.

It is clear that, for z fixed, d(µnz + xn) + 1
n → d(x) = C as n→ ∞.

By elliptic regularity, see [11], we have that vn ∈ C0,ν for some 0 < ν < 1/2,
moreover, ‖vn‖C0,ν ≤ C uniformly in n.

Passing to the limit as n→ ∞, we get the existence of v ∈ C0,ν(RN )∩L∞(RN )
such that v(z) ≤ v(0) = 1 and v solves

−∆v = Cvq, v ≥ 0 in RN .

Since q < 2∗ − 1, we get a contradiction with the nonexistence result in [10].

Case 2: x ∈ ∂Ω. In this case we set µn = M
1−q
2

n (d(xn) + 1
n ), then vn solves



−∆vn = vq
n


 d(xn) +

1
n

d(µnz + xn) +
1
n




2

in Ωn,

vn > 0 in Ωn,

vn = 0 on ∂Ωn.

Fix z ∈ RN , then d(xn)+ 1
n

d(µnz+xn)+ 1
n

→ 1 as n → ∞. Thus passing to the limit as

n→ ∞, we get the existence of v such that either, v ∈ C2(RN )∩L∞(RN ) such that
v(z) ≤ v(0) = 1 and v solves

−∆v = Cvq, v ≥ 0 in RN ,

or, up to a translation, v ∈ C2(RN
+ ) ∩ C0({z ∈ RN , zN ≥ 0}) such that v solves

−∆v = Cvq , v ≥ 0 in RN
+ , v = 0 on zN = 0.

Since q < 2∗ − 1, we again get a contradiction with the nonexistence result in [10].
Hence the claim follows at once.

On the other hand, it is clear that

‖un‖L∞ ≥ C for all n. (5.2)

Otherwise, for some subsequence, we have ‖un‖L∞ → 0, then un solves

−∆un ≤ ‖un‖q−1
L∞

un

d2 +
1
n

, un ∈ W 1,2
0 (Ω).
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Choosing n large, we reach that ‖un‖q−1
L∞ � Λ2, a contradiction with the Hardy

inequality (1.1). Hence we conclude that ‖un‖L∞ ≥ C for all n.
Recall that u(xn) = ‖un‖L∞ , we claim that d(xn) > C1 > 0 for all n. We argue

by contradiction, if, for some subsequence, xn → x ∈ ∂Ω and ‖un‖L∞ → C2 ≥ C.
Then as in the proof of the previous uniform estimate, we set

vn(z) =
un(µnz + xn)

Mn

where

µn = M
1−q
2

n

(
d2(xn) +

1
n

) 1
2

,

It is clear that µn → 0 as n → ∞. As above we reach that vn → v strongly in
C(RN ) where v solves

−∆v = Cvq in RN ,

a contradiction with the result of [10]. Hence the claim follows.
We then conclude that {un}n is bounded in L∞(Ω) ∩W 1,2

0 (Ω) and hence there
exists u ∈ L∞(Ω) ∩W 1,2

0 (Ω) such that

un ⇀ u weakly in W 1,2
0 (Ω) and un → u strongly in Lp(Ω)

for all p ≥ 1.
To finish we have just to prove that u 	≡ 0. We argue by contradiction, if u ≡ 0,

then un → 0 strongly in Lp(Ω) for all p ≥ 1. We claim that∫
Ω

|∇un|2φ1 → 0 as n→ ∞,

where φ1 is the first eigenfunction of the Laplacian.
To prove the claim we use un(φ1 + c

n ) as a test function in (5.1) for c ≥
supΩ̄

φ1(x)
d(x) . Therefore, we obtain that∫

Ω

|∇un|2
(
φ1 +

c

n

)
+
∫

Ω

un∇un∇φ1 ≤ c

∫
Ω

uq+1
n

d+
1
n

.

Hence∫
Ω

|∇un|2
(
φ1 +

c

n

)
+
λ1

2

∫
Ω

u2
nφ1 ≤ c

∫
Ω

uq+1
n

d+
1
n

≤



∫

Ω

uq+1
n(

d+
1
n

)2




1
2 (∫

Ω

uq+1
n

) 1
2

≤ C

(∫
Ω

uq+1
n

) 1
2

→ 0 as n→ ∞.

Thus
∫
Ω
|∇un|2φ1 → 0 and the claim follows.
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By elliptic regularity we conclude that un → 0 strongly in Cloc(Ω). Since d(xn) ≥
C > 0 for all n, then up to a subsequence, un(xn) → 0 as n → ∞, a contradiction
with (5.2). Hence u � 0 and then the existence result follows.

6. The Problem (1.6) with the Critical Power q = 2∗ − 1

In this section, we will consider (1.6) in the case q = 2∗ − 1 if N ≥ 3 and q > 1
if N = 1, 2. We will assume that Ω = BR(0) is the ball of radius R centered at
the origin and we will work in the space W 1,2

ra (BR(0)) defined as the subspace of
W 1,2

0 (BR(0)) of radial function.
For N ≥ 3, we define

S(R) ≡ inf
φ∈W 1,2

ra (BR(0))

∫
BR(0)

|∇φ|2dx
(∫

BR(0)

|φ|2∗

d2(x)
dx

) 2
2∗
. (6.1)

Since φ is a radial function, then∫
Ω

|∇φ|2dx
(∫

Ω

|φ|2∗

d2(x)
dx

) 2
2∗

=

∫ R

0

|φ′(r)|2rN−1dr

(∫ R

0

|φ|2∗

(R− r)2
rN−1dr

) 2
2∗
.

Let us begin by proving the following proposition.

Proposition 6.1. Assume that S(R) is defined as in (6.1), then

(1) S(R) > 0 for all R > 0,
(2) S(R) = R

4
2∗ S(1).

Proof. We begin with the first point. Let 0 < R1 < R, then∫ R

0

|φ|2∗

(R− r)2
rN−1dr =

∫ R1

0

|φ|2∗

(R− r)2
rN−1dr +

∫ R

R1

|φ|2∗

(R− r)2
rN−1dr

= I(R1) + J(R1).

It is clear that

I(R1) ≤ 1
(R −R1)2

∫ R

0

|φ|2∗
rN−1dr ≤ C(R,R1, N) ‖φ‖2∗

W 1,2
ra (BR(0))

.

We deal now with J(R1). For 0 < R1 < r < R, we have

|φ(r)| ≤
∫ R

r

|φ′(s)|ds

≤
∫ R

r

|φ′(s)|sN−1s1−Nds
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≤
(∫ R

r

|φ′(s)|2sN−1ds

) 1
2
(∫ R

r

s1−Nds

) 1
2

≤ C(N)‖φ‖W 1,2
0

(
C(R)(R − r)

(rR)N−2

) 1
2

,

where

C(R) =

{
1 if N = 3,

RN−3 if N ≥ 4.

Hence ∫ R

R1

|φ|2∗

(R− r)2
rN−1 ≤ C(N,R,R1)‖φ‖2∗

W 1,2
0

∫ R

R1

(R − r)
2∗
2 −2dr

≤ C(N,R,R1)‖φ‖2∗

W 1,2
ra (BR(0))

.

Therefore,

J(R1) ≤ C(N,R,R1)‖φ‖2∗

W 1,2
ra (BR(0))

and then

S(R) ≥ 1
C(N,R,R1)

> 0.

This completes the proof of the point (1).
To prove the second estimate (2) we consider φ ∈ W 1,2

ra (B1(0)) and we define
for 0 < r < R, the function ψ(r) = φ( r

R ). It is clear that ψ ∈ W 1,2
ra (BR(0)) and a

direct computation yields∫ R

0

|ψ′(r)|2rN−1dr

(∫ R

0

|ψ|2∗

(R − r)2
rN−1dr

) 2
2∗

= R
4
2∗

∫ 1

0

|φ′(r)|2rN−1dr

(∫ 1

0

|φ|2∗

(1 − r)2
rN−1dr

) 2
2∗
.

Thus, taking the infimum on the above identity, we get S(R) = R
4
2∗ S(1).

We are now in position to prove Theorem 1.7.

Proof of Theorem 1.7 when N ≥ 3. It is clear that if u is a solution to (1.6)
in B1(0), then v(r) = u( r

R ) is a solution to (1.6) in BR(0). Hence we have just to
show that problem (1.6) has a solution in some ball BR(0).

Notice that S(1) ≤ S, the Sobolev constant. Hence fix R < 1 such that S(R) <
S. To get the desired result we have just to show that S(R) is achieved. Let {un}n ⊂
W 1,2

ra (BR(0)), be a minimizing sequence of S(R) with∫ R

0

|un|2∗

(R− r)2
rN−1dr = 1.

Without loss of generality we can assume that un ≥ 0.
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Hence we obtain that ‖un‖W 1,2
ra (BR(0)) ≤ C and then we get the existence of

u ∈W 1,2
ra (BR(0)) such that

un ⇀ u weakly in W 1,2
ra (BR(0)), un → u strongly in Ls(BR(0)), ∀ s < 2∗

and un → u strongly in Lσ(BR(0)\Bε(0)) for all σ > 1 and for all ε > 0. If u 	= 0,
then we get easily that u solves (1.6) with q = 2∗ − 1.

Assume that u ≡ 0, then un → 0 strongly in Lσ(BR(0)\Bε(0)) for all σ > 1 and
for all ε > 0. Fix 0 < R1 < R, then

|un|2∗

(R − r)2
rN−1 ≤ C(N,R,R1)||un||2∗

W 1,2
ra (BR(0))

(R − r)
2∗
2 −2.

Since 2∗
2 − 2 > −1, then by the dominated convergence theorem, it follows that∫ R

R1

|un|2∗

(R− r)2
rN−1dr → 0 as n→ ∞.

Thus, for all 1 < R1 < R, we have∫
BR1 (0)

|un|2∗

(R− |x|)2 dx→ 1 as n→ ∞.

Using the Ekeland variational principle, we obtain that, up to a subsequence,

−∆un = S(R)
u2∗−1

n

(R − |x|)2 + o(1). (6.2)

Now, by the concentration compactness principle, see [14, 15], it follows that

(1) |∇un|2 ⇀ dµ ≥ µ0δ0, |un|2∗
⇀ dν = ν0δ0,

(2) µ0 ≥ S
2
2∗ ν0

weakly in the sense of measure, where δ0 is the Dirac measure centered at the origin.
Let now φ ∈ C∞

0 (BR(0)) ∩W 1,2
ra (BR(0)) be such that

0 ≤ φ ≤ 1, φ ≡ 1 in Bε(0) and φ ≡ 0 in BR(0)\Bε(0),

then using unφ as a test function in (6.2) and letting ε→ 0, we reach that

µ0 ≤ S(R)ν0.

Since µ0 ≥ S
2
2∗ ν0, then µ0 ≤ S(R)

S
2
2∗
ν0.

If µ0 = 0, then ν0 = 0. Hence∫
BR(0)

|un|2∗

(R− |x|)2 dx→
∫

BR(0)

|u|2∗

(R − |x|)2 dx = 1

a contradiction with the fact that u ≡ 0.
Now, if ν0 > 0, then S

2
2∗ ≤ S(R). Recall that S(R) = R

4
2∗ S(1), since S(1) ≤ S,

we conclude that S ≥ R− 4
2∗−2 . Notice that the Sobolev constant S in independent

of the domain, and in particular it is independent of R. Hence, letting R → 0, we
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reach a contradiction. Thus u 	= 0 and solves (1.6) with q = 2∗ − 1. The strong
maximum principle allows us to get that u > 0 in BR(0).

Notice that, from the above computation, we can conclude that∫
BR(0)

|un|2∗

(R− |x|)2 dx→
∫

BR(0)

|u|2∗

(R − |x|)2 dx = 1

and then u is a minimizer of S(R).

For the case N = 1, 2 we need the next proposition.

Proposition 6.2. Define

Sq(R) ≡ inf
φ∈W 1,2

ra (BR(0))

∫
BR(0)

|∇φ|2dx
(∫

BR(0)

|φ|q+1

d2(x)
dx

) 2
q+1

.

Then

(1) Sq(R) > 0 for all R > 0,
(2) Sq(R) = R

4
q+1S(1).

Proof. We begin by proving that Sq(R) > 0.
If N = 1, then W 1,2

ra (BR(0)) ⊂ L∞(Ω) with a compact inclusion. Hence using
Hardy’s inequality we obtain that∫

BR(0)

|φ|q+1

d2(x)
dx ≤ ‖φ‖q−2

∞

∫
BR(0)

|φ|2
d2(x)

dx ≤ C1‖φ‖q+1

W 1,2
ra (BR(0))

.

Thus ∫
BR(0)

|∇φ|2dx
(∫

BR(0)

|φ|q+1

d2(x)
dx

) 2
q+1

≥ 1

C
2

q+1
1

> 0.

As a consequence Sq(R) ≥ 1

C
2
q
1

and the result follows in this case.

Assume that N = 2. We follow closely the computation of Proposition 6.1.
Given 0 < R1 < R, then∫ R

0

|φ|q+1

(R− r)2
rdr =

∫ R1

0

|φ|q+1

(R− r)2
rdr +

∫ R

R1

|φ|q+1

(R − r)2
rdr

= I(R1) + J(R1).

It is clear that

I(R1) ≤ 1
(R−R1)2

∫ R

0

|φ|q+1rdr ≤ C(R,R1)‖φ‖q+1

W 1,2
ra (BR(0))

.
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We deal now with J(R1). It is clear that for R1 < r < R, we have

|φ(r)| ≤ ‖φ‖W 1,2
ra (BR(0))

(
R − r

R1

) 1
2

.

Thus ∫ R

R1

|φ|q+1

(R− r)2
r ≤ C(R1, R)‖φ‖q+1

W 1,2
ra (BR(0))

∫ R

R1

(R− r)
q+1
2 −2dr.

Since q > 1, then
∫ R

R1
(R− r)

q+1
2 −2dr <∞. Therefore,

J(R1) ≤ C(N,R,R1)‖φ‖q+1

W 1,2
ra (BR(0))

.

Combining the above estimates, we reach the desired result.
The point (2) follows exactly as the point (2) in Proposition 6.1. Hence we omit

it here. This concludes the proof of the desired result.

Proof of Theorem 1.7 when N = 1, 2. We have just to show that Sq(R) is
achieved.

Let {un}n ⊂W 1,2
ra (BR(0)) be a minimizing sequence of Sq(R) with∫ R

0

|un|q+1

(R− r)2
rN−1dr = 1.

It is clear that the sequence {un}n is bounded in W 1,2
ra (BR(0)) and then un ⇀ u

weakly in W 1,2
ra (BR(0)).

If N = 1, then, up to a subsequence, un → u strongly in C(Ω).
Since |un(r)| ≤ ‖un‖W 1,2

ra (BR(0))(R − r)
1
2 , then we conclude that

|un|q+1

(R− r)2
≤ C(R − r)

q−3
2 .

Since q > 1, then (R − r)
q−3
2 ∈ L1(0, R) and then by the dominated convergence

theorem we reach that
|un|q+1

(R− r)2
→ |u|q+1

(R− r)2
strongly in L1(0, R).

Thus
∫ R

0
|u|q+1

(R−r)2 dr = 1 and then u solves (1.6). It is not difficult to prove that
un → u strongly in W 1,2

ra (BR(0)).
Consider now the case N = 2. It is clear that, for R1 < R fixed we have

|un|q+1

(R− r)2
→ |u|q+1

(R − r)2
strongly in L1(0, R1).

To deal with the set (R1, R), we use the estimate

|un(r)| ≤ ‖un‖W 1,2
0

(
R− r

R1

) 1
2

.

The existence result now follows using the dominated convergence theorem.
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7. Further Results and Open Problems

Assume that 0 < q < 1 < p and consider the following concave–convex problem

−∆u = λuq +

up

d2
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(7.1)

where λ > 0. Using a sub-supersolution arguments we can prove that, for λ small,
problem (7.1) has a positive bounded solution for all p > 1. To see that we have
just to build a suitable supersolution.

Let ψ ∈W 1,2
0 (Ω) be the positive solution of the problem

−∆ψ =
1
ψβ

in Ω,

ψ = 0 on ∂Ω,
(7.2)

with 0 < β < 1. It is clear that C1d(x) ≤ ψ ≤ C2d(x) for some C1, C2 > 0. Since
p > 1, then we can choose β < 1 such that p > 2 − β. Hence we can choose A > 0
such that Aψ is a supersolution to the problem (7.1) at least for λ small. It is clear
that if w, the unique positive solution to{

−∆w = λwq in Ω,

w = 0 on ∂Ω,

is a subsolution to (7.1) with w ≤ Aψ (that follows using the comparison principle
in Lemma 2.3). Thus an iteration argument allows us to conclude.

For problem (7.1), we can summarize the main results in the following theorem.

Theorem 7.1. Define

M = sup{λ > 0 : the problem (7.1) has a positive solution}
then M <∞ and

(1) for all λ < M, then problem (7.1) has a minimal positive bounded solution,
(2) if λ > M, there is no positive solutions,
(3) if p < 2∗ − 1, there exists a second positive solution at least for λ small.

7.1. Open problems

In this subsection we collect some open problems.

(1) In Theorem 1.7, we have considered the case Ω = BR(0) and we have proved the
existence of a positive radial solution. The behavior of the minimizing sequence
near the boundary of Ω was of great utility to get the compactness of the
minimizing sequence. However, the arguments used are not applicable for a
general domain Ω. It seems to be interesting to develop new arguments in
order to analyze the critical problem in general domains.
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(2) The case q > 2∗ − 1, is also interesting including for radial domain (when
N ≥ 3). Notice if we set

Sq(R) ≡ inf
φ∈W 1,2

ra

∫
BR(0)

|∇φ|2dx
(∫

BR(0)

|φ|q
d2

dx

) 2
q

.

then Sq(R) = 0 for all R > 0. However, it is not clear how to prove that the
unique “bounded” solution is 0.

Acknowledgments

Part of this work was carried out while B. Abdellaoui was visiting CMM. He wishes
to express his gratitude to CMM for its warm hospitality. B. Abdellaoui and K.
Biroud are partially supported by project MTM2010-18128, MICINN, Spain and
a grant from the ICTP, Trieste, Italy. J. Davila is supported by Fondecyt 1130360
and Fondo Basal CMM, Chile. F. Mahmoudi is supported by Fondecyt 1100164
and Fondo Basal CMM, Chile.

References

[1] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory
and applications, J. Funct. Anal. 14 (1973) 349–381.

[2] G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved Lp Hardy
inequalities with best constants, Trans. Amer. Math. Soc. 356(6) (2003) 2169–2196.
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