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Abstract. Let λ∗ > 0 denote the largest possible value of λ such that {Δ2u = λeu in B, u =
∂u
∂n

= 0 on ∂B} has a solution, where B is the unit ball in R
N and n is the exterior unit normal

vector. We show that for λ = λ∗ this problem possesses a unique weak solution u∗. We prove that u∗

is smooth if N ≤ 12 and singular when N ≥ 13, in which case u∗(r) = −4 log r + log(8(N − 2)(N −
4)/λ∗) + o(1) as r → 0. We also consider the problem with general constant Dirichlet boundary
conditions.
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1. Introduction. We study the fourth order problem⎧⎪⎪⎨
⎪⎪⎩

Δ2u = λeu in B,

u = a on ∂B,

∂u

∂n
= b on ∂B,

(1)

where a, b ∈ R, B is the unit ball in R
N , N ≥ 1, n is the exterior unit normal vector,

and λ ≥ 0 is a parameter.
Recently higher order equations have attracted the interest of many researchers.

In particular, fourth order equations with an exponential nonlinearity have been stud-
ied in four dimensions in a setting analogous to Liouville’s equation in [3, 12, 24] and
in higher dimensions by [1, 2, 4, 5, 13].

We shall pay special attention to (1) in the case a = b = 0, as it is the natural
fourth order analogue of the classical Gelfand problem{

−Δu = λeu in Ω,

u = 0 on ∂Ω
(2)
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566 DÁVILA, DUPAIGNE, GUERRA, AND MONTENEGRO

(Ω is a smooth bounded domain in R
N ) for which a vast literature exists [7, 8, 9, 10,

18, 19, 20, 21].
From the technical point of view, one of the basic tools in the analysis of (2) is the

maximum principle. As pointed out in [2], in general domains the maximum principle
for Δ2 with Dirichlet boundary condition is not valid anymore. One of the reasons to
study (1) in a ball is that a maximum principle holds in this situation; see [6]. In this
simpler setting, though there are some similarities between the two problems, several
tools that are well suited for (2) no longer seem to work for (1).

As a start, let us introduce the class of weak solutions we shall be working with:
we say that u ∈ H2(B) is a weak solution to (1) if eu ∈ L1(B), u = a on ∂B, ∂u

∂n = b
on ∂B, and ∫

B

ΔuΔϕ = λ

∫
B

euϕ ∀ϕ ∈ C∞
0 (B).

The following basic result is a straightforward adaptation of Theorem 3 in [2].
Theorem 1.1 (see [2]). There exists λ∗ such that if 0 ≤ λ < λ∗ then (1) has a

minimal smooth solution uλ and if λ > λ∗ then (1) has no weak solution.
The limit u∗ = limλ↗λ∗ uλ exists pointwise, belongs to H2(B), and is a weak

solution to (1). It is called the extremal solution.
The functions uλ, 0 ≤ λ < λ∗, and u∗ are radially symmetric and radially de-

creasing.
The branch of minimal solutions of (1) has an important property; namely, uλ is

stable in the sense that∫
B

(Δϕ)2 ≥ λ

∫
B

euλϕ2 ∀ϕ ∈ C∞
0 (B);(3)

see [2, Proposition 37].
The authors in [2] pose several questions, some of which we address in this work.

First we show that the extremal solution u∗ is the unique solution to (1) in the class
of weak solutions. Actually the statement is stronger, asserting that for λ = λ∗ there
are no strict supersolutions.

Theorem 1.2. If

v ∈ H2(B), ev ∈ L1(B), v|∂B = a, ∂v
∂n |∂B ≤ b,(4)

and ∫
B

ΔvΔϕ ≥ λ∗
∫
B

evϕ ∀ ϕ ∈ C∞
0 (B), ϕ ≥ 0,(5)

then v = u∗. In particular, for λ = λ∗ problem (1) has a unique weak solution.
This result is analogous to the work of Martel [19] for more general versions of

(2), where the exponential function is replaced by a positive, increasing, convex, and
superlinear function.

Next, we discuss the regularity of the extremal solution u∗. In dimensions N =
5, . . . , 16 the authors of [2] find, with a computer assisted proof, a radial singular
solution Uσ to (1) with a = b = 0 associated to a parameter λσ > 8(N − 2)(N − 4).
They show that λσ < λ∗ if N ≤ 10 and claim to have numerical evidence that this
holds for N ≤ 12. They leave open the question of whether u∗ is singular in dimension
N ≤ 12. We prove the following theorem.
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STABLE SOLUTIONS FOR Δ2u = λeu 567

Theorem 1.3. If N ≤ 12 then the extremal solution u∗ of (1) is smooth.
The method introduced in [10, 20] to prove the boundedness of u∗ in low dimen-

sions for (2) seems not useful for (1), thus requiring a new strategy. A first indication
that the borderline dimension for the boundedness of u∗ is 12 is Rellich’s inequality
[23], which states that if N ≥ 5 then∫

RN

(Δϕ)2 ≥ N2(N − 4)2

16

∫
RN

ϕ2

|x|4 ∀ϕ ∈ C∞
0 (RN ),(6)

where the constant N2(N −4)2/16 is known to be optimal. The proof of Theorem 1.3
is based on the observation that if u∗ is singular then λ∗eu

∗ ∼ 8(N − 2)(N − 4)|x|−4

near the origin. But 8(N − 2)(N − 4) > N2(N − 4)2/16 if N ≤ 12, which would
contradict the stability condition (3).

In view of Theorem 1.3, it is natural to ask whether u∗ is singular in dimension
N ≥ 13. If a = b = 0, we prove the following theorem.

Theorem 1.4. Let N ≥ 13 and a = b = 0. Then the extremal solution u∗ to (1)
is unbounded.

For general boundary values, it seems more difficult to determine the dimensions
for which the extremal solution is singular. We observe first that given any a, b ∈ R,
u∗ is the extremal solution of (1) if and only if u∗ − a is the extremal solution of
the same equation with boundary condition u = 0 on ∂B. In particular, if λ∗(a, b)
denotes the extremal parameter for problem (1), one has that λ∗(a, b) = e−aλ∗(0, b).
So the value of a is irrelevant. But one may ask if Theorem 1.4 still holds for any
N ≥ 13 and any b ∈ R. The situation turns out to be somewhat more complicated.

Proposition 1.5.

(a) Fix N ≥ 13 and take any a ∈ R. Assume b ≥ −4. There exists a critical
parameter bmax > 0, depending only on N , such that the extremal solution
u∗ is singular if and only if b ≤ bmax.

(b) Fix b ≥ −4 and take any a ∈ R. There exists a critical dimension Nmin ≥ 13,
depending only on b, such that the extremal solution u∗ to (1) is singular if
N ≥ Nmin.

Remark 1.6.

• We have not investigated the case b < −4.
• If follows from item (a) that for b ∈ [−4, 0], the extremal solution is singular

if and only if N ≥ 13.
• It also follows from item (a) that there exist values of b for which Nmin > 13.

We do not know whether u∗ remains bounded for 13 ≤ N < Nmin.
Our proof of Theorem 1.4 is related to an idea that Brezis and Vázquez applied

to the Gelfand problem and is based on a characterization of singular energy solutions
through linearized stability (see Theorem 3.1 in [8]). In our context we show the
following.

Proposition 1.7. Assume that u ∈ H2(B) is an unbounded weak solution of
(1) satisfying the stability condition

λ

∫
B

euϕ2 ≤
∫
B

(Δϕ)2 ∀ϕ ∈ C∞
0 (B).(7)

Then λ = λ∗ and u = u∗.
In the proof of Theorem 1.4 we do not use Proposition 1.7 directly but some

variants of it—see Lemma 2.6 and Remark 2.7—because we do not have at our disposal
an explicit solution to (1). Instead, we show that it is enough to find a sufficiently good
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568 DÁVILA, DUPAIGNE, GUERRA, AND MONTENEGRO

approximation to u∗. When N ≥ 32 we are able to construct such an approximation
by hand. However, for 13 ≤ N ≤ 31 we resort to a computer assisted generation and
verification.

Only in very few situations may one take advantage of Proposition 1.7 directly.
For instance, for problem (1) with a = 0 and b = −4 we have an explicit solution

ū(x) = −4 log |x|

associated to λ̄ = 8(N − 2)(N − 4). Thanks to Rellich’s inequality (6) the solution
ū satisfies condition (7) when N ≥ 13. Therefore, by Theorem 1.3 and a direct
application of Proposition 1.7 we obtain Theorem 1.4 in the case b = −4.

In [2] the authors say that a radial weak solution u to (1) is weakly singular if

lim
r→0

ru′(r) exists.

For example, the singular solutions Uσ of [2] verify this condition.
As a corollary of Theorem 1.2 we show the following.
Proposition 1.8. The extremal solution u∗ to (1) with b ≥ −4 is always weakly

singular.
A weakly singular solution either is smooth or exhibits a log-type singularity at

the origin. More precisely, if u is a nonsmooth weakly singular solution of (1) with
parameter λ, then (see [2])

lim
r→0

u(r) + 4 log r = log
8(N − 2)(N − 4)

λ
,

lim
r→0

ru′(r) = −4.

In section 2 we describe the comparison principles we use later. Section 3 is
devoted to the proof of the uniqueness of u∗ and Propositions 1.7 and 1.8. We prove
Theorem 1.3, the boundedness of u∗ in low dimensions, in section 4. The argument
for Theorem 1.4 is contained in section 5 for the case N ≥ 32 and section 6 for
13 ≤ N ≤ 31. In section 7 we give the proof of Proposition 1.5.

Notation.
• BR is the ball of radius R in R

N centered at the origin. B = B1.
• n is the exterior unit normal vector to BR.
• All inequalities or equalities for functions in Lp spaces are understood to be

a.e.

2. Comparison principles.
Lemma 2.1 (Boggio’s principle [6]). If u ∈ C4(BR) satisfies⎧⎨

⎩
Δ2u ≥ 0 in BR,

u =
∂u

∂n
= 0 on ∂BR,

then u ≥ 0 in BR.
Lemma 2.2. Let u ∈ L1(BR) and suppose that∫

BR

uΔ2ϕ ≥ 0
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STABLE SOLUTIONS FOR Δ2u = λeu 569

for all ϕ ∈ C4(BR) such that ϕ ≥ 0 in BR, ϕ|∂BR
= 0 = ∂ϕ

∂n |∂BR
. Then u ≥ 0 in BR.

Moreover, u ≡ 0 or u > 0 a.e. in BR.
For a proof see Lemma 17 in [2].
Lemma 2.3. If u ∈ H2(BR) is radial, Δ2u ≥ 0 in BR in the weak sense, that is,∫

BR

ΔuΔϕ ≥ 0 ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0,

and u|∂BR
≥ 0, ∂u

∂n |∂BR
≤ 0, then u ≥ 0 in BR.

Proof. We deal only with the case R = 1 for simplicity. Solve⎧⎨
⎩

Δ2u1 = Δ2u in B1,

u1 =
∂u1

∂n
= 0 on ∂B1

in the sense u1 ∈ H2
0 (B1) and

∫
B1

Δu1Δϕ =
∫
B1

ΔuΔϕ for all ϕ ∈ C∞
0 (B1). Then

u1 ≥ 0 in B1 by Lemma 2.2.
Let u2 = u − u1 so that Δ2u2 = 0 in B1. Define f = Δu2. Then Δf = 0 in B1

and since f is radial we find that f is constant. It follows that u2 = ar2 + b. Using
the boundary conditions we deduce a + b ≥ 0 and a ≤ 0, which imply u2 ≥ 0.

Similarly, we have the following lemma.
Lemma 2.4. If u ∈ H2(BR) and Δ2u ≥ 0 in BR in the weak sense, that is,∫

BR

ΔuΔϕ ≥ 0 ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0,

and u|∂BR
= 0, ∂u

∂n |∂BR
≤ 0, then u ≥ 0 in BR.

The next lemma is a consequence of a decomposition lemma of Moreau [22]. For
a proof see [14, 15].

Lemma 2.5. Let u ∈ H2
0 (BR). Then there exist unique w, v ∈ H2

0 (BR) such that
u = w + v, w ≥ 0, Δ2v ≤ 0 in BR and

∫
BR

ΔwΔv = 0.
We need the following comparison principle.
Lemma 2.6. Let u1, u2 ∈ H2(BR) with eu1 , eu2 ∈ L1(BR). Assume that

Δ2u1 ≤ λeu1 in BR

in the sense that ∫
BR

Δu1Δϕ ≤ λ

∫
BR

eu1ϕ ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0,(8)

and Δ2u2 ≥ λeu2 in BR in the similar weak sense. Suppose also

u1|∂BR
= u2|∂BR

and
∂u1

∂n
|∂BR

=
∂u2

∂n
|∂BR

.

Assume, furthermore, that u1 is stable in the sense that

(9) λ

∫
BR

eu1ϕ2 ≤
∫
BR

(Δϕ)2 ∀ϕ ∈ C∞
0 (BR).

Then

u1 ≤ u2 in BR.
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Proof. Let u = u1 − u2. By Lemma 2.5 there exist w, v ∈ H2
0 (BR) such that

u = w + v, w ≥ 0 and Δ2v ≤ 0. Observe that v ≤ 0 so w ≥ u1 − u2.
By hypothesis we have for all ϕ ∈ C∞

0 (BR), ϕ ≥ 0,∫
BR

Δ(u1 − u2)Δϕ ≤ λ

∫
BR

(eu1 − eu2)ϕ ≤ λ

∫
BR∩[u1≥u2]

(eu1 − eu2)ϕ

and by density this holds also for w:

(10)

∫
BR

(Δw)2 =

∫
BR

Δ(u1 − u2)Δw

≤ λ

∫
BR∩[u1≥u2]

(eu1 − eu2)w = λ

∫
BR

(eu1 − eu2)w,

where the first equality holds because
∫
BR

ΔwΔv = 0. By density we deduce from

(9)

(11) λ

∫
BR

eu1w2 ≤
∫
BR

(Δw)2.

Combining (10) and (11), we obtain∫
BR

eu1w2 ≤
∫
BR

(eu1 − eu2)w.

Since u1 − u2 ≤ w the previous inequality implies

(12) 0 ≤
∫
BR

(eu1 − eu2 − eu1(u1 − u2))w.

But by convexity of the exponential function eu1 − eu2 − eu1(u1 − u2) ≤ 0, and we
deduce from (12) that (eu1 − eu2 − eu1(u1 − u2))w = 0. Recalling that u1 − u2 ≤ w
we deduce that u1 ≤ u2.

Remark 2.7. The following variant of Lemma 2.6 also holds.
Let u1, u2 ∈ H2(BR) be radial with eu1 , eu2 ∈ L1(BR). Assume Δ2u1 ≤ λeu1

in BR in the sense of (8) and Δ2u2 ≥ λeu2 in BR. Suppose u1|∂BR
≤ u2|∂BR

and
∂u1

∂n |∂BR
≥ ∂u2

∂n |∂BR
and that the stability condition (9) holds. Then u1 ≤ u2 in BR.

Proof. We solve for ũ ∈ H2
0 (BR) such that∫

BR

ΔũΔϕ =

∫
BR

Δ(u1 − u2)Δϕ ∀ϕ ∈ C∞
0 (BR).

By Lemma 2.3 it follows that ũ ≥ u1 − u2. Next we apply the decomposition of
Lemma 2.5 to ũ, that is, ũ = w + v with w, v ∈ H2

0 (BR), w ≥ 0, Δ2v ≤ 0 in BR, and∫
BR

ΔwΔv = 0. Then the argument follows that of Lemma 2.6.
Finally, in several places we will need the method of sub- and supersolutions in

the context of weak solutions.
Lemma 2.8. Let λ > 0 and assume that there exists ū ∈ H2(BR) such that

eū ∈ L1(BR), ∫
BR

ΔūΔϕ ≥ λ

∫
BR

eūϕ ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0,
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STABLE SOLUTIONS FOR Δ2u = λeu 571

and

ū = a,
∂ū

∂n
≤ b on ∂B1.

Then there exists a weak solution to (1) such that u ≤ ū.
The proof is similar to that of Lemma 19 in [2].

3. Uniqueness of the extremal solution: Proof of Theorem 1.2.
Proof of Theorem 1.2. Suppose that v ∈ H2(B) satisfies (4), (5), and v �≡ u∗.

Notice that we do not need v to be radial. The idea of the proof is as follows.
Step 1. The function

u0 =
1

2
(u∗ + v)

is a supersolution to the problem

⎧⎪⎪⎨
⎪⎪⎩

Δ2u = λ∗eu + μηeu in B,

u = a on ∂B,

∂u

∂n
= b on ∂B

(13)

for some μ = μ0 > 0, where η ∈ C∞
0 (B), 0 ≤ η ≤ 1, is a fixed radial cut-off

function such that

η(x) = 1 for |x| ≤ 1
2 , η(x) = 0 for |x| ≥ 3

4 .

Step 2. Using a solution to (13) we construct, for some λ > λ∗, a supersolution to
(1). This provides a solution uλ for some λ > λ∗, which is a contradiction.

Proof of Step 1. Observe that given 0 < R < 1 we must have for some c0 =
c0(R) > 0

v(x) ≥ u∗(x) + c0, |x| ≤ R.(14)

To prove this we recall the Green’s function for Δ2 with Dirichlet boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

Δ2
xG(x, y) = δy, x ∈ B,

G(x, y) = 0, x ∈ ∂B,

∂G

∂n
(x, y) = 0, x ∈ ∂B,

where δy is the Dirac mass at y ∈ B. Boggio gave an explicit formula for G(x, y)
which was used in [16] to prove that in dimension N ≥ 5 (the case 1 ≤ N ≤ 4 can be
treated similarly)

G(x, y) ∼ |x− y|4−N min

(
1,

d(x)2d(y)2

|x− y|4

)
,(15)

where

d(x) = dist(x, ∂B) = 1 − |x|
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and a ∼ b means that for some constant C > 0 we have C−1a ≤ b ≤ Ca (uniformly
for x, y ∈ B). Formula (15) yields

G(x, y) ≥ cd(x)2d(y)2(16)

for some c > 0 and this in turn implies that for smooth functions ṽ and ũ such that
ṽ − ũ ∈ H2

0 (B) and Δ2(ṽ − ũ) ≥ 0,

ṽ(y) − ũ(y) =

∫
∂B

(∂ΔxG

∂nx
(x, y)(ṽ − ũ) − ΔxG(x, y)

∂(ṽ − ũ)

∂n

)
dx

+

∫
B

G(x, y)Δ2(ṽ − ũ) dx

≥ cd(y)2
∫
B

(Δ2ṽ − Δ2ũ)d(x)2 dx.

Using a standard approximation procedure, we conclude that

v(y) − u∗(y) ≥ cd(y)2λ∗
∫
B

(ev − eu
∗
)d(x)2 dx.

Since v ≥ u∗, v �≡ u∗ we deduce (14).
Let u0 = (u∗ + v)/2. Then by Taylor’s theorem

ev = eu0 + (v − u0)e
u0 +

1

2
(v − u0)

2eu0 +
1

6
(v − u0)

3eu0 +
1

24
(v − u0)

4eξ2(17)

for some u0 ≤ ξ2 ≤ v and

eu
∗

= eu0 + (u∗ − u0)e
u0 +

1

2
(u∗ − u0)

2eu0 +
1

6
(u∗ − u0)

3eu0 +
1

24
(u∗ − u0)

4eξ1

(18)

for some u∗ ≤ ξ1 ≤ u0. Adding (17) and (18) yields

1

2
(ev + eu

∗
) ≥ eu0 +

1

8
(v − u∗)2eu0 .(19)

From (14) with R = 3/4 and (19) we see that u0 = (u∗ + v)/2 is a supersolution of
(13) with μ0 := c0/8.

Proof of Step 2. Let us show now how to obtain a weak supersolution of (1) for
some λ > λ∗. Given μ > 0, let u denote the minimal solution to (13). Define ϕ1 as
the solution to ⎧⎪⎪⎨

⎪⎪⎩
Δ2ϕ1 = μηeu in B,

ϕ1 = 0 on ∂B,

∂ϕ1

∂n
= 0 on ∂B,

and ϕ2 as the solution to ⎧⎪⎪⎨
⎪⎪⎩

Δ2ϕ2 = 0 in B,

ϕ2 = a on ∂B,

∂ϕ2

∂n
= b on ∂B.
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STABLE SOLUTIONS FOR Δ2u = λeu 573

If N ≥ 5 (the case 1 ≤ N ≤ 4 can be treated similarly), relation (16) yields

ϕ1(x) ≥ c1d(x)2 ∀x ∈ B,(20)

for some c1 > 0. But u is a radial solution of (13) and therefore it is smooth in
B \B1/4. Thus

u(x) ≤ Mϕ1 + ϕ2 ∀x ∈ B1/2,(21)

for some M > 0. Therefore, from (20) and (21), for λ > λ∗ with λ − λ∗ sufficiently
small we have (

λ

λ∗ − 1

)
u ≤ ϕ1 +

(
λ

λ∗ − 1

)
ϕ2 in B.

Let w = λ
λ∗u − ϕ1 − ( λ

λ∗ − 1)ϕ2. The inequality just stated guarantees that w ≤ u.
Moreover,

Δ2w = λeu +
λμ

λ∗ ηe
u − μηeu ≥ λeu ≥ λew in B

and

w = a,
∂w

∂n
= b on ∂B.

Therefore, w is a supersolution to (1) for λ. By the method of sub- and supersolutions
a solution to (1) exists for some λ > λ∗, which is a contradiction.

Proof of Proposition 1.7. Let λ > 0 and u ∈ H2(B) be a weak unbounded
solution of (1). If λ < λ∗ from Lemma 2.6 we find that u ≤ uλ, where uλ is the
minimal solution. This is impossible because uλ is smooth and u is unbounded. If
λ = λ∗ then necessarily u = u∗ by Theorem 1.2.

Proof of Proposition 1.8. Let u denote the extremal solution of (1) with b ≥ −4.
If u is smooth, then the result is trivial. So we restrict our attention to the case
where u is singular. By Theorem 1.3 we have, in particular, that N ≥ 13. We may
also assume that a = 0. If b = −4 by Theorem 1.2 we know that if N ≥ 13, then
u = −4 log |x| so that the desired conclusion holds. Henceforth we assume b > −4 in
this section.

For ρ > 0 define

uρ(r) = u(ρr) + 4 log ρ

so that

Δ2uρ = λ∗euρ in B1/ρ.

Then

duρ

dρ

∣∣∣
ρ=1,r=1

= u′(1) + 4 > 0.

Hence, there is δ > 0 such that

uρ(r) < u(r) ∀1 − δ < r ≤ 1, 1 − δ < ρ ≤ 1.
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574 DÁVILA, DUPAIGNE, GUERRA, AND MONTENEGRO

This implies

uρ(r) < u(r) ∀0 < r ≤ 1, 1 − δ < ρ ≤ 1.(22)

Otherwise set

r0 = sup { 0 < r < 1 |uρ(r) ≥ u(r) }.

This definition yields

uρ(r0) = u(r0) and u′
ρ(r0) ≤ u′(r0).(23)

Write α = u(r0), β = u′(r0). Then u satisfies⎧⎪⎨
⎪⎩

Δ2u = λeu on Br0 ,

u(r0) = α,

u′(r0) = β.

(24)

Observe that u is an unbounded H2(Br0) solution to (24), which is also stable. Thus
Proposition 1.7 shows that u is the extremal solution to this problem. On the other
hand, uρ is a supersolution to (24), since u′

ρ(r0) ≤ β by (23). We may now use
Theorem 1.2 and we deduce that

u(r) = uρ(r) ∀0 < r ≤ r0,

which in turn implies by standard ODE theory that

u(r) = uρ(r) ∀0 < r ≤ 1,

which is a contradiction to (22). This proves estimate (22).
From (22) we see that

duρ

dρ

∣∣∣
ρ=1

(r) ≥ 0 ∀0 < r ≤ 1.(25)

But

duρ

dρ

∣∣∣
ρ=1

(r) = u′(r)r + 4 ∀0 < r ≤ 1,

and this together with (25) implies

duρ

dρ
(r) =

1

ρ
(u′(ρr)ρr + 4) ≥ 0 ∀0 < r ≤ 1

ρ
, 0 < ρ ≤ 1,(26)

which means that uρ(r) is nondecreasing in ρ. We wish to show that limρ→0 uρ(r)
exists for all 0 < r ≤ 1. For this we shall show

uρ(r) ≥ −4 log(r) + log

(
8(N − 2)(N − 4)

λ∗

)
∀0 < r ≤ 1

ρ
, 0 < ρ ≤ 1.(27)

Set

u0(r) = −4 log(r) + log

(
8(N − 2)(N − 4)

λ∗

)
,
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STABLE SOLUTIONS FOR Δ2u = λeu 575

and suppose that (27) is not true for some 0 < ρ < 1. Let

r1 = sup { 0 < r < 1/ρ |uρ(r) < u0(r) }.

Observe that

λ∗ > 8(N − 2)(N − 4).(28)

Otherwise w = −4 ln r would be a strict supersolution of the equation satisfied by u,
which is not possible by Theorem 1.2. In particular, r1 < 1/ρ and

uρ(r1) = u0(r1) and u′
ρ(r1) ≥ u′

0(r1).

It follows that u0 is a supersolution of

⎧⎪⎪⎨
⎪⎪⎩

Δ2u = λ∗eu in Br1 ,

u = A on ∂Br1 ,

∂u

∂n
= B on ∂Br1 ,

(29)

with A = uρ(r1) and B = u′
ρ(r1). Since uρ is a singular stable solution of (29), it

is the extremal solution of the problem by Proposition 1.7. By Theorem 1.2, there
is no strict supersolution of (29), and we conclude that uρ ≡ u0 first for 0 < r < r1
and then for 0 < r ≤ 1/ρ. This is impossible for ρ > 0 because uρ(1/ρ) = 4 log ρ and

u0(1/ρ) < 4 log ρ + log( 8(N−2)(N−4)
λ∗ ) < uρ(1/ρ) by (28). This proves (27).

By (26) and (27) we see that

v(r) = lim
ρ→0

uρ(r) exists ∀0 < r < +∞,

where the convergence is uniform (even in Ck for any k) on compact sets of R
N \{0}.

Moreover, v satisfies

Δ2v = λ∗ev in R
N \ {0}.(30)

Then for any r > 0

v(r) = lim
ρ→0

uρ(r) = lim
ρ→0

u(ρr) + 4 log(ρr) − 4 log(r) = v(1) − 4 log(r).

Hence, using (30) we obtain

v(r) = −4 log r + log

(
8(N − 2)(N − 4)

λ∗

)
= u0(r).

But then

u′
ρ(r) = u′(ρr)ρ → −4 as ρ → 0,

and therefore, with r = 1

ρu′(ρ) → −4 as ρ → 0.(31)
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4. Proof of Theorem 1.3. First we will show the following lemma.
Lemma 4.1. Suppose that the extremal solution u∗ to (1) is singular. Then for

any σ > 0 there exists 0 < R < 1 such that

u∗(x) ≥ (1 − σ) log

(
1

|x|4

)
∀ |x| < R.(32)

Proof. Assume by contradiction that (32) is false. Then there exist σ > 0 and a
sequence xk ∈ B with xk → 0 such that

u∗(xk) < (1 − σ) log

(
1

|xk|4

)
.(33)

Let sk = |xk| and choose 0 < λk < λ∗ such that

max
B

uλk
= uλk

(0) = log

(
1

s4
k

)
.(34)

Note that λk → λ∗; otherwise uλk
would remain bounded. Let

vk(x) =
uλk

(skx)

log( 1
s4k

)
, x ∈ Bk ≡ 1

sk
B.

Then 0 ≤ vk ≤ 1, vk(0) = 1,

Δ2vk(x) = λk
s4
k

log( 1
s4k

)
euλk

(skx)

≤ λk

log( 1
s4k

)
→ 0 in Bk

by (34). By elliptic regularity vk → v uniformly on compact sets of R
N to a function v

satisfying 0 ≤ v ≤ 1, v(0) = 1, Δ2v = 0 in R
N . By Liouville’s theorem for biharmonic

functions [17] we conclude that v is constant and therefore v ≡ 1.
Since |xk| = sk we deduce that

uλk
(xk)

log( 1
s4k

)
→ 1,

which contradicts (33).
Proof of Theorem 1.3. We write for simplicity u = u∗, λ = λ∗. Assume by

contradiction that u∗ is unbounded and 5 ≤ N ≤ 12. If N ≤ 4 the problem is
subcritical, and the boundedness of u∗ can be proved by other means: no singular
solutions exist for positive λ (see [2]), though in dimension N = 4, a family of solutions
(uλ) can blow up as λ → 0 (see [24]).

For ε > 0 let ψ = |x| 4−N
2 +ε and let η ∈ C∞

0 (RN ) with η ≡ 1 in B1/2 and
supp(η) ⊆ B. Observe that

(Δψ)2 = (HN + O(ε))|x|−N+2ε, where HN =
N2(N − 4)2

16
.
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STABLE SOLUTIONS FOR Δ2u = λeu 577

Using a standard approximation argument as in the proof of Lemma 2.6, we can use
ψη as a test function in (9) and we obtain∫

B

(Δψ)2 + O(1) ≥ λ

∫
B

euψ2,

since the contribution of the integrals outside a fixed ball around the origin remains
bounded as ε → 0 (here O(1) denotes a bounded function as ε → 0).

This implies

λ

∫
B

eu|x|4−N+2ε ≤ (HN + O(ε))

∫
B

|x|−N+2ε = ωN
HN

2ε
+ O(1),(35)

where ωN is the surface area of the unit N−1 dimensional sphere SN−1. In particular,∫
B
eu|x|4−N+2ε < +∞.
For ε > 0 we define ϕ = |x|4−N+2ε. Note that away from the origin

Δ2ϕ = εkN |x|−N+2ε, where kN = 4(N − 2)(N − 4) + O(ε).(36)

Let ϕj solve ⎧⎨
⎩

Δ2ϕj = εkN min(|x|−N+2ε, j) in B,

ϕj =
∂ϕj

∂n
= 0 on ∂B.

(37)

Then ϕj ↑ ϕ as j → +∞. Using (35) and (37)

εkN

∫
B

u min(|x|−N+2ε, j) =

∫
B

uΔ2ϕj = λ

∫
B

euϕj

≤ λ

∫
B

euϕ

≤ ωN
HN

2ε
+ O(1),

where O(1) is bounded as ε → 0 independently of j. Letting j → +∞ yields

εkN

∫
B

u |x|−N+2ε ≤ ωN
HN

2ε
+ O(1),(38)

showing that the integral on the left-hand side is finite. On the other hand, by (32)

εkN

∫
B

u |x|−N+2ε ≥ εkNωN (1 − σ)

∫ 1

0

log

(
1

r4

)
r−1+2ε dr = kNωN (1 − σ)

1

ε
.(39)

Combining (38) and (39), we obtain

(1 − σ)kN ≤ HN

2
+ O(ε).

Letting ε → 0 and then σ → 0, we have

8(N − 2)(N − 4) ≤ HN =
N2(N − 4)2

16
.

This is valid only if N ≥ 13, which is a contradiction.
Remark 4.2. The conclusion of Theorem 1.3 can be obtained also from Proposi-

tion 1.8. However, that proposition depends crucially on the radial symmetry of the
solutions, while the argument in this section can be generalized to other domains.
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5. The extremal solution is singular in large dimensions. In this section
we take a = b = 0 and prove Theorem 1.4 for N ≥ 32.

The idea for the proof of Theorem 1.4 is to estimate accurately from above the
function λ∗eu

∗
, and to deduce that the operator Δ2 − λ∗eu

∗
has a strictly positive

first eigenvalue (in the H2
0 (B) sense). Then, necessarily, u∗ is singular.

Upper bounds for both λ∗ and u∗ are obtained by finding suitable sub- and
supersolutions. For example, if for some λ1 there exists a supersolution, then λ∗ ≥
λ1. If for some λ2 one can exhibit a stable singular subsolution u, then λ∗ ≤ λ2.
Otherwise, λ2 < λ∗, and one can then prove that the minimal solution uλ2

is above
u, which is impossible. The bound for u∗ also requires a stable singular subsolution.

It turns out that in dimension N ≥ 32 we can construct the necessary subsolutions
and verify their stability by hand. For dimensions 13 ≤ N ≤ 31 it seems difficult to
find these subsolutions explicitly. We adopt then an approach that involves a computer
assisted construction of subsolutions and verification of the desired inequalities. We
present this part in the next section.

Lemma 5.1. Assume N ≥ 13. Then u∗ ≤ ū = −4 log |x| in B1.
Proof. Define ū(x) = −4 log |x|. Then ū satisfies

⎧⎪⎪⎨
⎪⎪⎩

Δ2ū = 8(N − 2)(N − 4)eū in R
N ,

ū = 0 on ∂B1,

∂ū

∂n
= −4 on ∂B1.

Observe that since ū is a supersolution to (1) with a = b = 0 we deduce immedi-
ately that λ∗ ≥ 8(N − 2)(N − 4).

In the case λ∗ = 8(N − 2)(N − 4) we have uλ ≤ ū for all 0 ≤ λ < λ∗ because ū is
a supersolution, and therefore u∗ ≤ ū holds. Alternatively, one can invoke Theorem
3 in [2] to conclude that we always have λ∗ > 8(N − 2)(N − 4).

Suppose now that λ∗ > 8(N − 2)(N − 4). We prove that uλ ≤ ū for all 8(N −
2)(N − 4) < λ < λ∗. Fix such λ and assume by contradiction that uλ ≤ ū is not true.
Note that for r < 1 and sufficiently close to 1 we have uλ(r) < ū(r) because u′

λ(1) = 0
while ū′(1) = −4. Let

R1 = inf{ 0 ≤ R ≤ 1 | uλ < ū in (R, 1) }.

Then 0 < R1 < 1, uλ(R1) = ū(R1), and u′
λ(R1) ≤ ū′(R1). So uλ is a supersolution

to the problem

(40)

⎧⎪⎪⎨
⎪⎪⎩

Δ2u = 8(N − 2)(N − 4)eu in BR1
,

u = uλ(R1) on ∂BR1 ,

∂u

∂n
= u′

λ(R1) on ∂BR1 ,

while ū is a subsolution to (40). Moreover it is stable for this problem, since from
Rellich’s inequality (6) and 8(N − 2)(N − 4) ≤ N2(N − 4)2/16 for N ≥ 13, we have

8(N − 2)(N − 4)

∫
BR1

eūϕ2 ≤ N2(N − 4)2

16

∫
RN

ϕ2

|x|4 ≤
∫

RN

(Δϕ)2 ∀ϕ ∈ C∞
0 (BR1).

By Remark 2.7 we deduce that ū ≤ uλ in BR1
, which is impossible.
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An upper bound for λ∗ is obtained by considering again a stable, singular subso-
lution to the problem (with another parameter, though).

Lemma 5.2. For N ≥ 32 we have

λ∗ ≤ 8(N − 2)(N − 4)e2.(41)

Proof. Consider w = 2(1 − r2) and define

u = ū− w,

where ū(x) = −4 log |x|. Then

Δ2u = 8(N − 2)(N − 4)
1

r4
= 8(N − 2)(N − 4)eū = 8(N − 2)(N − 4)eu+w

≤ 8(N − 2)(N − 4)e2eu.

Also u(1) = u′(1) = 0, so u is a subsolution to (1) with parameter λ0 = 8(N −2)(N −
4)e2.

For N ≥ 32 we have λ0 ≤ N2(N − 4)2/16. Then by (6) u is a stable subsolution
of (1) with λ = λ0. If λ∗ > λ0 = 8(N − 2)(N − 4)e2 the minimal solution uλ0 to (1)
with parameter λ0 exists and is smooth. From Lemma 2.6 we find u ≤ uλ0 which is
impossible because u is singular and uλ0

is bounded. Thus we have proved (41) for
N ≥ 32.

Proof of Theorem 1.4 in the case N ≥ 32. Combining Lemmas 5.1 and 5.2, we
have that if N ≥ 32 then λ∗eu

∗ ≤ r−4 8(N − 2)(N − 4)e2 ≤ r−4N2(N − 4)2/16. This
and (6) show that

inf
ϕ∈C∞

0 (B)

∫
B

(Δϕ)2 − λ∗ ∫
B
eu

∗
ϕ2∫

B
ϕ2

> 0,

which is not possible if u∗ is bounded.

6. A computer assisted proof for dimensions 13 ≤ N ≤ 31. Throughout
this section we assume a = b = 0. As was mentioned in the previous section, the
proof of Theorem 1.4 relies on precise estimates for u∗ and λ∗. We present first some
conditions under which it is possible to find these estimates. Later we show how to
meet such conditions with a computer assisted verification.

The first lemma is analogous to Lemma 5.2.
Lemma 6.1. Suppose there exist ε > 0, λ > 0, and a radial function u ∈

H2(B) ∩W 4,∞
loc (B \ {0}) such that

Δ2u ≤ λeu ∀0 < r < 1,

|u(1)| ≤ ε,

∣∣∣∣∂u∂n (1)

∣∣∣∣ ≤ ε,

u �∈ L∞(B),

λeε
∫
B

euϕ2 ≤
∫
B

(Δϕ)2 ∀ϕ ∈ C∞
0 (B).(42)

Then

λ∗ ≤ λe2ε.
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Proof. Let

ψ(r) = εr2 − 2ε(43)

so that

Δ2ψ ≡ 0, ψ(1) = −ε, ψ′(1) = 2ε,

and

−2ε ≤ ψ(r) ≤ −ε ∀0 ≤ r ≤ 1.

It follows that

Δ2(u + ψ) ≤ λeu = λe−ψeu+ψ ≤ λe2εeu+ψ.

On the boundary we have u(1) + ψ(1) ≤ 0, u′(1) + ψ′(1) ≥ 0. Thus u + ψ is a
singular subsolution to the equation with parameter λe2ε. Moreover, since ψ ≤ −ε
we have λe2εeu+ψ ≤ λeεeu, and hence, from (42) we see that u + ψ is stable for the
problem with parameter λe2ε. If λe2ε < λ∗ then the minimal solution associated
to the parameter λe2ε would be above u + ψ, which is impossible because u is
singular.

Lemma 6.2. Suppose we can find ε > 0, λ > 0, and u ∈ H2(B)∩W 4,∞
loc (B \ {0})

such that

Δ2u ≥ λeu ∀0 < r < 1,

|u(1)| ≤ ε,

∣∣∣∣∂u∂n (1)

∣∣∣∣ ≤ ε.

Then

λe−2ε ≤ λ∗.

Proof. Let ψ be given by (43). Then u−ψ is a supersolution to the problem with
parameter λe−2ε.

The next result is the main tool to guarantee that u∗ is singular. The proof, as
in Lemma 5.1, is based on an upper estimate of u∗ by a stable singular subsolution.

Lemma 6.3. Suppose there exist ε0, ε > 0, λa > 0, and a radial function u ∈
H2(B) ∩W 4,∞

loc (B \ {0}) such that

Δ2u ≤ (λa + ε0)e
u ∀0 < r < 1,(44)

Δ2u ≥ (λa − ε0)e
u ∀0 < r < 1,(45)

|u(1)| ≤ ε,

∣∣∣∣∂u∂n (1)

∣∣∣∣ ≤ ε,(46)

u �∈ L∞(B),(47)

β0

∫
B

euϕ2 ≤
∫
B

(Δϕ)2 ∀ϕ ∈ C∞
0 (B),(48)

where

β0 =
(λa + ε0)

3

(λa − ε0)2
e9ε.(49)

D
ow

nl
oa

de
d 

01
/0

1/
13

 to
 1

39
.1

84
.3

0.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABLE SOLUTIONS FOR Δ2u = λeu 581

Then u∗ is singular and

(λa − ε0)e
−2ε ≤ λ∗ ≤ (λa + ε0)e

2ε.(50)

Proof. By Lemmas 6.1 and 6.2 we have (50). Let

δ = log

(
λa + ε0

λa − ε0

)
+ 3ε

and define

ϕ(r) = −δ

4
r4 + 2δ.

We claim that

u∗ ≤ u + ϕ in B1.(51)

To prove this, we shall show that for λ < λ∗

uλ ≤ u + ϕ in B1.(52)

Indeed, we have

Δ2ϕ = −δ2N(N + 2),

ϕ(r) ≥ δ ∀0 ≤ r ≤ 1,

ϕ(1) ≥ δ ≥ ε, ϕ′(1) = −δ ≤ −ε,

and therefore

Δ2(u + ϕ) ≤ (λa + ε0)e
u + Δ2ϕ ≤ (λa + ε0)e

u = (λa + ε0)e
−ϕeu+ϕ

≤ (λa + ε0)e
−δeu+ϕ.(53)

By (50) and the choice of δ

(λa + ε0)e
−δ = (λa − ε0)e

−3ε < λ∗.(54)

To prove (52) it suffices to consider λ in the interval (λa − ε0)e
−3ε < λ < λ∗. Fix

such λ and assume that (52) is not true. Write

ū = u + ϕ

and let

R1 = sup{ 0 ≤ R ≤ 1 |uλ(R) = ū(R) }.

Then 0 < R1 < 1 and uλ(R1) = ū(R1). Since u′
λ(1) = 0 and ū′(1) < 0 we must

have u′
λ(R1) ≤ ū′(R1). Then uλ is a solution to the problem

⎧⎪⎪⎨
⎪⎪⎩

Δ2u = λeu in BR1 ,

u = uλ(R1) on ∂BR1 ,

∂u

∂n
= u′

λ(R1) on ∂BR1
,
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582 DÁVILA, DUPAIGNE, GUERRA, AND MONTENEGRO

while, thanks to (53) and (54), ū is a subsolution to the same problem. Moreover, ū
is stable thanks to (48) since, by Lemma 6.1,

λ < λ∗ ≤ (λa + ε0)e
2ε(55)

and hence

λeū ≤ (λa + ε0)e
2εe2δeu ≤ β0e

u.

We deduce ū ≤ uλ in BR1 which is impossible, since ū is singular while uλ is smooth.
This establishes (51).

From (51) and (55) we have

λ∗eu
∗ ≤ β0e

−εeu

and therefore

inf
ϕ∈C∞

0 (B)

∫
B

(Δϕ)2 − λ∗eu
∗
ϕ2∫

B
ϕ2

> 0.

This is not possible if u∗ is a smooth solution.
For each dimension 13 ≤ N ≤ 31 we construct u satisfying (44)–(48) of the form

u(r) =

{
−4 log r + log

(
8(N−2)(N−4)

λ

)
for 0 < r < r0,

ũ(r) for r0 ≤ r ≤ 1,
(56)

where ũ is explicitly given. Thus u satisfies (47) automatically.
Numerically it is better to work with the change of variables

w(s) = u(es) + 4s, −∞ < s < 0,

which transforms the equation Δ2u = λeu into

Lw + 8(N − 2)(N − 4) = λew, −∞ < s < 0,

where

Lw =
d4w

ds4
+ 2(N − 4)

d3w

ds3
+ (N2 − 10N + 20)

d2w

ds2
− 2(N − 2)(N − 4)

dw

ds
.

The boundary conditions u(1) = 0, u′(1) = 0 then yield

w(0) = 0, w′(0) = 4.

Regarding the behavior of w as s → −∞, observe that

u(r) = −4 log r + log

(
8(N − 2)(N − 4)

λ

)
for r < r0

if and only if

w(s) = log
8(N − 2)(N − 4)

λ
∀s < log r0.

The steps we perform are the following.
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STABLE SOLUTIONS FOR Δ2u = λeu 583

(1) We fix x0 < 0 and using numerical software we follow a branch of solutions to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lŵ + 8(N − 2)(N − 4) = λeŵ, x0 < s < 0,

ŵ(0) = 0, ŵ′(0) = t,

ŵ(x0) = log
8(N − 2)(N − 4)

λ
,

d2ŵ

ds2
(x0) = 0,

d3ŵ

ds3
(x0) = 0

as t increases from 0 to 4. The numerical solution (ŵ, λ̂) we are interested in corre-
sponds to the case t = 4. The five boundary conditions are due to the fact that we
are solving a fourth order equation with an unknown parameter λ.

(2) Based on ŵ, λ̂ we construct a C3 function w which is constant for s ≤ x0 and
piecewise polynomial for x0 ≤ s ≤ 0. More precisely, we first divide the interval [x0, 0]
into smaller intervals of length h. Then we generate a cubic spline approximation

gfl with floating point coefficients of d4ŵ
ds4 . From gfl we generate a piecewise cubic

polynomial gra which uses rational coefficients and we integrate it four times to obtain

w, where the constants of integration are such that djw
dsj (x0) = 0, 1 ≤ j ≤ 3, and

w(x0) is a rational approximation of log(8(N − 2)(N − 4)/λ). Thus w is a piecewise
polynomial function that in each interval is of degree 7 with rational coefficients, and
which is globally C3. We also let λ be a rational approximation of λ̂. With these
choices note that Lw + 8(N − 2)(N − 4)− λew is a small constant (not necessarily 0)
for s ≤ x0.

(3) The conditions (44) and (45) we need to check for u are equivalent to the
following inequalities for w:

Lw + 8(N − 2)(N − 4) − (λ + ε0)e
w ≤ 0, −∞ < s < 0,(57)

Lw + 8(N − 2)(N − 4) − (λ− ε0)e
w ≥ 0, −∞ < s < 0.(58)

Using a program in Maple we verify that w satisfies (57) and (58). This is done by
evaluating a second order Taylor approximation of Lw+8(N −2)(N −4)− (λ+ε0)e

w

at sufficiently close mesh points. All arithmetic computations are done with rational
numbers and thus obtain exact results. The exponential function is approximated by
a Taylor polynomial of degree 14, and the difference with the real value is controlled.

More precisely, we write

f(s) = Lw + 8(N − 2)(N − 4) − (λ + ε0)e
w,

f̃(s) = Lw + 8(N − 2)(N − 4) − (λ + ε0)T (w),

where T is the Taylor polynomial of order 14 of the exponential function around 0.
Applying Taylor’s formula to f at yj , we have for s ∈ [yj , yj+h]

f(s) ≤ f(yj) + |f ′(yj)|h +
1

2
Mh2

≤ f̃(yj) + |f̃ ′(yj)|h +
1

2
Mh2 + |f(yj) − f̃(yj)| + |f ′(yj) − f̃ ′(yj)|h

≤ f̃(yj) + |f̃ ′(yj)|h +
1

2
Mh2 + E1 + E2h,

where

M is a bound for |f ′′| in [yj , yj + h],

E1 is such that (λ + ε0)|ew − T (w)| ≤ E1 in [yj , yj + h],

E2 is such that (λ + ε0)|(ew − T ′(w))w′| ≤ E2 in [yj , yj + h].
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584 DÁVILA, DUPAIGNE, GUERRA, AND MONTENEGRO

So, inequality (57) will be verified on each interval [yj , yj +h] where w is a polynomial
as soon as

f̃(yj) + |f̃ ′(yj)|h +
1

2
Mh2 + E1 + E2h ≤ 0.(59)

When more accuracy is desired, instead of (59) one can verify that

f̃(xi) + |f̃ ′(xi)|
h

m
+

1

2
M

(
h

m

)2

+ E1 + E2
h

m
≤ 0,

where (xi)i=1...m+1 are m + 1 equally spaced points in [yj , yj + h].
We obtain exact values for the upper bounds M,E1, E2 as follows. First note that

f ′′ = Lw′′ − (λ+ ε0)e
w((w′)2 +w′′). On [yj , yj + h], we have w(s) =

∑7
i=0 ai(s− yj)

i

and we estimate |w(s)| ≤
∑7

i=0 |ai|hi for s ∈ [yj , yj + h]. Similarly,

∣∣∣∣d�wds�
(s)

∣∣∣∣ ≤
7∑

i=�

i(i− 1) . . . (i− � + 1)|ai|hi−� ∀s ∈ [yj , yj + h].(60)

The exponential is estimated by ew ≤ e1 ≤ 3, since our numerical data satisfies the
rough bounds −3/2 ≤ w ≤ 1. Using this information and (60) yields a rational upper
bound M . E1 is estimated using Taylor’s formula:

E1 = (λ + ε0)
(3/2)15

15!
.

Similarly, E2 = (λ+ε0)
(3/2)14

14! B1, where B1 is the right-hand side of (60) when � = 1.
(4) We show that the operator Δ2 − βeu where u(r) = w(log r)− 4 log r, satisfies

condition (48) for some β ≥ β0 where β0 is given by (49). In dimension N ≥ 13 the
operator Δ2−βeu has indeed a positive eigenfunction in H2

0 (B) with finite eigenvalue
if β is not too large. The reason is that near the origin

βeu =
c

|x|4 ,

where c is a number close to 8(N − 2)(N − 4)β/λ. If β is not too large compared to
λ, then c < N2(N − 4)2/16, and hence, using (6), Δ2 − βeu is coercive in H2

0 (Br0)
(this holds under even weaker conditions; see [11]). It follows that there exists a first
eigenfunction ϕ1 ∈ H2

0 (B) for the operator Δ2 − βeu with a finite first eigenvalue μ1;
that is,

Δ2ϕ1 − βeuϕ1 = μ1ϕ1 in B,

ϕ1 > 0 in B,

ϕ1 ∈ H2
0 (B).

Moreover, μ1 can be characterized as

μ1 = inf
ϕ∈C∞

0 (B)

∫
B

(Δϕ)2 − βeuϕ2∫
B
ϕ2

and is the smallest number for which a positive eigenfunction in H2
0 (Ω) exists.
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STABLE SOLUTIONS FOR Δ2u = λeu 585

Thus to prove that (48) holds it suffices to verify that μ1 ≥ 0 and for this it is
enough to show the existence of a nonnegative ϕ ∈ H2

0 (B), ϕ �≡ 0, such that⎧⎪⎪⎨
⎪⎪⎩

Δ2ϕ− βeuϕ ≥ 0 in B,

ϕ = 0 on ∂B,

∂ϕ

∂n
≤ 0 on ∂B.

(61)

Indeed, multiplication of (61) by ϕ1 and integration by parts yield

μ1

∫
B

ϕϕ1 +

∫
∂B

∂ϕ

∂n
Δϕ1 ≥ 0.

But Δϕ1 ≥ 0 on ∂B and thus μ1 ≥ 0. To achieve (61) we again change variables and
define

φ(s) = ϕ(es), −∞ < s ≤ 0.

Then we have to find φ ≥ 0, φ �≡ 0, satisfying⎧⎪⎨
⎪⎩

Lφ− βewφ ≥ 0 in −∞ < s ≤ 0,

φ(0) = 0,

φ′(0) ≤ 0.

(62)

Regarding the behavior as s → −∞, we note that w is constant for −∞ < s < x0,
and therefore, if

Lφ− βewφ ≡ 0, −∞ < s ≤ x0,

then φ is a linear combination of exponential functions e−αs, where α must be a
solution to

α4 − 2(N − 4)α3 + (N2 − 10N + 20)α2 + 2(N − 2)(N − 4)α = βew(x0),

where βew(x0) is close to 8(N − 2)(N − 4)β/λ. If N ≥ 13 the polynomial

α4 − 2(N − 4)α3 + (N2 − 10N + 20)α2 + 2(N − 2)(N − 4)α− 8(N − 2)(N − 4)

has four distinct real roots, while if N ≤ 12 there are two real roots and two complex
conjugates. If N ≥ 13 there is exactly one root in the interval (0, (N − 4)/2), two
roots greater than (N − 4)/2, and one negative. We know that ϕ(r) = φ(log r) ∼ r−α

is in H2, which forces α < (N − 4)/2. It follows that for s < x0, φ is a combination
of e−α0s, e−α1s where α0 > 0, α1 < 0 are the two roots smaller than α < (N − 4)/2.
For simplicity, however, we will look for φ such that φ(s) = Ce−α0s for s < x0, where
C > 0 is a constant. This restriction will mean that we will not be able to impose
φ′(0) = 0 at the end. This is not a problem because φ′(0) ≤ 0.

Notice that we need only the inequality in (62), and hence we need to choose
α ∈ (0, N − 4/2) such that

α4 − 2(N − 4)α3 + (N2 − 10N + 20)α2 + 2(N − 2)(N − 4)α ≥ βew(x0).

The precise choice we employed in each dimension is in a summary table at the end
of this section.
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586 DÁVILA, DUPAIGNE, GUERRA, AND MONTENEGRO

To find a suitable function φ with the behavior φ(s) = Ce−αs for s < x0 we set
φ = ψe−αs and solve the equation

Tαψ − βewψ = f,

where the operator Tα is given by

Tαψ =
d4ψ

ds4
+ (−4α + 2(N − 4))

d3ψ

ds3
+ (6α2 − 6α(N − 4) + N2 − 10N + 20)

d2w

ds2

+ (−4α3 + 6α2(N − 4) − 2α(N2 − 10N + 20) − 2(N − 2)(N − 4))
dψ

ds

+ (α4 − 2α3(N − 4) + α2(N2 − 10N + 20) + 2α(N − 2)(N − 4))ψ

and f is some smooth function such that f ≥ 0, f �≡ 0. Actually we choose β̄ > β0

(where β0 is given in (49)) and find ᾱ satisfying approximately

ᾱ4 − 2(N − 4)ᾱ3 + (N2 − 10N + 20)ᾱ2 + 2(N − 2)(N − 4)ᾱ = β̄ew(x0).

We solve numerically

Tᾱψ̂ − β̄ewψ̂ = f, x0 < s < 0,

ψ̂(x0) = 1, ψ̂′′(x0) = 0, ψ̂′′′(x0) = 0,

ψ̂(0) = 0.

Using the same strategy as in (2) from the numerical approximation of d4ψ̂
ds4 we compute

a piecewise polynomial ψ of degree 7, which is globally C3 and constant for s ≤ x0.
The constant ψ(x0) is chosen so that ψ(0) = 0. We then use Maple to verify the
inequalities

ψ ≥ 0, x0 ≤ s ≤ 0,

Tαψ − βewψ ≥ 0, x0 ≤ s ≤ 0,

ψ′(0) ≤ 0,

where β0 < β < β̄ and 0 < α < (N − 4)/2 are suitably chosen.
At the URLs http://www.lamfa.u-picardie.fr/dupaigne/ and http://www.ime.

unicamp.br/∼msm/ we provide the data of the functions w and ψ defined as piece-
wise polynomials of degree 7 in [x0, 0] with rational coefficients for each dimension in
13 ≤ N ≤ 31. We also give a rational approximation of the constants involved in the
corresponding problems.

We use Maple to verify that w and ψ (with suitable extensions) are C3 global
functions and satisfy the corresponding inequalities, using only its capability to op-
erate on arbitrary rational numbers. These operations are exact and are limited only
by the memory of the computer and clearly slower than floating point operations. We
chose Maple since it is a widely used software, but the reader can check the validity
of our results with any other software (see, e.g., the open-source solution pari/gp).

The tests were conducted using Maple 9. See Table 1 for a summary of parameters
and results.

Remark 6.4. (1) Although we work with λ rational, in Table 1 we prefer to
display a decimal approximation of λ.

(2) In Table 1 we selected a “large” value of ε0 in order to have a fast verifica-
tion with Maple. By requiring more accuracy in the numerical calculations, using a
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STABLE SOLUTIONS FOR Δ2u = λeu 587

Table 1

N λ ε0 ε β̄ β α
13 2438.6 1 5 · 10−7 2550 2500 3.9
14 2911.2 1 3 · 10−6 3100 3000 3.4
15 3423.8 1 3 · 10−6 3600 3500 3.1
16 3976.4 1 1 · 10−5 4100 4000 3.0
17 4568.8 1 2 · 10−4 4800 4600 3.0
18 5201.1 2 2 · 10−4 5400 5300 2.7
19 5873.2 2 2 · 10−4 6100 6000 2.7
20 6585.1 3 7 · 10−4 7000 6800 2.7
21 7336.7 3 7 · 10−4 7700 7500 2.6
22 8128.1 4 1 · 10−3 8600 8400 2.6
23 8959.1 4 1 · 10−3 9400 9200 2.5
24 9829.8 4 1 · 10−3 10400 10200 2.5
25 10740.1 4 1 · 10−3 11400 11200 2.5
26 11690.1 6 2 · 10−3 12400 12200 2.5
27 12679.7 7 2 · 10−3 13400 13200 2.4
28 13709.0 7 2 · 10−3 14500 14300 2.4
29 14777.8 7 2 · 10−3 15400 15200 2.4
30 15886.2 8 2 · 10−3 16600 16400 2.4
31 17034.3 10 2 · 10−3 17600 17500 2.3

Table 2

N λ ε0 ε λ∗
min λ∗

max β̄ β α
13 2438.589 0.003 5 · 10−7 2438.583 2438.595 2550 2510 3.9
14 2911.194 0.003 5 · 10−7 2911.188 2911.200 3100 3000 3.4

smaller value of ε0, and using more subintervals to verify the inequalities in the Maple
program, it is possible to obtain better estimates of λ∗. For instance, using formulas
(50), we obtained the results in Table 2.

The verification above, however, is required to check 1500 subintervals of each of
the 4500 intervals of length 0.002, which amounts to substantial computer time.

7. Proof of Proposition 1.5. Throughout this section, we restrict our atten-
tion, as permitted, to the case a = 0.

(a) Let u denote the extremal solution of (1) with homogeneous Dirichlet bound-
ary condition a = b = 0. We extend u on its maximal interval of existence (0, R̄).

Lemma 7.1. R̄ < ∞ and u(r) ∼ log(R̄− r)−4 for r ∼ R̄.
Proof. The fact that R̄ < ∞ can be readily deduced from section 2 of [1]. We

present an alternative (and more quantitative) argument. We first observe that

(63) u′′ − 1

r
u′ > 0 ∀r ∈ [1, R̄).

Integrate indeed (1) over a ball of radius r to conclude that

(64) 0 < λ

∫
Br

eu =

∫
∂Br

∂

∂r
Δu = ωNrN−1

(
u′′′ +

N − 1

r

(
u′′ − 1

r
u′
))

.

If r = 1, since u is nonnegative in (0, 1) and u(1) = u′(1) = 0, we must have
u′′(1) ≥ 0. In fact, u′′(1) > 0. Otherwise, we would have u′′(1) = 0 and u′′′(1) > 0
by (64), contradicting u > 0 in (0, 1). So, we may define

R = sup

{
r > 1 : u′′(t) − 1

t
u′(t) > 0 ∀t ∈ [1, r)

}
,
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and we just need to prove that R = R̄. Assume this is not the case; then u′′(R) −
1
Ru′(R) = 0 and u′′′(R) =

(
u′′ − 1

Ru′)′ (R) ≤ 0. This contradicts (64) and we have
just proved (63). In particular, we see that u is convex increasing on (1, R̄).

Since u is radial, (1) reduces to

(65) u(4) +
2(N − 1)

r
u′′′ +

(N − 1)(N − 3)

r2
u′′ − (N − 1)(N − 3)

r3
u′ = λeu.

Multiply by u′:

u(4)u′ +
2(N − 1)

r
u′′′u′ +

(N − 1)(N − 3)

r2
u′′u′ − (N − 1)(N − 3)

r3
(u′)2 = λ(eu)′,

which we rewrite as

[(u′′′u′)′ − u′′′u′′] + 2(N − 1)

[(
1

r
u′′u′

)′
− u′′

(
1

r
u′
)′

]

+(N − 1)(N − 3)

(
(u′)2

2r2

)′
= λ(eu)′.

By (63), it follows that for r ∈ [1, R̄),

[(u′′′u′)′ − u′′′u′′] + 2(N − 1)

(
1

r
u′′u′

)′
+ (N − 1)(N − 3)

(
(u′)2

2r2

)′
≥ λ(eu)′.

Integrating, we obtain for some constant A

u′′′u′ − (u′′)2

2
+ 2(N − 1)

1

r
u′′u′ +

(N − 1)(N − 3)

2

(u′)2

r2
≥ λeu −A.

We multiply again by u′:

(66)

[
(u′′(u′)2)′ − u′′ ((u′)2

)′]− 1

2
(u′′)2u′ + 2(N − 1)

1

r
u′′(u′)2

+
(N − 1)(N − 3)

2

1

r2
(u′)3 ≥ (λeu −Au)′.

We deduce from (63) that

1

r
u′′(u′)2 =

1

2

(
1

r
(u′)3

)′
− 1

2
(u′)2

(
1

r
u′
)′

≤ 1

2

(
1

r
(u′)3

)′
and

1

r2
(u′)3 ≤ 1

r
(u′)2u′′ ≤ 1

2

(
1

r
(u′)3

)′
.

Using this information in (66), dropping nonpositive terms, and integrating, we obtain
for some constant B

u′′(u′)2 +
(N2 − 1)

4

1

r
(u′)3 ≥ λeu −Au−B.

Applying (63) again, it follows that for C = N2−1
4 + 1

Cu′′(u′)2 ≥ λeu −Au−B,
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STABLE SOLUTIONS FOR Δ2u = λeu 589

which after multiplication by u′ and integration provides positive constants c, C such
that

(u′)4 ≥ c(eu −Au2 −Bu− C).

At this point, we observe that since u is convex and increasing, u converges to +∞
as r approaches R̄. Hence, for r close enough to R̄ and for c > 0 perhaps smaller,

u′ ≥ c eu/4.

By Gronwall’s lemma, R̄ is finite and

u ≤ −4 log(R̄− r) + C for r close to R̄.

It remains to prove that u ≥ −4 log(R̄− r) − C. This time, we rewrite (1) as[
rN−1(Δu)′

]′
= λrN−1eu.

We multiply by rN−1(Δu)′ and obtain

1

2

[
r2N−2((Δu)′)2

]′
= λr2N−2eu(Δu)′ ≤ Ceu(Δu)′ ≤ C(euΔu)′.

Hence, for r close to R̄ and C perhaps larger,

((Δu)′)2 ≤ CeuΔu,

and so
√

Δu(Δu)′ ≤ Ceu/2Δu ≤ C ′eu/2u′′ ≤ C ′(eu/2u′)′,

where we have used (63). Integrate to conclude that

(Δu)3/2 ≤ Ceu/2u′.

Solving for Δu and multiplying by (u′)1/3, we obtain in particular that

(u′)1/3u′′ ≤ Ceu/3u′.

Integrating again, it follows that (u′)4/3 ≤ Ceu/3, i.e.,

u′ ≤ Ceu/4.

It then follows easily that (for r close to R̄)

u ≥ −4 log(R̄− r) − C.

Proof of Proposition 1.5(a). Given N ≥ 13, let bmax denote the supremum of all
parameters b ≥ −4 such that the corresponding extremal solution is singular. We
first observe that

bmax > 0.

In fact, it follows from sections 5 and 6 that the extremal solution u associated to
parameters a = b = 0 is strictly stable:

inf
ϕ∈C∞

0 (B)

∫
B

(Δϕ)2 − λ∗ ∫
B
euϕ2∫

B
ϕ2

> 0.(67)
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590 DÁVILA, DUPAIGNE, GUERRA, AND MONTENEGRO

Extend u as before on its maximal interval of existence (0, R̄). Choosing R ∈ (1, R̄)
close to 1, we deduce that (67) still holds on the ball BR. In particular, letting
v(x) = u(Rx) − u(R) for x ∈ B, we conclude that v is a singular stable solution of
(1) with a = 0 and b = Ru′(R) > 0. By Proposition 1.7, we conclude that bmax > 0.
We now prove that

bmax < ∞.

Assume this is not the case and let un denote the (singular) extremal solution asso-
ciated to bn, where bn ↗ ∞. We first observe that there exists ρn ∈ (0, 1) such that
u′
n(ρn) = 0. Otherwise, un would remain monotone increasing on (0, 1) and hence

bounded above by un(1) = 0. It would then follow from (1) and elliptic regularity
that un is bounded. Let vn(x) = un(ρnx) − un(ρn) for x ∈ B and observe that vn
solves (1) with a = b = 0 and some λ = λn. Clearly vn is stable and singular. By
Proposition 1.7, vn coincides with u, the extremal solution of (1) with a = b = 0. By
standard ODE theory, vn = u on (0, R̄). In addition,

bn = u′
n(1) =

1

ρn
v′n

(
1

ρn

)
=

1

ρn
u′

(
1

ρn

)
→ +∞,

which can happen only if 1/ρn → R̄.
Now, since un is stable on B, u = vn is stable on B1/ρn

. Letting n → ∞, we
conclude that u is stable on BR̄. This clearly contradicts Lemma 7.1.

We have just proved that bmax is finite. It remains to prove that u∗ is singular
when −4 ≤ b ≤ bmax. We begin with the case b = bmax. Choose a sequence (bn)
converging to bmax and such that the corresponding extremal solution un is singular.
Using the same notation as above, we find a sequence ρn ∈ (0, 1) such that

1

ρn
u′

(
1

ρn

)
= bn → bmax.

Taking subsequences if necessary and passing to the limit as n → ∞, we obtain for
some ρ ∈ (0, 1)

1

ρ
u′

(
1

ρ

)
= bmax.

Furthermore, by construction of ρn, u is stable in B1/ρn
and hence in B1/ρ. This

implies that v defined for x ∈ B by v(x) = u(xρ ) − u( 1
ρ ) is a stable singular solution

of (1) with b = bmax. By Proposition 1.7, we conclude that the extremal solution is
singular when b = bmax.

When b = −4, as we have already mentioned in the introduction, u∗ is singular
for N ≥ 13 as a direct consequence of Proposition 1.7 and Rellich’s inequality.

So we are left with the case −4 < b < bmax. Let u∗
m denote the extremal

solution when b = bmax, which is singular, and λ∗
m the corresponding parameter.

For 0 < R < 1 set

uR(x) = u∗
m(Rx) − u∗

m(R).

Then

Δ2uR = λRe
uR , where λR = λ∗

0R
4eu

∗
m(R),
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and uR = 0 on ∂B, while

duR

dr
(1) = R

du∗
m

dr
(R).

By (31), note that

R
du∗

m

dr
(R) → bmax as R → 1, and R

du∗
m

dr
(R) → −4 as R → 0.

Thus, for any −4 < b < bmax we have found a singular stable solution to (1) (with
a = 0). By Proposition 1.7 the extremal solution to this problem is singular.

Proof of Proposition 1.5(b). Let b ≥ −4. Lemma 5.1 applies also for b ≥ −4
and yields u∗ ≤ ū, where ū(x) = −4 log |x|. We now modify slightly the proof of
Lemma 5.2. Indeed, consider w = (4 + b)(1 − r2)/2 and define u = ū− w. Then

Δ2u = 8(N − 2)(N − 4)
1

r4
= 8(N − 2)(N − 4)eū = 8(N − 2)(N − 4)eu+w

≤ 8(N − 2)(N − 4)e(4+b)/2eu.

Also u(1) = 0 and u′(1) = b, so u is a subsolution to (1) with parameter λ0 =
8(N − 2)(N − 4)e(4+b)/2.

If N is sufficiently large, depending on b, we have λ0 < N2(N − 4)2/16. Then
by (6) u is a stable subsolution of (1) with λ = λ0. As in Lemma 5.2 this implies
λ∗ ≤ λ0.

Thus for large enough N we have λ∗eu
∗ ≤ r−4 8(N − 2)(N − 4)e(4+b)/2 <

r−4N2(N − 4)2/16. This and (6) show that

inf
ϕ∈C∞

0 (B)

∫
B

(Δϕ)2 − λ∗ ∫
B
eu

∗
ϕ2∫

B
ϕ2

> 0,

which is not possible if u∗ is bounded.
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