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Abstract. In this work we study local bifurcation from the branch of trivial
solutions for a class of semilinear elliptic equations, at the second eigenvalue
λ2 of a square. We find that the bifurcation set can be locally described as
the union of exactly four bifurcation branches of nontrivial solutions which
cross the bifurcation point (λ2, 0). We also compute the Morse index of the
solutions in the four branches.

1. Introduction

The question of local bifurcation from the branch of trivial solutions (λ, 0) in an
equation of the form

(1.1)
{

∆u+ λu+ f(λ, x, u) = 0 in Ω,
u = 0 on ∂Ω,

where λ ∈ R, Ω ⊂ RN is a bounded domain and f(λ, x, u) = o(u) as u → 0,
has been widely treated in the literature. We say that bifurcation takes place at
λ = λ̄ if every neighborhood of (λ̄, 0) in R × C(Ω̄) contains a nontrivial solution
(λ, u) of (1.1). Under mild regularity assumptions on f , it is easy to check that
the only possible values of λ̄ for which bifurcation is possible are the eigenvalues
λ1 < λ2 < · · · of the problem

(1.2)
{

∆φ+ λφ = 0 in Ω,
φ = 0 on ∂Ω.

On the other hand, since problem (1.1) has a potential structure, it follows from
the results in [2, 4, 5, 6], that the reciprocal also holds true: bifurcation occurs at
λ = λk for any k ≥ 1.

A natural problem is that of finding the structure of the bifurcating set at a
given eigenvalue λk, namely that of the set of nontrivial solutions (λ, u) of (1.1)
in a neighborhood of (λk, 0). A well-known result by Crandall and Rabinowitz [3]
provides an accurate description in the case when the eigenvalue λk is simple, say
with eigenspace spanned by a function φk: the bifurcation set is (locally) a C1

curve which can be parametrized as s 7→ (λ(s), u(s)) in R× C(Ω̄) with

(λ(0), u(0)) = (λk, 0), u′(0) = φk.
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Concerning eigenvalues of higher multiplicity, it follows from the results in [6] and
the potential structure of the problem that the following alternative holds true at
any eigenvalue λk: (i) For λ = λk the trivial solution u = 0 of (1.1) is not isolated;
or (ii) for any λ in a one-sided neighborhood of λk, there are at least two nontrivial
solutions, or (iii) for any λ in a neighborhood of λk, at least one nontrivial solution
exists. One can roughly portray this situation as that associated to the presence
of a bifurcating curve transversally crossing the point (λk, 0). On the other hand,
examples are known of potential operators where bifurcation takes place in the form
of a discrete set [2].

A natural question is whether accurate descriptions parallel to that in Crandall-
Rabinowitz theorem are still possible at eigenvalues of (1.2) with multiplicity greater
than one, at least in special cases.

We restrict ourselves in what follows to a special case of problem (1.1):

(1.3)
{

∆u+ λu+ u3(1 + θ(x, u)) = 0 in Ω,
u = 0 on ∂Ω ,

where θ ∈ C1(Ω× R), θ(x, 0) = 0.
Let us first consider the case of the unit disk in R2,

D = {(x, y) / x2 + y2 < 1}.
We observe that the line x = 0 splits D into two half-disks. The first eigenvalue of
problem (1.2) in the half-disk corresponds precisely to the second eigenvalue λ2 of
D. From Crandall-Rabinowitz theorem, a bifurcation curve of nontrivial solutions
for problem (1.3) in the half-disk stems from this eigenvalue. Let us assume for
instance that θ ≡ 0 in (1.3). Then, extending these solutions by odd reflection with
respect to the line x = 0, we find a curve of nontrivial solutions for (1.3) now in
Ω = D. Since the problem in D is invariant under rotations we therefore obtain a
two-dimensional manifold of nontrivial solutions stemming from λ = λ2. Observe
that λ2 is a double eigenvalue of the Laplacian in D. The tangent space to this
manifold at the point (λ2, 0) is precisely the two-dimensional associated eigenspace.

Let us now consider the case of a square,

S = (0, π)× (0, π) ⊂ R2 .

The eigenvalues of problem (1.2) in Ω = S are easily computed with the aid of
Fourier series. One finds in particular that λ2 = 5, with multiplicity two: the
eigenspace associated is that spanned by the functions sin 2x sin y and sinx sin 2y.
For later reference we introduce the normalized eigenfunction

(1.4) φα(x, y) = cosα sinx sin 2y + sinα sin y sin 2x ,

α ∈ [0, 2π), which is a parametric representation of all eigenfunctions φ with |φ|2L2 =
π/2.

The nodal line of φα divides S into two similar domains: in particular, rectangles
for α = 0, π/4, and triangles for α = π/4 and α = 3π/4, whose first eigenvalue
equals 5. Again for θ ≡ 0, Crandall-Rabinowitz theorem and extension by odd
reflection with respect to the nodal line yield respectively four bifurcation curves
for Ω = S. The situation we encounter here is however drastically different to
that of the disk: as a consequence of our main result below, the bifurcating set is
constituted exactly by the union of these four curves. This phenomenon is robust:
it holds true for θ 6≡ 0 as well.
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Theorem 1.1. Let Ω = (0, π) × (0, π) ⊂ R2. Then there exist an ε > 0 and a
neighborhood U of (λ2, 0) in R×C(Ω̄) such that the set of all solutions of (1.3) in
U can be described as the union of four C1 curves in R× C(Ω̄),

s ∈ (−ε, ε) 7→ (λi(s), ui(s)), i = 1, . . . , 4,

such that

(1.5)
{
λi(s) = λ2 + σis

2 + o(s2),
ui(s) = sφαi + o(s) ,

where α1 = 0, α2 = π/4, α3 = π/2, α4 = 3π/4, and

(1.6)
σi = − 9

16
, for i = 1, 3,

σi = −21
32
, for i = 2, 4 .

The solutions obtained for i = 1, 3 have Morse index 3, while those with i = 2, 4
have Morse index 2.

We specify that by Morse index of a solution (λ, u) of (1.3) we mean the number
of negative eigenvalues µ of the linear problem{

∆v + λ v + u2 ( 3(1 + θ(x, u)) + uθu(x, u) ) v + µ v = 0 in Ω,
v = 0 on ∂Ω.

We observe that in the situation described the four bifurcation curves depart
left, so that in particular for λ < λ2 sufficiently close to λ2, at least four nontrivial
solutions u of (1.3) exist. The situation when the nonlinearity u3 is changed to −u3

is analogous: in this case the bifurcation occurring at (λ2, 0) still consists of four
branches (λ, u) of the form (1.5), except that the numbers σi in (1.6) have opposite
sign, being all positive. Thus the four branches bend right (λ2, 0) and existence
of four solutions with small L∞-norm is ensured for λ > λ2 and close to λ2. Also
the Morse indices of these solutions change, reducing by one unit: for i = 1, 3 their
Morse index equals 2, while for i = 2, 4 it equals 1. We should also mention that
the nonlinearity u3 could be replaced by u2k+1, k ≥ 1, with basically no change in
the proofs below.

The described phenomenon opens questions concerning the presence of multi-
branch bifurcation for domains enjoying other symmetries. The square is invariant
under rotations around its center exactly for the four angles 0, π4 ,

π
2 ,

3π
4 which

correspond to the four values of α in Theorem 1.1 at which bifurcation occurs.
Thus one may wonder about the corresponding diagram of nontrivial solutions for
(1.3) if Ω is, for instance, a regular polygon in R2. It would be natural to expect
the presence of multiple branches stemming from a double eigenvalue in that case.

The paper is organized as follows: in Section 2 we prove the first part of Theorem
1.1, while Section 3 is devoted to the calculation of the Morse index of the solutions.

2. Construction of the bifurcation branches

Let us begin with some notation: we label as M the vector space of all eigen-
functions associated to λ2 and denote

M⊥ =
{
u ∈ C(Ω) :

∫
Ω

uφ = 0, ∀φ ∈M
}
.
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Alongside with φα in (1.4) we introduce an orthogonal eigenfunction defined by

ψα(x, y) = sinα sinx sin 2y − cosα sin y sin 2x

(ψα is nothing but a rotation in π/2 of φα). Notice that the derivative of φα with
respect to α coincides with −ψα.

Next we perform a preliminary analysis of the bifurcation.

Lemma 2.1. Any solution (λ, u) to (1.3) near the bifurcation point (λ2, 0) has the
form

(2.1)
{
λ = λ2 + s2σ + o(s2),
u = sφ(α+o(1)) +O(s3),

with σ given by

(2.2) σ = −
∫

Ω
φ4
α∫

Ω φ
2
α

,

and α = 0, π/4, π/2 or 3π/4.

Proof. Let (λn, un) be a sequence of solutions to (1.3) such that λn → λ2 and
un → 0 in C(Ω). We make the following normalization:

ûn =
un
|un|∞

.

Then ûn verifies the equation

(2.3)
{

∆ûn + λnûn + ûnu
2
n(1 + θ(x, un)) = 0 in Ω,

ûn = 0 on ∂Ω.

Thus, taking into account that |ûn|∞ = 1 and that (2.3) is equivalent to a fixed
point equation for a compact operator in C(Ω), we have, passing to a subsequence
(still denoted by ûn) that ûn → u0 in C(Ω), with |u0|∞ = 1, and{

∆u0 + λ2u0 = 0 in Ω,
u0 = 0 on ∂Ω.

It follows that u0 = cφα for some α ∈ [0, 2π) and c = |φα|−1
∞ 6= 0. Writing

ûn = φn + ψn, with φn ∈ M , ψn ∈ M⊥ (so that φn → cφα and ψn → 0) and
tn = |un|∞, and simplifying in (2.3), we arrive at

∆ψn + λ2ψn + (λn − λ2)(φn + ψn)

+t2n(φn + ψn)3(1 + θ(x, tn(φn + ψn))) = 0 in Ω .(2.4)

Multiplying by φα and integrating by parts we obtain
λn − λ2

t2n

∫
Ω

φnφα +
∫

Ω

(φn + ψn)3(1 + θ(x, tn(φn + ψn))φα = 0 ,

from which it follows after passing to the limit that

lim
n→+∞

λn − λ2

t2n
= −c2

∫
Ω φ

4
α∫

Ω φ
2
α

.

Similarly, multiplying (2.4) by ψα, integrating by parts and passing to the limit we
conclude

(2.5)
∫

Ω

φ3
αψα = 0 .
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An important conclusion is obtained from this condition. It can be checked that∫ π

0

∫ π

0

φα(x, y)3ψα(x, y)dxdy = − 3
128

π2 sin 2α cos 2α ,

so that the bifurcation is only possible from four values of α, namely α = 0, π/4, π/2,
3π/2 (observe that there are other values of α leading to the same eigenfunctions
with a change of sign, since φπ+α = −φα).

Finally notice that it follows from (2.4) that ∆ψn + λ2ψn = O(t2n). Since
(∆ + λ2)−1 is a bounded linear operator from M⊥ into itself, we also have that
ψn = O(t2n). As a consequence of this analysis, and after a rescaling in the param-
eter s, the result of the lemma follows. �

Now we turn to the actual construction of the bifurcated branches. Let α0

be fixed as one of the four values 0, π/4, π/2, 3π/4 given above, and σ0 be the
corresponding value given by (2.2). For s small we want to solve{

∆ψ + λ2ψ + σφα + s2σψ + (φα + s2ψ)3(1 + θ(x, sφα + s3ψ)) = 0 in Ω,
ψ = 0 on ∂Ω ,

with ψ ∈M⊥. Denoting by K the inverse of ∆ (which is a compact, linear operator
from C(Ω) into itself), this is equivalent to solving H(α, σ, ψ, s) = 0, for α ∼ α0,
σ ∼ σ0, ψ ∈M⊥, ψ ∼ ψ0, where

H(α, σ, ψ, s) = ψ +K
(
λ2ψ + σφα + s2σψ + (φα + s2ψ)3(1 + θ(x, sφα + s3ψ))

)
,

and ψ0 ∈M⊥ is the unique solution of{
∆ψ + λ2ψ + σ0φα0 + φ3

α0
= 0 in Ω,

ψ = 0 on ∂Ω .

Let us see that the implicit function theorem can be applied in our setting. Notice
that H is a C1 function of its arguments in a neighbourhood of (α0, σ0, ψ0, 0) in
R× R×M⊥ × R. Also, H(α0, σ0, ψ0, 0) = 0, and

DH(α,σ,ψ)(α0, σ0, ψ0, 0)(α̂, σ̂, ψ̂) = ψ̂ +K(λ2ψ̂ + σ̂φα0 − α̂(σ0ψα0 + 3φ2
α0
ψα0)) .

Assume that DH(α,σ,ψ)(α0, σ0, ψ0, 0)(α̂, σ̂, ψ̂) = 0 for some (α̂, σ̂, ψ̂) ∈ R×R×M⊥.
This means that ψ̂ solves the problem

(2.6)
{

∆ψ̂ + λ2ψ̂ + σ̂φα0 − (σ0ψα0 + 3φ2
α0
ψα0)α̂ = 0 in Ω,

ψ̂ = 0 on ∂Ω .

Multiplying by φα0 , integrating in Ω and performing an integration by parts, we
arrive at σ̂ = 0 since (2.5) holds. Multiplying by ψα0 instead, we get

α̂

(
σ0

∫
Ω

ψ2
α0

+ 3
∫

Ω

φ2
α0
ψ2
α0

)
= 0 .

It is easy to see that the term inside brackets is always nonzero . Thus α̂ = 0,
and (2.6) leads to ψ̂ = 0. To summarize, DH(α,σ,ψ)(α0, σ0, ψ0, 0) is one-to-one and
hence an isomorphism, since it can be identified with a compact perturbation of
the identity.

The implicit function theorem applies to give ε > 0 and three C1 functions
α : (−ε, ε) → R, σ : (−ε, ε) → R and ψ : (−ε, ε) → M⊥ such that α(0) =
α0, σ(0) = σ0, ψ(0) = ψ0 and the set of solutions of H(α, σ, ψ, s) = 0 near the
point (α0, σ0, ψ0, 0) reduces to (α(s), σ(s), ψ(s), s). This conclusion (together with
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Lemma 2.1) gives in particular a unique curve of solutions to (1.3) such that u(s) ∼
sφα0 as s → 0. Since α0 can be taken as any of the four values 0, π/4, π/2, 3π/4,
we have exactly four branches of solutions near the bifurcation point (λ2, 0). The
proof of (1.6) follows from (2.2) and a straightforward calculation. The first part
of the theorem is thus complete. �

3. Computation of Morse indices

In this section we compute the Morse index of the solutions corresponding to
the four bifurcating branches found in the previous section. Thus we need to find
the number of negative eigenvalues µ of the problem{

∆φ+ λφ+ u2(3(1 + θ(x, u)) + uθu(x, u))φ + µφ = 0 in Ω,
φ = 0 on ∂Ω .

Setting λ = λ2 + s2σ, u = sφα + s3ψ, and simplifying, we obtain

(3.1)

 ∆φ + λ2φ + s2σφ + 3s2 (φα + s2ψ)2(1 + θ(x, sφα + s3ψ))
+ s2(φα + s2ψ)3θu(x, sφα + s3ψ)φ + µφ = 0 in Ω,
φ = 0 on ∂Ω ,

where now µ = µ(s), φ = φ(s). We normalize φ by |φ|2L2 = π/2. As s goes to zero, it
follows that µ(s) and φ(s) converge respectively to an eigenvalue and eigenfuncion
of the problem {

∆φ + λ2φ+ µφ = 0 in Ω,
φ = 0 on ∂Ω ,

whose set of eigenvalues is {λ1 − λ2, 0, λ3 − λ2, . . .}. Thus, for s small the first
eigenvalue of (3.1) is always negative and close to λ1−λ2. There is also one positive
eigenvalue close to λ3−λ2, and we have to decide what happens with the eigenvalues
close to 0. Notice that for s small there are always two such eigenvalues µ1(s), µ2(s)
(counting multiplicity), since the proper subspace has to be two–dimensional.

Let φ1(s), φ2(s) denote the orthogonal eigenfunctions corresponding to these
two eigenvalues. Then φi(s) → Aiφα + Biψα as s → 0, where A2

i + B2
i = 1 and

A1A2 +B1B2 = 0. Multiplying (3.1) by φα, integrating over Ω, and passing to the
limit as s→ 0, we have that

Ai

(
σ

∫
Ω

φ2
α + 3

∫
Ω

φ4
α + lim

s→0

µi(s)
s2

∫
Ω

φ2
α

)
= 0 ,

and similarly, testing the equation against ψα,

Bi

(
σ

∫
Ω

ψ2
α + 3

∫
Ω

φ2
αψ

2
α + lim

s→0

µi(s)
s2

∫
Ω

ψ2
α

)
= 0 .

Now we have to distinguish between branches. If α = 0 or π/2, these equalities
read

(3.2)

Ai

(
lim
s→0

µi(s)
s2

+
9
8

)
= 0 ,

Bi

(
lim
s→0

µi(s)
s2

+
3
16

)
= 0 .

Thus we obtain that, say, Ai = 0 or Bi = 0 for both i = 1, 2; hence for s small
both eigenvalues are negative.
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If, on the contrary, α = π/4 or 3π/4, (3.2) becomes

(3.3)

Ai

(
lim
s→0

µi(s)
s2

+
21
16

)
= 0 ,

Bi

(
lim
s→0

µi(s)
s2
− 3

16

)
= 0 .

Arguing as before, this shows that there is a positive eigenvalue and a negative
one. To summarize, the first two branches of the bifurcation diagram, corresponding
to α = 0, π2 , have Morse index three, while the latter ones, corresponding to α =
π
4 ,

3π
4 , have Morse index two.

This concludes the proof of Theorem 1.1. �
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