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MULTI-BUBBLING FOR THE EXPONENTIAL NONLINEARITY

IN THE SLIGHTLY SUPERCRITICAL CASE

MANUEL DEL PINO, JEAN DOLBEAULT and MONICA MUSSO

Abstract

We consider radial solutions of an equation involving a p-Laplacian type operator and an exponen-
tial nonlinearity in dimension n, which turns out to be critical for p = n. For such a nonlinearity,
the equation can be reduced to an autonomous ODE, thus allowing a very precise study of the
multi-bubbling phenomenon as the solutions in the critical case are approached by solutions cor-
responding to the supercritical case p<n.

Keywords. Emden-Fowler equation, Gelfand problem, supercritical case, bifurca-
tion diagram, Emden-Fowler transform, p-Laplacian, branches of solutions, critical
and super-critical problems, bubbles, spikes, multi-peaks, dynamical systems, phase
plane analysis

1. Introduction and main result

Since the pioneering work of Joseph and Lundgreen [26], it is well known that
the solutions of

−∆u = λ eu (1.1)

with zero Dirichlet boundary conditions in the unit ball Ω of R
n have different

behaviours depending on the dimension: see [30, 2] for reviews of related results.
This equation is used in stellar dynamics, combustion and chemotaxis models. It is
often called the Emden-Fowler equation [10, 23, 31] or Gelfand’s problem. Let us
summarize the main properties of the bifurcation diagrams in L∞(Ω), in terms of
the parameter λ.

(1) If n = 2, the branch of bounded solutions has an asymptote at λ = λ∗ = 0,
the equation has exactly two solutions for any λ ∈ (0, λ+

1 ) and no solution if
λ > λ+

1 . These solutions are moreover explicit [3]. See Fig. 5.
(2) If 2 < n < 10, the branch of bounded solutions has an asymptote at λ =

λ∗ > 0, the equation has at least one solution for any λ ∈ (0, λ+
1 ), λ+

1 > λ∗,
and no solution if λ > λ+

1 . The branch of solutions oscillates around λ = λ∗.
See Fig. 3.
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(3) If n ≥ 10, the branch of bounded solutions has an asymptote at λ = λ∗ > 0,
the equation has exactly one solution for any λ ∈ (0, λ∗) and no solution if
λ > λ∗.

In any case, λ∗ = 2(n − 2), and it is known that for λ = λ∗, n > 2, there exists a
unique radial singular solution u∗ such that

eu∗(x) =
1

|x|2 ,

see [7, 8, 9, 30]. As long as we consider bounded solutions, these solutions are
smooth and therefore radial according to [24]. Equation (1.1) is then equivalent to







u′′ + n−1
r u′ + λ eu = 0 , r ∈ (0, 1)

u′(0) = 0 , u(1) = 0
(1.2)

and it is very natural to consider now n as a real parameter. Note that looking for
radial solutions of the equation

|x|N−2−εdiv
(

|x|−(N−2−ε)∇u
)

+ λ eu = 0

in the unit ball of R
N, N ∈ N, with zero Dirichlet boundary conditions, is exactly

equivalent to solving Equation (1.2) with n = 2 + ε. The above discussion still
applies and we will actually recover it as a consequence of our results. If we look at
the bifurcation diagram, then n = 2 appears as the critical case, while n = 2 + ε,
ε > 0 is supercritical, in analogy with the situation observed in the Brezis-Nirenberg
problem [5].

Let us be a little bit more specific about criticality in the Brezis-Nirenberg prob-
lem. Consider

−∆u = up + λ u

in Ω, with zero Dirichlet boundary conditions on ∂Ω, for which, for n ≥ 3, the
critical exponent is (n + 2)/(n − 2). In terms of the parameter λ, the first branch
is monotone decreasing for p = (n + 2)/(n − 2) and oscillating in the supercritical

regime p > (n + 2)/(n − 2), around an asymptotic value λ = λ∗. By first branch,
we mean the branch of positive radial bounded solutions which bifurcates from the
trivial solution at the first eigenvalue of −∆. In the supercritical regime, there exists
a radial singular solution if and only if λ = λ∗ [29]. How the slightly supercritical
regime approaches the critical one has recently been studied in a series of papers
[14, 15, 16] (also see [17, 18, 19]) and the analogy with the case of the exponential
nonlinearity has been underlined in [15].

Rather than solutions of (1.2), we shall consider radial solutions corresponding
to the more general supercritical equation







∆pu + λ eu = 0 in Ω

u > 0 , u = 0 on ∂Ω
(1.3)

with p < n, where Ω is the unit ball in R
n. Here we use the standard notation

∆pu := div(|∇u|p−2∇u). Written in radial coordinates, the equation is






∆p,nu + λ eu = 0 , r ∈ (0, 1)

u(0) > 0 , du
dr (0) = 0 , u(1) = 0

(1.4)
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where

∆p,nu :=
1

rn−1

d

dr

(

rn−1

∣

∣

∣

∣

du

dr

∣

∣

∣

∣

p−2
du

dr

)

is the radial version of ∆p in dimension n. Here we abusively use the same notations
for the solutions of Equation (1.3) and Equation (1.4).

In the rest of this paper, we shall assume that p > 1. Unless it is explicitly
specified, by solutions we mean bounded solutions. As long as we consider solutions
of (1.4), it is possible to regard p and n as two independent real parameters. The
small parameter in the slightly supercritical regime is now ε = n − p > 0. The
properties of the bifurcation diagram for p > 1 are very similar to the ones of the
special case p = 2 [25] (see Fig. 1):

n

p

1

n = p

n ≥
 p p+3
p−
1p < n < p p+3

p−
1

Figure 1. Types of bifurcation diagrams in terms of n and p.

(1) If n = p, the branch of bounded solutions has an asymptote at λ = 0 (see
Fig. 5) and the equation has exactly two solutions for any λ ∈ (0, λ+

1 ).
(2) If p < n < p(p + 3)/(p − 1) which means

1 < p < n if 1 < n < 9

1 < p < p−(n) or p+(n) < p < n if n ≥ 9

for p±(n) = 1
2

[

n − 3 ±
√

(n − 1)(n − 9)
]

, the branch of bounded solutions
has an asymptote at λ=λ∗ :=pp−1(n − p) > 0 (see Fig. 3) and the equation
has at least one solution for any λ ∈ (0, λ+

1 ), λ+
1 > λ∗ if 3 ≤ n < 10. The

branch oscillates around λ = λ∗. There is a unique radial singular solution
u∗ := −p log r, for λ=λ∗.

(3) The branch of bounded solutions has an asymptote at λ = λ∗ > 0 and the
equation has exactly one solution for any λ ∈ (0, λ∗) if n ≥ p(p + 3)/(p− 1),
or, in terms of p, if p ∈ [p−(n), p+(n)].

We are interested in understanding how the supercritical regime approaches the
critical regime, i.e., in what happens when n approaches 2 from above for p = 2
fixed, or what happens when p → n from below, n > 1 fixed. Our main result is
that the solutions exhibit a multi-bubbling phenomenon.

Theorem 1. Let k be a positive integer. There exists a positive constant λ̄+
k

such that for any λ ∈ (0, λ̄+
k ), the following property holds: if (εi)i∈N is a sequence

of positive numbers with limi→+∞ εi = 0, then up to the extraction of a subsequence,
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there exist k functions wk
j and, for any i ∈ N, k parameters µi,j , j = 1, 2,... k, for

which

lim
i→+∞

(µi,j+1 − µi,j) = +∞ ∀ j = 1, 2, ... k − 1 ,

such that, with ε = εi, Equation (1.3) has a solution uεi which can be written as:

λ |x|p euεi (x) =





k
∑

j=1

wk
j

(

log |x| + µi,j(εi)
)



 (1 + o(1)) as i → +∞

uniformly on Ω. Here the functions wk
j are smooth, even, positive and such that

wk
j (s) ↘ 0 as s → ±∞. Besides, λ̄+

j ≤ max wk
j and (λ̄+

k )k∈N is a strictly decreasing
sequence.

Numerical evidence suggests the following conjecture: wk
j depends neither on k

nor on the particular sequence (εi)i∈N. Moreover, and this is the main difference
with the Brezis-Nirenberg problem, it turns out that these functions differ from
each other and for instance (mk

j := max wk
j )j is strictly decreasing in j = 1, 2, ..., k.

Although the wk
j = −y′, where y solves the ODE:

y′ + mk
j =

|y|p∗

p∗
+ p y + pp−1 , y(0) = −pp−1

where p∗ is the Hölder conjugate of p. The special case p = 2 is simpler:

wk
j (s) = mk

j

[

1 −
(

tanh
(√

mk
j
/2 s
))2]

.

Multi-bubbling at a single point has already been observed in relation with crit-
ical exponent, see for instance [11]. In the Brezis-Nirenberg problem, it has been
studied using a Lyapunov-Schmidt reduction in [14, 16]. Here, since the problem
is reduced to an ODE, we use more direct methods based on phase plane analysis.
By means of a generalized Emden-Fowler change of variables, the study of radial
solutions of (1.3) reduces to the analysis of an autonomous ODE system whose qual-
itative behaviour is completely understood. This allows us to describe in a fairly
precise way how the supercritical regime p < n approaches the critical case p = n.

The interest of the Emden-Fowler transformation [21] is that it decouples the
scales at which concentrations occur. The superposition of bubbles is then reduced
to a more standard multi-peak problem. In terms of dynamical systems, the trans-
formed equation describes a trajectory corresponding to an heteroclinic orbit, which
is very degenerate in the critical limit.

A main feature of the exponential nonlinearity compared to power laws is that
the bubbles do not have all the same shape. The extension to non radial geometries
is perhaps possible through variational methods, but as detailed estimates as those
given in Sections 3 and 3.2 seem for the moment out of reach by such approaches.

In the case of a star-shaped domain, the existence of a critical value λ̄+
1 which is

also the first turning point of the bifurcation diagram in a ball has been extensively
studied after [32, 33, 23]. For completeness, let us mention that for the nonradial
case in dimension 2, the investigation of possible behaviours of the solutions when
λ → 0 has been the subject of [34, 35, 1] and extended to the case of an external
potential or weight in [4, 27]. For the fact that endpoints of the branch are still
weak solutions, we shall refer to [4, 8]. The case of the n-Laplacian has not been
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studied as much, but one can for instance refer to [12, 22, 28, 25]. Many other
papers deal with related evolution problems, see for instance [20], or with other
geometrical situations like annuli and tori, which are out of the scope of our study.

This paper is organized as follows. We first perform a generalized Emden-Fowler
change of variables which is then used to parametrize the solutions both in the
supercritical and in the critical case. Multi-bubbling (proof of Theorem 1) easily
follows up to two essential properties whose proofs are rejected in Section 3: one
can consider as many bubbles as desired, and these bubbles have different heights.

The results of this paper have been announced without proofs (to be precise,
without the estimates of Section 3) in [15], where the emphasis was put on the
analogy with the Brezis-Nirenberg problem in the slightly supercritical case.

2. Preliminary results

We are going to state a series of very elementary results, which provides the
proof of Theorem 1, up to the two properties which are summarized in Lemma 7
and whose proof is the subject of Section 3.

2.1. The generalized Emden-Fowler change of variables

Since (1.3) is invariant under rotations, for bounded solutions it makes sense to
restrict the study to the case of radial solutions. See [13] and [6] for some recent
result on the symmetry properties of the solutions. Let u be a solution of Equation
(1.4). For r = es, s ∈ (−∞, 0], define v(s) := u(r). Then (1.4) is equivalent to











(p − 1) |v′|p−2 v′′ + (n − p) |v′|p−2 v′ + λ ev+ps = 0 , s ∈ (−∞, 0)

lim
s→−∞

v(s) > 0 , lim
s→−∞

e−s v′(s) = 0 , v(0) = 0

where v′ = dv
ds . Note that the change of variables means that

lim
s→−∞

v(s) = u(0) .

The equation for v can be reduced to an autonomous ODE system as follows. Let

x(s) = λ ev(s)+ps and y(s) = |v′(s)|p−2 v′(s) .

Then






x′ = x (v′ + p)

y′ = (p − 1) |v′|p−2 v′′

and (1.4) is finally equivalent to the system










x′ = x (|y|p∗−2 y + p) , x(0) = λ

y′ = (p − n) y − x , lim
s→−∞

e−s |y(s)|p∗−2 y(s) = 0
(2.1)

where p∗ = (1−1/p)−1 is the Hölder conjugate of p, so that y = |v′|p−2 v′ ⇐⇒ v′ =
|y|p∗−2 y. The change of coordinates is somewhat classical, see for instance [3, 21,
10, 23, 26, 30, 2, 25], at least for p = 2. The novelty of our approach is to use it
in order to understand the limit n − p = ε → 0, ε > 0.
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2.2. Parametrization of the solutions

The behaviour of the solutions easily follows from the study of the vector field and
a linearization around the two fixed points: P− = (0, 0) and P+ = pp−1(n− p,−1).
The linearization of (2.1) at P− is

(

X
Y

)′

=

(

p 0
−1 −(n − p)

)(

X
Y

)

with eigenvalues p and −(n − p), and, at P +,
(

X
Y

)′

=

(

0 p (n − p)/(p − 1)
−1 −(n − p)

)(

X
Y

)

with eigenvalues

1

2

√
n − p

(

−√
n − p ± i

√

p (p + 3)/(p − 1) − n
)

,

as long as n < p (p + 3)/(p− 1).

Lemma 2. Assume that p < n < p (p+3)/(p−1). Then the following properties
hold:
(i) P− is hyperbolic and P + is elliptic.
(ii) Any trajectory of (2.1) is such that x(s) does not change sign. Any trajectory
with x > 0 enters the lower quadrant corresponding to x > 0, y < 0.
(iii) P+ (resp. P−) is attracting all trajectories with x > 0 as s → +∞ (resp. all
bounded trajectories with x > 0 as s → −∞).
(iv) There exists a bounded trajectory s 7→ (x(s), y(s)) such that

lim
s→±∞

(x(s), y(s)) = P± .

This heterocline trajectory is unique, up to any translation in s.

Note that for n ≥ p (p+3)/(p−1), to the linearization of (2.1) at P + corresponds
two negative eigenvalues, so that the trajectory connecting P − to P+ is unique,
up to any translation in s, and monotone in y. As a consequence, we recover for
instance that for p = 2, n ≥ 10, the branch of the solutions of (1.3) in L∞(Ω) is
monotone. From now on we assume that p ≤ n < p (p+3)/(p−1). Let (x̄, ȳ) be the
unique trajectory such that lims→−∞(x̄(s), ȳ(s)) = P− and x̄(0) = maxs∈R x̄(s). In
order to emphasize the dependence on ε, we shall write (x̄ε, ȳε) whenever needed.

x

y

P+

�

P−


Figure 2. Phase portrait in the supercritical case p < n < p
p+3

p−1
(here n = 2, p = 1.5).
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The proofs of Lemma 2 and of the next result are standard (see Fig. 3) and therefore
left to the reader.

Lemma 3. Assume that p ≤ n < p (p+3)/(p−1). For a given λ, to any solution
v of (1.4) corresponds a unique s0 ∈ R such that

λ ev(s)+ps = x̄(s + s0)

for any s ≤ 0. Reciprocally, for any λ ∈ (0, λ+
1 ], where λ+

1 := maxs∈R x̄(s) = x̄(0),
the equation x̄(s0) = λ has at least one solution and

v(s) = log

(

1

λ
x̄(s + s0)

)

− p s

is a solution of (1.4).

Note that with the change of variables s = t − s0,

v(t − s0) = log

(

x̄(t)

x̄(s0)

)

− p t + p s0 ∀ t ∈ (−∞, s0) .

The corresponding solution u of (1.3) is fully determined by λ = x̄(s0), u′(0) = 0
and

u(0) = lim
t→−∞

v(t − s0) = lim
t→−∞

log

(

x̄(t) e−p t

x̄(s0) e−p s0

)

.

2.3. The supercritical case: p < n

x

y

P+

P−

λ
−


0 λ
−

1 λ
−


2

λ
∗

λ
+1λ
+2λ
+3

......

λ


log(1+‖u‖
L∞)

λ
−

0 λ
−


1 λ
−

2
λ
∗


λ
+1λ
+2......

Figure 3. Parametrization of the solutions of (1.3) in the supercritical case (n = 2, p = 1.5).
Left: (x̄, ȳ) in the phase space. Right: the bifurcation diagram for (1.3).

The parametrization in Lemma 3 is a straightforward consequence of the Emden-
Fowler change of coordinates. The next result only involves an elementary phase
plane analysis which is described in Fig. 3. Details of the proof are left to the reader.

Lemma 4. Let λ∗ = pp−1(n− p). Assume that p < n < p (p + 3)/(p− 1). There
exists two sequences (λ−

k )k≥1 and (λ+
k )k≥1 such that:

(i) (λ−
k )k≥1 is increasing and limk→+∞ λ−

k = λ∗.
(ii) (λ+

k )k≥1 is decreasing and limk→+∞ λ+
k = λ∗.

(iii) Equation (1.4) has no solutions if λ > λ+
1 , 2k − 1 solutions if λ = λ+

k or
λ ∈ (λ−

k−1, λ
−
k ) with the convention λ−

0 = 0, and 2k solutions if λ = λ−
k or λ ∈
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(λ+
k+1, λ

+
k ), k ≥ 1.

(iv) Equation (1.4) has infinitely many solutions if and only if λ = λ∗.

2.4. The critical case: p = n

x

y

P+

P−


Figure 4. Phase portrait in the critical case n = p (here n = 2).

x
y

λ
+1

P+

P−


λ


λ
+1

log(1+‖u‖
L∞)

Figure 5. Parametrization of the solutions of (1.3) in the critical case (n = p = 2).
Left: (x̄, ȳ) in the phase space. Right: the bifurcation diagram for (1.3).

In the limit case p = n, (2.1) becomes an Hamiltonian system:

x′ = x (|y|p∗−2y + p) , y′ = −x , (2.2)

which is explicitely solvable in the case p = 2 [3]: u(r) = 2 log(a2+1)−2 log(a2+r2)
is a solution of (1.3) for any a > 0 such that λ = 8 a2 (a2 + 1)−2. See Fig. 4. The
counterpart of Lemma 4 in the critical case is the

Lemma 5. Assume that p = n and let λ+
1 := sups∈R x̄(s). Then Equation (1.4)

has no solutions if λ > λ+
1 , one and only one solution if λ = λ+

1 and two and only
two solutions if λ ∈ (0, λ+

1 ).

2.5. Description of the critical limit

This regime corresponds to the limit ε = n − p → 0, ε ≥ 0. For any ε > 0 (resp.
ε = 0), define by sk(ε) (resp. s1(0)) the sequence of the points of local maximum
of x̄ε (resp. the unique point of maximum of x̄0), where (x̄ε, ȳε) is the unique
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trajectory such that

lim
s→±∞

(x̄ε(s), ȳε(s)) = P±

and x̄ε(0) = maxs∈R x̄ε(s) =: λ+
1 (ε). Note that as a consequence, ȳε(0) = −pp−1.

By definition of (x̄ε, ȳε),

s1(ε) = 0 ∀ ε ∈ [0, p
p + 3

p − 1
− n) .

λ
+1λ
+2λ
+3
y

P−

x...

log(1+‖u‖
L∞)

λ


λ
∗
 λ
+1λ
+2... λ
+3λ
+4

Figure 6. Left: the solution (x̄ε, ȳε) in the slightly supercritical regime ε > 0, ε → 0.
Right: the corresponding bifurcation diagram for (1.3). Here n = 2, ε = 0.05.

Lemma 6. For any k ≥ 1, lim
ε→0

[sk+1(ε) − sk(ε)] = +∞.

The proof easily follows from the properties of the phase plane (see Fig. 6). To
study the critical limit, we emphasize the dependence on ε. Let λε,+

k = x̄ε(sk(ε)).
According to Lemma 4, (λε,+

k )k≥1 is a positive decreasing sequence. Define λ̄+
k :=

limε→0 λε,+
k . It is not clear that for any sequence (εi)i∈N with εi > 0, limi→∞ εi = 0,

the limit of λεi,+
k is unique and well defined so that one should consider a special

sequence (εi)i∈N and potentially extract subsequences. For the sake of simplicity,
we will speak of “the limit ε → 0” in the rest of this section.

Lemma 7. For any k ≥ 1,

λ̄+
k > 0 (Pk)

and λ̄+
1 = λ0,+

1 . Moreover (λ̄+
k )k∈N is a strictly decreasing sequence.

As seen above, Property (P1) is always satisfied: the property λ̄+
1 = λ0,+

1 is easy.
In Section 3 we will prove the rest of Lemma 7.

It is now possible to give a precise description of the asymptotic behaviour of the
solutions of (1.3) as ε → 0. Let (xk, yk) be the solution of (2.2) with

xk(0) = λ̄+
k and yk(0) = −pp−1 ,

for any k ≥ 1. With these notations, (x1, y1) = (x̄0, ȳ0) but (xk , yk) 6= (x̄0, ȳ0) for
any k ≥ 2.
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Corollary 8. For any j ≥ 1, x̄ε(· + sj(ε)) converges to xj uniformly on
compact subset in R.

Corollary 8 can be rephrased into

Corollary 9. For any k ≥ 1, as ε → 0,

x̄ε(s) →
k
∑

j=1

xj(s − sj(ε))

uniformly on any interval (−∞, a(ε)) ∈ R such that sk(ε) < a(ε) < sk+1(ε) with
lim infε→0(sk+1(ε) − a(ε)) = lim infε→0(a(ε) − sk(ε)) = +∞.

Let λ ∈ (0, λ̄+
k ) and define s±k (λ) ∈ R as the two solutions of xk(s±k (λ)) = λ,

±s±k (λ) > 0. A careful rewriting of the Emden-Fowler change of variables then
allows to see the solution of (1.4) as a superposition of bubbles.

Lemma 10. Let λ ∈ (0, λ̄+
k ] for some k ≥ 1. Then there exist two solutions u±

of (1.4) which take the form

λ rp eu±(r) =





k
∑

j=1

xj

(

log r + sk(ε) − sj(ε) + s±k (λ)
)



 (1 + o(1)) ∀ r ∈ (0, 1)

as ε → 0.

This actually amounts to saying that there is a k-bubble solution. Note that we
have to assume that ε > 0 is small enough so that with the notations of Corollary 9,

a(ε) > sk(ε) + s±k (λ) .

Also note that the Property (Pk) is implicitly assumed in the statement of Lem-
ma 10.

Proof. According to Lemma 5, for ε > 0 sufficiently small, we can define s±ε,k(λ)
as the two solutions of

x̄ε(s) = 0

which minimize ±
(

s±ε,k(λ)− sk(ε)
)

> 0. Then limε→0

(

s±ε,k(λ)− sk(ε)
)

= s±k (λ) and
the statement is a consequence of Corollary 9.

Proof. The proof of Theorem 1 is now straightforward with wk
j = xj . Note that

µi,j(ε) = s±εi,k
(λ) − sj(εi), where (εi)i∈N is a sequence of positive numbers with

limi→+∞ εi = 0.

3. Multi-Bubble solutions

This section is devoted to the proof of Lemma 7. We divide it in two steps.
First, we prove that for any k ≥ 1, λ̄+

k is positive: multi-bubbling occurs, with an
arbitrarily large number of bubbles provided λ ∈ (0, λ̄+

k ). Then we show that the
bubbles do not have the same height, i.e., (λ̄+

k )k∈N is strictly decreasing.
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s

xε(s)

s1(ε) = 0 s2(ε) s3(ε) s4(ε) s4(ε) ...

Figure 7. Bubbles in the logarithmic scale, after the Emden-Fowler transformation.

3.1. Multi-Bubbling

This section is devoted to the proof of Property (Pk) for k ≥ 2. With the notations
of Section 2.5, this means

λ̄+
k > 0 . (Pk)

Before proving this result and actually more precise estimates, we start with some
energy and angular velocity estimates in a new system of coordinates.

Consider






x′ = x (|y|p∗−2y + p) , x(0) = λε,+
1

y′ = −ε y − x , y(−∞) = 0
(2.1)

with ε = n− p > 0. To simplify the notations, we will omit the index ε. In the new
coordinates

V = log x , U = −y ,

System (2.1) becomes






U ′ = eV − ε U , U(−∞) = 0

V ′ = Up∗−1
∗ − Up∗−1 , V (0) = log λε,+

1

(3.1)

where

U∗ := pp−1 ⇐⇒ Up∗−1
∗ = p .

Note that to the trajectory (x, y) such that lims→−∞(x(s), y(s)) = (0, 0) now cor-
responds a trajectory such that lims→−∞(U(s), V (s)) = (0,−∞) and such that
U(s) > 0 for any s ∈ R. With the notations of Section 2.1, this means

U(s) = −e(p−1) s |u′(es)|p−2 u′(es) ,

V (s) = log λ + u(es) + p s .

Let

(U∗, V∗ = log(ε U∗)) = lim
s→+∞

(U(s), V (s)) .

The condition

x(0) = max
s∈R

x(s) = λε,+
1
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now means

V (0) = log λε,+
1 .

V

V = log(εU)
U = U∗


(U(s), V (s))

U

Figure 8. The trajectory in the (U, V ) coordinates.

Consider the two following quantities, which are functions of s:

(1) energy:

E = eV − eV∗ − eV∗(V − V∗) +
1

p∗

(

Up∗ − Up∗

∗

)

− Up∗−1
∗ (U − U∗) .

(2) angle: let θ = θ(s) be such that

cos θ =
U − U∗

√

|U − U∗|2 + |V − V∗|2
and sin θ =

V − V∗
√

|U − U∗|2 + |V − V∗|2
.

We take the convention θ(0) = −π
2 and assume that θ is continuous, which

determines θ in a unique way.

Lemma 11. With the above notations, if (U, V ) is a solution of (3.1), then U
is uniformly bounded on (0, +∞) and there exists a constant ν > 0 such that

0 ≥ dE

ds
≥ −ε ν E ∀ s ∈ R . (3.2)

As a consequence

E(s) ≥ E(0) e−ε ν s ∀ s ≥ 0 .

Note that the bound on U is also uniform in terms on ε ∈ (0, 1), including in the
limit ε → 0.

Proof. A direct computation of dE
ds gives

dE
ds = (eV − eV∗) V ′ +

(

Up∗−1 − Up∗−1
∗

)

U ′

= (eV − eV∗) (Up∗−1
∗ − Up∗−1) +

(

Up∗−1 − Up∗−1
∗

)

(eV − ε U)

dE

ds
= −ε (U − U∗)

(

Up∗−1 − Up∗−1
∗

)

(3.3)
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using eV∗ = ε U∗. The function V 7→ eV − eV∗ − eV∗(V − V∗) is nonnegative for any
V ∈ R

+, which means that

1

p∗

(

Up∗

(s) − Up∗

∗

)

− Up∗−1
∗ (U(s) − U∗) ≤ E(s) ≤ E(0) (3.4)

for any s ≥ 0. Note that at s = 0, V ′(0) = 0 so that U(0) = U∗ and

E(0) = λε,+
1 − ε U∗ log

(

e λε,+
1

ε U∗

)

.

Since λε,+
1 → λ̄+

1 as ε → 0, E(0) itself is uniformly bounded as ε → 0. Combined
with Inequality (3.4), this means that U(s) is uniformly bounded in s ∈ R

+, for
ε > 0 fixed. Moreover, this bound is uniform as ε → 0.

Independently of the uniform estimate on U , there exists a constant ν > 0 such
that

(U − U∗)
(

Up∗−1 − Up∗−1
∗

)

≤ ν

[

1

p∗

(

Up∗ − Up∗

∗

)

− Up∗−1
∗ (U − U∗)

]

(3.5)

for any s ∈ R
+. This, using again (3.4), ends the proof of Lemma 11. Let us

prove (3.5). Define

F (t) :=
1

p∗
(tp

∗ − 1) − (t − 1) − κ (t − 1)(tp
∗−1 − 1) .

Then for κ = 1/p∗,

F ′(t) = (1 − κ p∗) tp
∗−1 + κ (p∗ − 1) tp

∗−2 + κ − 1

has the sign of t − 1 if p∗ ≥ 2 ⇐⇒ p ∈ (1, 2). If p∗ ∈ (1, 2), since

1

p∗ − 1
F ′′(t) = (1 − κ p∗) tp

∗−2 + κ (p∗ − 2) tp
∗−3

changes sign only once in (0, +∞) 3 t, the condition F (0) = 0 together with
κ < 1/p∗ means κ = (p∗−1)/p∗ = 1/p. Thus F (t) is nonnegative for any t ∈ (0, +∞)
if κ = min(1/p, 1/p∗), so that (3.5) holds with ν = max(p, p∗).

Note that the exponential decay of E is not sufficient to assert that the multi-
bubbling phenomenon occurs since the interval in s between two bubbles can be
of a larger order than the scale 1/ε. If this was the case, the height of the second
bubble could converge to 0, i.e., λ̄+

2 = 0. It is the purpose of the rest of Section 3.1
to prove that this is not the case.

Lemma 12. Given C > 0, there exists a constant ω > 0 such that, if

V (s) ≥ log(ε U∗) − C ∀ s ∈ [s1, s2] ⊂ R
+ ,

then for ε > 0 small enough and any s ∈ [s1, s2],

dθ

ds
≥ ε ω . (3.6)

Proof. Let us remark that we can write

tan θ = − b

a
where a(s) := U(s) − U∗ and b(s) := V (s) − V∗ = V (s) − log(ε U∗)
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for any s ∈ R such that U(s) 6= U∗. Differentiating with respect to s, we get

a2 + b2

a2

dθ

ds
= (1 + tan2 θ)

dθ

ds
=

a′b − a b′

a2
,

dθ

ds
=

a′b − a b′

a2 + b2
.

On the one hand, −a b′ = (U−U∗) (Up∗−1−Up∗−1
∗ ) ≥ C1 (U−U∗)

2 for some positive
constant C1. If p∗ < 2, one has to use the fact that, according to Lemma 11, U is
bounded. On the other hand

a′b = (eV − ε U)(V − V∗) = (eV − eV∗)(V − V∗) − ε (U − U∗)(V − V∗) .

Thus
dθ

ds
≥ 1

a2 + b2

[

C1 a2 − ε a b + C2 ε b2
]

,

where

C2 =
1

ε
min
s∈R

(

eV (s) − eV∗

V (s) − V∗

)

.

By assumption,

eV (s) − eV∗

V (s) − V∗
≥ eV∗−C = ε U∗ e−C ,

which gives a lower estimate for C2 which is independent of ε. It is now easy to
prove that (3.6) holds for some ω > 0. Namely we can estimate

C1 a2 − ε a b + C2 ε b2 =

(

1

2

√

C1 a − ε√
C1

b

)2

+

(

C2 ε − ε2

C1

)

b2 +
3

4
C1 a2

from below by
1

2
C2 (a2 + b2) ε

provided

ε ≤ 1

2
C1 min(C2, 3 C−1

2 ) .

This ends the proof with ω = C2/2.

Corollary 13. Let C be a positive constant and consider s0, s1 with 0≤s0 <s1.
Assume that

(i) either s0 = 0 or s0 > 0 and V (s0) = log(ε U∗) − C

(ii) V (s) ≥ log(ε U∗) − C ∀ s ∈ [s0, s1] .

Then

E(s) ≥ E(s0) e−
ν
ω

[θ(s)−θ(s0)]

where ν is the constant of Lemma 11.

Proof. It is an easy consequence of (3.2) and (3.6):

1

E

dE

ds
≥ −ν ε ≥ − ν

ω

dθ

ds
.
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Lemma 14. Let K be a positive constant and assume that

V ≤ log(ε U) − K . (3.7)

Then

U ′ ≤ −(1 − e−K) ε U . (3.8)

Proof. Condition (3.7) can be rephrased into

eV ≤ e−K ε U

and the result easily follows.

Lemma 15. Let C be a positive constant and consider s1, s2∈R, with 0<s1 <s2,
such that

V (si) = log(ε U∗) − C i = 1, 2 ,

V (s) < log(ε U∗) − C ∀ s ∈ (s1, s2) .

Then there exists a constant κ > 0, which is independent of ε in the limit ε → 0,
such that

E(s2) ≥ κ E(s1)

holds uniformly with respect to ε.

Proof. First of all, we may apply Lemma 14 with K = C/2. Since V ′ has the
same sign as U∗ − U , it is straightforward that

U(s2) < U∗ < U(s1)

and that

s(K) = inf{s > s1 : V (s) ≥ log(ε U(s)) − K}
is such that

U(s(K)) < U∗ .

Exactly as in Corollary 13, for any s ∈ (s1, s(K)),

1

E

dE

ds
≥ −ν ε ≥ ν

(1 − e−K)

1

U(s)

dU

ds
,

so that

E(s) ≥ E(s1)

(

U(s)

U(s1)

)ν/(1−e−K )

∀ s ∈ (s1, s(K)) .

Let us argue by contradiction. If for ε > 0 small enough, E(s2)/E(s1) can be taken
arbitrarily small and if s(K) < s2, then

U∗ − U(s2) ≥ U∗ − U(s) ≥ U∗ − U(s(K)) ≥ 0 ∀ s ∈ (s(K), s2)

can also be taken arbitrarily small, which contradicts the fact that s(K) < s2. The
condition

log
(

ε U(s2)
)

− C

2
≤ log

(

ε U(s(K))
)

− C

2
= V (s(K)) < log

(

ε U∗

)

− C

indeed means that

U(s2) < e−C/2 U∗ ,
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which is impossible if 1
p∗ (Up∗

(s2) − Up∗

∗ ) − Up∗−1
∗ (U(s2) − U∗) ≤ E(s2) is taken

arbitrarily small. Remind indeed that E(s1)≤E(0) is uniformly bounded in terms
of ε.

Thus if E(s2)/E(s1) can be taken arbitrarily small, then s(K) ≥ s2. This means
that U∗ − U(s) is either negative or positive but small on (s1, s2) 3 s:

U ′ = eV − ε U ≤ ε U e−K − ε U ∀ s ∈ (s1, s2) ⊂ (s1, s(K))

is therefore at most of the order of −ε U∗ (1 − e−K) and there exists a constant
µ > 0, uniform in ε such that

U ′ ≤ −µ ε ∀ s ∈ (s1, s2) .

Combined with (3.2), this means that

1

E

dE

ds
≥ ν

µ
U ′

which by integration gives

E(s2)/E(s1) ≥ e
ν
µ

(U(s2)−U(s1))

and again provides a contradiction with the assumption that E(s2)/E(s1) can be
taken arbitrarily small.

For any k ≥ 1, let sk(ε) be such that

θ(sk(ε)) = −π

2
+ (k − 1) 2π .

With the definition of λ̄+
k given in Section 2.5, we get the following result.

Proposition 16. Consider a sequence (εi)i∈N with limi→∞ εi = 0. Then up to
the extraction of a subsequence,

lim
i→+∞

E(sk(εi)) = λ̄+
k

is positive. Moreover, there exists a constant κ0 ∈ (0, 1) such that

∀ k ≥ 1 , λ̄k ≥ κk−1
0 λ̄1 .

Proof. The fact that λ̄k is positive is a consequence of Corollary 13 and Lemma 15.
Looking more carefully into the proofs, it holds that

E(s1) ≥ e−2π ν/ω E(s0) =: κ1 E(s0)

in the case of Corollary 13 and E(s2) ≥ κ2 E(s1) for some κ2 > 0 in the case of
Lemma 15, so that the Proposition holds with κ0 = κ1 · κ2.

Remark.

(i) Note that λ̄+
k may depend on the sequence (εi)i∈N. It is an open question to

prove that for each k ∈ N, k ≥ 2, the limit as i → +∞ is actually unique, and to
identify the value of λ̄+

k .
(ii) We will see in the next Section that (λ̄+

k )k∈N is decreasing and converges to 0.
This means that a different phenomenon occurs, compared to multi-bubbling in the
slightly supercritical Brezis-Nirenberg problem, where all bubbles are identical up
to a scaling factor.
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3.2. Bubbles have different heights

Lemma 17. The sequence (λ̄+
k )k≥1 is a strictly decreasing sequence of positive

numbers.

Proof. Assume by contradiction that

λ̄+
k+1 = λ̄+

k =: λ̄ (3.9)

for some k ≥ 1. On the one hand, according to (3.3),

dEε

ds
= −ε (|ȳε(s)| − |y∗|)

(

|ȳε(s)|p∗−1 − |y∗|p
∗−1
)

for some positive constant ν > 0, where y∗ = −pp−1 and

Eε(s) := x̄ε(s)−ε pp−1

[

1 − log

(

x̄ε(s)

ε pp−1

)]

+
1

p∗

(

|ȳε(s)|p∗ − |y∗|p
∗
)

+p (ȳε(s)−y∗) .

On the other hand, (3.9) means that there exists sequences (εi)i∈N, (s1
i )i∈N and

(s2
i )i∈N such that:

(i) For any i ∈ N, εi > 0, and limi→+∞ εi = 0.
(ii) For any i ∈ N, s1

i < s2
i , and

dyεi

ds
(sj

i ) = 0 and lim
i→+∞

(x̄εi
(sj

i ), ȳεi
(sj

i )) = (0, ȳj) , j = 1, 2 ,

where ȳ = ȳ1, ȳ2 are the two solutions of

1

p∗
|ȳ|p∗

+ p ȳ = λ̄ − pp−1

such that ȳ1 < −pp−1 < ȳ2 ≤ 0. Here we use the conservation of the energy
along the limiting trajectory corresponding to ε = 0: if dx

ds = x (|y|p∗−2y+p),
dy
ds = −x, then d

ds (x + 1
p∗ |y|p∗

+ p y) = 0.

(iii) Asymptotically, the energy does not decay on (s1
i , s

2
i ):

lim
i→+∞

[

Eεi
(s2

i ) − Eεi
(s1

i )
]

= 0 . (3.10)

Let δ := ȳ2 − ȳ1 > 0. Since

ȳ′
εi

= −εi ȳεi
− x̄εi

≤ −εi ȳεi
,

it is straightforward to see that

ȳεi
(s) ≤ ȳεi

(s1
i ) eεi (s1

i −s) ∀ s ≥ s1
i ,

which implies that

ȳεi
(s2

i ) − ȳεi
(s1

i ) ≤ ȳεi
(s1

i )
(

eεi (s1

i −s2

i ) − 1
)

.

Since limi→+∞ ȳεi
(s1

i ) = −|ȳ1| and limi→+∞

(

ȳεi
(s2

i ) − ȳεi
(s1

i )
)

= δ, this means
that asymptotically as i → +∞,

δ ≤ |ȳ1|
(

1 − eεi (s1

i−s2

i )
)

(1 + o(1)) ,

εi (s2
i − s1

i ) ≥ κ (1 + o(1)) ,

where κ := − log
(

1 − δ
|ȳ1|

)

> 0.
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On (s2
i − s1

i ) 3 s, if |yεi
(s)− y∗| > δ/4, then Eεi

(s) compares with Eεi
(sj

i ) which
is itself of the same order as 1

εi

d
ds Eεi

(s) since

x̄ε(sj
i )− ε pp−1

[

1 − log

(

x̄ε(sj
i )

ε pp−1

)]

= −ε ȳε(sj
i )− ε pp−1

[

1 − log

(

−ȳε(sj
i )

pp−1

)]

→ 0

as ε → 0.
Summarizing these estimates, this means that

Eεi
(s2

i ) ≤ Eεi
(s1

i ) e−µ as i → +∞
for some µ > 0, a contradiction with (3.10), since λ̄ > 0 implies lim inf

i→+∞
Eεi

(s1
i ) > 0.
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