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Abstract. Let 0 < s < 1 and 1 < p < 2 be such that ps < N and let Ω be
a bounded domain containing the origin. In this paper we prove the following

improved Hardy inequality:

given 1 6 q < p, there exists a positive constant C ≡ C(Ω, q,N, s) such that∫
IRN

∫
IRN

|u(x)− u(y)|p

|x− y|N+ps
dx dy−ΛN,p,s

∫
IRN

|u(x)|p

|x|ps
dx > C

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+qs
dxdy

for all u ∈ C∞0 (Ω). Here ΛN,p,s is the optimal constant in the Hardy inequality
(1.1).

1. Introduction and statement of main results. In [17], Frank and Seiringer
proved the following Hardy inequality: for p > 1 with sp < N and for all φ ∈
C∞0 (RN ), ∫

IRN

∫
IRN

|φ(x)− φ(y)|p

|x− y|N+ps
dxdy > ΛN,p,s

∫
IRN

|φ(x)|p

|x|ps
dx (1.1)

where the constant ΛN,p,s is given by

ΛN,p,s = 2

∫ ∞
0

|1− σ−γ |p−2(1− σ−γ)σN−β−1K(σ) (1.2)

with

K(σ) =

∫
|y′|=1

dHn−1(y′)

|x′ − σy′|N+ps
.

Moreover they proved that if p > 2, then if we set

Gs,p(u) ≡
∫
IRN

∫
IRN

|u(x)− u(y)|p

|x− y|N+ps
dxdy − ΛN,p,s

∫
IRN

|u(x)|p

|x|ps
dx,
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there exists a positive constant C = C(p,N, s) such that for all u ∈ C∞0 (RN ),

Gs,p(u) > C

∫
RN

∫
RN

|v(x)− v(y)|p

|x− y|N+ps
w
p
2 (x)w

p
2 (y) dx dy (1.3)

where w(x) = |x|−
N−ps
p and v(x) =

u(x)

w(x)
. The above inequality turns out to be

equality for p = 2 with C = 1.
For p = 2, the author in [15], proves the following improved Hardy inequality,

Gs,2(u) > C(Ω, q,N, s)‖u‖2
W τ,2

0 (Ω)
for all u ∈ C∞0 (Ω) and all s/2 < τ < s. (1.4)

See also [2] and [14] for alternative proofs without using the Fourier transform.
Following closely the arguments used in [2] and based on the inequality (1.3), the

authors in [1] obtained an improved Hardy inequality stated in the next theorem.

Theorem 1.1. ([1]) Let N > 1, 0 < s < 1, p > 2 with N > ps. Assume that
Ω ⊂ RN is a bounded domain, then for all 1 < q < p, there exists a positive
constant C = C(Ω, q,N, s) such that for all u ∈ C∞0 (Ω),

Gs,p(u) > C

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+qs
dx dy. (1.5)

The first main aim of this note is to extend inequality (1.3) to the range p < 2.
Precisely we prove the following ground state inequality.

Theorem 1.2. Let p < 2, 0 < s < 1 and N > ps. Assume that Ω ⊂ RN is
a bounded domain, then for all 1 < q < p, there exists a positive constant C =
C(Ω, q,N, s) such that for all u ∈ C∞0 (Ω),

Gs,p(u) > C

∫
Ω

∫
Ω

|v(x)− v(y)|p

|x− y|N+qs
w(x)

p
2w(y)

p
2 dxdy. (1.6)

As a consequence, we get the next improved Hardy inequality.

Theorem 1.3. Suppose that the hypotheses of Theorem 1.2 hold, then for all 1 <
q < p, there exists a positive constant C = C(Ω, q,N, s) such that for all u ∈ C∞0 (Ω),

Gs,p(u) > C

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+qs
dx dy. (1.7)

Before closing the introduction we recall the following algebraic inequalities which
will be useful throughout the paper. The first result is proved in [17].

Lemma 1.4. ([17]) Assume that p > 1, then for all 0 6 t 6 1 and a ∈ C, we have

|a− t|p > (1− t)p−1(|a|p − t). (1.8)

The second one is proved in [24].

Lemma 1.5. ([24]) For any 1 < p < 2 there exists a constant c ≡ c(p) > 0 such
that for all a, b ∈ RN we have :

|a|p − |b|p − p|b|p−2〈b, a− b〉 > c
|a− b|2

(|a|+ |b|)2−p (1.9)

and

|a+ b|p − |b|p − p|b|p−2〈b, a〉 6 c|a|p. (1.10)
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The paper is organized as follows. In Section 2 we give some nonlinear tools in
order to get the improved Hardy inequality. In particular we define the weighted
fractional Sobolev space, we prove a Picone’s type inequality in that’s space and
the weighted Hardy inequality.

In Section 3 we prove the main results of the paper. We begin by proving Lemma
3.1 that can be seen as a ground state representation. As a consequence we get the
proof of Theorems 1.2 and 1.3.

2. Some functional setting. In this section we will introduce some notations,
definitions and prove some intermediate lemmas that will be usefull later to prove
the main results of this paper.

Let 1 6 q 6 p, 0 < β < N−qs
2 and Ω ⊂ RN a smooth bounded domain with

0 ∈ Ω, the weighted Sobolev space Xs,p,q,β(Ω) is defined by

Xs,p,q,β(Ω) :=
{
φ ∈ Lp(Ω, dx

|x|2β
) :

∫
Ω

∫
Ω

|φ(x)− φ(y)|p

|x− y|N+qs

dxdy

|x|β |y|β
< +∞

}
.

It is not difficult to prove that Xs,p,β(Ω) is a Banach space endowed with the norm

‖φ‖Xs,p,q,β(Ω) :=
(∫

Ω

|φ(x)|pdx
|x|2β

) 1
p

+
(∫

Ω

∫
Ω

|φ(x)− φ(y)|p

|x− y|N+qs

dxdy

|x|β |y|β
) 1
p

. (2.11)

Now, we define the weighted Sobolev space Xs,p,q,β
0 (Ω) as the completion of C∞0 (Ω)

with respect to the previous norm (2.11).
Following the arguments in [3], see also [12], we can prove the next extension

result.

Lemma 2.1. Assume that Ω ⊂ RN is a smooth domain, then for all w ∈ Xs,p,q,β(Ω),
there exists w̃ ∈ Xs,p,q,β(RN ) such that w̃|Ω = w and

||w̃||Xs,p,q,β(RN ) 6 C||w||Xs,p,q,β(Ω)

where C ≡ C(N, s, p,Ω) > 0.

Remark 2.2. As in the case β = 0 and q = p, if Ω is a smooth bounded domain,

we can endow Xs,p,q,β
0 (Ω) with the equivalent norm

|||φ|||Xs,p,q,β0 (Ω) :=
(∫

Ω

∫
Ω

|φ(x)− φ(y)|p

|x− y|N+qs

dxdy

|x|β |y|β
) 1
p

.

Now, for w ∈ Xs,p,q,β
0 (Ω), we set

L̃(w)(x) ≡ L̃s,p,β(w)(x) = P.V.

∫
RN

|w(x)− w(y)|p−2(w(x)− w(y))

|x− y|N+qs

dy

|x|β |y|β
.

It is clear that for all w, v ∈ Xs,p,qβ(RN ), we have

〈L̃(w), v〉 =

∫
RN

∫
RN

|w(x)− w(y)|p−2(w(x)− w(y))(v(x)− v(y))

|x− y|N+qs

dxdy

|x|β |y|β
.

The next result that we will be needed later is the following Picone’s type in-
equality.
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Lemma 2.3. (Picone’s inequality) Let w ∈ Xs,p,q,β
0 (Ω) be such that w > 0 in Ω.

Assume that L̃(w)(x) > 0, then for all u ∈ C∞0 (Ω), we have

1

2

∫ ∫
Q

|u(x)− u(y)|p

|x− y|N+qs

dxdy

|x|β |y|β
> 〈L̃(w),

|u|p

wp−1
〉

where Q = RN × RN \ (CΩ× CΩ).

Proof. This result has been proven for particular cases of p, q and β. For example,
Leonori et al. in [22] treated the case q = p = 2 and β = 0 and then Abdellaoui et
al. in [1] proved the result for q = p 6= 2. Here, we will give some details for the
case β 6= 0 and 1 < q 6 p.

We set v(x) =
|u(x)|p

|w(x)|p−1
and k(x, y) =

1

|x− y|N+qs|x|β |y|β
, then

〈L̃(w)(w(x)), v(x)〉 =

∫
Ω

v(x)

∫
RN
|w(x)− w(y)|p−2(w(x)− w(y))k(x, y) dy dx

=

∫
Ω

|u(x)|p

|w(x)|p−1

∫
RN
|w(x)− w(y)|p−2(w(x)− w(y))k(x, y) dy dx.

Since k is symmetric, then we clearly get

〈L̃(w)(w(x)), v(x)〉 =

1

2

∫ ∫
Q

(
|u(x)|p

|w(x)|p−1
− |u(y)|p

|w(y)|p−1

)
|w(x)− w(y)|p−2(w(x)− w(y))k(x, y) dy dx.

Now, we define v1 :=
u

w
so that the above quantity can be rewritten as

〈L̃(w)(w(x)), v(x)〉 =

1

2

∫ ∫
Q

(|v1(x)|pw(x)− |v1(y)|pw(y)) |w(x)− w(y)|p−2(w(x)− w(y))k(x, y) dy dx.

We next define

Φ(x, y) := |u(x)−u(y)|p−(|v1(x)|pw(x)− |v1(y)|pw(y)) |w(x)−w(y)|p−2(w(x)−w(y)).

It follows that

〈L̃(w)(w(x)), v(x)〉+
1

2

∫
Q

Φ(x, y)k(x, y) dy dx

=
1

2

∫ ∫
Q

|u(x)− u(y)|pk(x, y) dy dx.

We claim that Φ > 0. Indeed, it is clear, by a symmetry argument, that we can
assume w(x) > w(y). Then, letting t = w(y)/w(x) and a = u(x)/u(y) and using
inequality (1.8), we easily obtain the claim: Φ(x, y) > 0. This proves the lemma.

Now, we prove the following lemma.

Lemma 2.4. Fix 0 < β < N−qs
2 and let w(x) = |x|−γ with 0 < γ <

N − qs− 2β

p− 1
,

then there exists a positive constant Λ(γ) > 0 such that

L̃(w) = Λ(γ)
wp−1

|x|qs+2β
a.e in ∈ RN\{0}. (2.12)
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Proof. Using polar coordinates: r = |x| and ρ = |y| and writing x = rx′, y = ρy′

with |x′| = |y′| = 1, we have that

L̃(w) =
1

|x|β

∫ +∞

0

|r−γ − ρ−γ |p−2 (r−γ − ρ−γ)ρN−1

ρβrN+qs

 ∫
|y′|=1

dHn−1(y′)

|x′ − ρ
r y
′|N+qs

 dρ.

Now, using the change of variables σ =
ρ

r
, we clearly get

L̃(w) =
wp−1(x)

|x|qs+2β

∫ +∞

0

|1− σ−γ |p−2(1− σ−γ)σN−β−1

 ∫
|y′|=1

dHn−1(y′)

|x′ − σy′|N+qs

 dσ.

We set

K(σ) =

∫
|y′|=1

dHn−1(y′)

|x′ − σy′|N+qs
,

since x′ ∈ SN−1, then using a suitable change of variable, we reach that K does not
depend on x′, we refer to to the classical book of Grafakos [19] to see this fact.

Now as in [18], we obtain that

K(σ) = 2
π
N−1

2

Γ(N−1
2 )

∫ π

0

sinN−2(θ)

(1− 2σ cos(θ) + σ2)
N+qs

2

dθ. (2.13)

It is clear that, for σ = 0, we have

K(0) = 2
π
N−1

2

Γ(N−1
2 )

∫ π

0

sinN−2(θ)dθ

and K(σ) ' σ−N−qs as σ → ∞, moveover for σ → 1, we can prove that K(σ) 6
C|σ − 1|−1−qs. Thus we conclude that

L̃(w) =
wp−1(x)

|x|qs+2β

∫ +∞

0

ψ(σ) dσ,

with

ψ(σ) = |1− σ−γ |p−2(1− σ−γ)σN−β−1K(σ). (2.14)

Defining Λ(γ) :=

∫ +∞

0

ψ(σ) dσ, to conclude we just need to show that 0 < Λ(γ) <

∞. For this aim, it is convenient to write

Λ(γ) =

∫ 1

0

ψ(σ) dσ +

∫ ∞
1

ψ(σ) dσ = I1 + I2.

Notice that K( 1
ξ ) = ξN+qsK(ξ) for any ξ > 0, then using the change of variable

ξ = 1
σ in I1, it holds

Λ(γ) =

∫ +∞

1

K(σ)(σγ − 1)p−1
(
σN−1−β−γ(p−1) − σβ+qs−1

)
dσ. (2.15)

As σ →∞, we have

K(σ)(σγ − 1)p−1
(
σN−1−β−γ(p−1) − σβ+qs−1

)
w σ−1−β−ps ∈ L1((2,∞)).
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Now, as σ → 1, we get

K(σ)(σγ − 1)p−1
(
σN−1−β−γ(p−1) − σβ+qs−1

)
w (σ − 1)p−1−qs ∈ L1((1, 2)).

Therefore, combining the above estimates, we get |Λ(γ)| <∞. On the other hand,

since 0 < γ <
N − qs− 2β

p− 1
, then Λ(γ) > 0.

As a summary, we have proved that

L̃(w) = Λ(γ)
wp−1

|x|qs+2β
a.e. in RN\{0},

where clearly the right hand-side
wp−1

|x|qs+2β
∈ L1

loc(RN ). This conclude the proof of

the desired result.

As a consequence we have the following weighted Hardy inequality.

Theorem 2.5. Let β < N−qs
2 , then for all u ∈ C∞0 (RN ), we have

2Λ(γ)

∫
IRN

|u(x)|p

|x|qs+2β
dx 6

∫
IRN

∫
IRN

|u(x)− u(y)|p

|x− y|N+qs

dx

|x|β
dy

|y|β
, (2.16)

where Λ(γ) is defined in (2.15).

Proof. Let u ∈ C∞0 (RN ) and w(x) = |x|−γ with γ <
N − ps− 2β

p− 1
. By Lemma 2.4,

we have

L̃(w) = Λ(γ)
wp−1

|x|qs+2β
.

Since
wp−1

|x|qs+2β
∈ L1

loc(RN ), then using Picone’s inequality in Lemma 2.3, it follows

that

1

2

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+qs

dx

|x|β
dy

|y|β
> 〈L̃(w),

|u|p

wp−1
〉 = Λ(γ)

∫
RN

|u(x)|p

|x|qs+2β
dx.

Thus we conclude.

Fix q 6 p and define

ΛN,p,g,s,β := inf
{φ∈C∞0 (RN )\{0}}

∫
IRN

∫
IRN

|φ(x)− φ(y)|p

|x− y|N+qs|x|β |y|β
dxdy∫

RN

|φ(x)|p

|x|qs+2β
dx

,

then, as in [17] (see also [1]), we can prove that ΛN,p,s,γ = 2Λ(γ0) where γ0 =
N−β−qs

p .

In the case where we consider a smooth bounded domain Ω of RN with 0 ∈ Ω,
we can prove the following Hardy inequality.

Lemma 2.6. Let Ω be a smooth bounded domain such that 0 ∈ Ω, then there exists
a constant C ≡ C(Ω, s, p,N) > 0 such that for all u ∈ C∞0 (Ω), we have

C

∫
Ω

|u(x)|p

|x|qs+2β
dx 6

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+qs

dx

|x|β
dy

|y|β
. (2.17)
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3. Proof of the main results. Let us begin by proving the next Lemma.

Lemma 3.1. Let u ∈ C∞0 (RN ) and define w(x) = |x|−α with α = N−ps
p . Consider

v(x) =
u(x)

w(x)
, then for all 1 6 q < p, we have

∫
RN

∫
RN

|v(x)− v(y)|p

|x− y|N+qs
w(x)

p
2w(y)

p
2 dxdy > C

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+qs
dxdy.

(3.18)

Proof. The integrand in the left hand side can be written as

|v(x)− v(y)|p

|x− y|N+qs
w(x)

p
2w(y)

p
2 =

|w(y)u(x)− w(x)u(y)|p

|x− y|N+qs

1

(w(x)w(y))
p
2

=

∣∣(u(x)− u(y))− u(y)

w(y)
(w(x)− w(y))

∣∣p
|x− y|N+qs

(
w(y)

w(x)

) p
2

:= f1(x, y).

In the same way, thanks to the symmetry of f1(x, y), it immediately follows that

|v(x)− v(y)|p

|x− y|N+qs
(w(x))

p
2 (w(y))

p
2 =

∣∣(u(y)− u(x))− u(x)

w(x)
(w(y)− w(x))

∣∣p
|x− y|N+qs

(
w(x)

w(y)

) p
2

:= f2(x, y).

Hence, we can write the integral of the above term as

H(v) :=

∫
RN

∫
RN

|v(x)− v(y)|p

|x− y|N+qs
w(x)

p
2w(y)

p
2 dxdy

=
1

2

∫
IRN

∫
IRN

f1(x, y) dx dy +
1

2

∫
IRN

∫
IRN

f2(x, y) dx dy.

We define the quantities

Q(x, y) :=
(w(x)w(y))

p
2

w(x)p + w(y)p
,

and

D(x, y) ≡
(
w(x)

w(y)

) p
2

+

(
w(y)

w(x)

) p
2

≡ w(x)p + w(y)p

(w(x)w(y))
p
2

.

It is clear that Q(x, y) 6 1
2 and Q(x, y)D(x, y) = 1. Thus using (1.9), one easily

obtain

f1(x, y) > C Q(x, y)

(
w(y)

w(x)

) p
2

×

[
|u(x)− u(y)|p

|x− y|N+qs
+ p
|u(x)− u(y)|p−2

|x− y|N+qs

〈
u(x)− u(y),

u(y)

w(y)
(w(x)− w(y))

〉]
.
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It then follows that

f1(x, y) >
[
CQ(x, y)

(
w(y)

w(x)

) p
2 |u(x)− u(y)|p

|x− y|N+qs

]

−
[
pCQ(x, y)

(
w(y)

w(x)

) p
2 |u(x)− u(y)|p−1

|x− y|N+qs

∣∣ u(y)

w(y)

∣∣|(w(x)− w(y))|
]
.

The same argument applied to f2 yields

f2(x, y) >
[
CQ(x, y)

(
w(x)

w(y)

) p
2 |u(y)− u(x)|p

|x− y|N+qs

]

−
[
pCQ(x, y)

(
w(x)

w(y)

) p
2 |u(x)− u(y)|p−1

|x− y|N+qs

∣∣ u(x)

w(x)

∣∣|(w(x)− w(y))|
]
.

Combining the above two estimates we get

H(v) > C

∫
RN

∫
RN

Q(x, y)
((w(y)

w(x)

) p
2

+

(
w(x)

w(y)

) p
2 ) |u(x)− u(y)|p

|x− y|N+qs
dx dy

− pC

∫
RN

∫
RN

[
Q(x, y)

(
w(y)

w(x)

) p
2 |u(x)− u(y)|p−1

|x− y|N+qs

∣∣ u(y)

w(y)

∣∣|(w(x)− w(y))|
]
dx dy

− pC

∫
RN

∫
RN

[
Q(x, y)

(
w(x)

w(y)

) p
2 |u(x)− u(y)|p−1

|x− y|N+qs

∣∣ u(x)

w(x)

∣∣|(w(x)− w(y))|
]
dx dy.

Thus

H(v) > C

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+qs
dx dy

− C1(p)

∫
RN

∫
RN

(
h1(x, y) + h2(x, y)

)
dx dy,

(3.19)

with

h1(x, y) = Q(x, y)

(
w(y)

w(x)

) p
2 |u(x)− u(y)|p−1

|x− y|N+qs

∣∣ u(y)

w(y)

∣∣|(w(x)− w(y))|,

h2(x, y) = Q(x, y)

(
w(x)

w(y)

) p
2 |u(x)− u(y)|p−1

|x− y|N+qs

∣∣ u(x)

w(x)

∣∣|(w(x)− w(y))|.

Since h1(x, y) and h2(x, y) are symmetric functions, we just have to estimate the
quantity ∫

RN

∫
RN

h2(x, y) dx dy.

To this aim we use Young’s inequality which yields∫
RN

∫
RN

h2(x, y)dxdy 6 ε

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+qs
dx dy

+ C(ε)

∫
RN

∫
RN

G(x, y) dx dy,

(3.20)

with

G(x, y) = (Q(x, y))p
(
w(x)

w(y)

) p2

2 ∣∣ u(x)

w(x)

∣∣p |(w(x)− w(y))|p

|x− y|N+qs
.
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We claim that

I :=

∫
RN

∫
RN

G(x, y) dx dy 6 C

∫
IRN

∫
IRN

|v(x)− v(y)|p

|x− y|N+qs
w(x)

p
2w(y)

p
2 dxdy.

Indeed, notice that

I =

∫
RN

∫
RN

(u(x))p

|x− y|N+qs

(w(x))p
2−p|(w(x)− w(y))|p

(w(x)p + w(y)p)p
dx dy,

=

∫
RN

up(x)
[ ∫

RN

||x|α − |y|α|p

(|x|αp + |y|αp)p
|y|αp(p−1)

|x− y|N+qs
dy
]
dx.

To compute the above integral, we closely follow the arguments used in [18]. We
set y = ρy′ and x = rx′ with |x′| = |y′| = 1, then

I =

∫
RN

up(x)
[ ∫

RN

||x|α − |y|α|p

(|x|αp + |x|αp)p
|y|αp(p−1)

|x− y|N+qs
dy
]
dx

=

∫
RN

up(x)

∫ ∞
0

(|rα − ρα|pραp(p−1)+N−1

(rpα + ρpα)p

(∫
SN−1

dy′

|ρy′ − rx′|N+qs

)
dρdx.

We set ρ = rσ, then

I =

∫
RN

up(x)

|x|qs

∫ ∞
0

|1− σα|pσαp(p−1)+N−1

(1 + σαp)p

(∫
SN−1

dy′

|σy′ − x′|N+qs

)
dσdx

=

∫
RN

up(x)

|x|qs

∫ ∞
0

|1− σα|pσαp(p−1)+N−1

(1 + σαp)p
K(σ)dσdx

= µ

∫
RN

up(x)

|x|qs
dx,

where

µ =

∫ ∞
0

|1− σα|pσαp(p−1)+N−1

(1 + σαp)p
K(σ)dσ.

As in the proof of Lemma 2.4, we can prove that 0 < µ < ∞. Since u(x) =

v(x)|x|−(N−psp ), we get

I = µ

∫
RN

|v(x)|p

|x|N−s(p−q)
dx.

Let β0 = N−ps
2 + (q−p)s

2 , then β0 <
N−qs

2 . Applying Lemma 2.4, we obtain that

I 6 C

∫
IRN

∫
IRN

|v(x)− v(y)|p

|x− y|N+qs
w(x)

p
2w(y)

p
2 dx dy.

and the claim follows.
As a direct consequence of the above estimates, we have proved that∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+qs
dx dy 6 C

∫
IRN

∫
IRN

|v(x)− v(y)|p

|x− y|N+qs
w(x)

p
2w(y)

p
2 dxdy (3.21)

which is the desired result.
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Remark 3.2. Let Ω be a bounded domain such that 0 ∈ Ω and define

HΩ(v) =

∫
Ω

∫
Ω

|v(x)− v(y)|p

|x− y|N+qs
w(x)

p
2w(y)

p
2 dxdy

where u ∈ C∞0 (Ω) and v(x) = u(x)
w(x) , then using the same arguments as in the proof

of the previous lemma and by the extension Lemma 2.1, we can prove that

HΩ(v) > C(Ω)

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+qs
dxdy. (3.22)

Before proving the main results, we need the next algebraic inequality.

Lemma 3.3. Assume that 1 6 p 6 2, then for all 0 6 t 6 1 and a ∈ R, we have

|a− t|p − (1− t)p−1(|a|p − t) > Cp
|a− 1|2t

(|a− t|+ |1− t|)2−p (3.23)

for some positive constant Cp depending only on p.

Proof. Clearly the above inequality is true for t = 0 and t = 1. In the same way
we can prove that (3.23) holds if a = t. Then we can assume that 0 < t < 1 and
a ∈ R\{t}.

We define α = a−t
1−t . We can rewrite (3.23) in the equivalent form

1

t

{
|α|p − |α(1− t) + t|p − t

1− t

}
> Cp

(α− 1)2

(|α|+ 1)2−p (3.24)

We divide the proof in two cases:
The first case: α > 0. Notice that if (3.24) holds for α > 1 and for all t ∈ (0, 1),
then (3.24) holds in particular for z = 1− t. Thus

1

1− z

{
|α|p − |αz + (1− z)|p − (1− z)

z

}
> Cp

(α− 1)2

(|α|+ 1)2−p . (3.25)

Now, let ξ ∈ (0, 1) and define α = 1
ξ , then α > 1. Substituting α in (3.25) we obtain

that
1

z

{
|ξ|p − |ξ(1− z) + z|p − z

1− z

}
> Cp

(ξ − 1)2

(|ξ|+ 1)2−p .

Thus, it suffices in this case to prove (3.24) for α > 1. For this aim, we define

hα(t) =
|α(1− t) + t|p − t

1− t
.

By a direct computations we obtain that

h′α(t) =
p(1− α)|α(1− t) + t|p−2(α(1− t) + t)− 1

1− t
+
hα(t)

1− t
and

h′′α(t) = 1
(1−t)3

{
|α(1− t) + t|p−2

(
2(α(1− t) + t)2 − 2p(α− 1)(1− t)(α(1− t) + t)

+p(p− 1)(α− 1)2(1− t)2
)
− 2

}
Using the fact that α(1− t) + t = (α− 1)(1− t) + 1, it follows that

h′′α(t) = 1
(1−t)3 ×{

|α(1− t) + t|p−2
(
− (2− p)(p− 1)(α− 1)2(1− t)2 + 2(2− p)(α− 1)(1− t) + 2

)
− 2

}
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Since α(1− t) + t > 1, we claim that h′′α(t) 6 0. Indeed, setting ρ = (α− 1)(1− t),
we clearly have that

h′′α(t) =
1

(1− t)3
T (ρ) =

1

(1− t)3
(ρ+ 1)p−2

(
2 + 2(2− p)ρ− (2− p)(p− 1)ρ2

)
− 2.

A straightforward computations show that T ′(ρ) = −p(p − 1)(2 − p) (ρ+1)p−3

(1−t)3 6 0

since 1 < p < 2. Hence T (ρ) 6 T (0) = 0 and the claim follows.
Now, using Taylor-Maclaurin Formula

hα(t)− hα(0) = th′α(0) +

∫ t

0

(t− s)h′′α(s)ds,

and observing that hα(0) = |α|p and h′α(0) = −(p− 1)|α|p + p|α|p−2α− 1, we have
that

|α|p − |α(1− t) + t|p − t
1− t

= hα(0)− hα(t)

= t((p− 1)|α|p − p|α|p−2α+ 1) +

∫ t

0

(s− t)h′′α(s)ds,

> t((p− 1)|α|p − p|α|p−2α+ 1)

since h′′α 6 0 by the previous claim. Therefore we conclude that

1

t

{
|α|p − |α(1− t) + t|p − t

1− t

}
> ((p− 1)|α|p − p|α|p−2α+ 1).

It is clear that

((p− 1)|α|p − p|α|p−2α+ 1)(|α|+ 1)2−p > Cp(α− 1)2

Hence the result follows in this case.
The second case: α < 0. Setting α̃ = −α, then we need to prove that

1

t

{
|α̃|p − |α̃(1− t)− t|p − t

1− t

}
> Cp

(α̃+ 1)2

(|α̃|+ 1)2−p = (1 + α̃)p ∀ α̃ > 0, t ∈ (0, 1).

(3.26)
It is clear that

1

t

{
|α̃|p − |α̃(1− t)− t|p − t

1− t

}
=

1

t

{
|α̃|p − |α̃(1− t) + t|p − t

1− t

}
+

1

t

{
|α̃(1− t) + t|p

1− t
− |α̃(1− t)− t|p

1− t

}
We set

R1(α̃, t) =
1

t

{
|α̃|p − |α̃(1− t) + t|p − t

1− t

}
and

R2(α̃, t) =
1

t

{
|α̃(1− t) + t|p

1− t
− |α̃(1− t)− t|p

1− t

}
Since α̃ > 0, then R2(ã, t) > 0. Now, using the first step we reach that

R1(α̃, t)(|α̃|+ 1)2−p) > C(p)(α̃− 1)2.

It is clear that, independently of the values of R2 and t ∈ (0, 1),

(α̃− 1)2 > C̄(α̃+ 1)2 for all α̃ ∈ IR+ \ (
2

3
,

3

2
).
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Hence we will consider the case α̃ ∈ [ 2
3 ,

3
2 ]. To get the desired result it suffices to

show that

R2(α̃, t) > C2 > 0 for all (α̃, t) ∈ [
2

3
,

3

2
]× (0, 1). (3.27)

By a direct computation we get

∂

∂α̃
R2(α̃, t) =

p

t

(
|α̃(1− t) + t|p−1 − |α̃(1− t)− t|p−2(α̃(1− t)− t)

)
This quantity is clearly positive, then R2 is increasing in α̃ and we obtain that

R2(α̃, t) > R2(
2

3
, t) =

( 2
3 )p

t(1− t)

(
|1+

1

2
t|p−|1−5

2
t|p
)

> Cp for all (α̃, t) ∈ [
2

3
,

3

2
]×(0, 1)

Indeed, we use Formula (1.9) with a = 1 + 1
2 t and b = |1− 5

2 t|. For t < 2
5 Formula

(1.9) yields

|1 +
1

2
t|p − |1− 5

2
t|p > c

9t2

(|1 + 1
2 t|+ |1−

5
2 t|)2−p + 3pt|1− 5

2
t|p−1

and for t > 2
5 Formula (1.9) yields

|1 +
1

2
t|p − |1− 5

2
t|p > c

4(1− t)2

(|1 + 1
2 t|+ |1−

5
2 t|)2−p + 2p(1− t)|1− 5

2
t|p−1.

Clearly in the two cases we have that

1

t(1− t)

(
|1 +

1

2
t|p − |1− 5

2
t|p
)

> Cp.

This proves (3.27). Thus (3.26) follows and then we conclude.

We have now all the ingredients to prove Theorem 1.2. This is the aim of the
next subsection.

3.1. Proof of Theorem 1.2. Recalling the definitions given in the proof of Lemma
3.1

|v(x)− v(y)|p

|x− y|N+qs
w(x)

p
2w(y)

p
2 = f1(x, y) = f2(x, y)

where

f1(x, y) =

∣∣(u(x)− u(y))− u(y)

w(y)
(w(x)− w(y))

∣∣p
|x− y|N+qs

(
w(y)

w(x)

) p
2

and

f2(x, y) =

∣∣(u(y)− u(x))− u(x)

w(x)
(w(y)− w(x))

∣∣p
|x− y|N+qs

(
w(x)

w(y)

) p
2

.

We define the subsets of Ω× Ω,

D1 = {(x, y) ∈ Ω×Ω : w(y) 6 w(x)} and D2 = {(x, y) ∈ Ω×Ω : w(x) 6 w(y)}.

Then∫
Ω

∫
Ω

|v(x)− v(y)|p

|x− y|N+qs
w(x)

p
2w(y)

p
2 dx dy =

∫∫
D1

f1(x, y) dx dy +

∫∫
D2

f2(x, y) dx dy

= J1 + J2.
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We first estimate J1. To do so, we set

I1(x, y) =
∣∣(u(x)− u(y))− u(y)

w(y)
(w(x)− w(y))

∣∣p(w(y)

w(x)

) p
2

.

We rewrite I1 as

I1(x, y) =

∣∣(u(x)− u(y))− u(y)

w(x)
(w(x)− w(y))

∣∣p
(
|u(x)− u(y)|+ | u(y)

w(x)
(w(x)− w(y))|

)(2−p) p2
(
w(y)

w(x)

) p
2

× (
(
|u(x)− u(y)|+ | u(x)

w(x)
(w(x)− w(y))|

)(2−p) p2
Using Hölder’s inequality, it follows that

∫∫
D1

f1(x, y) dx dy 6

(∫∫
D1

∣∣(u(x)− u(y))− u(y)

w(y)
(w(x)− w(y))

∣∣2
|x− y|N+qs(|u(x)− u(y)|+ | u(x)

w(x)
(w(x)− w(y))

∣∣∣)(2−p)

w(y)

w(x)

) p
2

×

(∫∫
D1

(|(u(x)− u(y))|+ | u(y)

w(y)
(w(x)− w(y))|)p

|x− y|N+qs

) 2−p
2

. (3.28)

Using Remark 3.2, we reach that

∫∫
D1

(|(u(x)− u(y))|+ | u(y)

w(y)
(w(x)− w(y))|)pdxdy

|x− y|N+qs
6

C1

∫
Ω

∫
Ω

|(u(x)− u(y))|pdxdy
|x− y|N+qs

+

| u(y)

w(y)
(w(x)− w(y))|)pdxdy

|x− y|N+qs
6 C(Ω)HΩ(v).

We deal now with the first term in (3.28). Since w(y) 6 w(x) in D1, then by setting

t = w(y)
w(x) and a = v(x)

v(y) , we get∣∣∣(u(x)− u(y))− u(y)

w(y)
(w(x)− w(y))

∣∣∣2
(
∣∣∣u(x)− u(y)|+ | u(x)

w(x)
(w(x)− w(y))

∣∣∣)(2−p)

w(y)

w(x)

=
wp(x)|v(y)|p|a− 1|2t
(|a− t|+ |1− t|)2−p

6 wp(x)|v(y)|p
(
|a− t|p − (1− t)p−1(|a|p − t)

)
= wp(x)|v(y)|p

[
|v(x)

v(y)
− w(y)

w(x)
|p − (1− w(y)

w(x)
)p−1(|v(x)

v(y)
|p − w(y)

w(x)
)
]

= |u(x)− u(y)|p − (w(x)− w(y))p−2(w(x)− w(y))(
|u(x)|p

wp−1(x)
− |u(y)|p

wp−1(y)
).

Using the fact that, for all (x, y) ∈ RN × RN ,

|u(x)− u(y)|p − (w(x)− w(y))p−2(w(x)− w(y))(
|u(x)|p

wp−1(x)
− |u(y)|p

wp−1(y)
) > 0,
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it follows that

C(Ω)

∫ ∫
D1

∣∣(u(x)− u(y))− u(y)

w(y)
(w(x)− w(y))

∣∣2
|x− y|N+qs(|u(x)− u(y)|+ | u(x)

w(x)
(w(x)− w(y))|)2−p

w(y)

w(x)

6
∫
RN

∫
RN

|(u(x)− u(y))|pdxdy
|x− y|N+ps

−
∫
RN

∫
RN

(
|u(x)|p
wp−1(x) −

|u(y)|p
wp−1(y)

)
|w(x)− w(y)|p−2(w(x)− w(y))dxdy

|x− y|N+ps

= Gs,p(u).

This implies that ∫ ∫
D1

f1(x, y)dxdy 6 C(Ω)G
p
2
s,p(u)H

2−p
2

Ω (v). (3.29)

Similarly, by symmetry arguments we obtain that∫ ∫
D2

f2(x, y)dxdy 6 C(Ω)G
p
2
s,p(u)H

2−p
2

Ω (v). (3.30)

Combing (3.29) and (3.30), we get

HΩ(v) 6 C(Ω)G
p
2
s,p(u)H

2−p
2

Ω (v).

and then
HΩ(v) 6 C(Ω)Gs,p(u)

which is the desired result.

Proof of Theorem 1.3 The proof follows combining the results of Lemma 3.1
and Theorem 1.2.
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