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Abstract. We consider the problem: −∆u = |u|
4

N−2u+εf(x) in Ω, u = 0 on ∂Ω,

where Ω ⊂ IRN is a bounded smooth domain which exhibits small holes, f ≥ 0,

f 6≡ 0 and ε > 0 is small. Using the reduction method and a min-max scheme

worked out with topological arguments, we construct multiple solutions by gluing

negative double-spike patterns located near each of the holes.

1. Introduction

In this paper we construct solutions which are not necessarily positive to the

following problem  −∆u = |u|p−1u+ εf(x) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth and bounded domain of IRN , N ≥ 3, which has m small holes,

p = N+2
N−2

is the critical Sobolev exponent, f(x) is a nonhomogeneous perturbation,

f ≥ 0, f 6≡ 0 and ε > 0 is a small parameter.

It is known that if f ≡ 0, problem (1.1) is a delicate matter of treating from a

variational viewpoint because the P.S. condition fails. In fact, in this case Pohozaev

[23] proved that (1.1) has no solution if Ω is star-shaped. On the other hand, in

a recognized paper, Brezis and Nirenberg [8] showed that the previous situation

may be reversed introducing suitable nonhomogeneous perturbations. Since then,

in the case f ≥ 0, f 6≡ 0, many results about existence and multiplicity of positive
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with multiple double-spikes, reduction method.
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solutions of (1.1) have arisen under the assumption that ε > 0 is small enough, see

for instance [8, 27, 30, 2, 21, 11].

Concerning solutions which are not necessarily positive, we know two works. Re-

cently, under certain symmetry assumptions on Ω and f , Clapp et al. [10] have

proved existence and multiplicity of solutions of (1.1) which develop k negative

spikes, for any k ≥ k0(Ω), supposes that ε > 0 is sufficiently small. In special, they

proved that if Ω is an anullus of fixed size and f ≥ 0, f 6≡ 0, then the number of

solutions of (1.1) tends to infinite as ε goes to 0, which are negative if support of f

is compact in Ω. More recently, the author [1] constructed a solution of (1.1) which

develop a negative double-spike shape as ε→ 0.

Motivated by the above results, we leave aside any symmetry assumption on the

domain Ω and the perturbation f , and we construct multiple solutions of (1.1) by

gluing negative double-spike patterns located near each of the holes of Ω, provided

that ε > 0 is small enough. More precisely, our setting in problem (1.1) is as

follows: let D be a bounded smooth domain in IRN , N ≥ 3, and let us consider

points P1, P2, . . . , Pm in D and smooth domains Di such that Di ⊂ B(Pi, µ) ⊂ D,

where µ > 0 is a fixed small number. Let us consider the domain

Ω = D \
m⋃
i=1

Di,

a function f ∈ C0,γ(Ω), for some 0 < γ < 1, such that infx∈Ω f(x) > 0, and the

unique solution w to the problem −∆w = f in Ω,

w = 0 on ∂Ω.
(1.2)

Our main result is

Theorem 1.1. Let 1 ≤ k ≤ m be fixed. Assume that ε = εn → 0 as n → +∞.

Then, up to subsequences, there exist positive numbers λijε, points ξεij in Ω and

nontrivial solutions uε of (1.1) of the form

uε(x) = −αN
k∑
i=1

2∑
j=1

(
ε

2
N−2λijε

ε
4

N−2λ2
ijε + |x− ξεij|2

)N−2
2

+ εw(x) + θε(x), (1.3)
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where αN = (N(N − 2))
N−2

4 and θε(x)→ 0 uniformly in Ω as ε→ 0. In particular,

(1.1) has at least 2m − 1 different solutions.

The proof actually will allow us to identify the points ξεij as follows: let G denote

Green’s function for the Laplace operator with Dirichlet boundary condition on Ω

and let H its regular part, then ξεij → ξij as ε → 0, with (ξi1, ξi2) being a critical

point of the functional

Φ(x, y) =
H(x, x)w2(y) + 2G(x, y)w(x)w(y) +H(y, y)w2(x)

G2(x, y)−H(x, x)H(y, y)

defined on a suitable subset of

{(x, y) ∈ Ω2 ∩ A2
i : G(x, y)−H

1
2 (x, x)H

1
2 (y, y) > 0},

where Ai = {x ∈ IRN : µρ∗1 < |x − Pi| < µρ∗2}, with 1 < ρ∗1 < ρ∗2 being explicit

constants independent of µ and Pi. Also we will identify the limits λij of λijε as

follows

λij =

(
a−1
N

H(ξij, ξij)w(ξil) +G(ξij, ξil)w(ξij)

G2(ξij, ξil)−H(ξij, ξij)H(ξil, ξil)

) 2
N−2

,

for j, l = 1, 2; j 6= l and i = 1, 2, . . . , k, where aN is an explicit constant. On the

other hand, it will be clear from the proof that f not need to be strictly positive in

the whole Ω, we will consider this case just for simplifying calculates.

The proof of Theorem 1.1 is based on a Lyapunov-Schmidt reduction procedure

related to problem (1.1). In dealing with positive solution, Rey [27] use the reduction

method in the critical case, which was more recently devised by del Pino et al. [14, 15]

in the slightly supercritical case, with f ≡ 0. In dealing with solutions which are

not necessarily positive, this procedure also already was used in the critical case,

see [10, 22, 1]. Also see [18, 19, 28, 31] for some related works with the procedure

in other contexts. In essence, here we extend the results of [1] but saving now the

serious technical difficulties that arise at once of isolating the different pairs of spikes

for avoiding undesirable interactions between points associated with different holes.
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The influence of small holes in the domain on the appearance of positive solutions

of problem  −∆u = |u|p−1u in Ω,

u = 0 on ∂Ω,
(1.4)

i.e. problem (1.1) with f ≡ 0, has been studied extensively in the literature. Coron

[12] began these studies for p = N+2
N−2

finding via variational methods that (1.4)

admits a positive solution under the assumption that Ω is a domain with a small hole.

This result was extended notably by Bahri and Coron [5] to domains which possess

a non-trivial topology. Rey [24] established existence of multiple solutions if Ω

exhibits several small holes, while that in [14] were constructed multi-peak solutions

in the slightly supercritical case. Recently, del Pino and Wei [16] have proved that

(1.4) has at least one positive solution for any p > N+2
N−2

, except for some strictly

increasing unbounded sequence of values of p, supposed that Ω = D \ B(P, δ), for

some P ∈ D and δ small enough. On the other hand, also have arisen recent results

concerning to sign-changing solutions of (1.4). In [22], Musso and Pistoia consider

p = N+2
N−2

, Ω = D \ B(0, ε) being symmetric respect to the origin for constructing

sign-changing solutions with multiple blow up at the origin as ε→ 0, whereas that

in [13], Dancer and Wei extended the result in [16] and showed that given any

positive integer m, (1.4) has a sign-changing solution for any p > N+2
N−2

, except for

some strictly increasing unbounded sequence of values of p, which has exactly m+ 1

nodal domains.

This paper is arranged as follows. Sections 2 − 4 are devoted to discuss the

finite-dimensional reduction scheme used for the construction of solutions of (1.1),

whereas in Section 5 the proof of Theorem 1.1 is finished by means of a min-max

characterization which uses topological arguments.

2. Basic estimates

In this section, we assume that ε > 0 is small enough and that Ω is a smooth

bounded domain in IRN , N ≥ 3, and let us consider the expanded domain

Ωε = ε−
2

N−2 Ω.
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Introducing the change of variable vε(x
′) = −ε u(ε

2
N−2x′), for x′ ∈ Ωε, we note that

u solves (1.1) if and only if vε solves ∆v + |v|p−1v = εp+1f̃(x′) in Ωε,

v = 0 on ∂Ωε,
(2.1)

where p = N+2
N−2

and f̃(x′) = f(ε
2

N−2x′). Besides, it is known that

Ūλ,ξ(x) = αN

( λ

λ2 + |x− ξ|2
)N−2

2
,

with λ > 0, ξ ∈ IRN and αN = (N(N − 2))
N−2

4 , are the only positive solutions of

equation ∆ϑ+ ϑp = 0 in IRN , see [3, 29, 7, 9]. Hence, if we consider the orthogonal

projections onto H1
0 (Ωε) of the functions Ūλ,ξ′ , which we denote from now on by

Uλ,ξ′ , and we put

V (x′) =
K∑
i=1

Uλi,ξ′i(x
′), x′ ∈ Ωε,

it turns out natural to look for solutions of (2.1) of the form

v(x′) = V (x′) + η̃(x′), x′ ∈ Ωε,

which for suitable points ξ′ and scalars λ will have the remainder term η̃ of small

order all over Ωε. Since solutions of (2.1) correspond to stationary points of its

associated energy functional Jε defined by

Jε(v) =
1

2

∫
Ωε

|∇v|2 − 1

p+ 1

∫
Ωε

|v|p+1 + εp+1

∫
Ωε

f̃v, (2.2)

our first goal is to estimate Jε(V ).

Let us fix a small number δ > 0 and relabel the parameters λi’s into the Λi’s given

by

Λi = aNλ
N−2

2
i , i = 1, 2, . . . , K,

where aN =
∫

IRN
Ūp, with Ū = Ū1,0, and Λi ∈ ]δ, δ−1[. Arguing as in [20, 26, 6], we

fix the set

Mδ = {(~ξ, ~Λ) : |ξi − ξj| > δ if i 6= j, and dist(ξi, ∂Ω) > δ}, (2.3)

where ~ξ = (ξ1, ξ2, . . . , ξK) ∈ ΩK and ~Λ = (Λ1,Λ2, . . . ,ΛK) ∈ ]δ, δ−1[K . Then we

obtain the next result
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Proposition 2.1. Given δ > 0 small, the following expansion holds

Jε(V ) = KCN + ε2Ψ(~ξ, ~Λ) + o(ε2)

uniformly in the C1-sense, with respect to (~ξ, ~Λ) in Mδ. Here

CN =
1

2

∫
IRN
|∇Ū |2 − 1

p+ 1

∫
IRN

Ūp+1 (2.4)

and the function Ψ is defined by

Ψ(~ξ, ~Λ) =
1

2

K∑
i=1

Λ2
iH(ξi, ξi)−

∑
i<j

ΛiΛjG(ξi, ξj) +
K∑
i=1

Λiw(ξi), (2.5)

where w is the unique solution to the problem (1.2).

Proof. The proof of this result is based in the arguments used to prove Lemma 3.2

of [15] and Proposition 1 of [10], so we only sketch it.

For notational simplicity we put Uλi,ξ′i(x
′) = Ui(x

′), for x′ ∈ Ωε, and obtain the

following basic estimates which are essentially contained in [4, 6]:∫
Ωε

|∇Ui|2 =

∫
IRN
|∇Ū |2 − ε2Λ2

iH(ξi, ξi) + o(ε2), (2.6)

∫
Ωε

∇Ui∇Uj = ε2ΛiΛjG(ξi, ξj) + o(ε2), i 6= j, (2.7)

∫
Ωε

(
V p+1 −

K∑
l=1

Up+1
l

)
= 2ε2(p+ 1)ΛiΛjG(ξi, ξj) + o(ε2), i 6= j, (2.8)

and ∫
Ωε

Up+1
i =

∫
IRN

Ūp+1 − ε2(p+ 1)Λ2
iH(ξi, ξi) + o(ε2). (2.9)

On the other hand, away from x′ = ξ′i, we have that

Ui(x
′) = ε2ΛiG(ε

2
N−2x′, ξi) + o(ε2),

uniformly on each compact subset of Ωε, then straightforward calculates lead to

εp+1

∫
Ωε

V f̃ = ε2

K∑
i=1

Λiw(ξi) + o(ε2). (2.10)
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In all previous estimates the quantity o(ε2) is actually of this size in the C1-norm

as function of (~ξ, ~Λ) ∈Mδ. Hence, since

Jε(V ) =
1

2

∫
Ωε

|∇V |2 − 1

p+ 1

∫
Ωε

V p+1 + εp+1

∫
Ωε

V f̃

=
1

2

K∑
i=1

∫
Ωε

|∇Ui|2 +
∑
i<j

∫
Ωε

∇Ui∇Uj + εp+1

∫
Ωε

V f̃

− 1

p+ 1

∫
Ωε

( K∑
i=1

Up+1
i

)
− 1

p+ 1

∫
Ωε

(
V p+1 −

K∑
i=1

Up+1
i

)
,

the result follows from estimates (2.6)–(2.10). �

3. The finite-dimensional reduction

Let us fix a small number δ > 0 and consider points (~ξ′, ~Λ) in

Mε
δ = {(~ξ′, ~Λ) : |ξ′i − ξ′j| > δε if i 6= j, and dist(ξ′i, ∂Ωε)>δε}, (3.1)

where ~ξ′= (ξ′1, ξ
′
2, . . . , ξ

′
K)∈ ΩK

ε , ~Λ = (Λ1,Λ2, . . . ,ΛK)∈ ]δ, δ−1[K and δε = δε−
2

N−2 .

Since solutions of problem ∆ϑ + pŪp−1
Λ,0 ϑ = 0 in IRN satisfying |ϑ(x)| < C|x|2−N

belong to span
{∂ŪΛ,0

∂xl
,
∂ŪΛ,0

∂Λ

}
l=1,...,N

, see [25], it is convenient to consider, for each

i = 1, 2, . . . , K, the following functions:

Z̄il(x
′) =

∂Ūi
∂ξ′il

(x′), l = 1, . . . , N and Z̄i(N+1)(x
′)=

∂Ūi
∂Λi

(x′),

and their respective H1
0 (Ωε)-projections Zil. Also, for functions u, v defined in Ωε

we put 〈u, v〉 =
∫

Ωε
uv, and consider the next problem: find a function η̃ such that

∆(V + η̃) + |V + η̃|p−1(V + η̃)− εp+1f̃ =
∑
i,l

cilU
p−1
i Zil in Ωε,

η̃ = 0 on ∂Ωε,

〈η̃, Up−1
i Zil〉 = −〈φ, Up−1

i Zil〉 ∀i, l,

(3.2)

for certain constants cil, i = 1, 2, . . . , K; l = 1, . . . , N + 1, where φ solves −∆φ = εp+1f̃ in Ωε,

φ = 0 on ∂Ωε.
(3.3)
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Note that V + η̃ is a solution of (2.1) if the scalars cil in (3.2) are all zero. Also, we

note that the partial differential equation in (3.2) is equivalent to

∆η + p|V |p−1η = −Nε(η)−Rε +
∑
i,l

cilU
p−1
i Zil in Ωε,

where η = η̃ + φ,

Nε(η) = |V + η − φ|p−1(V + η − φ)+ − |V |p−1V − p|V |p−1(η − φ) (3.4)

and

Rε = |V |p−1V −
K∑
i=1

Ūp
i − p|V |p−1φ. (3.5)

A first step to solve (3.2) consists of dealing with the following problem: given

h ∈ L∞(Ωε), find a function η and constants cij such that
∆η + p|V |p−1η = h+

∑
i,l

cilU
p−1
i Zil in Ωε,

η = 0 on ∂Ωε,

〈η, Up−1
i Zil〉 = 0 ∀i, l.

(3.6)

Hence, we study the linear operator Lε associated to (3.6), namely

Lε(η) = ∆η + p|V |p−1η,

under the previous orthogonality conditions introducing suitable L∞-norms with

weight: for a function θ defined in Ωε, we consider the norms

‖θ‖∗ =

∥∥∥∥( K∑
i=1

ωi

)−σ
θ(x′)

∥∥∥∥
∞

+

∥∥∥∥( K∑
i=1

ωi

)−σ−1

∇θ(x′)
∥∥∥∥
∞
,

where ωi =
(
1 + |x′ − ξ′i|2

)−N−2
2 , σ = 1

2
if 3 ≤ N ≤ 6, σ = 2

N−2
if N ≥ 7, and

‖θ‖∗∗ =

∥∥∥∥( K∑
i=1

ωi

)−ς
θ(x′)

∥∥∥∥
∞
,

where ς = p
2

if 3 ≤ N ≤ 6 and ς = 4
N−2

if N ≥ 7. Then, we have

Proposition 3.1. Assume that (~ξ′, ~Λ) ∈ Mε
δ. Then there exist ε0 > 0 and C > 0,

such that for all 0 < ε < ε0 and for all h ∈ Cα(Ωε), the problem (3.6) admits an
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unique solution η ≡ Mε(h). Moreover, the map (~ξ′, ~Λ, h) 7→ η ≡ Mε(h) is of class

C1 and satisfies

‖η‖∗ ≤ C‖h‖∗∗ and ‖∇(~ξ′,~Λ) η‖∗ ≤ C‖h‖∗∗.

The proof of this result is a slight variation of the arguments used to prove Propo-

sitions 4.1 and 4.2 in [15], so we omit it. In what follows, C > 0 represents a generic

constant which is independent of ε and of the particular points (~ξ′, ~Λ) ∈Mε
δ.

A second step to solve (3.2) consists in finding a function ϕ such that for certain

constants cil, i = 1, 2, . . . , K; l = 1, . . . , N + 1, solves
∆(V + η̃) + |V + η̃|p−1(V + η̃)+ − εp+1f̃ =

∑
i,l

cilU
p−1
i Zil in Ωε,

ϕ = 0 on ∂Ωε,

〈ϕ,Up−1
i Zil〉 = 0 ∀i, l,

(3.7)

where η̃ = ψ + ϕ− φ, with φ satisfying (3.3), and the function ψ is chosen as

ψ = −Mε(Rε), (3.8)

where Mε is defined as in Proposition 3.1 and Rε is given by (3.5).

Lemma 3.2. Let ψ be as in (3.8). Then

‖ψ‖∗ ≤ Cε2.

Proof. Bearing in mind that:
∑K

i=1

(
Ūi(x

′)−Ui(x′)
)

= Cε2 +o(ε2), for (~ξ′, ~Λ) ∈Mε
δ,

we obtain ∣∣∣∣( K∑
i=1

ωi

)−σ(
|V |p−1V −

K∑
i=1

Ūp
i

)∣∣∣∣ ≤ Cε2,

where σ = p
2

if 3 ≤ N ≤ 6 and σ = 2
N−2

if N ≥ 7. On the complement of those

regions, | |V |p−1V −
∑K

i=1 Ū
p
i | ≤ Cε2p, hence∥∥∥∥ |V |p−1V −

K∑
i=1

Ūp
i

∥∥∥∥
∗∗
≤ Cε2. (3.9)

Now, from definition of φ in (3.3), we have that ‖φ‖∞ = O(εp+1). Therefore

‖ |V |p−1φ‖∗∗ ≤ Cε2. (3.10)

So the result follows from (3.9), (3.10) and the Proposition 3.1. �
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Lemma 3.3. There exists C > 0 such that for all ε > 0 small enough and ‖ϕ‖∗ ≤ 1
4

one has

‖Nε(ψ + ϕ)‖∗∗ ≤

 C
(
‖ϕ‖2

∗ + ε‖ϕ‖∗ + εp+1
)

if 3 ≤ N ≤ 6,

C
(
ε2(p−2)‖ϕ‖2

∗ + εp
2−3p+2‖ϕ‖p∗ + εp

2−p+2
)

if N ≥ 7.

Proof. Note that ‖φ‖∗ ≤ Cεp if 3 ≤ N ≤ 6, ‖φ‖∗ ≤ Cε2 if N ≥ 7. Then considering

η = ψ + ϕ we have that ‖η‖∗ < 1. Also we note that from (3.4) one has

Nε(η) = C|V + t̄(η − φ)|p−2(η − φ)2, t̄ ∈ ]0, 1[. (3.11)

Hence, for 3 ≤ N ≤ 6, it is easy to check that ‖Nε(η)‖∗ ≤ C‖η− φ‖2
∗. On the other

hand, for N ≥ 7, if |η| ≤ 1
2

(∑K
i=1 ωi

)
we use again (3.11) and we obtain∣∣∣∣( K∑

i=1

ωi

)− 4
N−2

Nε(η)

∣∣∣∣ ≤ Cε
6−N
N−2‖η − φ‖2

∗.

In another case we obtain directly from (3.4) that∣∣∣∣( K∑
i=1

ωi

)− 4
N−2

Nε(η)

∣∣∣∣ ≤ Cε
6−N
N−2

· 2
N−2‖η − φ‖p∗.

Combining previous estimates the result follows. �

Now, we deal with the following problem
∆ϕ+ pV p−1ϕ = −Nε(η) +

∑
i,l

cilU
p−1
i Zil in Ωε,

ϕ = 0 on ∂Ωε,

〈ϕ,Up−1
i Zil〉 = 0 ∀i, l,

(3.12)

where η = ψ + ϕ and ψ is the function defined in (3.8).

Proposition 3.4. Assume that (~ξ′, ~Λ) ∈ Mε
δ. Then there exists C > 0, such that

for all ε > 0 small enough there exists an unique solution ϕ = ϕ(~ξ′, ~Λ) to problem

(3.12). Moreover, the map (~ξ′, ~Λ) 7→ ϕ(~ξ′, ~Λ) is of class C1 for the ‖ · ‖∗-norm and

it satisfies

||ϕ||∗ ≤ Cε2 and ‖∇(~ξ′,~Λ)ϕ‖∗ ≤ Cε2.
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Proof. We argue in a similar way as in the proof of Proposition 3.3 in [1] or of

Proposition 3 in [10]. Thus, here we only give the main ideas of the proof.

Let us consider the function

Aε : Fr → H1
0 (Ωε)

ϕ → Aε(ϕ) = −Mε (Nε(ψ + ϕ)) ,

where Fr = {ϕ ∈ H1
0 (Ωε) : ‖ϕ‖∗ ≤ rε2}, Mε is the operator defined in Proposition

3.1 and ψ = −Mε(Rε). For a suitable r = r(N) > 0 and using the previous lemmas

one shows that Aε is a contraction, therefore there is a fixed point in Fr for Aε,

noting that this is equivalent to solving (3.12).

Concerning differentiability properties, we have the following relation

B(~ξ′, ~Λ, ϕ) ≡ ϕ+Mε

(
Nε(ψ + ϕ)

)
= 0.

We see that

DϕB(~ξ′, ~Λ, ϕ)[θ] = θ +Mε

(
θ DϕNε(ψ + ϕ)

)
≡ θ + M̃(θ),

and check

‖M̃(θ)‖∗ ≤ Cε‖θ‖∗.

This implies that for ε small, the linear operator DϕB(~ξ′, ~Λ, ϕ) is invertible in the

space of the continuous functions in Ωε with bounded ‖ · ‖∗-norm, with uniformly

bounded inverse depending continuously on its parameters. Then, applying the

implicit function theorem we obtain that ϕ(~ξ′, ~Λ) is a C1-function in L∞∗ . Besides,

we get

∂

∂ξ′il
ϕ = −

(
DϕB(~ξ′, ~Λ, ϕ)

)−1
( ∂

∂ξ′il
B(~ξ′, ~Λ, ϕ)

)
,

and using the first part of this proposition, the estimates in the previous lemmas,

Proposition 3.1 and the fact that (~ξ, ~Λ) ∈Mε
δ, we conclude∥∥∥ ∂

∂ξ′il
ϕ
∥∥∥
∗
≤ Cε2.

Similarly, the differentiability of B with respect to ~Λ is analyzed. �
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4. The reduced functional

Let (~ξ′, ~Λ) be in Mε
δ as in (3.1) and let us consider the function ϕ given by

Proposition 3.4, which is the only one solution of the problem (3.7) with η̃ = ψ +

ϕ(~ξ′, ~Λ)− φ, where ψ solves (3.8) and φ solves (3.3). Note that if cil = 0 for all i, l,

then a solution of (1.1) is

u(x) = −ε−1v(ε−
2

N−2x), x ∈ Ω,

where v = V + ψ + ϕ(~ξ′, ~Λ)− φ. Hence, u will be a critical point of

Iε(u) =
1

2

∫
Ω

|∇u|2 − 1

p+ 1

∫
Ω

|u|p+1 − ε
∫

Ω

fu,

while v will be one of Jε given by (2.2). Then it is convenient to consider the

following functions defined in Ω:

Ûi(x) = −ε−1Ui(ε
− 2
N−2x) = −Uλiε,ξi(x), ψ̂(x)=−ε−1ψ(ε−

2
N−2x),

ϕ̂(~ξ, ~Λ)(x) = −ε−1ϕ(~ξ′, ~Λ)(ε−
2

N−2x) and φ̂(x)=−ε−1φ(ε−
2

N−2x)=−εw(x).

Note that Ûi = −Uλiε,ξi , where λiε = (a−1
N Λiε)

2
N−2 ∈ IR+ and ~ξ = ε

2
N−2 ~ξ′, with

(~ξ, ~Λ) ∈Mδ defined by (2.3), and φ̂ = −εw, being w the solution of (1.2). Now, we

put Û = −
∑K

i=1 Uλiε,ξi and consider the functional

I(~ξ, ~Λ) ≡ Iε
(
Û + ψ̂ + ϕ̂(~ξ, ~Λ)− φ̂

)
. (4.1)

Then, we have the following basic result

Lemma 4.1. The function u = −
∑K

i=1 Uλiε,ξi + εw + ψ̂ + ϕ̂(~ξ, ~Λ) is a solution of

problem (1.1) if and only if (~ξ, ~Λ) is a critical point of functional I given by (4.1).

Proof. It is easy to check that I(~ξ, ~Λ) = Jε
(
V + ψ + ϕ(~ξ′, ~Λ) − φ

)
. Also, putting

η̃ = ψ + ϕ(~ξ′, ~Λ) − φ, it is not difficult to show that DJε(V + η̃) [ϑ] = 0 for all

ϑ ∈ {ϑ ∈ H1
0 (Ωε) : 〈ϑ, V p−1

i Zil〉 = 0 ∀i, l}. On the other hand,

∂V

∂ξ′il
= Zil + o(1) ∀i, l; ∂V

∂Λi

= Zi(N+1) + o(1) ∀i,

with o(1)→ 0 in the ‖ · ‖∗-norm as ε→ 0. Then the result follows from Proposition

3.4. �
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Next step is then to give an asymptotic estimate for I(~ξ, ~Λ). Put

σf =

∫
Ω

f(x)w(x) dx, (4.2)

where w is the solution of (1.2). Then

Proposition 4.2. The following expansions hold:

I(~ξ, ~Λ) = KCN + ε2
(
Ψ(~ξ, ~Λ) + σf

)
+ o(ε2)θ(~ξ, ~Λ) (4.3)

and

∇(~ξ,~Λ)I(~ξ, ~Λ) = ε2∇(~ξ,~Λ)Ψ(~ξ, ~Λ) + o(ε2)∇(~ξ,~Λ)θ(
~ξ, ~Λ), (4.4)

uniformly with respect to (~ξ, ~Λ) ∈ Mδ, where θ and ∇(~ξ,~Λ)θ are uniformly bounded

functions, independently of all ε > 0 small. Here CN is the constant given by (2.4)

and Ψ is the function given by (2.5).

Proof. The first step to achieve our goal is to prove that

I(~ξ, ~Λ)− Iε(V̂ + ψ̂ − φ̂) = o(ε2) (4.5)

and

∇~ξ

(
I(~ξ, ~Λ)− Iε(V̂ + ψ̂ − φ̂)

)
= o(ε2). (4.6)

Let us set ϑ = V + ψ − φ and notice that

I(~ξ, ~Λ)− Iε(V̂ + ψ̂ − φ̂) = −
∫ 1

0

t

(∫
Ωε

Nε(ψ + ϕ)ϕ

)
dt

+

∫ 1

0

t

(∫
Ωε

p
(
|V |p−1 − |ϑ+ tϕ|p−1

)
ϕ2

)
dt.

Differentiating with respect to ~ξ variables we obtain

D~ξ

(
I(~ξ, ~Λ)− Iε(ϑ̂)

)
= −ε−

2
N−2

∫ 1

0

t

∫
Ωε

p∇~ξ′

[
|ϑ+ tϕ|p−1ϕ2 − |V |p−1ϕ2

]
dt

−ε−
2

N−2

∫
Ωε

∇~ξ′

(
Nε(ψ + ϕ)ϕ

)
,

and bearing in mind that ‖ϕ‖∗ + ‖ψ‖∗ + ‖∇ξ′i
ϕ‖∗ + ‖∇ξ′i

ψ‖∗ ≤ O(ε2), we get

I(~ξ, ~Λ)− Iε(V̂ + ψ̂ − φ̂) =


O(ε4| log ε|) if 3 ≤ N ≤ 6 or N = 8,

O(ε4) if N = 7,

O(ε2+ 6
N−2 ) if N ≥ 9,
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and

D~ξ

(
I(~ξ, ~Λ)−Iε(ϑ̂)

)
=


O(ε4) if 3 ≤ N ≤ 7,

O(ε4| log ε|) if N = 8,

O(ε2+ 6
N−2 ) if N ≥ 9.

Therefore (4.5) and (4.6) hold.

The next step is to prove that

Iε(V̂ + ψ̂ − φ̂)− Iε(V̂ − φ̂) = o(ε2) (4.7)

and

∇~ξ

(
Iε(V̂ + ψ̂ − φ̂)− Iε(V̂ − φ̂)

)
= o(ε2). (4.8)

Put η = V − φ and, by the fundamental calculus theorem, note that

Iε(η̂ + ψ̂)− Iε(η̂) =

∫ 1

0

(1− t)
(∫

Ωε

p|η + tψ|p−1ψ2−
∫

Ωε

|∇ψ|2
)
dt

+

∫
Ωε

(
|V |p − |η|p − p|V |p−1φ

)
ψ +

∫
Ωε

Rεψ.

Now, differentiating with respect to ~ξ variables we get

D~ξ

(
Iε(η̂ + ψ̂)− Iε(η̂)

)
= ε−

2
N−2

∫ 1

0

(1− t)
∫

Ωε

∇~ξ′

(
p|η + tψ|p−1ψ2 − |∇ψ|2

)
dt

+ε−
2

N−2

∫
Ωε

∇~ξ′

(
|V |p − |η|p − p|V |p−1φ

)
ψ

+ε−
2

N−2

∫
Ωε

(
|V |p − |η|p − p|V |p−1φ

)
∇~ξ′ψ

+ε−
2

N−2

∫
Ωε

∇~ξ′Rεψ + ε−
2

N−2

∫
Ωε

Rε∇~ξ′ψ.

Since ‖Rε‖∗∗+‖∇ξ′i
Rε‖∗∗+‖ψ‖∗+‖∇ξ′i

ψ‖∗≤ O(ε2), ‖φ‖∞≤ O(ε2) and ‖φ‖∗≤ O(εp)

if 3 ≤ N ≤ 6, ‖φ‖∗ ≤ O(ε2) if N ≥ 7, one has that

Iε(η̂ + ψ̂)− Iε(η̂) =


O(ε4| log ε|) if 3 ≤ N ≤ 6 or N = 8,

O(ε4+ 8
N−2 ) if N = 7,

O(ε2+ 6
N−2 ) if N ≥ 9,
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and

D~ξ

(
I(~ξ, ~Λ)− Iε(ϑ̂)

)
=



O(ε4) if 3 ≤ N ≤ 5,

O(ε4| log ε|) if N = 6 or N = 8,

O(ε4+ 8
N−2 ) if N = 7,

O(ε2+ 6
N−2 ) if N ≥ 9.

It follows that (4.7) and (4.8) yield.

Now we hold the following two estimates

Iε(V̂ − φ̂)−Iε(V̂ ) = ε2σf + o(ε2), (4.9)

where σf is given by (4.2), and

D~ξ

(
Iε(V̂ − φ̂)− Iε(V̂ )

)
= o(ε2). (4.10)

Note that

Iε(V̂ − φ̂)− Iε(V̂ ) =

∫ 1

0

(∫
Ωε

|∇φ|2 −
∫

Ωε

p|V − tφ|p−1φ2

)
dt

+

∫
Ωε

( K∑
i=1

Ūp
i − |V − tφ|p

)
φ.

Besides, from (4.2) one has that∫ 1

0

t

∫
Ωε

|∇φ|2 dt =

∫
Ωε

|∇φ|2 = εp+1

∫
Ωε

f̃φ = ε2

∫
Ω

fw = ε2σf ,

and since ‖φ‖∞ ≤ O(εp+1), we get∣∣∣∣ ∫
Ωε

p|V − tφ|p−1φ2

∣∣∣∣ ≤ Cε4

∫
Ωε

(ω1 + ω2)p−1 ≤ o(ε2).

On the other hand, it is not difficult to check that∣∣∣∣ ∫
Ωε

( K∑
i=1

Ūp
i −|V −tφ|p

)
φ

∣∣∣∣ =

∣∣∣∣ ∫
Ωε

Rεφ+

∫
Ωε

(
|V |p−|V −tφ|p−p|V |p−1φ

)
φ

∣∣∣∣ ≤o(ε2).

Therefore (4.9) holds. Also, note that

D~ξ

(
Iε(V̂ − φ̂)− Iε(V̂ )

)
= ε−

2
N−2

∫ 1

0

t

∫
Ωε

p|V − tφ|p−2∇~ξ′V φ
2 dt

+ε−
2

N−2

∫
Ωε

∇~ξ′

( K∑
i=1

Ūp
i − |V − tφ|p

)
φ,
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and since ‖φ‖∞ ≤ O(εp+1), it is easy to check that

D~ξ

(
Iε(V̂ − φ̂)− Iε(V̂ )

)
=


O(ε4) if 3 ≤ N ≤ 7,

O(ε4| log ε|) if N = 8,

O(ε2+ 6
N−2 ) if N ≥ 9.

Therefore (4.10) is truth. Similarly we hold results for the differentiability with

respect to ~Λ. �

5. The min-max

LetD be a bounded domain with smooth boundary in IRN , N ≥ 3, and P1, P2, . . . , Pm

points of D. Let us consider now smooth domains Di such that Di ⊂ B(Pi, µ) ⊂ D

and the domain

Ω = D \
m⋃
i=1

Di.

We denote by G and H respectively its Green’s function and regular part, and fix

1 ≤ k ≤ m. According to the results obtained in the previous section, see Lemma

4.1, (4.3) and (4.4), our problem reduces to that of finding a critical point for

Ψ(~ξ, ~Λ) =
k∑
i=1

ψ(~ξi, ~Λi)−R(~ξ, ~Λ), (5.1)

where ~ξi = (ξi1, ξi2) ∈ Ω2, ~Λi = (Λi1,Λi2) ∈ IR2
+, ~ξ = (~ξ1, ~ξ2, . . . , ~ξk) ∈ Ω2k, ~Λ =

(~Λ1, ~Λ2, . . . , ~Λk) ∈ IR2k
+ ,

ψ(~ξi, ~Λi) =
1

2

2∑
j=1

Λ2
ijH(ξij, ξij)− Λi1Λi2G(ξi1, ξi2) +

2∑
j=1

Λijw(ξij) (5.2)

and

R(~ξ, ~Λ) =
∑
i<l

∑
1≤j1,j2≤2

Λij1Λlj2G(ξij1 , ξlj2).

It is convenient to recall that the function ψ is well defined in (Ω2 \4)× IR2
+, where

4 = {(x, y) ∈ Ω2 : x = y}. Hence, in order to avoid the singularity of ψ over 4, we

consider M > 0 and define

GM(x, y) =


G(x, y) if G(x, y) ≤M,

M if G(x, y) > M.
(5.3)
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Now, we work with the functional modified ΨM,ρ : Ω2k
ρ × IR2k

+ → IR defined by

ΨM,ρ(~ξ, ~Λ) = Ψ(~ξ, ~Λ)−
k∑
i=1

Λi1Λi2

(
GM(ξi1, ξi2)−G(ξi1, ξi2)

)
,

where ρ > 0 and Ωρ = {ξ ∈ Ω : dist(ξ, ∂Ω) > ρ} with ρ and M to be specified later.

By simplicity notational we write Ψ = ΨM,ρ.

Before defining min−max class that we will use for concluding the proof of the

Theorem 1.1, we introduce some results and notations preliminary. We start with a

result related to the function ϕ : Ω2 → IR defined by

ϕ(x, y) = G(x, y)−H
1
2 (x, x)H

1
2 (y, y), (5.4)

which is key in all what follows. This result is an adaptation of Corollary 2.1 in [15].

Lemma 5.1. For any fixed value ρ∗ > 1, there is a µ0 > 0 such that if Di is any

domain contained in B(Pi, µ) and 0 < µ < µ0, then

inf
|Pi−x|=|Pi−y|=µρ∗

ϕ(x, y) > 0, for all i = 1, 2, . . . , k.

Proof. We consider the function ϕD : Ω2 → IR defined by

ϕD(x, y) = GD(x, y)−H
1
2
D(x, x)H

1
2
D(y, y),

where GD and HD respectively its Green’s function and regular part. Since HD is

smooth near each Pi and GD becomes unbounded, one has

inf
|Pi−x|=|Pi−y|=µρ∗

ϕD(x, y) > 0, for any µ > 0 small enough.

On the other hand, if for a number r>0 we consider the domain

Dr = D \
k⋃
i=1

B(Pi, r)

and denote by Gr and Hr respectively its Green’s function and regular part, then

by harmonicity, it is not difficult to check that

lim
r→0

Hr(x, y) = HD(x, y)
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uniformly on x, y in compact subsets of D \ {P1, P2, . . . , Pk}. Then for fixed µ0 =

µ0(ρ∗) > 0 small enough, one has that H and G become uniformly close to HD and

GD on |Pi − x| = |Pi − y| = µρ∗ if 0 < µ < µ0. This finishes the proof. �

Now, we define the function ϕ∗ : ]1,+∞[ 2→ IR as follows

ϕ∗(s, t) :=
1

(s+ t)N−2
− 1

(st+ 1)N−2
− 1

(s2 − 1)
N−2

2 (t2 − 1)
N−2

2

. (5.5)

Note that there is an only one point of the form (ρ∗1, ρ
∗
1)∈ ]1,+∞[ 2 such that

ϕ∗(ρ∗1, ρ
∗
1) = 0.

Moreover, the function ϕ∗ has a positive maximum global value, attained at a point

of the form (ρ2, ρ2) ∈]1,+∞[ 2. Specifically,

ϕ∗(ρ2, ρ2) = max
(s,t)∈ ]1,+∞[ 2

ϕ∗(s, t) > 0.

Actually we have that 1 < ρ∗1 < ρ2 verify

22−N

ρ∗1
N−2

=
1(

ρ∗1
2 + 1

)N−2
+

1(
ρ∗1

2 − 1
)N−2

and

21−N

ρN2
=

1

(ρ2
2 + 1)N−1

+
1

(ρ2
2 − 1)N−1

.

Also we assume that infx∈Ω f(x) = α > 0 and consider the following positive con-

stants:

β = max
x∈Ω

f(x), m1 = min
0≤i≤m

ri and m2 = max
1≤i≤m

Ri, (5.6)

where r0 = 1
2

mini 6=j |Pi − Pj|, and for i = 1, 2, . . . ,m, ri is the radius of the biggest

ball centered at Pi contained in D, and Ri is the radius of the smallest ball centered

at Pi containing to D.

Note that if (αm2
1 − βm2

2)ρN−2
2 + βm2

2 6= 0,

ρ̃2 =

∣∣∣∣ αm1ρ
N−2
2

(αm2
1 − βm2

2)ρN−2
2 + βm2

2

∣∣∣∣ 1
N−2

> 0.

In opposite case, if (αm2
1 − βm2

2)ρN−2
2 + βm2

2 = 0, we can replace ρ2 by a few larger

value on the definition of ρ̃2, so that ρ̃2 still is a positive constant. Then we choose

ρ∗2 = max{ρ2, ρ̃2}.
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Consider now values ρ∗i∈ ]ρ∗1, ρ
∗
2[ , for i = 1, 2 . . . , k, and µ > 0 small enough such

that the conclusion of Lemma 5.1 remains valid. From now on, we will consider the

following manifolds of Ω

Si = µρ∗iSN−1
i , (5.7)

where SN−1
i is the unitary sphere centered in Pi and we put

N =
k∏
i=1

S2
i . (5.8)

Besides, considering anullus Ai = B(Pi, µρ
∗
2) \B(Pi, µρ∗1) and the set

Dϕ = {~ξ ∈ Ω2k
ρ : ϕ(~ξi) > δ∗ for all i = 1, 2, . . . , k},

where ϕ is defined by (5.4) and δ∗ is chosen so that N ⊂ Dϕ, we restrict the domain

of definition of Ψ to

D∗ϕ =

( k∏
i=1

A2
i

)
∩Dϕ. (5.9)

Now, for every ~ξ ∈ N we choose ~d(~ξ ) =
(
~d1(~ξ ), ~d2(~ξ ), . . . , ~dk(~ξ )

)
∈ IR2k being a

vector which defines a negative direction of the associated quadratic form with Ψ.

More precisely, in agreement to (5.2), for fixed ~ξi ∈ S2
i , the function

ψ(~ξi, ~di ) =
1

2

2∑
j=1

d2
ijH(ξij, ξij)− di1di2G(ξi1, ξi2) +

2∑
j=1

dijw(ξij),

regarded as a function of ~di = (di1, di2) only, with di1, di2 > 0, has a unique critical

point ~d
i
(~ξi) =

(
d̄i1, d̄i2

)
given by

d̄ij =
H(ξij, ξij)w(ξil) +G(ξil, ξij)w(ξij)

G2(ξil, ξij)−H(ξil, ξil)H(ξij, ξij)
, l, j = 1, 2, l 6= j.

In particular,

ψ
(
~ξi, ~di(~ξi)

)
=

1

2
Φ
(
~ξi
)
, (5.10)

where Φ is the function defined on D∗ϕ, given by

Φ(x, y) =
H(x, x)w2(y) + 2G(x, y)w(x)w(y) +H(y, y)w2(x)

G2(x, y)−H(x, x)H(y, y)
, (5.11)

being w the only one solution of (1.2). Then, we simply choose ~d(~ξ) = ~d(~ξ), with

~d(~ξ) =
(
~d1(~ξ1), ~d2(~ξ2), . . . , ~dk(~ξk)

)
∈ IR2k

+ and easily see that there is a constant

c > 0 such that c < d̄ij < c−1 for all ~ξ ∈ N .
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Consider now the class Γ of all continuous functions

γ : N × Ik0 × [0, 1]→ D∗ϕ × IR2k
+

defined by

γ(~ξ, ~σ, t) =
(
γ1(~ξ1, σ1, t), γ2(~ξ2, σ2, t), . . . , γk(~ξ

k, σk, t)
)
,

such that

1. γi(~ξ
i, σ0, t) =

(
~ξi, σ0

~di(~ξi)
)

and γi(~ξ
i, σ−1

0 , t) =
(
~ξi, σ−1

0
~di(~ξi)

)
for all ~ξi ∈ Si,

t ∈ [0, 1].

2. γi(~ξ
i, σ, 0) =

(
~ξi, σ~di(~ξi)

)
for all (~ξi, σ) ∈ Si × I0,

where I0 = [σ0, σ
−1
0 ], being σ0 a small number to be chosen later. Then we define

the min-max value as

c(Ω) = inf
γ∈Γ

sup
(~ξ,~σ)∈N×Ik0

Ψ
(
γ(~ξ, ~σ, 1)

)
. (5.12)

In what follows, we will prove that c(Ω) is actually a critical value of Ψ. A first step

in this direction consists of finding an upper estimate for c(Ω). Let us consider the

exterior domain

E = IRN \B(0, 1)

and denote by GE and HE, respectively, the Green’s function on E and its regular

part. We define the function

Φi
E(x, y) =

HE(x, x)(wiµ)2(y) + 2GE(x, y)wiµ(x)wiµ(y) +HE(y, y)(wiµ)2(x)

G2
E(x, y)−HE(x, x)HE(y, y)

,

for (x, y) ∈ Di
ϕ∗ , where wiµ(x) = µ−2w (µx+ Pi) is a function defined in the set

Ωi
µ = {x ∈ IRN : x = µ−1(z − Pi), z ∈ Ω}, with w given by (1.2) and

Di
ϕ∗ =

{
(x, y) ∈ (Ωi

µ)× (Ωi
µ) : ϕ∗(|x|, |y|) > 0

}
,

where ϕ∗ is the function defined in (5.5). Since was proved in Lemma 5 of [1], Φi
E

achieves a relative minimum value in a critical point of the form (x̄i, ȳi), with x̄i and

ȳi having opposite directions, and such that (|x̄i|, |ȳi|) ∈ ]ρ∗1, ρ
∗
2[ 2. Actually one has
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that |ȳi| = |x̄i| + o(µ) ∼ ρ̄∗i , with ρ∗1 + ρ0 < ρ̄∗i < ρ∗2 − ρ0 for some ρ0 independents

of all µ > 0 small enough, and

min
(x,y)∈Di

ϕ∗ |
ρ∗2
ρ∗1

ΦE(x, y) = c∗i ,

where Di
ϕ∗|

ρ∗2
ρ∗1

= {(x, y) ∈ Di
ϕ∗ : ρ∗1 < |x|, |y| < ρ∗2}. Moreover, it is not difficult to

check that

c∗i ≤

m4
2β

2

4N2

( (
1
µ

)2

−1(
1
µ

)2−N
−1

(µρ̄∗i )
2−N − (µρ̄∗i )

2 +
( 1
µ

)2−N 1−
(

1
µ

)N(
1
µ

)2−N
−1

)2

((µρ̄∗i )2+1)
N−2
−(2µρ̄∗i )N−2

(2µρ̄∗i )N−2((µρ̄∗i )2+1)N−2 − ((µρ̄∗i )
2 − 1)2−N

+ õ(µ),

where β and m2 are the definite constants in (5.6), and µN+2õ(µ)→ 0 as µ→ 0.

Proposition 5.2. The following estimate holds

c(Ω) ≤ km4
2β

2

8N2

( 2

ρ̄∗

)N−2

+ o(1),

where o(1)→ 0 as µ→ 0, and ρ̄∗ = min
1≤i≤k

ρ̄∗i .

Proof. For all t ∈ [0, 1], we consider the test path defined componentwise as γi(~ξ
i, σi, t) =(

~ξi, σi~d
i(~ξi)

)
. Maximizing Φ

(
γ(~ξ, ~σ, t)

)
in the variable ~σ, we note that this maxi-

mum value is attained approximately at ~σ = (1, 1, . . . , 1), because of our choice of

the vector ~d(~ξ). Besides, since ~d(~ξ ) = O(µN−2), one has that R
(
~ξ, ~d(~ξ )

)
= O(µN−2).

Hence, from (5.1), (5.10) and (5.11), we have that

max
~σ∈Ik0

Ψ
(
γ(~ξ, ~σ, t)

)
=

1

2

k∑
i=1

Φ(~ξi) + o(1),

where o(1)→ 0 as µ→ 0. We note that in D∗ϕ one has

Φ(x, y) = µN+2Φi
E

(
µ−1(x− Pi), µ−1(y − Pi)

)
+ o(1),

where o(1) → 0 as µ → 0. In particular, we choose ρ∗i = ρ̄∗i to definite each Si in

(5.7) and N in (5.8). Then we obtain

c(Ω) ≤ k

2
µN+2Φi

E(x̄, ȳ) + o(1)

=
k

2
µN+2c∗i + o(1),
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where o(1)→ 0 as µ→ 0. From the estimate previous to this proposition, the result

follows. �

For next step, we need an intersection lemma. The idea behind this result is the

topological continuation of the set of solution of an equation, see [17]. For every

(~ξ, ~σ, t) ∈ N × Ik0 × [0, 1] we denote

γ(~ξ, ~σ, t) =
(
~ξ∗(~ξ, ~σ, t), ~Λ∗(~ξ, ~σ, t)

)
∈ D∗ϕ × IR2k

+ ,

where ~ξ∗ =
(
~ξ∗1, ~ξ∗2, . . . , ~ξ∗k

)
∈ Ω2k and ~Λ∗ =

(
~Λ∗1, ~Λ∗2, . . . , ~Λ∗k

)
∈ IR2k

+ , with

~ξ∗i = (ξ∗i1, ξ
∗
i2) ∈ Ω2 and ~Λ∗i = (Λ∗i1,Λ

∗
i2) ∈ IR2

+. Also we define the set

M = {(~ξ, ~σ) ∈ N × Ik0 : Λ∗i1(~ξ, ~σ, 1) · Λ∗i2(~ξ, ~σ, 1) = 1}.

Lemma 5.3. For every open neighborhood W of M in N × Ik0 , the projection g :

W → N induces a monomorphism in cohomology, that is

g∗ : H∗(N )→ H∗(W )

is injective.

The proof of this result is almost identical to that found for proving Lemma 6.2 in

[14], except minor details, we therefore omit it. Nevertheless, it is suitable to indicate

that in this proof one chooses σ0 small enough in order that certain inclusion is well

definite.

Proposition 5.4. There is a constant A > 0, independent of σ0, such that

sup
(~ξ,~σ)∈N×Ik0

Ψ
(
γ(~ξ, ~σ, 1)

)
≥ −A for all γ ∈ Γ.

Proof. Note that ~ξ ∈ N implies that ξij ∈ B(Pi, µρ
∗
2) \B(Pi, µρ

∗
1). Thus we can find

δ0 > 0 such that if |ξi1 − ξi2| < δ0, then (ξi1 − Pi) · (ξi2 − Pi) > 0.

We argue by contradiction. Let A0 > 0 be such that G(x, y) ≥ A0 implies

|x− y| < δ0 and let us assume that for certain γ ∈ Γ

Ψ
(
γ(~ξ, ~σ, 1)

)
< −kA0 for all (~ξ, ~σ) ∈ N × Ik0 .
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Then for every (~ξ, ~σ) ∈M, (~ξ∗, ~Λ∗) =
(
~ξ∗(~ξ, ~σ, 1), ~Λ∗(~ξ, ~σ, 1)

)
∈ Dϕ × IR2k

+ and

k∑
i=1

G(ξ∗i1, ξ
∗
i2)−

k∑
i=1

2∑
j=1

(1

2
Λ∗

2

ijH(ξ∗ij, ξ
∗
ij) + Λ∗ijw(ξ∗ij)

)
+R(~ξ∗, ~Λ∗) > kA0.

Since H(ξ∗ij, ξ
∗
ij) > 0 and w(ξ∗ij) > 0, we conclude that if W is a small neighborhood

of M contained in N ×Ik0 , then for every (~ξ, ~σ) ∈ W one has that |R(~ξ∗, ~Λ∗)| is small

compared toG
(
~ξ∗i(~ξ, ~σ, 1)

)
. Hence, for every (~ξ, ~σ) ∈ W there exists i ∈ {1, 2, . . . , k}

such that

G
(
~ξ∗i(~ξ, ~σ, 1)

)
≥ A0

and then |ξ∗i1 − ξ∗i | < δ0. Now, we fix points ζi ∈ IRN such that |ζi| = µρ∗i. It

is follows that ~ζ i = (Pi + ζi, Pi − ζi) ∈ Si and ~ζ = (~ζ1, ~ζ2, . . . , ~ζk) ∈ N . Denoting

γ1 = γ( · , 1) and putting T (~ζ) =
{
t~ζ : t ∈ ]ρ∗1, ρ

∗
2[
}

, we see that because of the above

conclusion one has that γ1(W ) ⊂
(
Dϕ \ T (~ζ)

)
× IR2k

+ .

Let us consider now the map s : Dϕ × IR2k
+ → N defined componentwise as

si(~ξ, ~Λ) = µρ∗
(
ξi1
|ξi1| ,

ξi2
|ξi2|

)
. Then (γ0)∗◦s∗ : H∗(N )→ H∗(N×Ik0 ), where γ0 = γ( · , 0)

is an isomorphism. By the homotopy axiom we deduce that (γ1)∗ ◦ s∗ is also an

isomorphism. Now, we consider the following commutative diagram:

H∗(N × Ik0 )
(γ1)∗
←− H∗(Dϕ × IR2k

+ )
γ∗←− H∗(N )

i∗1 ↓ i∗2 ↓ i∗3 ↓

H∗(W )
(γ̃1)∗
←− H∗(κ1(W ))

s̃∗←− H∗(N \ {~ζ}),

where i1, i2 and i3 are inclusion maps, γ̃1 = γ1|W and s̃ = s|γ1(W ). From Lemma

5.3 we have that i∗1 is a monomorphism which is a contradiction with the fact that

H2Nk(N \{~ζ})= 0. Thus, the result follows. �

Now, we need to care about the fact that the domain in which Ψ is defined is not

necessarily closed for the gradient flow of Ψ.

Proposition 5.5. Let (~ξn, ~Λn) ∈ D∗ϕ × IR2k
+ be a sequence such that

∇~ΛΨ(~ξn, ~Λn)→ 0. (5.13)

Then each component of ~Λn is bounded above and below by positive constants.
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Proof. From (5.9) note that D∗ϕ ⊂⊂ Ω2k. Hence w(ξij) > 0, for all ~ξ ∈ D∗ϕ. We put

~ξin = (ξni1, ξ
n
i2) and ~Λi

n = (Λn
i1,Λ

n
i2). Then (5.13) is equivalent to

Λn
ijH(ξnij, ξ

n
ij)− Λn

ilG(ξnij, ξ
n
il) + w(ξnij)−

∑
st 6=i1,i2

Λn
stG(ξnij, ξ

n
st) = o(1).

It is clear that Λn
il → 0 or Λn

ij → 0, and Λn
st → Cst

2 if st 6= i1, i2, with Cst
2 ≥ 0,

cannot happen. Hence, since that H and G remain uniformly controlled, to suppose

that |~Λn| → +∞ implies that if Λn
ij → +∞, for some i ∈ {1, 2, . . . , k}, then also

Λn
il → +∞, j, l = 1, 2 and j 6= l. We put Λ̃n

lj =
Λnlj

|~Λn|
, and passing to a subsequence, if

necessary, we may assume that this sequence it approaches a nonzero vector
~̂
Λ with

Λ̂ij 6= 0 if Λn
ij → +∞ (for j = 1, 2). It follows that

Λ̃n
ijH(ξnij, ξ

n
ij)− Λ̃n

ijG(ξnij, ξ
n
il) +

w(ξnij)

|~Λn|
−
∑

st 6=i1,i2

Λ̃n
stG(ξnij, ξ

n
st)→ 0.

Then, for a suitable subsequence, we obtain for some ~̄ξ ∈ D∗ϕ the system
Λ̂i1H(ξ̄i1, ξ̄i1)− Λ̂i2G(ξ̄i1, ξ̄i2)−

∑
st 6=i1,i2

Λ̂stG(ξ̄i1, ξ̄st) = 0,

Λ̂i2H(ξ̄i2, ξ̄i2)− Λ̂i1G(ξ̄i1, ξ̄i2)−
∑

st 6=i1,i2

Λ̂stG(ξ̄i2, ξ̄st) = 0.

Hence, solving for Λ̂i1, we conclude that

G2(ξ̄i1, ξ̄i2)−H(ξ̄i1, ξ̄i1)H(ξ̄i2, ξ̄i2)=

−
∑

st 6=i1,i2

Λ̂st

Λ̂i2

(
G(ξ̄i1, ξ̄i2)G(ξ̄i1, ξ̄st) +H(ξ̄i1, ξ̄i1)G(ξ̄i2, ξ̄st)

)
,

which is a contradiction, since the quantity on the left hand side of the previous

equality is strictly positive when µ > 0 is chosen sufficiently small. This finishes the

proof. �

Let δi∗ > 0 a suitable small values such that the level set

{~ξ ∈ D∗ϕ : Φi
E

(
µ−1(ξi1 − Pi), µ−1(ξi2 − Pi)

)
= δi∗}
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is a closed curve and that ∇Φi
E

(
µ−1(ξi1 − Pi), µ−1(ξi2 − Pi)

)
does not vanish on it.

Let us set

Υµ = {~ξ ∈ D∗ϕ : Φi
E

(
µ−1(ξi1 − Pi), µ−1(ξi2 − Pi)

)
< δi∗}.

Thus, on this region we have that Φi
E

(
µ−1(ξi1 − Pi), µ

−1(ξi2 − Pi)
)
< δi∗ and if

(ξi1, ξi2) ∈ ∂Υµ then one of the following two situations happen: either there is a

tangential direction τ to ∂Υµ such that

∇Φi
E

(
µ−1(ξi1 − Pi), µ−1(ξi2 − Pi)

)
· τ 6= 0,

or ξi1 and ξi2 lie in opposite directions, Φi
E(x, y) = δi∗ and

∇Φi
E

(
µ−1(ξi1 − Pi), µ−1(ξi2 − Pi)

)
6= 0,

being points orthogonally outwards to Υµ. Moreover, if µ1 and µ2 are small enough,

and µ1 < µ2, then Υµ1 ⊂⊂ Υµ2 ⊂⊂ D∗ϕ.

Proposition 5.6. The functional Ψ satisfies the P.S. condition in the region Υµ ×

IR2k
+ at the level c(Ω) given in (5.12).

Proof. Let us consider a sequence (~ξn, ~Λn) ∈ Υµ × IR2k
+ such that

∇~ΛΨ(~ξn, ~Λn)→ 0 and ∇τ
~ξ
Ψ(~ξn, ~Λn)→ 0,

where ∇τ
~ξ
Ψ corresponds to the tangential gradient of Ψ to ∂Υµ× IR2k

+ in case that ~ξn

is approaching to ∂Υµ or the full gradient in otherwise. From the previous lemma,

the components of ~Λn are bounded above and below by positive constants, so that

we may assume, passing to a subsequence if necessary, that (~ξn, ~Λn) → (~ξ0, ~Λ0) for

some (~ξ0, ~Λ0) ∈ Υµ × IR2k
+ and Ψ(~ξn, ~Λn)→ c(Ω). Then

∇~ΛΨ(~ξ0, ~Λ0) = 0.

Observe that if ~ξ0 ∈ int(Υµ) then ~ξ0 is a critical point of Ψ. We assume the opposite,

this is that ~ξ0 ∈ ∂Υµ. Then

Φi
E

(
µ−1(ξ0

i1 − Pi), µ−1(ξ0
i2 − Pi)

)
= δi∗.
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Firstly we note that since ∇~ΛΨ(~ξ0, ~Λ0) = 0, one has that ~Λ0 satisfies

Λ0
ij =

H(ξ0
il, ξ

0
il)w(ξ0

ij) +G(ξ0
ij, ξ

0
il)w(ξ0

il)

G2(ξ0
ij, ξ

0
il)−H(ξ0

ij, ξ
0
ij)H(ξ0

il, ξ
0
il)

+ θij, j, l = 1, 2, j 6= l,

where the quantity θij is of small order. Substituting these values in Ψ, from (5.10)

we obtain

c(Ω) = Ψ(~ξ0, ~Λ0) =
k∑
i=1

ψ(~ξ0i, ~Λ0i)−R(~ξ0, ~Λ0)

and then we deduce that

c(Ω) =
k∑
i=1

µN+2Φi
E

(
µ−1(ξ0

i1 − Pi), µ−1(ξ0
i2 − Pi)

)
+ θ(~ξ0),

where θ(~ξ0) is small in the C1 sense, as µ > 0 becomes smaller. Hence, for any

tangential direction τ to ∂Υµ we have that ∇~ξΨ(~ξ0, ~Λ0) · τ ∼ 0 . Thus, from the

analysis previous to this proposition, the points ξ0
i1, ξ

0
i2 are in opposite directions,

Ψ(~ξ0, ~Λ0) ∼ µN+2(δ1
∗+δ2

∗+ . . .+δk∗) and ∇~ξΨ(~ξ0, ~Λ0) must be away from 0. Choosing

τ parallel to ∇~ξΨ(~ξ0, ~Λ0) we obtain that ∇~ξΨ(~ξ0, ~Λ0) · τ must to be away from

0, which is a contradiction. Therefore ~ξ0 ∈ int(Υµ), which implies that the P.S.

condition holds. �

Now we are in conditions to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us consider the domain Υb
a = Υµ × [a,b]2 with a,b to

be choose later. Then the functional I given by (4.1) is well defined on Υb
a except

on the set ∆ρ = {(~ξ, ~Λ) ∈ Υb
a : |ξ1− ξ2| < ρ}. From (4.3) we can extend I to all Υb

a

by extending Ψ as in (5.3), and keep relations (4.3) and (4.4). From Proposition

5.6, Ψ satisfies the P.S. condition over Υb
a . Then there exist constants b > 0, c > 0

and %0 > 0, such that if 0 < % < %0, and (~ξ, ~Λ) ∈ Υb
a satisfying |~Λ| ≥ b and

c(Ω)− 2% ≤ Ψ(~ξ, ~Λ) ≤ c(Ω) + 2%, then |∇Ψ(~ξ, ~Λ)| ≥ c.

We now use the min-max characterization of c(Ω) to choose γ ∈ Γ so that

c(Ω) ≤ sup
(~ξ,σ)∈N×Ik0

Ψ
(
γ(~ξ, σ, 1)

)
≤ c(Ω) + %.

By making a small and b large if necessary, we can assume that

γ(~ξ, σ, 1) ∈ Υ
b
2
2a ⊂ Υb

a for all (~ξ, σ) ∈ N × Ik0 .
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Consider now η : Υb
a × [0,+∞]→ Υb

a being the solution of the problem
η̇(~ξ, ~Λ, t) = −h

(
η(~ξ, ~Λ, t)

)
∇I
(
η(~ξ, ~Λ, t)

)
, t ≥ 0

η(~ξ, ~Λ, 0) = (~ξ, ~Λ).

Here the function h is defined in Υb
a so that if Ψ(~ξ, ~Λ) ≤ c(Ω)−2%, then h(~ξ, ~Λ) = 0,

and if Ψ(~ξ, ~Λ) ≥ c(Ω)− %, then h(~ξ, ~Λ) = 1; satisfying 0 ≤ h ≤ 1 for all (~ξ, ~Λ) ∈ Υb
a .

Hence, by the choice of a y b, and bearing in mind (4.3) and (4.4), we have that

η(~ξ, ~Λ, t) ∈ Υb
a for all t ≥ 0. Then the following min-max value

C(Ω) = inf
t≥0

sup
(~ξ,σ)∈N×Ik0

I
(
η(γ(~ξ, σ, 1), t)

)
is a critical value for I. We are always assuming that ε is small enough, to make

the errors in (4.3) and (4.4) sufficiently small. Then, considering Mδ as in (2.3),

for δ > 0 fixed sufficiently small, and λijε = a−1
N Λ

2
N−2

ijε , from Lemma 4.1 we conclude

that there exist (~ξε, ~Λε) ∈ Mδ such that problem (1.1) has a nontrivial solution uε

of the form (1.3). Theorem 1.1 has been proven. �
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