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1. Introduction

Let Ω ⊂ IR3 be a bounded domain with smooth boundary and consider
the boundary value problem⎧⎨

⎩
Δu + λu + uq = 0 in Ω ,
u > 0 in Ω ,
u = 0 on ∂Ω .

(1.1)

Integrating the equation against a first eigenfunction of the Laplacian yields
that a necessary condition for solvability of (1.1) is λ < λ1. On the other
hand, if 1 < q < 5 and 0 < λ < λ1, a solution may be found as follows. Let
us consider the Rayleigh quotient

Qλ(u) :=
∫
Ω |∇u|2 − λ

∫
Ω |u|2

(
∫
Ω |u|q+1)

2
q+1

for any u ∈ H1
0 (Ω) \ {0} (1.2)

and set

Sλ := inf
u∈H1

0 (Ω)\{0}
Qλ(u) . (1.3)

The constant Sλ is achieved thanks to the compactness of Sobolev’s embed-
ding if q < 5, and a suitable scalar multiple of it turns out to be a solution
of (1.1). The case q ≥ 5 is considerably more delicate: for q = 5 compact-
ness of the embedding is lost while for q > 5 there is no such embedding.
This obstruction is not just technical for the solvability question, but essen-
tial. Pohozaev [11] showed that if Ω is strictly star-shaped then no solution
of (1.1) exists if λ ≤ 0 and q ≥ 5. Let S0 be the best constant in the critical
Sobolev’s embedding,

S0 = inf
u∈C1

0 (R3)\{0}

∫
R3 |∇u|2

(
∫

R3 |u|6)1/3
. (1.4)

Let us consider first the case q = 5 in (1.2) and define the number

λ∗ = inf{λ > 0 : Sλ < S0} . (1.5)

In a well-known paper, [2], Brezis and Nirenberg established that 0 < λ∗ <
λ1 and, as a consequence, that Sλ is achieved for λ∗ < λ < λ1, hence (1.1)
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is solvable in this range. When Ω is a ball they find that λ∗ = λ1/4, while
no solution exists for λ ≤ λ∗.

Let us assume now that q > 5. In this case Sobolev’s embedding fails
and the quantity Sλ may only be interpreted as zero. Thus, no direct vari-
ational approach applies to find existence of solutions. Consequences of the
analysis of this paper are the following existence and multiplicity results for
Problem (1.1) in the super-critical regime when q is sufficiently close to 5.

Theorem 1. (a) Assume that λ∗ < λ < λ1, where λ∗ is the number given
by (1.5). Then there exists a number q1 > 5 such that Problem (1.1) is
solvable for any q ∈ (5, q1).
(b) Assume that Ω is a ball and that λ1/4 < λ < λ1. Then, given k ≥ 1
there exists a number qk > 5 such that Problem (1.1) has at least k radial
solutions for any q ∈ (5, qk).

While the result of Part (a) resembles that by Brezis and Nirenberg when
q = 5, in reality the solution we find has a very different nature: it blows up
as q ↓ 5 developing a single bubble around certain point inside the domain.
The other solutions predicted by Part (b) blow-up only at the origin but
exhibit multiple bubbling. Let us make this terminology somewhat more
precise. By a blowing-up solution for (1.1) near the critical exponent we
mean an unbounded sequence of solutions un of (1.1) for λ = λn bounded,
and q = qn → 5. Setting

Mn = α−1 max
Ω

un = α−1un(xn) → +∞

with α > 0 to be chosen, we see then that the scaled function

vn(y) = M−1
n un(xn + M (qn−1)/2

n y),

satisfies
Δvn + vqn

n + M−(qn−1)
n λnvn = 0

in the expanding domain Ωn = M
(qn−1)/2
n (Ω − xn). Assuming for instance

that xn stays away from the boundary of Ω, elliptic regularity implies that
locally over compacts around the origin, vn converges up to subsequences to
a positive solution of

Δw + w5 = 0
in entire space, with w(0) = maxw = α. It is well-known, see for instance [4]
that for the convenient choice α = 31/4, this solution is explicitly given by

w(z) =
31/4√
1 + |z|2

. (1.6)

which corresponds precisely to an extremal of the Sobolev constant S0. Com-
ing back to the original variable, we expect that “near xn” the behavior of
un(y) can be approximated as

un(y) =
31/4 Mn√

1 + M4
n |y − xn|2

( 1 + o(1) ) . (1.7)
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Since the convergence in expanded variables is only local over compacts,
it is not clear how far from xn the approximation (1.7) holds true, even
if only one maximum point xn exists. We say that the solution un(x) is
a single bubble if (1.7) holds with o(1) → 0 uniformly in Ω. The solution
predicted by Part (a) has this property around a point of the domain that
will be precised below, while those of Part (b) have the form of a “tower”
of single bubbles centered at the origin. As we shall see, radial symmetry is
not needed for the presence of these solutions: just symmetry with respect
to the three coordinate planes around one point of the domain suffices. The

results of [3] concerning asymptotic analysis of radial solutions in a ball when
the exponent approaches the critical exponent from below, suggest that the
object ruling the location of blowing-up in single-bubble solutions of (1.1)
is Robin’s function gλ defined as follows. Let λ < λ1 and consider Green’s
function Gλ(x, y), solution for given x ∈ Ω of

−ΔyGλ − λGλ = δx y ∈ Ω ,

Gλ(x, y) = 0 y ∈ ∂Ω .

Then we define
gλ(x) := Hλ(x, x)

where

Hλ(x, y) :=
1

4π|y − x| − Gλ(x, y) .

It turns out that gλ(x) is a smooth function which goes to +∞ as x ap-
proaches ∂Ω. Its minimum value is not necessarily positive. In fact this
number is decreasing in λ. It is strictly positive when λ is close to 0 and
approaches −∞ as λ ↑ λ1. It is suggested in [3] and recently proven by
Druet in [9] that the number λ∗ given by (1.5) can be characterized as

λ∗ = sup{λ > 0 : min
Ω

gλ > 0} . (1.8)

Besides, it is shown in [9] that least energy solutions uλ for λ ↓ λ∗ constitute
a single-bubble with blowing-up near the set where gλ∗ attains its minimum
value zero.

We consider here the role of non-trivial critical values of gλ in existence
of solutions of (1.1) in dimension N = 3. In fact their role is intimate,
not only in the critical case q = 5 and in the sub-critical q = 5 − ε. More
interesting, their connection with solvability of (1.1) for powers above critical
is found. In fact phenomena apparently unknown even in the case of the
ball is established, which put in evidence an amusing duality between the
sub and super-critical cases.

The meaning we give of a non-trivial critical value of gλ is as follows:
Let D be an open subset of Ω with smooth boundary. We recall that gλ

links non-trivially in D at critical level Gλ relative to B and B0 if B and
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B0 are closed subsets of D̄ with B connected and B0 ⊂ B such that the
following conditions hold: if we set Γ = {Φ ∈ C(B,D) / Φ|B0 = Id}, then

sup
y∈B0

gλ(y) < Gλ := inf
Φ∈Γ

sup
y∈B

gλ(Φ(y)) ,

and for all y ∈ ∂D such that gλ(y) = Gλ, there exists a vector τy tangent to
∂D at y such that

∇gλ(y) · τy �= 0 .

Under these conditions a critical point ȳ ∈ D of gλ with gλ(ȳ) = Gλ in
fact exists. It is easy to check that the above conditions hold if

inf
x∈D

gλ(x) < inf
x∈∂D

gλ(x) or sup
x∈D

gλ(x) > sup
x∈∂D

gλ(x) ,

namely the case of (possibly degenerate) local minimum or maximum points
of gλ. The critical value Gλ may be taken in these cases respectively as that
of the minimum and the maximum of gλ in D. These also hold if gλ is
C1-close to a function with a nondegenerate critical point in D. We call Gλ

a non-trivial critical level of gλ in D. This notion of local notrivial critical
level was used in analyzing concentration phenomena in a different context
in [5].

Theorem 2. Let us assume that there is a set D where gλ has a non-trivial
critical level Gλ.
(a) Assume that Gλ < 0, q = 5 + ε. Then Problem (1.1) is solvable for all
sufficiently small ε > 0. More precisely, there exists a solution uε of (1.1)
of the form

uε(y) =
31/4 Mε√

1 + M4
ε |y − ζε|2

( 1 + o(1) ) (1.9)

where o(1) → 0 uniformly in Ω as ε → 0,

Mε = 8
√

2 (−Gλ) ε−1 , (1.10)

and ζε ∈ D is such that gλ(ζε) → Gλ, ∇gλ(ζε) → 0 as ε → 0.

(b) Assume that Gλ > 0 , q = 5 − ε. Then Problem (1.1) has a solution
uε of (1.1) exactly as in Part (a) but with Mε = 8

√
2Gλ ε−1.

We observe then that Theorem 1 follows from Part (a) of the above result
making use of the characterization (1.8) of the number λ∗. The result of Part
(b) recovers the asymptotics found for the radial solution of (1.1) when Ω is
a ball and 0 < λ < λ1/4 in Theorem 1 of [3].

Next we state our result concerning the presence of solutions with multiple
bubbling from above the critical exponent in a domain exhibiting symme-
tries, from which Theorem 1 Part (b) is an immediate consequence. We say
that Ω ⊂ R

3 is symmetric with respect to the coordinate planes if for all
(y1, y2, y3) ∈ Ω we have that

(−y1, y2, y3) , (y1,−y2, y3) , (y1, y2,−y3) ∈ Ω .
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Theorem 3. Assume that 0 ∈ Ω, and that Ω is symmetric with respect to
the coordinate axes. Assume also that gλ(0) < 0 and q = 5 + ε. Then,
given k ≥ 1, there exists for all sufficiently small ε > 0 a solution uε of
Problem (1.1) of the form

uε(x) =
k∑

j=1

31/4 Mjε√
1 + M4

jε |x|2
(1 + o(1))

where o(1) → 0 uniformly in Ω and for j = 1, . . . , k,

Mjε ≡ 8
√

2 (−gλ(0)) k−1

(
32
√

2
π

)j−1
(k − j)!
(k − 1)!

ε
1
2
−j .

The solution predicted by this theorem is a superposition of k bubbles
with respective blow-up orders ε

1
2
−j for j = 1, . . . , k.

Bubbling solutions for semilinear equations near the critical exponent has
been the object of various works in the literature. In particular we refer the
reader to [1, 7, 6, 10, 12] and references therein for construction of bubbling
solutions in relation to Green’s function of the domain. The results above do
have analogues for dimension N ≥ 4, which we shall state in the last section.
It should be remarked that when N ≥ 4 we have that λ∗ = 0. The object
responsable for concentration and single-bubbling as λ ↓ 0 or λ = 0 and q
approaches critical from below, around a non-degenerate critical point of the
function g0, was first established in [12]. The phenomenon of multi-bubbling
in the radial case in higher dimensions seems to have been observed first
in [7]. A functional analytic setting that allowed to establish the presence of
bubbling solutions for slightly supercritical powers and λ = 0 in the presence
of a small hole in the domain was devised in [6].

Next section will be devoted to sketch the proofs of the above results,
whose full details will be provided in the forthcoming paper [8]. In the last
section we discuss how these results extend to higher dimensions.

2. Sketch of Proofs

Let ζ be a point in Ω. We consider spherical coordinates y = y(ρ, θ)
centered at ζ given by

ρ = |y − ζ| and θ =
y − ζ

|y − ζ| . (2.1)

We consider now the transformation transformation

v(x, θ) = Tq(u)(x, θ) := 2
2

q−1 e−x u(ζ + e−2x y) .

Let us denote by D the ζ-dependent subset of S = IR×S2 where the variables
(x, θ) vary. After these changes of variables, problem (1.1) becomes

4ΔS2 v + v′′ − v + 4λ e−4x v + e(q−5)x vq = 0 in D (2.2)

v > 0 in D , v = 0 on ∂D .
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Here and in what follows, ′ = ∂
∂x . Let us write

wμ,ζ(y) ≡ 31/4√
1 + μ−2 |y − ζ|2

μ− 1
2 , (2.3)

for a point ζ ∈ IR3 and a positive number μ. We observe that

T5wμ,ζ(x, θ) = W (x − ξ) ,

where W (x) = (12)1/4e−x
(
1 + e−4x

)−1/2 and μ = e−2ξ . W is the unique
solution of the problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

W ′′ − W + W 5 = 0 on (−∞,∞) ,

W ′(0) = 0 ,

W > 0 , W (x) → 0 as x → ±∞ .

(2.4)

Let us consider points 0 < ξ1 < ξ2 < · · · < ξk. We look for a solution
of (2.2) of the form

v(x, θ) =
k∑

i=1

(W (x − ξi) + Πi(x, θ)) + φ(x, θ)

where φ is small and Πi(x, θ) satisfies the boundary value problem

−
(
4ΔS2 Π + Π′′ − Π + 4λ e−4x Π

)
= 4λ e−4x W (x − ξ) in D ,

Π = −W (x − ξ) on ∂D .

(2.5)

A main observation is that v(x, θ) ∼∑k
i=1 W (x− ξi) solves (2.2) if and only

if, going back in the change of variables, with μi = e−2ξi ,

u(y) ∼ T −1
q

(
k∑

i=1

W (x − ξi)

)
∼

k∑
i=1

31/4 μ
−1/2
i√

1 + μ−2
i |y − ζ|2

,

solves (1.1). Let us write

Wi(x) := W (x − ξi) , Vi := Wi + Πi , V :=
k∑

i=1

Vi . (2.6)

If we set v := V + φ. then solving (2.2) is equivalent to finding φ such that⎧⎨
⎩

Lq,λφ = −Nq(φ) − Rq in D

φ = 0 on ∂D
(2.7)

where, with cq ≡ 2−(q−5)/2,

Lq,λ(φ) := 4ΔS2φ + φ′′ − φ + 4λ e−4x φ + q cq e(q−5)x V q−1 φ,

N(φ) := cq e(q−5)x
[
(V + φ)q+ − V q − q V q−1φ

]
,
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and

Rq := cq e(q−5)x V q −
k∑

i=1

W 5
i . (2.8)

Rather than solving (2.2) directly, we consider first the following interme-
diate problem: Given points ξ = (ξ1, . . . , ξk) ∈ IRk and a point ζ ∈ Ω, find
a function φ such that for certain constants cij ,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Lq,λφ = −Nq(φ) − Rq +
∑

cij Zij in D ,

φ = 0 on ∂D ,

∫
D

Zij φdx dθ = 0 for all i, j ,

(2.9)

where Zij(x, θ) = T5(zij), i = 1, . . . , k, j = 1, . . . , N + 1, with zij is the
solution of the boundary value problem{ −(Δzij + λzij) = −Δẑij in Ω

zij = 0 on ∂Ω (2.10)

and the ẑij are respectively given for i = 1, . . . , k, j = 1, . . . , N , by

ẑij(y) =
∂

∂ζj
wμi,ζ(y) , ẑ(N+1)j(y) =

∂

∂μi
wμi,ζ(y) . (2.11)

A straightforward computation then yields that Zij satisfies{
−(4ΔS2 Zij + Z

′′
ij − Zij + 4λ e−4x Zij) = 5W 4

i Ẑij in D
Zij = 0 on ∂D

(2.12)

with Ẑij = T5(ẑij). We will see that problem (2.9) is uniquely solvable if the
points ξi, ζ satisfy appropriate constraints and q is close enough to 5. To
this end we consider first the linear problem in (D): Find φ such that for
certain real numbers cij⎧⎪⎨

⎪⎩
Lq,λφ = h +

∑
cij Zij in D ,

φ = 0 on ∂D ,∫
D

Zij φ = 0 ∀i, j .
(2.13)

We need uniformly bounded solvability in proper functional spaces for Prob-
lem (2.13), for a proper range of the ξi’s and ζ. To this end, it is convenient
to introduce the following norm. Given a small but fixed positive number σ
let us set us set

‖ψ‖∗ := sup
(x,θ)∈D

ν−1(x)|ψ(x, θ)| with ν(x) := e−x +
k∑

i=1

e−σ|x−ξi|

(2.14)

and consider the subspace C∗ of the continuous functions ψ for which ‖ψ‖∗
is finite. Let ε = |q − 5|. Then we have the following result.
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Lemma 1. Let λ ∈ (0, λ1−δ) and dist(ζ, ∂Ω) > δ for some small positive δ.
There exist positive numbers ε0, δ0, R0, and a constant C > 0 such that

if the points 0 < ξ1 < ξ2 < · · · < ξk satisfy

R0 < ξ1, R0 < min
1≤i<k

(ξi+1 − ξi) , ξk <
δ0

ε0
if q �= 5, ξk < ∞ ,

(2.15)

then for all |q − 5| < ε0 and all h ∈ C(D) with ‖h‖∗ < +∞, Problem (2.9)
admits a unique solution φ =: Tq,λ(h). Besides,

‖Tq,λ(h)‖∗ ≤ C ‖h‖∗ and |cij | ≤ C ‖h‖∗ .

Consider the map ξ �→ Tε, with values on L(C∗). This map is of class C1.
Moreover, there is a constant C > 0 such that

‖DξTε‖L(C∗) ≤ C

uniformly on ξ and λ satisfying conditions (2.15).

To solve Problem (2.9) we restrict conveniently the range of the param-
eters ξi. Let us consider for a number M large but fixed, the following
conditions:⎧⎨

⎩
ξ1 > 1

2 log(Mε)−1 , log(Mε)−1 < min1≤i<k(ξi+1 − ξi) ,

ξk < k log(Mε)−1 . (2.16)

Useful facts that we easily check is that under relations (2.16), Nq and
Rq defined by (2.8), (2.8) satisfy for all small ε > 0 and ‖φ‖∗ ≤ 1/4 the
estimates:

‖Nq(φ)‖∗ ≤ C ‖φ‖2
∗ and ‖Rq‖∗ ≤ C (ε | log ε| + |q − 5|) ,

(2.17)

provided ε = |q − 5| is small.

Lemma 2. Let σ < 1. Assume that relations (2.16) hold and let ε =
|q− 5|.Then there is a constant C > 0 such that, for all ε ≥ 0 small enough,
there exists a unique solution φ = φ(ξ1, . . . , ξk, ζ) = φ(ξ̄, ζ) to problem (2.9)
which besides satisfies

‖φ‖∗ ≤ C ε1−σ and ‖Dξ,ζφ‖∗ ≤ C ε1−σ .

For the proof of the existence part we observe that φ solves (2.9) if and
only if

φ = Tq,λ(Nq(φ) + Rq) =: Aq,λ(φ) .

Thus we need to prove that the operator Aq,λ defined above is a contraction
in a proper region. Let us consider the set

Fr = {φ ∈ C(D) : ||φ||∗ ≤ r ε1−σ}
with r a positive number to be fixed later. From Lemma 1 and (2.17), we
get

‖Aq,λ(φ)‖∗ ≤ C ‖Nq(φ) + Rq‖∗ ≤ C
[
(r ε)2(1−σ) + ε1−σ

]
< r ε1−σ
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for all small ε, provided that r is chosen large enough, but independent of ε.
Thus Aq,λ maps Fr into itself for this choice of r. Moreover, Aq,λ turns
out to be a contraction mapping in this region. It is indeed easy to check
that Nq defines a contraction in the ‖ · ‖∗-norm. �

According to the above result, our problem has been reduced to that of
finding points ξi and ζ so that the constants cij which appear in (2.9), for
the solution φ given by Lemma 2, are all zero. Thus we need to solve the
system of equations

cij(ξ̄, ζ) = 0 for all i, j. (2.18)

If (2.18) holds, then v = V +φ will be a solution to (2.2). This system turns
out to be equivalent to a variational problem, which we introduce next.

Let us consider the functional

Fq,λ(ξ̄, ζ) := Fq,λ(V + φ) , (2.19)

where φ = φ(ξ̄, ζ) is given by Lemma 2 and Fq,λ is defined by

Fq,λ(v) = 2
∫

D
|∇θv|2 +

1
2

∫
D

[
|v′|2 + |v|2

]

−2λ

∫
D

e−4x v2 − 1
q + 1

∫
D

e(q−5)x |v|q+1 .

Solving system (2.18) turns out to be equivalent to finding a critical point
of this functional, namely equivalent to

∇Fq,λ(ξ̄, ζ) = 0 .

The key point to find the desired solutions is the following fact, which is a
consequence of the estimates given in Lemma 2.

Lemma 3. The following expansion holds

Fq,λ(ξ̄, ζ) = Fq,λ(V ) + o(ε) ,

where the term o(ε) is uniform in the C1-sense over all points satisfying
constraint (2.16), for given M > 0.

This result basically says that to obtain a solution of the problem, we
need to find a critical point situation for the function fq,λ(ξ̄, ζ) := Fq,λ(V )
which remains under o(ε) C1 perturbations. It is convenient to relabel the
ξi’s in this functional, so that we define

eq,λ(μ̄, ζ) := fq,λ

(
−1

2
log μ1, . . . ,−1

2
log μk, ζ

)
. (2.20)

A straightforward computation yields that

eq,λ(μ, ζ) = Eq,λ(U) (2.21)

where
U(y) =

∑
j

[wμj ,ζ(y) + πμj ,ζ(y)],
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with πμj ,ζ = T −1
5 (Πξj ,ζ) and ξj = −1

2 log μj, and for any u : Ω → IR,

Eq,λ(u) =
1
2

∫
Ω
|Du|2 − λ

2

∫
Ω

u2 − 1
q + 1

∫
Ω

uq+1 . (2.22)

Next Lemma gives the energy estimate that shows that this critical point
situation for the above functional indeed is present under the given assump-
tions.

Lemma 4. Assume that ε = |q − 5| and λ ∈ (0, λ1) such that gλ(ζ) �= 0.
Choose the parameters μj as follows

μ1 = εΛ1, μj+1 = μj (Λj+1 ε)2, j = 1, . . . , k − 1 ,
(2.23)

for some positive numbers δ < Λj < δ−1.
Then the following expansion holds,

eq,λ(μ, ζ) = k a0 +
1
2

k(k + 1) a4 ε | log ε| + o(ε) (2.24)

+ε

{
a1 gλ(ζ)Λ1 + k a4 log Λ1 +

k∑
j=2

[
(k − j + 1) a4 log Λj − a5 Λj

]}

uniformly with respect to the parameters Λj, as ε → 0. Here ai’s are uni-
versal constants and the quantity o(ε) is uniform in and C1 senses in (ζ,Λ)
for ζ ranging on compact sets.

The proof of this lemma is a rather lengthy computation which uses as a
main factor the relationship between the term πμj ,ζ and the regular part of
Green’s function Hλ, or more precisely, the fact that

πμj ,ζ(y) ∼ μ1/2Hλ(ζ, y) .

We recall that gλ(ζ) = Hλ(ζ, ζ), and this is why this term appears in the
expansion of the energy. With the above ingredients we are in a position to
provide a proof of our main results.

Proof of Theorem 2. Let q = 5 + ε and λ ∈ (0, λ1). We need to find
a critical point of E(μ, ζ) = Fq,λ(−1

2 log μ, ζ). We consider the change of
variables μ = μ(Λ) given by μ = Λ ε, with Λ > 0. Thus we are interested in
finding critical points of the function ψε(Λ, ζ) = E(μ(Λ), ζ).

With the previous change of variables, the result in Lemma 3 and the
expansion given in Lemma 4 read now as

ψε(Λ, ζ) = a0 + [a1 gλ(ζ)Λ + a4 log Λ] ε + a4 ε | log ε| + o(ε)

uniformly with respect to Λ > δ and dist(ζ, ∂Ω) > δ.
Again from Lemma 3, which actually holds with the o(ε) term in the C1

sense uniformly on Λ > δ and dist(ζ, ∂Ω) > δ, we obtain

∇ψε(Λ, ζ) = ε [∇ψ(Λ, ζ) + o(1)] , (2.25)
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where ψ(Λ, ζ) = a1 gλ(ζ)Λ+a4 log Λ. Let D be the region where the assumed
nontrivial linking situation for gλ holds. With no loss of generality we may
assume that gλ(ζ) ≤ −δ on D. We observe that for each fixed ζ the above
function has a nondegenerate maximum, Λ = Λ(ζ) = − a4

a1gλ(ζ) . Thus we get
a critical point of ψ if we find one of the function of ζ

ψ(Λ(ζ), ζ) = a0 + a4

[
−1 + log

(
− a4

a1gλ(ζ)

)]
.

The assumed linking structure for gλ in D gives the presence of such a critical
point. Using this and relation (2.25) it is not hard to construct a region D̃
in the (Λ, ζ) variables where a nontrivial linking structure for the functional
ψε(Λ, ζ) is present, and which yields in ζ variable a point for which the value
of gλ in close to Gλ and its gradient is close to zero. This finally yields the
result of Part (a) of the Theorem.

As for Part (b), we use the same argument as before, except that now
q = 5− ε, ζλ is a critical point for gλ with positive non-trivial critical value
and

ψ(Λ, ζ) = a1 gλ(ζ)Λ − a4 log Λ .

Observe that in such a case, a nondegenerate minimum in Λ variable is
present, making it possible to argue symmetrically. �

Proof of Theorem 3. Due to the symmetry of Ω, the constants cij that
appear in (2.9) are automatically zero for any j = 1, . . . , N . We then just
need to prove that the ci(N+1)’s are zero, for i = 1, . . . , k. Arguing again
as in the proof of Theorem 2, we find a solution to problem (1.1) of the
form (1.9) after we observe that the function

ψ(Λ) = a1 gλ(0)Λ1 + k a4 log Λ1 +
k∑

j=2

[(k − j + 1) a4 log Λj − a5 Λj]

given by (2.24) in Lemma 4, for the particular change of variable (2.23), has
a nondegenerate critical point (Λ1, . . . ,Λk) ∈ IRk

+, which of course presists
under small C1-perturbations, thanks to the assumption gλ(0) < 0. �

3. Higher dimensions

In this section we state extensions of the results obtained in dimension
N = 3, for the super-critical case. The main difference between N = 3
and N ≥ 4 is that in the latter case the object ruling the single-bubbling
phenomenon is the function g0 (which is always positive), and no longer gλ.

Let N ≥ 4 and Ω ⊂ IRN be a bounded smooth domain. We consider the
problem ⎧⎪⎨

⎪⎩
Δu + λu + u

N+2
N−2

+ε = 0 in Ω ,
u > 0 in Ω ,
u = 0 on ∂Ω ,

(3.1)
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for some positive ε. The two results below yield in particular the validity of
Theorem 1 for dimensions N ≥ 4, where the numbers λ∗ and λ1/4 are now
replaced by zero.

Theorem 4. Assume N ≥ 4 and let us assume that there is a set D where g0

has a non-trivial critical level G. Assume also that 0 < λ < λ1. Then,
there exist points ζε in D, with g0(ζε) → G, ∇g0(ζε) → 0 and a solution to
Problem (1.1) of the form

uε(y) = αN

(
1

1 + (Mε)
4

N−2 |y − ζ|2

)N−2
2

Mε (1 + o(1) ) ,
(3.2)

with o(1) → 0 uniformly on Ω as ε → 0. In (3.2), αN = (N(N − 2))
N−2

4

and
Mε = βε−

N−2
4 for N ≥ 5 ,

Mε = β ε−
1
2 | log ε| 12 for N = 4 ,

where β is a positive (explicit) number which depends only on λ, N and G.

The corresponding result of multi-bubbling under symmetries extends in
exactly the same way, now with the whole range 0 < λ < λ1 allowed.

Theorem 5. Assume N ≥ 4, 0 ∈ Ω and suppose that Ω is symmetric with
respect to the coordinate planes. Assume also that 0 < λ < λ1. Then, given
an integer k ≥ 1, there exists a solution to Problem (3.1) of the form

uε(y) = αN

k∑
j=1

⎛
⎝ 1

1 + (Mjε)
4

N−2 |y|2

⎞
⎠

N−2
2

Mjε (1 + o(1) ) ,
(3.3)

with o(1) → 0 uniformly on Ω as ε → 0. Here

Mjε = βjε
−N−4

2
−(j−1) for N ≥ 5 ,

Mjε = βjε
− 1

2
−(j−1)| log ε| 12 for N = 4 ,

where βj > 0 is an explicit number depending on j, k, N , λ and g0(0).
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