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Abstract

We study positive solutions of the following semilinear equation

ε2�ḡu − V (z)u + up = 0 on M,

where (M, ḡ) is a compact smooth n-dimensional Riemannian manifold without boundary or the Eu-
clidean space Rn, ε is a small positive parameter, p > 1 and V is a uniformly positive smooth potential. 
Given k = 1, . . . , n − 1, and 1 < p < n+2−k

n−2−k
. Assuming that K is a k-dimensional smooth, embed-

ded compact submanifold of M , which is stationary and non-degenerate with respect to the functional ∫
K V

p+1
p−1 − n−k

2 dvol, we prove the existence of a sequence ε = εj → 0 and positive solutions uε that con-
centrate along K . This result proves in particular the validity of a conjecture by Ambrosetti et al. [1], 
extending a recent result by Wang et al. [32], where the one co-dimensional case has been considered. Fur-
thermore, our approach explores a connection between solutions of the nonlinear Schrödinger equation and 
f -minimal submanifolds in manifolds with density.
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1. Introduction and main results

In this paper we study concentration phenomena for positive solutions of the nonlinear elliptic 
problem

−ε2�ḡu + V (z)u = |u|p−1u on M, (1.1)

where M is an n-dimensional compact Riemannian manifold without boundary (or the flat Eu-
clidean space Rn), �ḡ stands for the Laplace–Beltrami operator on (M, ḡ), V is a smooth 
positive function on M satisfying

0 < V1 ≤ V (z) ≤ V2, for all z ∈ M and for some constants V1,V2, (1.2)

u is a real-valued function, ε > 0 is a small parameter and p is an exponent greater than one.
The above semilinear elliptic problem arises from the standing waves for the nonlinear 

Schrödinger equation on M , see [1,8] and some references therein for more details. An inter-
esting case is the semiclassical limit ε → 0. For results in this direction, when M = R and 
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p = 3, Floer and Weinstein [12] first proved the existence of solutions highly concentrated near 
critical points of V . Later on this result was extended by Oh [30] to Rn with 1 < p < n+2

n−2 . More 
precisely, the profile of these solutions is given by the ground state UV (x0) of the limit equation

−�u + V (x0)u − up = 0 in R
n, (1.3)

where x0 is the concentration point. That is, the solutions obtained in [12] and [30] behave 
qualitatively like

uε(x) ∼ UV (x0)

(
x − x0

ε

)
, as ε tends to zero.

Since UV (x0) decays exponentially to 0 at infinity, uε vanishes rapidly away from x0. In other 
words, in the semiclassical limit, solutions constructed in [12,30] concentrate at points and they 
are always called peak solutions or spike solutions. In recent years, these existence results have 
been generalized in different directions, including: multiple peaks solutions, degenerate poten-
tials, potentials tending to zero at infinity and for more general nonlinearities. An important and 
interesting question is whether solutions exhibiting concentration on higher dimensional sets 
exist.

Only recently it has been proven the existence of solutions concentrating at higher dimen-
sional sets, like curves or spheres. In all these results (except for [7]), the profile is given by 
(real) solutions to (1.3) which are independent of some of the variables. If concentration occurs 
near a k-dimensional set, then the profile in the directions orthogonal to the limit set (concentra-
tion set) will be given by a soliton in Rn−k. For example, some first results in the case of radial 
symmetry were obtained by Badiale and D’Aprile [3,4]. These results were improved by Am-
brosetti et al. [1], where necessary and sufficient conditions for the location of the concentration 
set have been given. Unlike the point concentration case, the limit set is not stationary for the 
potential V : in fact a solution concentrated near a sphere carries a potential energy due to V and 
a volume energy. Define

E(u) = ε2

2

∫
M

|∇ḡu|2 + V (z)u2 − 1

p + 1

∫
M

|u|p+1 (1.4)

and let K be a k-dimensional submanifold of M and UK be a proper approximate solution 
concentrated along K , see (3.30) below. One has

E(UK) ∼ εn−k

∫
K

V θk dvol, with θk = p + 1

p − 1
− 1

2
(n − k).

Based on the above energy considerations, Ambrosetti et al. [1] conjectured that concentration 
on k-dimensional sets for k = 1, . . . , n − 1 is expected under suitable non-degeneracy assump-
tions and the limit set K should satisfy

θk∇NV = V H, (1.5)
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where ∇N is the normal gradient to K and H is the mean-curvature vector on K . In particular, 
they suspected that concentration occurs in general along sequences εj → 0.

By developing an infinite dimensional version of the Lyapunov–Schmidt reduction method, 
del Pino et al. [8] successfully proved the validity of the above conjecture for n = 2 and k = 1. 
Actually they proved that: given a non-degenerate stationary curve K in R2 (for the weighted 

length functional 
∫
K

V
p+1
p−1 − 1

2 ), suppose that ε is sufficiently small and satisfies the following 
gap condition: ∣∣ε2�2 − μ0

∣∣≥ cε, ∀� ∈N,

where μ0 is a fixed positive constant, then problem (1.1) has a positive solution uε which concen-
trates on K , in the sense that it is exponentially small away from K . After some time Mahmoudi 
et al. in [23] constructed a different type of solutions. Indeed, they studied complex-valued so-
lutions whose phase is highly oscillatory carrying a quantum mechanical momentum along the 
limit curve. In particular they established the validity of the above conjecture for the case n ≥ 2
arbitrary and k = 1. Recently, by applying the method developed in [8], Wang et al. [32] consid-
ered the one-codimensional case n ≥ 3 and k = n − 1 in the flat Euclidean space Rn. The main 
purpose of this paper is to prove the validity of the above conjecture for all k = 1, . . . , n − 1.

To prove the validity of the Ambrosetti–Malchiodi–Ni conjecture for all cases, one possible 
way is to generalize the method developed in [8] and [32]. For this purpose, we first recall the 
key steps in [8] and [32]. According to our knowledge, the first key step is the construction 
of proper approximate solutions, and the second key step is to develop an infinite dimensional 
Lyapunov–Schmidt reduction method so that the original problem can be reduced to a simpler 
one that we can handle easily. Actually this kind of infinite dimensional reduction argument has 
been used in many constructions in PDE and geometric analysis. It has been developed by many 
authors working on this subject or on closely related problems, see for example [8,9,13,20,22]
and references therein.

Let us now go back to our problem. To construct proper approximate solutions for general 
submanifolds, we first expand the Laplace–Beltrami operator for arbitrary submanifolds, see 
Proposition 2.1. Then by an iterative scheme of Picard’s type, a family of very accurate approxi-
mate solutions can be obtained, see Section 3. Next we develop an infinite dimensional reduction 
such that the construction of positive solutions of problem (1.1) can be reduced to the solvability 
of a reduced system (4.9). For more details about the setting-up of the problem, we refer the 
reader to Section 4.1. It is slightly different from the arguments in [8] and [32]. Finally, by notic-
ing the recent development on manifolds with density in differential geometry (cf. e.g. [19,28]), 
our method explores a connection between solutions of the nonlinear Schrödinger equation and 
f -minimal submanifolds in Riemannian manifolds with density.

We are now in position to state our main result.

Theorem 1.1. Let M be a compact n-dimensional Riemannian manifold (or the Euclidean 
space R

n) and let V : M → R be a smooth positive function satisfying (1.2). Given k =
1, . . . , n − 1, and 1 < p < n+2−k

n−2−k
. Suppose that K be a stationary non-degenerate smooth com-

pact submanifold in M for the weighted functional∫
V

p+1
p−1 − n−k

2 dvol,
K
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then there is a sequence εj → 0 such that problem (1.1) possesses positive solutions uεj
which 

concentrate near K . Moreover, for some constants C, c0 > 0, the solutions uεj
satisfies globally

∣∣uεj
(z)
∣∣≤ C exp

(−c0 dist(z,K)/εj

)
.

Remark 1.1. The assumptions on K are related to the existence of non-degenerate compact min-

imal submanifold in manifolds M with density V
p+1
p−1 − n−k

2 dvol. In fact writing V
p+1
p−1 − n−k

2 = e−f , 
then K is called f -minimal submanifold in differential geometry (cf. [19]).

Remark 1.2. Actually we can prove that the same result holds true under a gap condition on ε, 
which is due to a resonance phenomena. Similar conditions can be found in [8,32] and some 
references therein.

Before closing this introduction, we notice that problem (1.1) is similar to the following sin-
gular perturbation problem

{−ε2�u + u = up in Ω,
∂u
∂ν

= 0 on ∂Ω,

u > 0 in Ω.

(1.6)

This latter problem arises in the study of some biological models and as (1.1) it exhibits concen-
tration of solutions at some points of Ω . Since this equation is homogeneous, then the location 
of concentration points is determined by the geometry of the domain. On the other hand, it has 
been proven that solutions exhibiting concentration on higher dimensional sets exist. For results 
in this direction we refer the reader to [9,20,21,24–26,33].

In general, these results can be divided into two types: The first one is the case where the con-
centration set lies totally on the boundary. The second one is where the concentration set is inside 
the domain and which intersect the boundary transversally. For this second type of solutions we 
refer the reader to Wei and Yang [33], who proved the existence of layer on the line intersecting 
with the boundary of a two-dimensional domain orthogonally. See also Ao et al. [2], where triple 
junction solutions have been constructed. In the over-mentioned two results, [2] and [33], only 
the one dimensional concentration case has been considered. We believe the method developed 
here to the above problem (1.6) can be used to handle the higher dimensional situation, namely 
concentration at arbitrary dimensional submanifolds which intersect the boundary transversally. 
Interestingly, our preliminary result shows that our method explores a connection between solu-
tions of problem (1.6) and minimal submanifolds with free boundary in geometric analysis.

It is worth pointing out that [33] applied an infinite dimensional reduction method while [2]
used a finite dimensional one. We also suggest the interested readers to the paper [10] for an in-
termediate reduction method which can be interpreted as an intermediate procedure between the 
finite and the infinite dimensional ones. Moreover, it is interesting to consider open Question 4 
in [10], which can be seen as the Ambrosetti–Malchiodi–Ni conjecture without the small param-
eter ε. In other words, the open problem is whether the Ambrosetti–Malchiodi–Ni conjecture still 
hold when ε = 1, even in the radial symmetry case. If the answer is yes, what is the condition on 
the potential V ?

The paper is organized as follows. In Section 2 we introduce the Fermi coordinates in a 
tubular neighborhood of K in M and we expand the Laplace–Beltrami operator in these Fermi



248 F. Mahmoudi et al. / J. Differential Equations 258 (2015) 243–280
coordinates. In Section 3, a family of very accurate approximate solutions is constructed. Sec-
tion 4 will be devoted to develop an infinite dimensional Lyapunov–Schmidt reduction and to 
prove Theorem 1.1.

2. Geometric background

In this section we will give some geometric background. In particular, we will introduce the 
so-called Fermi coordinates which play important role in the higher dimensional concentrations. 
Before doing this, we first introduce the auxiliary weighted functional corresponding to prob-
lem (1.1).

2.1. The auxiliary weighted functional

Let K be a k-dimensional closed (embedded or immersed) submanifold of Mn, 1 ≤ k ≤ n −1. 
Let {Kt }t be a smooth one-parameter family of submanifolds such that K0 = K . We define

E(t) =
∫
Kt

V σ dvol, with σ = p + 1

p − 1
− n − k

2
. (2.1)

Denote ∇T and ∇N to be connections projected to the tangential and normal spaces on K . We 
give the following definitions on K which appeared in Theorem 1.1.

Definition 2.1 (Stationary condition). A submanifold K is said to be stationary relative to the 
functional 

∫
K

V σ dvol if

σ∇NV = −V H on K, (2.2)

where H is the mean curvature vector on K , i.e., Hj = −Γ a
aj (here the minus sign depends on 

the orientation), and Γ b
a are the 1-forms on the normal bundle of K (see (2.7) below for the 

definition).

Definition 2.2 (Nondegeneracy (ND) condition). We say that K is non-degenerate if the quadratic 
form ∫

K

{〈
�KΦ + σ

V
∇KV · ∇KΦ,Φ

〉
+ σ−1H(Φ)2 − σ

V

(∇N
)2

V [Φ,Φ] − Ric(Φ,Φ)

+ Γ a
b (Φ)Γ b

a (Φ)

}
V σ
√

det(g)dvol (2.3)

defined on the normal bundle to K , is non-degenerate.

Remark 2.1. Here and in the rest of this paper, Einstein summation convention is used, that is, 
summation over repeated indices is understood.
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If we set V σ = e−f , i.e., f = −σ lnV , then our stationary and ND conditions are correspond-
ing to the first and second variation formulas of f -minimal submanifold in [19], i.e.,

H = ∇Nf,

where H = − 
∑

a ∇N
ea

ea is the mean curvature vector, ea (1 ≤ a ≤ k) is an orthonormal frame in 
an open set of K . And at t = 0,

d2

dt2

( ∫
Kt

e−f

)

=
∫
K

e−f

(
−

k∑
a=1

Ravva − 1

2
�K

(|v|2)+ |∇Kv|2 − 2
∣∣Av
∣∣2 − fvv + 1

2

〈∇T f,∇T
(|v|2)〉),

where Kt is a smooth family of submanifolds such that K0 = K , the variational normal vector 
field v is compactly supported on Kt , and Av

ab = −〈∇ea eb, v〉.

2.2. Fermi coordinates and expansion of the metric

Let K be a k-dimensional submanifold of (M, ḡ) (1 ≤ k ≤ n − 1). Define N = n − k, we 
choose along K a local orthonormal frame field ((Ea)a=1,...,k, (Ei)i=1,...,N ) which is oriented. 
At points of K , we have the natural splitting

T M = T K ⊕ NK

where T K is the tangent space to K and NK represents the normal bundle, which are spanned 
respectively by (Ea)a and (Ei)i .

We denote by ∇ the connection induced by the metric ḡ and by ∇N the corresponding normal 
connection on the normal bundle. Given p ∈ K , we use some geodesic coordinates y centered 
at p. We also assume that at p the normal vectors (Ei)i , i = 1, . . . , N , are transported parallely 
(with respect to ∇N ) through geodesics from p, so in particular

ḡ(∇EaEj ,Ei) = 0 at p, ∀i, j = 1, . . . ,N, a = 1, . . . , k. (2.4)

In a neighborhood of p in K , we consider normal geodesic coordinates

f (ȳ) := expK
p (yaEa), ∀ȳ := (y1, . . . , yk),

where expK is the exponential map on K and summation over repeated indices is understood. 
This yields the coordinate vector fields Xa := f∗(∂ya ). We extend the Ei along each geodesic 
γE(s) so that they are parallel with respect to the induced connection on the normal bundle NK . 
This yields an orthonormal frame field Xi for NK in a neighborhood of p in K which satisfies

∇XaXi |p ∈ TpK.
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A coordinate system in a neighborhood of p in M is now defined by

F(ȳ, x̄) := expM
f (ȳ)(xiXi), ∀(ȳ, x̄) := (y1, . . . , yk, x1, . . . , xN), (2.5)

with corresponding coordinate vector fields

Xi := F∗(∂xi
) and Xa := F∗(∂ya ).

By our choice of coordinates, on K the metric ḡ splits in the following way

ḡ(q) = ḡab(q)dya ⊗ dyb + ḡij (q)dxi ⊗ dxj , ∀q ∈ K. (2.6)

We denote by Γ b
a (·) the 1-forms defined on the normal bundle, NK , of K by the formula

ḡbcΓ
c
ai := ḡbcΓ

c
a (Xi) = ḡ(∇XaXb,Xi) at q = f (ȳ). (2.7)

Define q = f (ȳ) = F(ȳ, 0) ∈ K and let (g̃ab(y)) be the induced metric on K . When we con-
sider the metric coefficients in a neighborhood of K , we obtain a deviation from formula (2.6), 
which is expressed by the next lemma. We will denote by Rαβγ δ the components of the curvature 
tensor with lowered indices, which are obtained by means of the usual ones Rσ

βγ δ by

Rαβγ δ = ḡασ Rσ
βγ δ. (2.8)

Lemma 2.1. At the point F(ȳ, x̄), the following expansions hold, for any a = 1, ..., k and any 
i, j = 1, ..., N , where N = n − k,

ḡij = δij + 1

3
Ristj x̄s x̄t +O

(|x̄|3);
ḡaj = 2

3
g̃abR

b
kjl x̄

kx̄l +O
(|x̄|3);

ḡab = g̃ab − {g̃acΓ
c
bi + g̃bcΓ

c
ai

}
x̄i + [Rsabl + g̃cdΓ c

asΓ
d
bl

]
x̄s x̄l +O

(|x̄|3).
Here Ristj are computed at the point of K parameterized by (ȳ, 0).

Proof. The proof is somewhat standard and is thus omitted, we refer to [9] for details, see also 
Proposition 2.1 in [22]. �

By the Whitney embedding theorem, K ⊂ M ↪→ R
2n. Thus we can define Kε := K/ε and 

Mε := M/ε in a natural way. On the other hand since F(ȳ, x̄) is a Fermi coordinate system on M , 
then Fε(y, x) := F(εy, εx)/ε defines a Fermi coordinate system on M/ε. With this notation, here 
and in the sequel, by slight abuse of notation we denote V (εy, εx) to actually mean V (εz) =
V (F(εy, εx)) in the Fermi coordinate system. The same way is understood to its derivatives 
with respect to y and x.

Now we can introduce our first parameter function Φ which is a normal vector field defined on 
K and define x = ξ +Φ(εy). Then (y, ξ) is the Fermi coordinate system for the submanifold KΦ . 
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Adjusting the parameter Φ , later we will show that there are solutions concentrating on KΦ for 
a subsequence of ε.

We denote by gαβ the metric coefficients in the new coordinates (y, ξ). It follows that

gαβ =
∑
γ,δ

ḡγ δ

∂zα

∂ξγ

∂zβ

∂ξδ

.

Which yields

gij = ḡij |ξ+Φ, gaj = ḡaj |ξ+Φ + ε∂āΦ
lḡj l |ξ+Φ,

and

gab = ḡab|ξ+Φ + ε
{
ḡaj ∂b̄Φ

j + ḡbj ∂āΦ
j
}∣∣

ξ+Φ
+ ε2∂āΦ

i∂b̄Φ
j ḡij |ξ+Φ

where summations over repeated indices is understood.
To express the error terms, it is convenient to introduce some notations. For a positive inte-

ger q , we denote by Rq(ξ), Rq(ξ, Φ), Rq(ξ, Φ, ∇Φ), and Rq(ξ, Φ, ∇Φ, ∇2Φ) error terms such 
that the following bounds hold for some positive constants C and d :∣∣Rq(ξ)

∣∣≤ Cεq
(
1 + |ξ |d),∣∣Rq(ξ,Φ)

∣∣≤ Cεq
(
1 + |ξ |d),∣∣Rq(ξ,Φ) − Rq(ξ, Φ̄)
∣∣≤ Cεq

(
1 + |ξ |d)|Φ − Φ̄|,∣∣Rq(ξ,Φ,∇Φ)

∣∣≤ Cεq
(
1 + |ξ |d),∣∣Rq(ξ,Φ,∇Φ) − Rq(ξ, Φ̄,∇Φ̄)

∣∣≤ Cεq
(
1 + |ξ |d)(|Φ − Φ̄| + |∇Φ − ∇Φ̄|),

and ∣∣Rq

(
ξ,Φ,∇Φ,∇2Φ

)∣∣≤ Cεq
(
1 + |ξ |d)+ Cεq+1(1 + |ξ |d)∣∣∇2Φ

∣∣,∣∣Rq

(
ξ,Φ,∇Φ,∇2Φ

)− Rq

(
ξ, Φ̄,∇Φ̄,∇2Φ̄

)∣∣
≤ Cεq

(
1 + |ξ |d)(|Φ − Φ̄| + |∇Φ − ∇Φ̄|)(1 + ε

∣∣∇2Φ
∣∣+ ε

∣∣∇2Φ̄
∣∣)

+ Cεq+1(1 + |ξ |d)∣∣∇2Φ − ∇2Φ̄
∣∣.

Using the expansion of the previous lemma, one can easily show that the following lemma 
holds true.

Lemma 2.2. In the coordinate (y, ξ), the metric coefficients satisfy

gab = g̃ab − ε
{
g̃bf Γ

f
ak + g̃af Γ

f
bk

}(
ξk + Φk

)+ ε2(Rkabl + g̃cdΓ c
akΓ

d
bl

)(
ξk + Φk

)(
ξ l + Φl

)
+ ε2∂āΦ

j∂b̄Φ
j + R3(ξ,Φ,∇Φ),

gaj = ε∂āΦ
j + 2

3
ε2Rkajl

(
ξk + Φk

)(
ξ l + Φl

)+ R3(ξ,Φ,∇Φ),

gij = δij + 1
ε2Rkijl

(
ξk + Φk

)(
ξ l + Φl

)+ R3(ξ,Φ,∇Φ).

3
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Denote the inverse metric of (gαβ) by (gαβ). Recall that, given the expansion of a matrix as 
M = I + εA + ε2B +O(ε3), we have

M−1 = I − εA − ε2B + ε2A2 +O
(
ε3).

Lemma 2.3. In the coordinate (y, ξ), the metric coefficients gαβ satisfy

gab = g̃ab + ε
{
g̃cbΓ a

ci + g̃caΓ b
ci

}(
ξ i + Φi

)− ε2g̃cbg̃adRkcdl

(
ξk + Φk

)(
ξ l + Φl

)
+ ε2(g̃acΓ b

dkΓ
d
cl + g̃bcΓ a

dkΓ
d
cl + g̃cdΓ a

dkΓ
b
cl

)(
ξk + Φk

)(
ξ l + Φl

)+ R3(ξ,Φ,∇Φ),

gaj = −εg̃ab∂b̄Φ
j − 2ε2

3
Rkajl

(
ξk + Φk

)(
ξ l + Φl

)+ ε2∂b̄Φ
j
{
g̃bcΓ a

ci + g̃acΓ b
ci

}(
ξ i + Φi

)
+ R3(ξ,Φ,∇Φ),

gij = δij − ε2

3
Rkijl

(
ξk + Φk

)(
ξ l + Φl

)+ ε2g̃ab∂āΦ
i∂b̄Φ

j + R3(ξ,Φ,∇Φ).

Furthermore, we have the validity of the following expansion for the log of the determinant of g:

log(detg) = log(det g̃) − 2εΓ b
bk

(
ξk + Φk

)+ 1

3
ε2Rmssl

(
ξm + Φm

)(
ξ l + Φl

)
+ ε2(g̃abRmabl − Γ c

amΓ a
cl

)(
ξm + Φm

)(
ξ l + Φl

)+ R3(ξ,Φ,∇Φ).

Proof. The expansions of the metric in the above lemma follow from Lemma 2.1 while the 
expansion of the log of the determinant of g follows from the fact that one can write g = G + M

with

G =
(

g̃ 0
0 IdRN

)
and M =O(ε),

then we have the following expansion

log(detg) = log(detG) + tr
(
G−1M

)− 1

2
tr
((

G−1M
)2)+O

(‖M‖3),
and the lemma follows at once. �
2.3. Expansion of the Laplace–Beltrami operator

In terms the above notations, we have the following expansion of the Laplace–Beltrami oper-
ator.

Proposition 2.1. Let u be a smooth function on Mε. Then in the Fermi coordinate (y, ξ), we have 
that

�gu = ∂2
iiu + �Kεu − εΓ b

bj ∂ju − 2εg̃ab∂b̄Φ
j∂2

aj u + 2εg̃cbΓ a
cs

(
ξ s + Φs

)
∂2
abu

+ ε2∇KΦi · ∇KΦj∂2
ij u − 1

ε2Rkijl

(
ξk + Φk

)(
ξ l + Φl

)
∂2
ij u − ε2Γ d

dk∂b̄Φ
kg̃ab∂au
3



F. Mahmoudi et al. / J. Differential Equations 258 (2015) 243–280 253
− 4

3
ε2Rkajl

(
ξk + Φk

)(
ξ l + Φl

)
∂2
aju + 2ε2∂b̄Φ

j
{
g̃bcΓ a

ci + g̃acΓ b
ci

}(
ξ i + Φi

)
∂2
aj u

+ ε2{−g̃cbg̃adRkcdl + g̃acΓ b
dkΓ

d
cl + g̃bcΓ a

dkΓ
d
cl + g̃cdΓ a

dkΓ
b
cl

}(
ξk + Φk

)(
ξ l + Φl

)
∂2
abu

+ ε2
(

g̃abRkabj + 2

3
Rkiij − Γ c

akΓ
a
cj

)(
ξk + Φk

)
∂ju − ε2�KΦj∂ju

+ 2ε3∂2
āb̄

ΦjΓ b
ak

(
ξk + Φk

)
∂ju

− ε2(g̃ab∂āΓ
d
dk − ∂ā

{
g̃cbΓ a

ck + g̃caΓ b
ck

})(
ξk + Φk

)
∂bu − 2

3
ε2Rjajk

(
ξk + Φk

)
∂au

+ 2ε2{g̃cbΓ a
ci + g̃caΓ b

ci

}
∂b̄Φ

i∂au + 1

2
ε2∂ā(log det g̃)

{
g̃cbΓ a

ci + g̃caΓ b
ci

}(
ξ i + Φi

)
∂bu

+ R3
(
ξ,Φ,∇Φ,∇2Φ

)
(∂ju + ∂au) + R3(ξ,Φ,∇Φ)

(
∂2
ij u + ∂2

aj u + ∂2
abu
)
.

Remark 2.2. The proof of Proposition 2.1 will be postponed to Appendix A. It is worth men-
tioning that the coefficients of all the derivatives of u in the above expansion are smooth bounded 
functions of the variable ȳ = εy. The slow dependence of theses coefficients of y is important in 
our construction of some proper approximate solutions.

3. Construction of approximate solutions

To prove Theorem 1.1, the first key step in our method is to construct some proper approximate 
solutions. To achieve this goal, we have introduced some geometric background, especially the 
Fermi coordinates. The main objective of this section is to construct some very accurate local 
approximate solutions in a tubular neighborhood of Kε by an iterative scheme of Picard’s type 
and to define some proper global approximate solutions by the gluing method.

3.1. Facts on the limit equation

Recall that by the scaling, Eq. (1.1) becomes

�gu − V (εz)u + up = 0. (3.1)

In the Fermi coordinate (y, x), we can write V (εz) = V (εy, εx). Taking x = ξ +Φ(εy), we have 
the following expansion of potential:

V (εy, εx) = V (εy,0) + ε
〈∇NV (εy,0), ξ + Φ

〉+ ε2

2

(∇N
)2

V (εy,0)[ξ + Φ]2

+ R3(ξ,Φ). (3.2)

If the profile of solutions depends only on ξ or varies slower on y, by the expansion of the 
Laplace–Beltrami operator in Proposition 2.1 and the above expansion of potential, the leading 
equation is

N∑
∂2
ξiξi

u − V (εy,0)u + up = 0. (3.3)

i=1
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Define

μ(εy) = V (εy,0)1/2, h(εy) = V (εy,0)1/(p−1), ∀y ∈ Kε. (3.4)

For the leading equation (3.3), by the scaling

u(y, ξ) = h(εy)v
(
μ(εy)ξ

)= h(εy)v(ξ̄ ),

the function v satisfies

�RN v − v + vp = 0. (3.5)

We call this equation the limit equation.
We now turn to Eq. (3.1), in the spirit of above argument, we look for a solution u of the form

u(y, ξ) = h(εy)v(y, ξ̄ ) with ξ̄ = μ(εy)ξ ∈R
N. (3.6)

An easy computation shows that

∂au = h∂av + ε(∂āh)v + εh∂āμξj ∂j v,

∂2
ij u = hμ2∂2

ij v,

∂2
aj u = ε(μ∂āh + h∂āμ)∂j v + hμ∂2

aj v + εhμξi∂āμ∂2
ij v,

∂2
abu = h∂2

abv + ε
(
∂b̄h∂av + ∂āh∂bv + h∂b̄μξj ∂2

aj v + h∂āμξj ∂2
bj v
)

+ ε2(∂āh∂b̄μξj ∂j v + ∂b̄h∂āμξj ∂j v + ∂2
āb̄

hv + h∂āμ∂b̄μξ iξ j ∂2
ij v + h∂2

āb̄
μξj ∂j v

)
,

and

�Kεu = ε2�Khv + h�Kεv + 2ε∇Kh · ∇Kεv + ε2(h�Kμ + 2∇Kh · ∇Kμ)ξj ∂j v

+ ε2h|∇Kμ|2ξj ξ l∂2
j lv + 2εhξj∇Kμ · (∇Kε∂j v).

Therefore, we get the following expansion of the Laplace–Beltrami operator on u:

h−1μ−2�gu = �RN v + μ−2�Kεv + B(v),

with B(v) = B1(v) + B2(v). Where Bj ’s are respectively given by

B1(v) = −εμ−1Γ b
bj ∂j v + ε2μ−1

(
g̃abRkabj + 2

3
Rkiij − Γ c

akΓ
a
cj

)(
1

μ
ξ̄k + Φk

)
∂j v

+ ε2h−1μ−2�Khv + 2ε2(hμ2)−1∇Kh ·
(

ξ̄ j

μ
∇Kμ − μ∇KΦj

)
∂j v

+ 2εh−1μ−2∇Kh · ∇Kεv − 1
ε2Rkijl

(
1

ξ̄ k + Φk

)(
1

ξ̄ l + Φl

)
∂2
ij v
3 μ μ
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+ ε2(μ−2ξ̄ i∇Kμ − ∇KΦi
)(

μ−2ξ̄ j∇Kμ − ∇KΦj
)
∂2
ij v

+ ε2μ−2
(

ξ̄ j

μ
�Kμ − 2∇Kμ · ∇KΦj − μ�KΦj

)
∂j v

+ 2εμ−2
(

ξ̄ j

μ
∇Kμ − μ∇KΦj

)
· ∇Kε(∂j v),

and

hμ2B2(v)

= −ε2hΓ d
dj∇KΦj · ∇Kεv + 2εg̃cbΓ a

cs

(
1

μ
ξ̄s + Φs

)
×
(

h∂2
abv + ε

{
∂b̄h∂av + ∂āh∂bv + h∂b̄μ

ξ̄ j

μ
∂2
aj v + h∂āμ

ξ̄ j

μ
∂2
bj v

})
− 4

3
ε2hμRkajl

(
1

μ
ξ̄k + Φk

)(
1

μ
ξ̄ l + Φl

)
∂2
aj v

+ 2ε2hμ∂bΦ
j
{
g̃bcΓ a

ci + g̃acΓ b
ci

}( 1

μ
ξ̄ i + Φi

)
∂2
aj v

+ ε2h
{−g̃cbg̃adRkcdl + 2g̃acΓ b

dkΓ
d
cl + g̃cdΓ a

dkΓ
b
cl

}( 1

μ
ξ̄k + Φk

)(
1

μ
ξ̄ l + Φl

)
∂2
abv

+ 2ε3hμ∂2
āb̄

ΦjΓ b
ak

(
1

μ
ξ̄k + Φk

)
∂j v

− ε2h
(
g̃ab∂āΓ

d
dk − ∂ā

{
g̃cbΓ a

ck + g̃caΓ b
ck

})( 1

μ
ξ̄k + Φk

)
∂bv

− 2

3
ε2hRjajk

(
1

μ
ξ̄k + Φk

)
∂av + 2ε2h

{
g̃cbΓ a

ci + g̃caΓ b
ci

}
∂b̄Φ

i∂av

+ 1

2
ε2h∂ā(log det g̃)

{
g̃cbΓ a

ci + g̃caΓ b
ci

}( 1

μ
ξ̄ i + Φi

)
∂bv

+ R3
(
ξ,Φ,∇Φ,∇2Φ

)
(∂j v + ∂av) + R3(ξ,Φ,∇Φ)

(
∂2
ij v + ∂2

aj v + ∂2
abv
)
.

Setting

Sε(u) = −�gu + V (εz)u − up,

then by using the above expansion we can write

h−1μ−2Sε(u) = −�RN v − μ−2�Kεv − B(v) + μ−2V (εz)v − hp−1μ−2vp

= −�RN v + v − vp − μ−2�Kεv + μ−2(V (εy, εx) − V (εy,0)
)
v − B(v).

Now using the following expansion of potential:

V (εy, εx) = V (εy,0) + ε

〈
∇NV (εy,0),

ξ̄ + Φ

〉
+ ε2 (∇N

)2
V (εy,0)

[
ξ̄ + Φ

]2

+ R3(ξ̄ ,Φ),

μ 2 μ
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we obtain

h−1μ−2Sε(u) = −�RN v + v − vp − μ−2�Kεv − B̃(v) =: S̃ε(v), (3.7)

where B̃(v) = B̃1(v) + B̃2(v) with

B̃1(v) = B1(v) − μ−2
(

ε

〈
∇NV (εy,0),

ξ̄

μ
+ Φ

〉
+ ε2

2

(∇N
)2

V (εy,0)

[
ξ̄

μ
+ Φ

]2)
v

and

B̃2(v) = B2(v) − R3(ξ̄ ,Φ)v.

At the end of this subsection, let us list some basic and useful properties of positive solutions 
of the limit equation (3.5).

Proposition 3.1. If 1 < p < ∞ for N = 2 and 1 < p < N+2
N−2 for N ≥ 3, then every solution of 

problem:

{−�RN v + v − vp = 0 in R
N,

v > 0 in R
N, v ∈ H 1(RN),

(3.8)

has the form w0(· − Q) for some Q ∈ R
N , where w0(x) = w0(|x|) ∈ C∞(RN) is the unique 

positive radial solution which satisfies

lim
r→∞ r

N−1
2 erw0(r) = cN,p, lim

r→∞
w′

0(r)

w0(r)
= −1. (3.9)

Here cN,p is a positive constant depending only on N and p. Furthermore, w0 is non-degenerate 
in the sense that

Ker
(−�RN + 1 − pw

p−1
0

)∩ L∞(
R

N
)= Span{∂x1w0, . . . , ∂xN

w0},

and the Morse index of w0 is one, that is, the linear operator

L0 := −�RN + 1 − pw
p−1
0

has only one negative eigenvalue λ0 < 0, and the unique even and positive eigenfunction corre-
sponding to λ0 can be denoted by Z.

Proof. This result is well-known. For the proof we refer the interested reader to [5] for the exis-
tence, [14] for the symmetry, [17] for the uniqueness, Appendix C in [29] for the nondegeneracy, 
and [6] for the Morse index. �
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As a corollary, there is a constant γ0 > 0 such that∫
RN

{|∇φ|2 + φ2 − pw
p−1
0 φ2}dξ̄ ≥ γ0

∫
RN

φ2dξ̄ , (3.10)

whenever φ ∈ H 1(RN) and∫
RN

φ∂jw0dξ̄ = 0 =
∫
RN

φZdξ̄ , ∀j = 1, . . . ,N.

3.2. Local approximate solutions

In a tubular neighborhood of Kε , (3.7) makes it obvious that Sε(u) = 0 is equivalent to 
S̃ε(v) = 0.

By the expression of S̃ε(v) and Remark 2.2, we look for approximate solutions of the form

v = v(y, ξ̄ ) = w0(ξ̄ ) +
I∑

�=1

ε�w�(εy, ξ̄ ) + εe(εy)Z(ξ̄ ), (3.11)

where I ∈N+, w0 and Z are given in Proposition 3.1, w�’s and e are smooth bounded functions 
on their variables.

The idea for introducing eZ in (3.11) comes directly from [8,32]. The reason is the linear 
theory in Section 4.2.2, especially Lemma 4.3.

To solve S̃ε(v) = 0 accurately, the normal section Φ is to be chosen in the following form

Φ = Φ0 +
I−1∑
�=1

ε�Φ�,

where Φ0, . . . , ΦI−1 are smooth bounded functions on ȳ.

3.2.1. Expansion at first order in ε
We first solve the equation S̃ε(v) = 0 up to order ε. Here and in the following we will write 

O(εj ) for terms that appear at the j -th order in an expansion.
Suppose v has the form (3.11), then

S̃ε(v) = ε
(−�RN w1 + w1 − pw

p−1
0 w1

)+ ε
(−ε2μ−2�Ke + λ0e

)
Z

+ ε

(
μ−1Γ b

bj ∂jw0 + μ−2
〈
∇NV (εy,0),

ξ̄

μ
+ Φ0

〉
w0

)
+O

(
ε2).

Hence the term of order ε in the right-hand side of above equation vanishes if and only if the 
function w1 solves

L0w1 = −μ−1Γ b
bj ∂jw0 − μ−2

〈
∇NV (εy,0),

ξ̄ + Φ0

〉
w0. (3.12)
μ
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Here and in the following, we will keep the term ε(−ε2μ−2�Ke + λ0e)Z in the error. The 
reason is simply that it cannot be canceled without solving an equation of e since L0Z = λ0Z.

By Proposition 3.1, Eq. (3.12) is solvable if and only if for all i = 1, . . . , N ,∫
RN

(
μ−1Γ b

bj ∂jw0 + μ−2
〈
∇NV (εy,0),

ξ̄

μ
+ Φ0

〉
w0

)
∂iw0dξ̄ = 0. (3.13)

Since w0 is radially symmetric, (3.13) is equivalent to

Γ b
bi

∫
RN

|∂1w0|2dξ̄ = 1

2
μ−2∂iV (εy,0)

∫
RN

w2
0dξ̄ .

Recalling the identity

1

2

∫
RN

w2
0dξ̄ = σ

∫
RN

|∂1w0|2dξ̄ with σ = p + 1

p − 1
− N

2
, (3.14)

we get

σ∇NV (εy,0) = −V (εy,0)H(εy), (3.15)

where H = (−Γ b
bi)i is the mean curvature vector on K . This is exactly our stationary condition 

on K .
When (3.15) holds, the equation of w1 becomes

L0w1 = −μ−1Γ b
bj

(
∂jw0 + σ−1ξ̄ jw0

)+ σ−1〈H,Φ0〉w0. (3.16)

Hence we can write

w1 = w1,1 + w1,2, (3.17)

where

w1,1 = −μ−1Γ b
bjUj and w1,2 = σ−1〈H,Φ0〉U0. (3.18)

Here Uj is the unique smooth bounded function satisfying

L0Uj = ∂jw0 + σ−1ξ̄ jw0,

∫
RN

Uj∂iw0dξ̄ = 0, ∀i = 1, . . . ,N, (3.19)

and U0 is the unique smooth bounded function such that

L0U0 = w0,

∫
N

U0∂iw0dξ̄ = 0, ∀i = 1, . . . ,N. (3.20)
R
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It follows immediately that w1 = w1(εy, ξ̄ ) is smooth bounded on its variable. Furthermore, it 
is easily seen that Uj is odd on variable ξ̄ j and is even on other variables. Moreover, U0 has an 
explicit expression

U0 = − 1

p − 1
w0 − 1

2
ξ̄ · ∇w0. (3.21)

3.2.2. Expansion at second order in ε
In this subsection we will solve the equation S̃ε(v) = 0 up to order ε2 by solving w2 and Φ0

together.
Suppose v has the form (3.11), then

S̃ε(v) = ε2(−�RN w2 + w2 − pw
p−1
0 w2

)+ ε
(−ε2μ−2�Ke + λ0e

)
Z

+ ε2F2 + ε2G2 +O
(
ε3),

where

F2 = μ−1Γ b
bj ∂jw1 + μ−2〈∇NV,Φ1

〉
w0 + 1

3
Rkijl

(
1

μ
ξ̄k + Φk

0

)(
1

μ
ξ̄ l + Φl

0

)
∂2
ijw0

− μ−1
(

g̃abRkabj + 2

3
Rkiij − Γ c

akΓ
a
cj

)(
ξ̄ k

μ
+ Φk

0

)
∂jw0

− μ−2
(

ξ̄ j

μ
�Kμ − 2∇Kμ · ∇KΦ

j

0 − μ�KΦ
j

0

)
∂jw0

− h−1μ−2�Khw0 − 2
(
hμ2)−1∇Kh ·

(
ξ̄ j

μ
∇Kμ − μ∇KΦ

j

0

)
∂jw0

− (μ−2ξ̄ i∇Kμ − ∇KΦi
0

)(
μ−2ξ̄ j∇Kμ − ∇KΦ

j

0

)
∂2
ijw0 + μ−2

〈
∇NV,

ξ̄

μ
+ Φ0

〉
w1

+ 1

2
μ−2(∇N

)2
V

[
ξ̄

μ
+ Φ0,

ξ̄

μ
+ Φ0

]
w0 − 1

2
p(p − 1)w

p−2
0 w2

1,

and

G2 = μ−1Γ b
bj e∂jZ + μ−2

〈
∇NV,

ξ̄

μ
+ Φ0

〉
eZ − 1

2
p(p − 1)w

p−2
0

{
(w1 + eZ)2 − w2

1

}
.

Hence the term of order ε2 vanishes (except the term ε(−ε2μ−2�Ke + λ0e)Z) if and only if 
w2 satisfies the equation

L0w2 = −F2 −G2.

By Freedholm alternative this equation is solvable if and only if F2 +G2 is L2 orthogonal to the 
kernel of linearized operator L0, which is spanned by the functions ∂iw0, i = 1, . . . , N .

It is convenient to write F2 as

F2 = μ−2〈∇NV,Φ1
〉
w0 + F̃2.
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Then ̃F2 does not involve Φ1. By (3.15), similar to w1, we can write w2 as

w2 = w2,1 + w2,2,

where w2,2 = σ−1〈H, Φ1〉U0 solves the equation

L0w2,2 = −μ−2〈∇NV,Φ1
〉
w0,

and w2,1 will solve the equation

L0w2,1 = −F̃2 −G2.

To solve the equation on w2,1 we write

F̃2 = F̃2(Φ0) = S2,0 + S2(Φ0) + N2(Φ0),

where S2,0 = F̃2(0) does not involve Φ0, S2(Φ0) is the sum of linear terms of Φ0, and N2(Φ0) is 
the nonlinear term of Φ0.

Recall that w1 = w1,1 + w1,2 with

w1,1 = −μ−1Γ b
bjUj and w1,2 = σ−1〈H,Φ0〉U0.

Then

S2,0 = μ−1Γ b
bj ∂jw1,1 + 1

3
μ−2Rkijl

(
ξ̄ k ξ̄ l∂2

ijw0
)

− μ−2
(

g̃abRkabj + 2

3
Rkiij − Γ c

akΓ
a
cj

)(
ξ̄ k∂jw0

)
− (μ−3�Kμ

)(
ξ̄ j ∂jw0

)− (h−1μ−2�Kh
)
w0 − 2

(
hμ3)−1

(∇Kh · ∇Kμ)
(
ξ̄ j ∂jw0

)
− μ−4|∇Kμ|2(ξ̄ i ξ̄ j ∂2

ijw0
)+ μ−3〈∇NV, ξ̄

〉
w1,1 + 1

2
μ−4(∇N

)2
V [ξ̄ , ξ̄ ]w0

− 1

2
p(p − 1)w

p−2
0 w2

1,1,

S2(Φ0) = μ−1Γ b
bj ∂jw1,2 + 2

3
μ−1RkijlΦ

l
0

(
ξ̄ k∂2

ijw0
)

− μ−1
(

g̃abRkabj + 2

3
Rkiij − Γ c

akΓ
a
cj

)
Φk

0∂jw0

+ μ−2(2∇Kμ · ∇KΦ
j

0 + μ�KΦ
j

0

)
∂jw0 + 2(hμ)−1(∇Kh · ∇KΦ

j

0

)
∂jw0

+ 2μ−2(∇Kμ · ∇KΦ
j

0

)(
ξ̄ i∂2

ijw0
)+ μ−3〈∇NV, ξ̄

〉
w1,2 + μ−2〈∇NV,Φ0

〉
w1,1

+ μ−3(∇N
)2

V [Φ0, ξ̄ ]w0 − p(p − 1)w
p−2
0 w1,1w1,2,
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and

N2(Φ0) = 1

3
RkijlΦ

k
0Φl

0∂
2
ijw0 − (∇KΦi

0 · ∇KΦ
j

0

)
∂2
ijw0 + μ−2〈∇NV,Φ0

〉
w1,2

+ 1

2
μ−2(∇N

)2
V [Φ0,Φ0]w0 − 1

2
p(p − 1)w

p−2
0 w2

1,2.

Therefore,∫
RN

S2(Φ0)∂sw0 = μ−1Γ b
bj

∫
RN

∂jw1,2∂sw0 + 2

3
μ−1RkijlΦ

l
0

∫
RN

ξ̄ k∂2
ijw0∂sw0

− μ−1
(

g̃abRkabj + 2

3
Rkiij − Γ c

akΓ
a
cj

)
Φk

0

∫
RN

∂jw0∂sw0

+ μ−2(2∇Kμ · ∇KΦ
j

0 + μ�KΦ
j

0

) ∫
RN

∂jw0∂sw0

+ 2(hμ)−1(∇Kh · ∇KΦ
j

0

) ∫
RN

∂jw0∂sw0

+ 2μ−2(∇Kμ · ∇KΦ
j

0

) ∫
RN

ξ̄ i∂2
ijw0∂sw0

+ μ−2∂jV (εy,0)

(
μ−1

∫
RN

ξ̄ jw1,2∂sw0 + Φ
j

0

∫
RN

w1,1∂sw0

)

+ μ−3∂2
ij V (εy,0)Φ

j

0

∫
RN

ξ̄ iw0∂sw0

− p(p − 1)

∫
RN

w
p−2
0 w1,1w1,2∂sw0.

Let us denote by A the sum of terms involving w1,1 and w1,2 in the above formula. Using 
(3.15) and (3.18) we can write

A = μ−1σ−1〈H,Φ0〉Γ a
aj

∫
RN

{
∂jU0 + Uj + σ−1ξ̄ jU0 + p(p − 1)w

p−2
0 UjU0

}
∂sw0.

To compute this term we differentiate Eq. (3.19) on Uj with respect to the variable ξ̄ j to obtain

L0(∂jUj ) − p(p − 1)w
p−2
0 Uj∂jw0 = ∂2

jjw0 + σ−1w0 + σ−1ξ̄ j ∂jw0. (3.22)

Multiplying the above equation by U0 and integrating by parts, we have
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∫
RN

{
∂jU0 + Uj + σ−1ξ̄ jU0 + p(p − 1)w

p−2
0 UjU0

}
∂jw0

= −
∫
RN

(
2∂2

jjw0 + σ−1w0
)
U0

= −2
∫
RN

(
− 1

p − 1
w0 − 1

2
ξ̄ l∂lw0

)
∂2
jjw0 − σ−1

∫
RN

(
− 1

p − 1
w0 − 1

2
ξ̄ l∂lw0

)
w0

= −
(

2

p − 1
+ 1 − N

2

) ∫
RN

|∂1w0|2 − σ−1
(

N

4
− 1

p − 1

) ∫
RN

w2
0

= −
∫
RN

|∂1w0|2.

On the other hand, by direct computations we have∫
RN

∂jw0∂sw0 = δjs

∫
RN

(∂1w0)
2,

∫
RN

∂2
kjw0ξ̄

k∂sw0 = 1

2
δjs

∫
RN

ξ̄ k∂k(∂jw0)
2 = −N

2
δjs

∫
RN

(∂1w0)
2,

Rkij lΦ
l
0

∫
RN

ξ̄ k∂2
ijw0∂sw0 = RsjjlΦ

l
0

∫
RN

(∂1w0)
2,

(
g̃abRkabj + 2

3
Rkiij − Γ c

akΓ
a
cj

)
Φk

0

∫
RN

∂jw0∂sw0

=
(

g̃abRkabs + 2

3
Rkiis − Γ c

akΓ
a
cs

)
Φk

0

∫
RN

(∂1w0)
2.

Summarizing, we have∫
RN

S2(Φ0)∂sw0 = μ−1{�KΦs
0 − (g̃abRkabs − Γ c

akΓ
a
cs

)
Φk

0 + (2 − N)μ−1∇Kμ · ∇KΦs
0

+ 2h−1∇Kh · ∇KΦs
0 − σμ−2∂2

sjV (εy,0)Φ
j

0 − σ−1Γ a
as〈H,Φ0〉

} ∫
RN

(∂1w0)
2.

Now, using the fact that

μ−1∇Kμ = 1
V −1∇KV and h−1∇Kh = 1

V −1∇KV,

2 p − 1
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we obtain (recalling the definition of σ ) that

(2 − N)μ−1∇Kμ · ∇KΦs
0 + 2h−1∇Kh · ∇KΦs

0 = σV −1∇KV · ∇KΦs
0.

Hence we summarize∫
RN

S2(Φ0)∂sw0 = μ−1{�KΦs
0 − (g̃abRkabs − Γ c

akΓ
a
cs

)
Φk

0 + σV −1∇KV · ∇KΦs
0

− σμ−2∂2
sjV (εy,0)Φ

j

0 + σ−1Γ b
bjΓ

a
asΦ

j

0

} ∫
RN

|∂1w0|2.

Define JK : NK �→ NK is a linear operator from the family of smooth sections of normal 
bundle to K into itself, whose components are given by

(JKΦ0)
s = �KΦs

0 − (g̃abRkabs − Γ c
akΓ

a
cs

)
Φk

0 + σV −1∇KV · ∇KΦs
0

− σμ−2∂2
sjV (ȳ,0)Φ

j

0 + σ−1Γ b
bjΓ

a
asΦ

j

0 . (3.23)

Then ∫
RN

S2(Φ0)∂sw0 = μ−1
( ∫
RN

|∂1w0|2
)

(JKΦ0)
s(εy). (3.24)

On the other hand, it is easy to check that∫
RN

S2,0∂sw0 = 0 =
∫
RN

N2(Φ0)∂sw0 (3.25)

and ∫
RN

G2∂sw0 =
{
μ−1Γ b

bs

∫
RN

∂sZ∂sw0 + μ−3∂sV (εy,0)

∫
RN

ξ̄ sZ∂sw0

− p(p − 1)

∫
RN

w
p−2
0 w1,1Z∂sw0

}
e

= μ−1Γ b
bse

∫
RN

{
∂sZ + σ−1Zξ̄s + p(p − 1)w

p−2
0 ZUs

}
∂sw0

= c0μ
−1Γ b

bse.

Therefore, the solvability of equation on w2 is equivalent to the solvability of following equa-
tion on Φ0:

JKΦ0 = H2(ȳ; e), (3.26)

where H2(ȳ; e) = c0He is a smooth bounded function.
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By the non-degeneracy condition on K , (3.26) is solvable. Moreover, for any given e, it is 
easy to check that Φ0 = Φ0(ȳ; e) is a smooth bounded function on ȳ and is Lipschitz continuous 
with respect to e.

Now let us go back to the equation of w2,1:

L0w2,1 = −F̃2 −G2.

Since both ̃F2 and G2 are smooth bounded functions of (εy, ξ̄ ). Hence w2,1 = w2,1(εy, ξ̄ ) is also 
a smooth bounded function of (εy, ξ̄ ). Moreover, w2,1 = w2,1(εy, ξ̄ ; e) is Lipschitz continuous 
with respect to e.

3.2.3. Higher order approximations
The construction of higher order terms follows exactly from the same calculation. Indeed, to 

solve the equation up to an error of order εj+1 for some j ≥ 3, we use an iterative scheme of 
Picard’s type: assuming all the functions wi’s (1 ≤ i ≤ j − 1) constructed, we need to choose a 
function wj to solve an equation similar to that of w2 (with obvious modifications) by solving 
an equation of Φj−2 similar to that of Φ0.

When we collect all terms of order O(εj ) in S̃ε(v), assuming all wi ’s for i = 1, . . . , j − 1
constructed (by the iterative scheme), we have

S̃ε(v) = εj
(−�RN wj + wj − pw

p−1
0 wj

)+ ε
(−ε2μ−2�Ke + λ0e

)
Z

+ εjFj + εjEj eZ + εjAi
j (εy, ξ̄ ;Φ0, . . . ,Φj−3)e∂iZ

+ εjBi�
j (εy, ξ̄ ;Φ0, . . . ,Φj−3)e∂

2
i�Z + εjCi

j (εy, ξ̄ ;Φ0, . . . ,Φj−3) · ∇Ke∂iZ

+ εjDab
j (εy, ξ̄ ;Φ0, . . . ,Φj−3)∂

2
abeZ +O

(
εj+1),

with

Fj = μ−1Γ b
bl∂lwj−1 + 2

3
μ−1Rkisl ξ̄

kΦl
j−2∂

2
isw0

− μ−1
(

g̃abRkabs + 2

3
Rkiis − Γ c

akΓ
a
cs

)
Φk

j−2∂sw0

+ μ−2(2∇Kμ · ∇KΦs
j−2 + μ�KΦs

j−2

)
∂sw0 + 2(hμ)−1(∇Kh · ∇KΦs

j−2

)
∂sw0

+ 2μ−2(∇Kμ · ∇KΦs
j−2

)(
ξ̄ i∂2

isw0
)+ μ−2〈∇NV,Φ0

〉
wj−1 + μ−2〈∇NV,Φj−2

〉
w1

+ μ−2〈∇NV,Φj−1
〉
w0 + μ−2

〈
∇NV,

ξ̄

μ

〉
wj−1 + μ−3∂2

klV (εy,0)Φl
j−2ξ̄

kw0

− p(p − 1)w
p−2
0 w1wj−1 + Gj(εy, ξ̄ ;Φ0, . . . ,Φj−3)

= μ−2〈∇NV,Φj−1
〉
w0 + F̃j

and

Ej = −p(p − 1)w
p−2
0 wj−1 + μ−2〈∇NV,Φj−2

〉+ Ẽj (εy, ξ̄ ;Φ0, . . . ,Φj−3),

where Ai , Bi�, Ci , Dab and ̃Ej are smooth bounded functions on their variables.
j j j j
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Except for ε(−ε2μ−2�Ke + λ0e)Z, the term of order εj vanishes if and only if wj satisfies 
the equation

L0wj = −Fj −Ej eZ −Ai
j (εy, ξ̄ ;Φ0, . . . ,Φj−3)e∂iZ −Bi�

j (εy, ξ̄ ;Φ0, . . . ,Φj−3)e∂
2
i�Z

− Ci
j (εy, ξ̄ ;Φ0, . . . ,Φj−3) · ∇Ke∂iZ −Dab

j (εy, ξ̄ ;Φ0, . . . ,Φj−3)∂
2
abeZ.

By Freedholm alternative this equation is solvable if and only if the right hand side is L2 orthog-
onal to the kernel of linearized operator L0. Before computing the projection against ∂sw0, let us 
recall that

wj−1 = wj−1,1 + σ−1〈H,Φj−2〉U0,

where wj−1,1 ⊥ ∂iw0 is a function which does not involve Φj−2.
As before we look for a solution wj of the form

wj = wj,1 + σ−1〈H,Φj−1〉U0,

where wj,1 ⊥ ∂iw0 solves

L0wj,1 = −F̃j −Ej eZ −Ai
j (εy, ξ̄ ;Φ0, . . . ,Φj−3)e∂iZ −Bi�

j (εy, ξ̄ ;Φ0, . . . ,Φj−3)e∂
2
i�Z

− Ci
j (εy, ξ̄ ;Φ0, . . . ,Φj−3) · ∇Ke∂iZ −Dab

j (εy, ξ̄ ;Φ0, . . . ,Φj−3)∂
2
abeZ.

Since j ≥ 3, we can write

F̃j = F̃j (Φj−2) = Sj,0 + Sj (Φj−2),

where Sj,0 = Sj,0(εy, ξ̄ ; Φ0, . . . , Φj−3) does not involve Φj−2, and Sj (Φj−2) is the sum of 
linear terms of Φj−2. Since

∫
RN

Sj (Φj−2)∂sw0 = μ−1
( ∫
RN

|∂1w0|2
)

(JKΦj−2)
s(εy), (3.27)

the equation on wj,1 (and then on wj ) is solvable if and only if Φj−2 satisfies an equation of the 
form

JKΦj−2 = Hj (ȳ;Φ0, . . . ,Φj−3, e).

This latter equation is solvable by the non-degeneracy condition on K . Moreover, for any given e, 
by induction method one can get Φj−2 = Φj−2(ȳ; e) is a smooth bounded function on ȳ and is 
Lipschitz continuous with respect to e. When this is done, since the right hand side of equation 
of wj,1 is a smooth bounded function of (εy, ξ̄ ), we see at once that wj,1 = wj,1(εy, ξ̄ ) is a 
smooth bounded function of (εy, ξ̄ ). Furthermore, wj,1 = wj,1(εy, ξ̄ ; e) is Lipschitz continuous 
with respect to e.
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Remark 3.1. To get the higher order approximations, our argument only need the expansion of 
the Laplace–Beltrami operator up to second order. It is slightly different from the argument used 
in [32].

3.3. Summary

Let vI be the local approximate solution constructed in the previous section, i.e.,

vI (y, ξ̄ ) = w0(ξ̄ ) +
I∑

�=1

ε�w�(εy, ξ̄ ) + εe(εy)Z(ξ̄ ), (3.28)

for I ∈N+ an arbitrary positive integer.
From the analysis in the previous subsections, the stationary and non-degeneracy conditions 

on K can be seen as conditions such that vI is very close to a genuine solution and can be 
reformulated as follows.

Proposition 3.2. Let Kk be a closed (embedded or immersed) submanifold of Mn. Then the 
stationary condition on K is (3.15), and the non-degeneracy condition on K is equivalent to the 
invertibility of operator JK defined in (3.23).

Summarizing, we have the following proposition by taking j = I + 1, wI+1 = 0, and 
ΦI+1 = 0 in Section 3.2.3.

Proposition 3.3. Let I ≥ 3 be an arbitrary positive integer, for any given smooth functions ΦI−1
and e on K , there are smooth bounded functions

w� = w�,1(εy, ξ̄ ; e) + σ−1〈H,Φ�−1〉U0, � = 1, . . . , I,

and

Φj = Φj(ȳ; e), j = 0, . . . , I − 2,

such that

S̃ε(vI ) = ε
(−ε2μ−2�Ke + λ0e

)
Z + εI+1F̃I+1 + εI+1EI+1eZ

+ εI+1Ai
I+1(εy, ξ̄ ; e)e∂iZ + εI+1Bi�

I+1(εy, ξ̄ ; e)e∂2
i�Z

+ εI+1Ci
I+1(εy, ξ̄ ; e) · ∇Ke∂iZ + εI+1Dab

I+1(εy, ξ̄ ; e)∂2
abeZ +O

(
εI+2), (3.29)

where

F̃I+1 = μ−1Γ b
bl∂lwI + 2

3
μ−1Rkisl ξ̄

kΦl
I−1∂

2
isw0

− μ−1
(

g̃abRkabs + 2

3
Rkiis − Γ c

akΓ
a
cs

)
Φk

I−1∂sw0

+ μ−2(2∇Kμ · ∇KΦs + μ�KΦs
)
∂sw0 + 2(hμ)−1(∇Kh · ∇KΦs

)
∂sw0
I−1 I−1 I−1
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+ 2μ−2(∇Kμ · ∇KΦs
I−1

)(
ξ̄ i∂2

isw0
)+ μ−2〈∇NV,Φ0

〉
wI + μ−2〈∇NV,ΦI−1

〉
w1

+ μ−2
〈
∇NV,

ξ̄

μ

〉
wI + μ−3∂2

klV (εy,0)Φl
I−1ξ̄

kw0 − p(p − 1)w
p−2
0 w1wI

+ GI+1(εy, ξ̄ ; e),
EI+1 = −p(p − 1)w

p−2
0 wI + μ−2〈∇NV,ΦI−1

〉+ ẼI+1(εy, ξ̄ ; e),

and Ai
I+1, Bi�

I+1, Ci
I+1, Dab

I+1, ̃EI+1 and GI+1 are smooth bounded functions on their variables 
and are Lipschitz continuous with respect to e.

Remark 3.2. For example, ̃EI+1 involves the term μ−3∂2
klV (εy, 0)Φl

I−2ξ̄
k .

3.4. Global approximation

In the previous sections, some very accurate local approximate solution vI have been defined.
Denote

uI (y, ξ) = h(εy)vI (y, ξ̄ ),

in the Fermi coordinate. Since K is compact, by the definition of Fermi coordinate, there is a 
constant δ > 0 such that the normal coordinate x on Kε is well-defined for |x| < 1000δ/ε.

Now we can simply define our global approximation:

W(z) = ηε
3δ(x)uI (y, ξ) for z ∈ Mε, (3.30)

where ηε
�δ(x) := η(

ε|x|
�δ

) and η is a nonnegative smooth cutoff function such that

η(t) = 1 if |t | < 1 and η(t) = 0 if |t | > 2.

It is easy to see that W has the concentration property as required. Note that W depends on the 
parameter functions ΦI−1 and e, thus we can write W = W(·; ΦI−1, e) and define the configu-
ration space of (ΦI−1, e) by

Λ :=
{

(ΦI−1, e)

∣∣∣ ‖ΦI−1‖C0,α(K) + ‖∇ΦI−1‖C0,α(K) + ‖∇2ΦI−1‖C0,α(K) ≤ 1,

‖e‖C0,α(K) + ε‖∇e‖C0,α(K) + ε2‖∇2e‖C0,α(K) ≤ 1

}
. (3.31)

Clearly, the configuration space Λ is infinite dimensional.
For (ΦI−1, e) ∈ Λ, it is not difficult to show that for any 0 < τ < 1, there is a positive con-

stant C (independent of ε, ΦI−1, e) such that

∣∣vI (y, ξ̄ )
∣∣≤ Ce−τ |ξ̄ |, ∀(y, ξ̄ ) ∈ Kε ×R

N. (3.32)
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4. An infinite dimensional reduction and the proof of Theorem 1.1

To construct the solutions stated in Theorem 1.1, we will apply the so-called infinite di-
mensional reduction which can be seen as a generalization of the classical Lyapunov–Schmidt 
reduction in an infinite dimensional setting. It has been used in many constructions in PDE and 
geometric analysis. We present it here in a rather simple and synthetic way since it uses many 
ideas which have been developed by all the different authors working on this subject or on closely 
related problems. In particular, we are benefited from the ideas and tricks in [8,31,32].

4.1. Setting-up of the problem

Given (ΦI−1, e) ∈ Λ, we have defined a global approximate solution W . An infinite dimen-
sional reduction will be applied to claim that there exist ΦI−1 and e such that a small perturbation 
of the global approximation W is a genuine solution.

For this purpose, we denote

E := −�gW + V (εz)W − Wp,

Lε[φ] := −�gφ + V (εz)φ − pWp−1φ,

and

N(φ) := −[(W + φ)p − Wp − pWp−1φ
]
.

Obviously, W + φ is a solution of Eq. (3.1) is equivalent to

Lε[φ] + E + N(φ) = 0. (4.1)

To solve (4.1), we look for a solution φ of the form

φ := ηε
3δφ

� + φ�,

where φ� : Mε → R and φ� : Kε ×R
N → R. This nice argument has been used in [8,31,32] and 

is called the gluing technique. It seems rather counterintuitive, but this strategy will make the 
linear theory of Lε clear.

An easy computation shows that

−Lε[φ] = ηε
3δ

(
�gφ

� − V φ� + pWp−1φ�
)+ �gφ

� − V φ� + pWp−1φ�

+ (�gη
ε
3δ

)
φ� + 2∇gη

ε
3δ · ∇gφ

�.

Therefore, φ is a solution of (4.1) if the pair (φ�, φ�) satisfies the following coupled system:{
�gφ

� − V φ� = −(�gη
ε
3δ)φ

� − 2∇gη
ε
3δ · ∇gφ

� + (1 − ηε
δ)[E + N(ηε

3δφ
� + φ�) − pWp−1φ�],

ηε
3δ(�gφ

� − V φ� + pWp−1φ�) = ηε
δ [E + N(ηε

3δφ
� + φ�) − pWp−1φ�].

In order to solve the above system, we first define

L�
[
φ�
] := �gφ

� − V φ� on Mε, (4.2)
ε
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and note that it is a strongly coercive operator thanks to the conditions on the potential V , 
see (1.2). Then, in the support of ηε

3δ , we define

φ� := h(εy)φ∗(y, ξ̄ ), with φ∗ : Kε ×R
N → R.

A straightforward computation as in Section 3.1 yields

ηε
3δ

(
�gφ

� − V φ� + pWp−1φ�
)

= ηε
3δh

p
(
�RN φ∗ + μ−2�Kεφ

∗ − φ∗ + (ηε
3δ

)p−1
pv

p−1
I φ∗ + B̃

[
φ∗]),

where B̃ = O(ε) is a linear operator defined in Section 3.1. Now we extend the linear operator 
B̃ to Kε ×R

N and we define

Lε

[
φ∗] := �RN φ∗ + μ−2�Kεφ

∗ − φ∗ + (ηε
3δ

)p−1
pv

p−1
I φ∗ + ηε

6δB̃
[
φ∗] on Kε ×R

N,

and

L∗
ε

[
φ∗] := �RN φ∗ + μ−2�Kεφ

∗ − φ∗ + pw
p−1
0 φ∗ = −L0

[
φ∗]+ μ−2�Kεφ

∗ on Kε ×R
N.

Since ηε
3δ · ηε

δ = ηε
δ and ηε

3δ · ηε
6δ = ηε

3δ , φ is a solution of (4.1) if the pair (φ�, φ∗) solves the 
following coupled system:{

L
�
ε[φ�] = −(�gη

ε
3δ)hφ∗ − 2∇gη

ε
3δ · ∇g(hφ∗) + (1 − ηε

δ)[E + N(ηε
3δφ

� + φ�) − pWp−1φ�],
L∗

ε [φ∗] = ηε
δh

−p[E + N(ηε
3δhφ∗ + φ�) − pWp−1φ�] − (Lε − L∗

ε)[φ∗].

It is easy to check that

−(�gη
ε
3δ

)
hφ∗ − 2∇gη

ε
3δ · ∇g

(
hφ∗)= (1 − ηε

δ

)[−(�gη
ε
3δ

)
hφ∗ − 2∇gη

ε
3δ · ∇g

(
hφ∗)]

and (
1 − ηε

δ

)= (1 − ηε
δ

)(
1 − ηε

δ/2

)
.

Now, we define

Nε

(
φ�,φ∗,ΦI−1, e

) := −(�gη
ε
3δ

)
hφ∗ − 2∇gη

ε
3δ · ∇g

(
hφ∗)

+ (1 − ηε
δ/2

)[
E + N

(
ηε

3δφ
� + φ�

)− pWp−1φ�
]
,

and

Mε

(
φ�,φ∗,ΦI−1, e

) := ηε
δh

−p
[
E + N

(
ηε

3δhφ∗ + φ�
)− pWp−1φ�

]− (Lε − L∗
ε

)[
φ∗].

Then W + φ is a solution of Eq. (3.1) if (φ�, φ∗, ΦI−1, e) solves the following system:{
L

�
ε[φ�] = (1 − ηε

δ)Nε(φ
�,φ∗,ΦI−1, e),

L∗[φ∗] =M (φ�,φ∗,Φ , e).
(4.3)
ε ε I−1
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To solve the above system (4.3), we first study the linear theory: on one hand, since the oper-
ator L�

ε is strongly coercive, then we have the solvability of equation L�
ε[φ�] = ψ . On the other 

hand, one can check at once that L∗
ε has bounded kernels, e.g., ∂jw0, j = 1, . . . , N . Actually, 

since L0 has a negative eigenvalue λ0 with the corresponding eigenfunction Z, there may be 
more bounded kernels of L∗

ε .
Let ψ be a function defined on Kε ×R

N , we define Π to be the L2(dξ̄ )-orthogonal projection 
on ∂jw0’s and Z, namely

Π [ψ] := (Π1[ψ], . . . ,ΠN [ψ],ΠN+1[ψ]), (4.4)

where for j = 1, . . . , N ,

Πj [ψ] := 1

c0

∫
RN

ψ(y, ξ̄ )∂jw0(ξ̄ )dξ̄ , with c0 =
∫
RN

|∂1w0|2dξ̄ ,

and

ΠN+1[ψ] :=
∫
RN

ψ(y, ξ̄ )Z(ξ̄ )dξ̄ .

Let us also denote by Π⊥ the orthogonal projection on the orthogonal of ∂jw0’s and Z, namely

Π⊥[ψ] := ψ −
N∑

j=1

Πj [ψ]∂jw0 − ΠN+1[ψ]Z.

With these notations, as in the Lyapunov–Schmidt reduction, solving the system (4.3) amounts 
to solving the system ⎧⎨⎩L

�
ε[φ�] = (1 − ηε

δ)Nε(φ
�,φ∗,ΦI−1, e),

L∗
ε [φ∗] = Π⊥[Mε(φ

�,φ∗,ΦI−1, e)],
Π [Mε(φ

�,φ∗,ΦI−1, e)] = 0.

(4.5)

It is to see that one can write

E = ηε
3δh

pS̃ε(vI ) − (�gη
ε
3δ

)
(hvI ) − 2

(∇gη
ε
3δ

) · ∇g(hvI ) − ηε
3δ

[(
ηε

3δ

)p−1 − 1
]
hpv

p
I .

Hence by Proposition 3.3,

Mε

(
φ�,φ∗,ΦI−1, e

)= ε
(−ε2μ−2�Ke + λ0e

)
Z + εI+1SI+1(ΦI−1)

+ εI+1GI+1(εy, ξ̄ ; e) + εI+2JI+1(εy, ξ̄ ;ΦI−1, e)

+ ηε
δh

−p
[
N
(
ηε

3δhφ∗ + φ�
)− pWp−1φ�

]− (Lε − L∗
ε

)[
φ∗].

On the other hand, since∫
N

SI+1(ΦI−1)∂sw0 = c0μ
−1(JKΦI−1)

s(εy), (4.6)
R
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by some rather tedious and technical computations, one can show that

Π
[
Mε

(
φ�,φ∗,ΦI−1, e

)]= 0

⇐⇒
{

εI+1JK [ΦI−1] = εI+1HI+1(ȳ; e) +Mε,1(φ
�,φ∗,ΦI−1, e);

εKε[e] =Mε,2(φ
�,φ∗,ΦI−1, e),

(4.7)

where HI+1(ȳ; e) is a smooth bounded function on ȳ and is Lipschitz continuous with respect 
to e, JK is the Jacobi operator on K , and Kε is a Schrödinger operator defined by

Kε[e] := −ε2�Ke + λ0μ
2e (4.8)

where λ0 is the unique negative eigenvalue of L0.
We summarize the above discussion by saying that the function

u = W(·;ΦI−1, e) + ηε
3δhφ∗ + φ�,

is a solution of the equation

�gu − V (εz)u + up = 0,

if the functions φ�, φ∗, ΦI−1 and e satisfy the following system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L

�
ε[φ�] = (1 − ηε

δ)Nε(φ
�,φ∗,ΦI−1, e),

L∗
ε [φ∗] = Π⊥[Mε(φ

�,φ∗,ΦI−1, e)],
εI+1JK [ΦI−1] = εI+1HI+1(ȳ; e) +Mε,1(φ

�,φ∗,ΦI−1, e),

εKε[e] =Mε,2(φ
�,φ∗,ΦI−1, e).

(4.9)

Remark 4.1.

(1) In general there are two different approaches to set-up the problem: the first one, as used in 
[8] and [32], consists in solving first the equations of φ� and φ∗ for fixed ΦI−1 and e, and 
then solve the left equations of ΦI−1 and e. The second one, as in [21,24] consists in solving 
first the linear problem Lε[φ] + ψ = 0 under some non-degeneracy and gap conditions; and 
then solve the nonlinear problem Lε[φ] + E + N(φ) = 0 by using a fixed point arguments.
Our approach is slightly different from those in [8–33] and [21,23,24].

(2) After solving the system (4.9), one can prove the positivity of u by contradiction since both 
φ� and φ∗ are small.

4.2. Analysis of the linear operators

By the above analysis, what is left is to show that (4.9) has a solution. To this end, we will 
apply a fixed point theorem. Before we do this, a linear theory will be developed.
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4.2.1. Analysis of a strongly coercive operator
To deal with the term −ηε

δh
−ppWp−1φ� in Mε(φ

�, φ∗, ΦI−1, e) in applying a fixed point 
theorem, one needs to choose norms with the property that Mε(φ

�, φ∗, ΦI−1, e) depends slowly 
on φ�. To this end, we define

∥∥φ�
∥∥

ε,∞ = ∥∥(1 − ηε
δ/4

)
φ�
∥∥∞ + 1

ε

∥∥ηε
δ/4φ

�
∥∥∞. (4.10)

With this notation, by the exponential decay of W , we have

∥∥Mε

(
φ�,φ∗,ΦI−1, e

)∥∥∞ ≤ Cε
∥∥φ�
∥∥

ε,∞

and

∥∥Mε

(
φ

�
1, φ

∗,ΦI−1, e
)−Mε

(
φ

�
2, φ

∗,ΦI−1, e
)∥∥∞ ≤ Cε

∥∥φ�
1 − φ

�
2

∥∥
ε,∞.

Since (1.2), we have the following lemma.

Lemma 4.1. For any function ψ(z) ∈ L∞(Mε), there is a unique bounded solution φ of

L�
ε[φ] = (1 − ηε

δ

)
ψ. (4.11)

Moreover, there exists a constant C > 0 (independent of ε) such that

‖φ‖ε,∞ ≤ C‖ψ‖∞. (4.12)

For φ� ∈ C
0,α
0 (Mε), we define

∥∥φ�
∥∥

ε,α
= ∥∥(1 − ηε

δ/4

)
φ�
∥∥

C
0,α
0

+ 1

ε

∥∥ηε
δ/4φ

�
∥∥

C
0,α
0

. (4.13)

As a consequence of standard elliptic estimates, the following lemma holds.

Lemma 4.2. For any function ψ ∈ C
0,α
0 (Mε), there is a unique solution φ ∈ C

2,α
0 (Mε) of

L�
ε[φ] = (1 − ηε

δ

)
ψ. (4.14)

Moreover, there exists a constant C > 0 (independent of ε) such that

‖φ‖2,ε,α := ‖φ‖ε,α + ‖∇φ‖ε,α + ∥∥∇2φ
∥∥

ε,α
≤ C‖ψ‖

C
2,α
0 (Mε)

. (4.15)
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4.2.2. Study of the model linear operator L∗
ε

First, we will prove an injectivity result which is the key result. Then, we will use this result 
to obtain an a priori estimate and the existence result for solutions of L∗

ε[φ] = ψ when Π [φ] =
0 = Π [ψ].

Lemma 4.3 (The injectivity result). Suppose that φ ∈ L∞(Kε × R
N) satisfies L∗

ε [φ] = 0 and 
Π [φ] = 0. Then φ ≡ 0.

Proof. We will prove this lemma by two steps.
Step 1: The function φ(y, ξ̄ ) decays exponentially in the variables ξ̄ .
To prove this fact, it suffices to apply the maximum principle since w0(ξ̄ ) has exponential 

decay and φ is bounded.
Step 2: We next prove that

f (y) :=
∫
RN

φ2(y, ξ̄ )dξ̄ = 0, ∀y ∈ Kε.

Indeed, by Step 1, for all y ∈ Kε , f (y) is well-defined. Since L∗
ε[φ] = 0, we have

�Kεf =
∫
RN

2φ�Kεφdξ̄ +
∫
RN

2|∇Kεφ|2dξ̄

= 2μ2
∫
RN

{|∇ξ̄ φ|2 + φ2 − pw
p−1
0 φ2}dξ̄ + 2

∫
RN

|∇Kεφ|2dξ̄

≥ 2μ2γ0

∫
RN

φ2(y, ξ̄ )dξ̄ ,

where in the last inequality since Π [φ] = 0 we use the following inequality∫
RN

{|∇ξ̄ φ|2 + φ2 − pw
p−1
0 φ2}dξ̄ ≥ γ0

∫
RN

φ2dξ̄ . (4.16)

Therefore, by the definition of f , the above inequality gives

�Kεf ≥ 2μ2γ0f.

Since f is nonnegative and Kε is compact, we just get f ≡ 0 by the integration. If Kε is non-
compact, one can first show that f goes to zero at infinity by the comparison theorem and then 
get f ≡ 0 by the maximum principle. �
Remark 4.2. Actually, following the argument of proof of Lemma 3.7 in [31], one can show that

φ =
N∑

cj (y)∂jw0 + cN+1(y)Z, (4.17)

j=1
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if φ is a bounded solution of L∗
ε[φ] = 0, where cj (y) (j = 1, . . . , N ) can be any bounded func-

tion, but cN+1(y) must satisfy the equation

�Kεc
N+1 = λ0μ

2cN+1. (4.18)

It is worth noting that (4.18) is just another form of Kε[e] = 0. When ε satisfies some gap 
condition (cf. Proposition 4.3 below), Eq. (4.18) does not have a bounded solution.

Moreover, one can show that under the orthogonal conditions Π [φ] = 0, the linear operator L∗
ε

has only negative eigenvalues λε
j ’s and there exists a constant c0 such that

λε
j ≤ −c0 < 0.

To prove it, since μ2 = V (ȳ, 0) and (1.2), the inequality (4.16) implies∫
Kε×RN

−L∗
ε [φ]φ ≥ c

∫
Kε×RN

(−L∗
ε [φ])(μ2φ

)≥ cγ0

∫
Kε×RN

φ2.

Before stating the surjectivity result, we define

‖ψ‖ε,α,ρ := sup
(y,ξ̄ )∈Kε×RN

eρ|ξ̄ |‖ψ‖C0,α(B1((y,ξ̄ ))),

where α and ρ are small positive constants.

Proposition 4.1 (The surjectivity result). For any function ψ with ‖ψ‖α,σ < ∞ and Π [ψ] = 0, 
the problem

L∗
ε [φ] = ψ (4.19)

has a unique solution φ with Π [φ] = 0. Moreover, the following estimate holds:

‖φ‖2,ε,α,ρ := ‖φ‖ε,α,ρ + ‖∇φ‖ε,α,ρ + ∥∥∇2φ
∥∥

ε,α,ρ
≤ C‖ψ‖ε,α,ρ, (4.20)

where C is a constant independent of ε.

Remark 4.3. Here we choose to use weighted Hölder norms, actually one can also use weighted 
Sobolev norms.

4.2.3. Non-degeneracy condition and invertibility of JK

Proposition 4.2. Suppose that K is non-degenerate, then for any Ψ ∈ (C0,α(K))N ∩ NK , there 
exists a unique Φ ∈ (C2,α(K))N ∩ NK such that

JK [Φ] = Ψ (4.21)
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with the property

‖Φ‖2,α := ‖Φ‖C0,α(K) + ‖∇Φ‖C0,α(K) + ∥∥∇2Φ
∥∥

C0,α(K)
≤ C‖Ψ ‖C0,α(K), (4.22)

where C is a positive constant depending only on K .

Proof. Since the Jacobi operator JK is self-adjoint, this result follows from the standard elliptic 
estimates, cf. [15,18]. �
4.2.4. Gap condition and invertibility of Kε

Proposition 4.3. There is a sequence ε = εj ↘ 0 such that for any ϕ ∈ C0,α(K), there exists a 
unique e ∈ C2,α(K) such that

Kε[e] = ϕ (4.23)

with the property

‖e‖∗ := ‖e‖C0,α(K) + ε‖∇e‖C0,α(K) + ε2
∥∥∇2e

∥∥
C0,α(K)

≤ Cε−3k‖ϕ‖C0,α(K), (4.24)

where C is a positive constant independent of εj .

Proof. This is a semiclassical analysis of a Schrödinger operator. The arguments are similar in 
spirit as the ones used in the proof of Proposition 8.1 in [32]. We summarize them in the following 
two steps.

Step 1: There is a sequence εj ↘ 0 such that for any ϕ ∈ L2(K), there exists a unique solution 
to (4.23) and satisfies

‖e‖L2(K) ≤ Cε−k
j ‖ϕ‖L2(K). (4.25)

This fact follows from the variational characterization of the eigenvalues and the Weyl’s 
asymptotic formula.

Step 2: The unique solution satisfies (4.24). This follows from standard elliptic estimates and 
Sobolev embedding theorem. �
4.3. The nonlinear scheme

Now we can develop the nonlinear theory and complete the proof of Theorem 1.1.

4.3.1. Size of the error
Lemma 4.4. There is a constant C independent of ε such that the following estimates hold:∥∥Nε(0,0,0,0)

∥∥
C

2,α
0 (Mε)

+ ∥∥Π⊥[Mε(0,0,0,0)
]∥∥

ε,α,ρ
≤ CεI+1. (4.26)

Moreover,∥∥Mε,1(0,0,0,0)
∥∥

C0,α(K)
≤ CεI+2,

∥∥Mε,2(0,0,0,0)
∥∥

C0,α(K)
≤ CεI+1. (4.27)

Proof. It follows from the definitions and the estimate (3.32). �
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4.3.2. Lipschitz continuity
According to the estimate of error, we define

Bλ := {(φ�,φ∗,ΦI−1, e
) ∣∣∥∥φ�

∥∥
2,ε,α

≤ λεI+1,
∥∥φ∗∥∥

2,ε,α,ρ
≤ λεI+1,‖ΦI−1‖2,α ≤ λε,‖e‖∗ ≤ λεI−3k

}
. (4.28)

Lemma 4.5. Given (φ�
1, φ

∗
1 , ΦI−1, e1), (φ

�
2, φ

∗
2 , Φ̃I−1, e2) ∈ Bλ, there is a constant C indepen-

dent of ε such that the following estimates hold:

∥∥Nε

(
φ

�
1, φ

∗
1 ,ΦI−1, e1

)−Nε

(
φ

�
2, φ

∗
2 , Φ̃I−1, e2

)∥∥
C

2,α
0 (Mε)

≤ CεI+1(∥∥φ�
1 − φ

�
2

∥∥
2,ε,α

+ ∥∥φ∗
1 − φ∗

2

∥∥
2,ε,α,ρ

+ ‖ΦI−1 − Φ̃I−1‖2,α + ‖e1 − e2‖∗
)
,∥∥Π⊥[Mε

(
φ

�
1, φ

∗
1 ,ΦI−1, e1

)]− Π⊥[Mε

(
φ

�
2, φ

∗
2 , Φ̃I−1, e2

)]∥∥
ε,α,ρ

≤ CεI+1(∥∥φ�
1 − φ

�
2

∥∥
2,ε,α

+ ∥∥φ∗
1 − φ∗

2

∥∥
2,ε,α,ρ

+ ‖ΦI−1 − Φ̃I−1‖2,α + ‖e1 − e2‖∗
)
,∥∥Mε,1

(
φ

�
1, φ

∗
1 ,ΦI−1, e1

)−Mε,1
(
φ

�
2, φ

∗
2 , Φ̃I−1, e2

)∥∥
C0,α(K)

≤ CεI+2(∥∥φ�
1 − φ

�
2

∥∥
2,ε,α

+ ∥∥φ∗
1 − φ∗

2

∥∥
2,ε,α,ρ

+ ‖ΦI−1 − Φ̃I−1‖2,α + ‖e1 − e2‖∗
)
,

and

∥∥Mε,2
(
φ

�
1, φ

∗
1 ,ΦI−1, e1

)−Mε,2
(
φ

�
2, φ

∗
2 , Φ̃I−1, e2

)∥∥
C0,α(K)

≤ CεI+1(∥∥φ�
1 − φ

�
2

∥∥
2,ε,α

+ ∥∥φ∗
1 − φ∗

2

∥∥
2,ε,α,ρ

+ ‖ΦI−1 − Φ̃I−1‖2,α + ‖e1 − e2‖∗
)
.

Proof. This proof is rather technical but does not offer any real difficulty. It is worth not-
ing that the use of the norm ‖φ�‖2,ε,α is crucial to estimate the term −ηε

δh
−ppWp−1φ� in 

Mε(φ
�, φ∗, ΦI−1, e). �

4.3.3. Proof of Theorem 1.1
By the analysis in Section 4.1, the proof of Theorem 1.1 follows from the solvability of (4.9).
Now we can use the results in the linear theory to rephrase the solvability of (4.9) as a fixed 

point problem. To do this, let ΦI−1 = ΦI−1,0 + Φ̃I−1, where ΦI−1,0 solve the equation

JK [ΦI−1,0] =HI+1(ȳ; e). (4.29)

Thus ΦI−1,0 = ΦI−1,0(ȳ; e). Moreover, the reduced system (4.9) becomes

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L

�
ε[φ�] = (1 − ηε

δ)Nε(φ
�,φ∗,ΦI−1, e),

L∗
ε [φ∗] = Π⊥[Mε(φ

�,φ∗,ΦI−1, e)],
εI+1JK [Φ̃I−1] = M̃ε,1(φ

�,φ∗, Φ̃I−1, e),˜ � ∗ ˜
(4.30)
εKε[e] =Mε,2(φ ,φ ,ΦI−1, e).
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It is a simple matter to check that both M̃ε,1 and M̃ε,2 satisfy the properties in Lemmas 4.4
and 4.5. Taking I ≥ 3k + 1 and λ sufficiently large, Theorem 1.1 is now a simple consequence 
of a fixed point theorem for contraction mapping in Bλ.
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Appendix A. Proof of Proposition 2.1

The proof is based on the Taylor expansion of the metric coefficients. We recall that the 
Laplace–Beltrami operator is given by

�gu = 1√
detg

∂α

(√
detggαβ∂βu

)
which can be rewritten as

�gu = gαβ∂2
αβu + (∂αgαβ

)
∂βu + 1

2
gαβ∂α(log detg)∂βu.

Using the expansion of the metric coefficients determined above, we can easily prove that

gαβ∂2
αβu

= g̃ab∂2
abu + ∂2

iiu + ε
{
g̃cbΓ a

ci + g̃caΓ b
ci

}(
ξ i + Φi

)
g̃ab∂2

abu − 2εg̃ab∂b̄Φ
j ∂2

aju

+ ε2(−g̃cbg̃adRkcdl + g̃acΓ b
dkΓ

d
cl + g̃bcΓ a

dkΓ
d
cl + g̃cdΓ a

dkΓ
b
cl

)(
ξk + Φk

)(
ξ l + Φl

)
∂2
abu

− 4ε2

3
Rkajl

(
ξk + Φk

)(
ξ l + Φl

)
∂2
aju + 2ε2∂b̄Φ

j
{
g̃bcΓ a

ci + g̃acΓ b
ci

}(
ξ i + Φi

)
∂2
aju

− ε2

3
Rkijl

(
ξk + Φk

)(
ξ l + Φl

)
∂2
ij u + ε2g̃ab∂āΦ

i∂b̄Φ
j ∂2

ij u

+ R3(ξ,Φ,∇Φ)
(
∂2
ij u + ∂2

aju + ∂2
abu
)
.

An easy computations yields

∂bg
ab = ∂bg̃

ab + ε2∂b̄

{
g̃cbΓ a

ci + g̃caΓ b
ci

}(
ξ i + Φi

)+ ε2{g̃cbΓ a
ci + g̃caΓ b

ci

}
∂b̄Φ

i

+ R3
(
ξ,Φ,∇Φ,∇2Φ

)
,

∂j g
ja = −2

3
ε2Rjajl

(
ξ l + Φl

)+ ε2∂b̄Φ
j
{
g̃bcΓ a

cj + g̃acΓ b
cj

}+ R3(ξ,Φ,∇Φ),

∂ag
aj = −ε2∂āg̃

ab∂b̄Φ
j − ε2g̃ab∂2

āb̄
Φj + ε3∂2

āb̄
Φj
{
g̃bcΓ a

ci + g̃acΓ b
ci

}(
ξ i + Φi

)
+ R3

(
ξ,Φ,∇Φ,∇2Φ

)
,
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∂ig
ij = −1

3
ε2Rkiji

(
ξk + Φk

)+ R3(ξ,Φ,∇Φ).

Then the following expansion holds

(
∂αgαβ

)
∂βu

= ∂bg̃
ab∂au + ε2∂b̄

{
g̃cbΓ a

ci + g̃caΓ b
ci

}(
ξ i + Φi

)
∂au + ε2{g̃cbΓ a

ci + g̃caΓ b
ci

}
∂b̄Φ

i∂au

− 2

3
ε2Rjajl

(
ξ l + Φl

)
∂au + ε2∂b̄Φ

j
{
g̃bcΓ a

cj + g̃acΓ b
cj

}
∂au

− ε2∂āg̃
ab∂b̄Φ

j∂ju − ε2g̃ab∂2
āb̄

Φj ∂ju + ε3∂2
āb̄

Φj
{
g̃bcΓ a

ci + g̃acΓ b
ci

}(
ξ i + Φi

)
∂ju

− 1

3
ε2Rkiji

(
ξk + Φk

)
∂ju + R3

(
ξ,Φ,∇Φ,∇2Φ

)
(∂ju + ∂au).

On the other hand using the expansion of the log of determinant of g given in Lemma 2.3, we 
obtain

∂b log(detg) = ∂b log(det g̃) − 2ε2∂b̄

(
Γ a

ak

)(
ξk + Φk

)− 2ε2Γ a
ak∂b̄Φ

k + R3
(
ξ,Φ,∇Φ,∇2Φ

)
,

and

∂i(log detg) = −2εΓ b
bi + 2ε2

(
g̃abRkabi + 1

3
Rkjji − Γ c

akΓ
a
ci

)(
ξk + Φk

)+ R3(ξ,Φ,∇Φ),

which implies that

1

2
gαβ∂α(log detg)∂βu

= 1

2
∂a(log det g̃)

(
g̃ab∂bu + ε

{
g̃cbΓ a

ci + g̃caΓ b
ci

}(
ξ i + Φi

)
∂bu − εg̃ab∂b̄Φ

j∂ju
)

− εΓ b
bi∂iu + ε2

(
g̃abRkabi + 1

3
Rkjji − Γ c

akΓ
a
ci

)(
ξk + Φk

)
∂iu

− ε2(∂b̄

(
Γ d

dk

)(
ξk + Φk

)+ Γ d
dk∂b̄Φ

k
)
g̃ab∂au + R3

(
ξ,Φ,∇Φ,∇2Φ

)
(∂ju + ∂au).

Collecting the above terms and recalling that

�Kεu = g̃ab∂2
abu + (∂ag̃

ab
)
∂bu + 1

2
g̃ab∂a(log det g̃)∂bu,

the desired result then follows at once.
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