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We consider the exterior problem

�u+ up = 0� u > 0 in �N\���

u = 0 on ��� lim
�x�→+�

u�x� = 0

where � is a bounded, smooth domain in �N , for supercritical powers p > 1. We
prove that if N ≥ 4 and p > N+1

N−3 , then this problem admits infinitely many solutions.
If � is symmetric with respect to N axes, this result holds whenever N ≥ 3 and
p > N+2

N−2 .

Keywords Critical exponents; Linearized operators; Slow decay solutions.

Mathematics Subject Classification Primary 35J25; Secondary 35J60.

1. Introduction and Statement of the Main Results

A basic model of nonlinear elliptic boundary problem is the Lane–Emden–Fowler
equation,

�u+ up = 0� u > 0 in �� (1.1)

u = 0 on ��� (1.2)
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1226 Dávila et al.

where � is a domain with smooth boundary in �N and p > 1. First formulated by
Lane, an astrophysicist, in the mid 19th century, the role of this and related elliptic
PDEs has been broad outside and inside mathematics. While simple looking, the
structure of the solution set of this problem may be surprisingly complex. Much
has been learned over the last decades, particularly thanks to the development of
techniques from the calculus of variations (see Struwe, 1990). On the other hand,
various basic issues are not yet fully understood.

A rather fascinating characteristic of this problem is the role played by the
critical exponent p = N+2

N−2 in the solvability question. When � is bounded and
1<p< N+2

N−2 , a solution can be found as a minimizer of the variational problem

inf
u∈H1

0 ���\�0�

∫
�
�	u�2( ∫

�
�u�p+1

) 2
p+1

�

which indeed exists thanks to compactness of Sobolev’s embedding of H1
0 ��� into

Lp+1���. When p ≥ N+2
N−2 , this minimization procedure fails, and so does existence in

general: Pohozaev (1965) discovered that no solution exists if the domain is strictly
star-shaped. On the other hand, in the critical case p = N+2

N−2 , solvability is restored
by the addition of linear terms, as discovered by Brezis and Nirenberg (1983). Coron
(1984) found that (1.1)–(1.2) is solvable for p critical if � has a small hole, see also
Rey (1989), while Bahri and Coron (1988) established that this is the case whenever
� has a non-trivial topology. The presence of non-trivial topology in the domain
does not suffice for existence of solutions to (1.1)–(1.2) if N ≥ 4 and p > N+1

N−3 as
found via examples by Passaseo (1993). If p is super-critical but close to critical,
solvability still holds in domains with small holes (see del Pino et al., 2003).

A main reason why in most existence results for elliptic problems involving
nonlinearities with power-like growth, the power is required to be at most critical
is that variational approach naturally adapts to the problem, and certain control
is typically possible on the forms of non-compactness arising. Loss of compactness
appears in unbounded domains, say exterior domains, even in the subcritical
situation, associated to invariance under translations. A model for which broad
literature exists is

�u− V�x�u+ K�x�up = 0

with V > 0, K > 0, and p subcritical, 1 < p < N+2
N−2 in entire space or in a exterior

domain. We refer the reader for instance to Bahri and Lions (1997), Benci and
Cerami (1987), Cerami and Molle (2003), Cerami and Passaseo (1995), and Esteban
and Lions (1982/83), and references therein for various existence and multiplicity
results in exterior domains via variational methods.

Except for results in domains involving symmetries or exponents close to critical
(del Pino et al., 2003; Passaseo, 1998), solvability of supercritical problems is a
widely open matter. In this paper we consider Problem (1.1)–(1.2) for exponents
p above critical in an exterior domain. Thus we assume in what follows that the
domain � has the form � = �N\� where � is a bounded domain with smooth
boundary. We consider the problem of finding classical solutions of

�u+ up = 0� u > 0 in �N\��� (1.3)
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Lane–Emden–Fowler Equation 1227

u = 0 on ��� lim
�x�→+�

u�x� = 0 (1.4)

where p > N+2
N−2 . The supercritical case is particularly meaningful in this problem

since Pohozaev’s identity does not pose obstructions for its solvability. On the
contrary, unlike the bounded domain case, existence of a finite-energy solution is
ruled out if p ≤ N+2

N−2 and � is star-shaped. Not only this, if � is a ball and p >
N+2
N−2 , radial classical solutions do exist, as it can be seen by phase-plane analysis
after a transformation of the problem found by Fowler (1931), see also for instance
Johnson et al. (1993) and Joseph and Lundgren (1973).

Our main result asserts that for arbitrary domain �, Problem (1.3)–(1.4) admits
infinitely many solutions if the power p is above N+1

N−3 , the critical exponent in one
dimension less. This constraint is not needed if the domain is symmetric with respect
to N coordinate axes, case in which pure supercriticality suffices.

To state our results precisely we consider the problem

�w + wp = 0 in �N � (1.5)

which is well known to possess a positive radially symmetric solution w��x��
whenever p > N+2

N−2 . Indeed, when looking for radial solutions w��x�� the classical
change of variable v�s� = r

2
p−1w�r�, r = es transforms the equation (1.5) into the

autonomous ODE

v′′ + 
v′ − �v+ vp = 0 (1.6)

where


 = N − 2− 4
p− 1

� � = 2
p− 1

(
N − 2− 2

p− 1

)
�

Since 
 and � are positive, it is standard to check, using the Hamiltonian energy
1
2 v̇

2 + 1
p+1v

p+1 − �

2 v
2, the existence of a unique orbit connecting the equilibria v = 0

and v = �
1

p−1 . This orbit gives rise to a family of solutions of the ODE by translation
in s, which are in correspondence with the scaling

w�r� = 
2

p−1w�r�� (1.7)

We fix in what follows the solution w of (1.5) such that

w�0� = 1� (1.8)

Asymptotics of w near +�, can be found by linearization of (1.6) at v = �
1

p−1

(see Gui et al., 1992). At main order one has

w�r� = �
1

p−1 r−
2

p−1 �1+ o�1�� (1.9)

as r → +�, which implies that this behavior is actually common to all solutions
w�r�. The idea is to consider w as a first approximation for a solution of Problem
(1.3)–(1.4), provided that  > 0 is chosen small enough.
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1228 Dávila et al.

Our main results read as follows:

Theorem 1. Assume that N ≥ 4 and p > N+1
N−3 . Then for all  > 0 sufficiently small,

problem (1.3)–(1.4) has a solution u of the form

u = w + �

with

���x�� ≤ C
2

p−1 if �x� ≤ 1


and ���x�� = o�1��x�− 2
p−1 if �x� ≥ 1


�

where o�1� → 0 as  → 0.

Since the location of the origin is arbitrary, one may conjecture the presence
of a N + 1-dimensional family of solutions, parametrized by a point in �N and all
small values of . However, our proof does not allow in principle to distinguish
between solutions associated to different choices of the origin.

Theorem 2. The result of Theorem 1 also holds true if N ≥ 3 and p > N+2
N−2 , provided

that � is symmetric with respect to N coordinate axes, namely

�x1� � � � � xi� � � � � xN � ∈ � if �x1� � � � �−xi� � � � � xN � ∈ �� for all i = 1� � � � � N�
(1.10)

We do not know whether existence of solutions to (1.3)–(1.4) holds in the entire
range N+2

N−2 < p ≤ N+1
N−3 without a further geometric constraint on �.

As it has become standard for various problems of this type, it is first necessary
to construct a right inverse of the linearization of (1.1) around w in the whole
of �N . This part does not require  to be small and it is similar to the analysis
by Mazzeo and Pacard (1996) where solutions with prescribed singular set for sub-
critical problems are constructed (see also Pacard, 1992, 1993). Then for small 
a similar solvability property is established for the linearized operator around w

in the exterior domain �N\��. As it will become apparent from the analysis in
Section 2, if N+2

N−2 < p < N+1
N−3 the linearized operator is not surjective, having a range

orthogonal to the generators of translations. This suggests that a further adjustment
of the location of the origin may produce a family of solutions as in Theorem 1,
and this is in fact the situation of Theorem 2.

The perturbation analysis in Mazzeo and Pacard (1996) and that carried out
here shows a strong analogy between inner-subcritical and exterior-supercritical
problems, and, at the same time, important differences like the fact that the
phenomenon seems to break apart without further geometric assumptions in the
domain to cover the full supercritical range. The analogy here revealed should be
an interesting line to explore in searching for a better understanding of solvability
for supercritical problems. For instance, we may observe that there exists a unique
radial solution u�r� to (1.3)–(1.4) with u�r� ∼ r2−N when � is a ball. This solution
is dual to the classical solution present in a ball in the sub-critical case. It would be
interesting to understand whether this duality holds for other geometries.
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Lane–Emden–Fowler Equation 1229

2. The Operator �+ pwp−1 in ���N

Let w be the radial solution to (1.5), (1.8). In this section we study the linear
equation

��+ pwp−1� = h in �N � (2.1)

The main result concerns with solvability of this equation and estimates for the
solution in appropriate norms. We choose to carry out this procedure in weighted
L� norms adapted to the problem. Since we will be interested in solving an equation
of this type where � will turn out to be a perturbation of w, it is rather natural to
require that it has a decay at most the same as that of w, namely O

(�x�− 2
p−1

)
as �x� →

+�. Of course we would also like � be bounded on compact sets. We shall however
allow slightly more room near the origin, say O��x�−�� near x = 0. Consistently, h
should have a behavior like this but with two powers subtracted. In particular we
will require h = O

(�x�− 2
p−1−2) at infinity.

Thus we define for a fixed small � > 0 the following norms that give account of
these requirements.


�
∗ = sup
�x�≤1

�x�����x�� + sup
�x�≥1

�x� 2
p−1 ���x��� (2.2)

and


h
∗∗ = sup
�x�≤1

�x�2+��h�x�� + sup
�x�≥1

�x� 2
p−1+2�h�x��� (2.3)

Proposition 2.1. Assume N ≥ 4 and p > N+1
N−3 . There exist a small � > 0 and a constant

C > 0 such that for any h with 
h
∗∗ < +�, equation (2.1) has a solution � = T�h�
such that T defines a linear map and


T�h�
∗ ≤ C
h
∗∗�

By the change of variables �̃�y� = ��y

� we deduce directly the solvability of

��+ pw
p−1
 � = h in �N (2.4)

in weighted L� spaces as defined by the norms


�
∗� = � sup
�x�≤ 1



�x�����x�� + 
2

p−1 sup
�x�≥ 1



�x� 2
p−1 ���x��


h
∗∗� = � sup
�x�≤ 1



�x�2+��h�x�� + 
2

p−1 sup
�x�≥ 1



�x�2+ 2
p−1 �h�x���

Theorem 3. Assume that N ≥ 4 and p > N+1
N−3 . For any  > 0 there is a linear map

h �→ � = T�h� defined whenever 
h
∗∗� < � such that � is a solution to (2.4).
Moreover


T�h�
∗� ≤ C
h
∗∗��
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1230 Dávila et al.

The linear operator in (2.1) is of regular singular type and it is well known
that it is Fredholm on weighted spaces provided the weight does not equal one
of indicial roots (see Mazzeo, 1991; Mazzeo and Smale, 1991; Mazzeo and Pacard,
1996). Nonetheless, for completeness of the presentation, we prefer to include the
main points of the argument and omit some technical computations.

We write h as

h�x� =
�∑
k=0

hk�r��k���� r > 0� � ∈ SN−1 (2.5)

where �k, k ≥ 0 are the eigenfunctions of the Laplace-Beltrami operator −�SN−1

on the sphere SN−1, normalized so that they constitute an othonormal system in
L2�SN−1�. We take �0 to be a positive constant, associated to the eigenvalue 0 and
�i, 1 ≤ i ≤ N is an appropriate multiple of xi

�x� which has eigenvalue i = N − 1, 1 ≤
i ≤ N . In general, k denotes the eigenvalue associated to �k, we repeat eigenvalues
according to their multiplicity and we arrange them in an non-decreasing sequence.
We recall that the set of eigenvalues is given by �j�N − 2+ j� � j ≥ 0�.

We look for a solution � to (2.1) in the form

��x� =
�∑
k=0

�k�r��k����

Then � satisfies (2.1) if and only if

�′′
k +

N − 1
r

�′
k +

(
pwp−1 − k

r2

)
�k = hk� for all r > 0� for all k ≥ 0� (2.6)

To construct solutions of this ODE we need to consider two linearly independent
solutions z1�k, z2�k of the homogeneous equation

�′′
k +

N − 1
r

�′
k +

(
pwp−1 − k

r2

)
�k = 0� r ∈ �0���� (2.7)

Once these generators are identified, the general solution of the equation can be
written through the variation of parameters formula as

��r� = z1�k�r�
∫

z2�khkr
N−1dr − z2�k�r�

∫
z1�khkr

N−1dr

where the symbol
∫

designates arbitrary antiderivatives, which we will specify in
the choice of the operators. It is helpful to recall that if one solution z1�k to (2.7) is
known, a second, linearly independent solution can be found in any interval where
z1�k does not vanish as

z2�k�r� = z1�k�r�
∫

z1�k�r�
−2r1−Ndr�

One can get the asymptotic behaviors of any solution z as r → 0 and as r → +�
by examining the indicial roots of the associated Euler equations. It is known that
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Lane–Emden–Fowler Equation 1231

as r → +� r2w�r�p−1 → � where

� = 2
p− 1

(
N − 2− 2

p− 1

)
�

Thus we get the limiting equation

r2�′′ + �N − 1�r�′ + �p� − k�� = 0� (2.8)

whose indicial roots are given by

�±
k = N − 2

2
± 1

2

√
�N − 2�2 + 4�k − p���

When k = 0 the indicial roots are given by

�±
0 = N − 2

2
± 1

2

√
�N − 2�2 − 4p��

The situation depends of course on the sign of D = �N − 2�2 − 4p�. It is observed
in Gui et al. (1992) that D > 0 if and only if N > 10 and p > pc where we set

pc =



�N − 2�2 − 4N + 8

√
N − 1

�N − 2��N − 10�
if N > 10

� if N ≤ 10�

Thus when p < pc, �
±
0 are complex with negative real part, and the behavior of a

solution z�r� to (2.7) as r → +� is oscillatory and given by

z�r� = O
(
r−

N−2
2
)
�

The behavior of w also depends on whether p < pc or p ≥ pc. Concerning the
latter case it will be useful to recall asymptotic formulae derived in Gui et al. (1992)
where it is shown that if p = pc (in which case �+

0 = �−
0 > 2

p−1 ),

w�r� = �
1

p−1

r
2

p−1

+ a1 log r
r�

−
0

+ o

(
log r
r�

−
0

)
� r → +�� (2.9)

where a1 < 0, and if p > pc (so that �+
0 > �−

0 > 2
p−1 )

w�r� = �
1

p−1

r
2

p−1

+ a1

r�
−
0
+ o

(
1
r�

−
0

)
� r → +�� (2.10)

In Fourier mode k = 1 the indicial roots are given by �+
1 = 2

p−1 + 1 and

�−
1 =N − 3− 2

p−1 . Since we are looking for solutions that decay at a rate r−
2

p−1 as
r→ +� we will need N − 3− 2

p−1 ≥ 2
p−1 , which is equivalent to p ≥ N+1

N−3 .
As r → 0 the limiting equation is given by

r2�′′ + �N − 1�r�′ − k� = 0�
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1232 Dávila et al.

In this way the behavior will be ruled by z�r� ∼ r−� as r → 0 where � satisfies

�2 − �N − 2�� − k = 0�

Lemma 2.1. Let k = 0 and p > N+2
N−2 . Then equation (2.6) has a solution �0 which

depends linearly on h0 and satisfies


�0
∗ ≤ C
h0
∗∗� (2.11)

Proof. Independently of the value of p, one can get immediately a solution of the
homogeneous problem. Since equation (1.5) is invariant under the transformation
 �→ 

2
p−1w�r� we see by differentiation in  that the function

z1�0 = rw′ + 2
p− 1

w

satisfies equation (2.7) for k = 0.
Using expansions (2.9), (2.10) and easily derived ones for w′, we get that as

r → +�

if p < pc � �z1�0�r�� ≤ Cr
N−2
2 (2.12)

if p = pc � z1�0�r� = cr−
N−2
2 log r�1+ o�1�� (2.13)

if p > pc � z1�0�r� = cr−�−0 �1+ o�1��� (2.14)

where c �= 0.

Case p < pc. We define z2�0�r� for small r > 0 by

z2�0�r� = z1�0�r�
∫ r

r0

z1�0�s�
−2s1−Nds

where r0 is small so that z1�0 > 0 in �0� r0� (which is possible because z1�0�r� ∼ 1
near 0). Then z2�0 is extended to �0�+�� so that it is a solution to the homogeneous
equation (2.7) (with k = 0) in this interval. As mentioned earlier z2�0�r� = O

(
r−

N−2
2
)

as r → +�.
We define

�0�r� = z1�0�r�
∫ r

1
z2�0h0s

N−1ds − z2�0�r�
∫ r

0
z1�0h0s

N−1ds�

and omit a calculation that shows that this expression satisfies (2.11).

Case p ≥ pc. The strategy is the same as in the previous case, but this time it
is more convenient to rewrite the variation of parameters formula in the form

�0�r� = −z1�0�r�
∫ r

1
z1�0�s�

−2s1−N
∫ s

0
z1�0���h0����

N−1d� ds�

which is justified because when p ≥ pc we have z1�0�r� > 0 for all r > 0, which
follows from the fact that  �→ 

2
p−1w�r� is increasing for  > 0, see Gui et al.
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Lane–Emden–Fowler Equation 1233

(1992). Again, a calculation using now (2.13) and (2.14) shows that �0 satisfies the
estimate (2.11). �

Lemma 2.2. a) Let k = 1 and p ≥ N+1
N−3 . Then equation (2.6) has a solution �1 which

is linear with respect to h1 and satisfies


�1
∗ ≤ C
h1
∗∗� (2.15)

b) Let N ≥ 3 and N+2
N−2 < p < N+1

N−3

(
N+2
N−2 < p if N = 3

)
. If 
h
∗∗ < +� and

∫ �

0
h1�r�w

′�r�rN−1 dr = 0 (2.16)

then (2.6) has a solution �1 satisfying (2.15) and depending linearly on h1 (condition
(2.16) makes sense when p < N+1

N−3 and 
h1
∗∗ < +�).

Proof. a) As mentioned before, the indicial roots in the case k = 1 are given
by �+

1 = 2
p−1 + 1 and �−

1 = N − 3− 2
p−1 . Assuming p ≥ N+1

N−3 we have N − 3− 2
p−1 ≥

2
p−1 . On the other hand the behavior near 0 of z�r� can be z�r� ∼ r or z�r� ∼ r1−N .

Similarly as in the case k = 0 we have a solution to (2.7), namely z1�r� = −w′�r�
which is positive in all �0�+��. With it we can build

�1�r� = −z1�r�
∫ r

1
z1�s�

−2s1−N
∫ s

0
z1���h1����

N−1d� ds� (2.17)

From this formula and using p ≥ N+1
N−3 we obtain (2.15).

b) Since z1�r� ≤ Cr−
2

p−1−1 and p < N+1
N−3 it is not difficult to check that z1h1�

N−1

is integrable in �0�+�� if 
h1
∗∗ < +�. Thus, by (2.16) we can rewrite (2.17) as

�1�r� = z1�r�
∫ r

1
z1�s�

−2s1−N
∫ �

s
z1���h1����

N−1d� ds

and from this formula (2.15) readily follows. �

Lemma 2.3. Let k ≥ 2 and p > N+2
N−2 . If 
hk
∗∗ < � equation (2.6) has a unique

solution �k with 
�k
∗∗ < � and there exists Ck > 0 such that


�k
∗ ≤ Ck
hk
∗∗� (2.18)

Proof. Let us write Lk for the operator in (2.6), that is,

Lk� = �′′ + N − 1
r

�′ +
(
pwp−1 − k

r2

)
��

This operator satisfies the maximum principle in any interval of the form ��� 1
�
�,

� > 0. Indeed let z = −w′, so that z > 0 in �0�+�� and it is a supersolution, because

Lkz =
N − 1− k

r2
z < 0 in �0�+��� (2.19)
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1234 Dávila et al.

since k ≥ 2N for k ≥ 2. To prove solvability of (2.6) in the appropriate space we
observe that

� = C1z+ v� v�r� = 1

r� + r
2

p−1

�

(for some suitably large C1) is a supersolution and then the method of sub and
super-solutions yields the desired result. We omit the details. �

To complete the proof of Theorem 3 we need to show that the sum of right
inverses for each component is bounded in our weighted L� space. This argument
appears elsewhere (Caffarelli et al., 1984) but we shall reproduce it below.

Proof of Theorem 3. Let m > 0 be an integer. By Lemmas 2.1–2.3 we see that if

h
∗∗�1 < � and its Fourier series (2.5) has has hk ≡ 0 ∀k ≥ m there exists a solution
� to (2.1) that depends linearly with respecto to h and moreover


�
∗�1 ≤ Cm
h
∗∗�1
where Cm may depend only on m. We shall show that Cm may be taken independent
of m. Assume on the contrary that there is sequence of functions hj such that

hj
∗∗�1 < �, each hj has only finitely many non-trivial Fourier modes and that the
solution �j �≡ 0 satisfies


�j
∗�1 ≥ Cj
hj
∗∗�1�

where Cj → +� as j→ +�. Replacing �j by �j


�j
∗�1 we may assume that

�j
∗�1 = 1 and 
hj
∗∗�1 → 0 as j → +�. We may also assume that the Fourier
modes associated to 0 = 0 and 1 = · · · = N = N − 1 are zero.

Along a subsequence (which we write the same) we must have

sup
�x�>1

�x� 2
p−1 ��j�x�� ≥

1
2

(2.20)

or

sup
�x�<1

�x����j�x�� ≥
1
2
� (2.21)

Assume first that (2.20) occurs and let xj ∈ �N with �xj� > 1 be such that

�xj�
2

p−1 ��j�xj�� ≥
1
4
�

Then again we have to distinguish two possibilities. Along a new subsequence
(denoted the same) xj → x0 ∈ �N or �xj� → +�.

If xj → x0 then �x0� ≥ 1 and by standard elliptic estimates �j → � uniformly on
compact sets of �N . Thus � is a solution to (2.1) with right hand side equal to zero
that also satisfies 
�
∗�1 < +� and is such that the Fourier modes �0 = · · · = �N

are zero. But the unique solution to this problem is � ≡ 0, contradicting ���x0�� ≥ 1
4 .
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Lane–Emden–Fowler Equation 1235

If �xj� → � consider �̃j�y� = �xj�
2

p−1�j��xj�y�. Then �̃j satisfies

��̃j + pw
p−1
j �̃j = h̃j in �N

where wj�y� = �xj�
2

p−1w��xj�y� and h̃j�y� = �xj�2+
2

p−1 h
(

y

�xj �
)
. But since 
�j
∗�1 = 1 we

have

��̃j�y�� ≤ �y�− 2
p−1 � �y� > 1

�xj�
(2.22)

so �̃j is uniformly bounded on compact sets of �N\�0�. Similarly, for �y� > 1
�xj �

�h̃j�y�� ≤ �y�−2− 2
p−1 
hj
∗∗�1

and hence h̃j → 0 uniformly on compact sets of �N \ �0� as j → +�. Also wj�y� →
Cp�N �y�−

2
p−1 uniformly on compact sets of �N\�0�. By elliptic estimates �̃j → �

uniformly on compact sets of �N\�0� and � solves

��+ Cp�N �y�−
2

p−1� = 0 in �N\�0��

Moreover, since �̃j

(
xj
�xj �

)
≥ 1

4 we see that � is non-trivial, and from (2.22) we have
the bound

���y�� ≤ �y�− 2
p−1 � �y� > 0� (2.23)

Expanding � as

��x� =
�∑

k=N+1

�k�r��k���

(we assumed at the beginning that the first N + 1 Fourier modes were zero) we see
that �k has to be a solution to

�′′
k +

N − 1
r

�′
k +

�p− k
r2

�k = 0� ∀r > 0� ∀k ≥ N + 1�

The solutions to this equation are linear combinations of r−�±k where �+
k > 0 and

�−
k < 0. Thus �k can not have a bound of the form (2.23) unless it is identically zero,

a contradiction.
The analysis of the case (2.21) is similar and this proves our claim. By density,

for any h with 
h
∗∗�1 < � a solution � to (2.1) can be constructed and it satisfies

�
∗�1 ≤ C
h
∗∗�1. �

It is important to emphasize that the constraint p > N+1
N−3 appears only at Fourier

mode 1. We have
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1236 Dávila et al.

Remark 2.1. Suppose N ≥ 3 and p > N+2
N−2 . If 
h
∗∗� < � and in (2.5) we have

hk ≡ 0 for 1 ≤ k ≤ N then there exists a solution � to (2.1), which defines a linear
operator of h, with


�
∗� ≤ C
h
∗∗� �

Remark 2.2. Radial solutions to �w + wp = 0 in �N with p sub and super-critical
exhibit a certain duality with respect to p. The solution w to (1.5), (1.8) is
smooth at the origin and w�r� ∼ r−

2
p−1 as r → +�. For sub-critical p there exists

a radial solution ŵ with the behavior ŵ�r� ∼ r−
2

p−1 as r → 0 and decaying as the
fundamental solution when r → +�. The former solution was used by Mazzeo and
Pacard (1996) to construct singular solutions to �u+ up = 0 in bounded domains
for sub-critical p. The analogy, however, breaks down when analyzing the linearized
operators around these solutions. In Fourier mode 1, for super-critical p there are
two elements in the kernel (i.e., two solutions to (2.7)) which have behaviors

z1�r� ∼
{
r r → 0

r−
2

p−1−1 r → +� z2�r� ∼
{
r1−N r → 0

r3−N+ 2
p−1 r → +�

while their counterparts for sub-critical p behave as

ẑ1�r� ∼
{
r−

2
p−1−1 r → 0

r1−N r → +� ẑ2�r� ∼
{
r3−N+ 2

p−1 r → 0

r r → +��

We see that for sub-critical p none of these functions pose a problem for the
invertibility of the operator. If p is super-critical we observe that an appropriate
right inverse can be constructed without restrictions on the right hand side if 3−
N + 2

p−1 ≤ − 2
p−1 , while in the opposite case the orthogonality of the right hand side

with respect to z1 is needed.

3. The Operator �+ pw
p−1
� in ���N\��

Now we consider the linear problem



��+ pw

p−1
 � = h in �N\��

� = 0 on ��

��x� → 0 �x� → +��

(3.1)

which we intend to solve as a perturbation of the equation in entire space.

Proposition 3.1. (a) Assume N ≥ 4 and p > N+1
N−3 . There exists a constant C > 0 such

that for all sufficiently small  > 0 and all h with 
h
∗∗� < +�, Problem (3.1) has a
solution � = ��h� such that � is a linear map and


��h�
∗� ≤ C
h
∗∗��
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Lane–Emden–Fowler Equation 1237

(b) If N = 3, � is symmetric with respect to all axes and p > N+2
N−2 , then the same

conclusion holds if h is symmetric in each variable, that is, if

h�x1� � � � � xi� � � � � xN � = h�x1� � � � �−xi� � � � � xN � for all 1 ≤ i ≤ N�

Proof. We first prove part (a). We shall solve (3.1) by writing � = ��+ � where �
is a radial cut-off function such that � ∈ C���N �, 0 ≤ � ≤ 1,

��x� = 0 for �x� ≤ R0� ��x� = 1 for �x� ≥ R0 + 1

and R0 > 0 is fixed so that � ⊆ BR0
. We need another cut-off � ∈ C���N �, 0 ≤ � ≤ 1

such that

��x� = 0 for �x� ≤ R1� ��x� = 1 for �x� ≥ R1 + 1

where R1 > R0 + 1, in such a way that �� = �.
To find a solution of (3.1) it is sufficient to solve the following system

��+ pw
p−1
 � = −p�w

p−1
 �+ �h in �N (3.2)


��+ p�1− ��w

p−1
 � = −2	�	�− ���+ �1− ��h in �N\��

� = 0 on ��

��x� → 0 �x� → +��

(3.3)

We assume 
h
∗∗� < �. Let us consider the Banach space X consisting of functions
� such that 
�
∗� < � and that are Lipschitz on E = BR1

\BR0
equipped with the

norm


�
X = 
�
∗� + 
	�
L��E��

Given � ∈ X we solve first (3.3) and denote by ���� h� the solution, which is
clearly linear in its argument. Then note that �� is well defined in �N and that
��� ≤ C

�x�N−2 for large �x� so hence the right hand side of (3.2) has a finite 
 
∗∗� norm.
We obtain a solution to the system, which defines a linear operator in h, if we solve
the fixed point problem

� = T

(−p�w
p−1
 ���� h�+ �h� ≡ F��

)
�

where T is the operator constructed in Theorem 3.
By Theorem 3 we have the estimate


F���
∗� ≤ C
 − p�w
p−1
 �+ �h
∗∗� ≤ C

(
�wp−1
 �
∗∗� + 
h
∗∗�

)
� (3.4)

But


�wp−1
 �
∗∗� = � sup

R1≤�x�≤ 1


(�x�2+�w�x�
p−1���x��)+ 

2
p−1 sup

�x�≥ 1


(�x�2+�+ 2
p−1w�x�

p−1���x��)�
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1238 Dávila et al.

Using equation (3.3) and the fact that w�x� → 0 uniformly on compact sets we
have

���x�� ≤ C

�x�N−2 + 1

(
�
X + 
h
L��BR1+1�

)
≤ C

�x�N−2 + 1
�
�
X + 
h
∗∗�� for all x ∈ D� (3.5)

By the definition of w

sup
R1≤�x�≤ 1



w�x� = 
2

p−1 sup
�x�≤ 1



w�x� ≤ C
2

p−1 � (3.6)

Hence, by (3.5), (3.6)

� sup
�x�≤ 1



(�x�2+�w�x�
p−1���x��) ≤ C2+��
�
X + 
h
∗∗�� sup

�x�≤ 1


�x�4+�−N �

If 4+ � − N ≥ 0 (so N = 3 or N = 4) the supremum on the right hand side is
bounded by N−4−�. On the other hand, if 4+ � − N < 0 the supremum is bounded
by a constant. Thus

� sup
�x�≤ 1



(�x�2+�w�x�
p−1���x��) ≤ C��
�
X + 
h
∗∗�� (3.7)

where � = min�2+ ��N − 2�.
On the other hand w�x� ≤ C�1+ �x��− 2

p−1 for all x ∈ �N with C independent of
 and hence using (3.5)


2

p−1 sup
�x�> 1



(
�x�2+ 2

p−1w�x�
p−1���x��

)
≤ CN−2�
�
X + 
h
∗∗��� (3.8)

Combining (3.7) and (3.8) we find


�wp−1
 �
∗∗� ≤ C��
�
X + 
h
∗∗��

and this together with (3.4) yields


F���
∗� ≤ C��
�
X + 
h
∗∗��� (3.9)

By standard elliptic estimates and using (3.5)


	F���
L��E� ≤ C�
F���
∗� + 
h
∗∗� + ��
�
X + 
h
∗∗����

This and (3.9) imply


F���
X ≤ C��
�
X + 
h
∗∗���

Thus for  small F defines a contraction mapping of the region �� ∈ X�
�
X ≤
2C
h
∗∗��. This fixed point inherits the solution with the required properties.
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Lane–Emden–Fowler Equation 1239

In order to prove part (b) one argues exactly as before, except for stating the
fixed point problem in the class of function respecting the symmetry with respect to
the N axes and using Remark 2.1. �

4. Solving the Nonlinear Problem

Let � ∈ C���N �, 0 ≤ � ≤ 1, ��x� = 0 for �x� ≤ R, ��x� = 1 for �x� ≥ R+ 1 and R > 0
is fixed. Then u = �w + � is a solution of (1.3)–(1.4) if � solves



��+ pw

p−1
 � = N���+ E in �N\��

� = 0 on ��

��x� → 0 as �x� → +�
(4.1)

where

N��� = −��w + ��p + ��w�
p + p��w�

p−1�+ p�1− �p−1�w
p−1
 ��

and

E = −���w�− ��w�
p�

By Proposition 3.1 we thus have a solution to (4.1) if � solves the fixed point
problem

� = ��N���+ E�� (4.2)

Let us estimate 
N���
∗∗�. We observe that


p�1− �p−1�w
p−1
 �
∗∗� = C sup

�x�≤R+1
�x�2+�w�x�

p−1���x��

≤ C2
�
∗�� (4.3)

Let us now define

N1��� = N���− p�1− �p−1�w
p−1
 �� (4.4)

To estimate this quantity observe that

�N1���� ≤ C
(
w

p−2
 �2 + ���p)�

Let us work with 0 < � < min�2� 2/�p− 1��. Since

���x�� ≤ C−
2

p−1 �x�− 2
p−1 
�
∗�� for all �x� ≥ 1



and

w�x� ≤ C�1+ �x��− 2
p−1 for all x ∈ �N �
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1240 Dávila et al.

we have on one hand


2

p−1 sup
�x�≥ 1



�x�2+ 2
p−1w�x�

p−2���x��2 ≤ C−
2

p−1 
�
2∗�� (4.5)

On the other hand,

���x�� ≤ C−��x�−�
�
∗� for all �x� ≤ 1


and therefore, using now that

w�x� ≤ C
2

p−1 for all �x� ≤ 1


we obtain

� sup
�x�≤ 1



�x�2+�w�x�
p−2���x��2 ≤ C

2�p−2�
p−1 −�
�
2∗� sup

�x�≤ 1


�x�2−�

= C−
2

p−1 
�
2∗�� (4.6)

From (4.5) and (4.6) it follows that

∥∥wp−2
 �2

∥∥
∗∗� ≤ C−

2
p−1 
�
2∗�� (4.7)

To estimate 
 ���p
∗∗� we compute

� sup
�x�≤ 1



�x�2+����x��p ≤ C−2
�
p∗�� (4.8)

Similarly


2

p−1 sup
�x�≥ 1



�x�2+ 2
p−1 ���x��p ≤ C−2
�
p∗�� (4.9)

From (4.8) and (4.9) it follows that


 ���p
∗∗� ≤ C−2
�
p∗�� (4.10)

By (4.7) and (4.10) we have


N1���
∗∗� ≤ C
(
−

2
p−1 
�
2∗� + −2
�
p∗�

)
� (4.11)

Thus from (4.3), (4.11) for any p > 1,


N���
∗∗� ≤ C
(
2
�
∗� + −

2
p−1 
�
2∗� + −2
�
p∗�

)
� (4.12)

Next we estimate E. Explicitly we have

−E = ��w + 2	�	w + w��+ �pw
p
 = ���p−1 − 1�wp

 + 2	�	w + w��
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Lane–Emden–Fowler Equation 1241

and we see that since E has compact support


E
∗∗� ≤ � sup
x∈supp�E�

�x�2+��E�x�� ≤ C
2

p−1+� (4.13)

for some constant C independent of .

Proof of Theorem 1. We have already observed that u = �w + � is a solution of
(1.3)–(1.4) if � satisfies equation (4.2). Define �0 = ��E�. From Proposition 3.1,
part (a), and (4.13), we get 
�0
∗� ≤ C

2
p−1+�. Let us write � = �0 + �1. Then

solving equation (4.2) is equivalent to solving the fix point problem �1 = ��N��0 +
�1��. Consider the set

� =
{
� ∈ L��D�/
�
∗� ≤ �

2
p−1

}

where � > 0 is going to be fixed independently of , and the operator

���1� = ��N��0 + �1���

We prove that � has a fixed point in � . For �1 ∈ � we have


���1�
∗� ≤ C
N��0 + �1�
∗∗�
≤ C

(
2
�0 + �1
∗� + −

2
p−1 
�0 + �1
2∗� + −2
�0 + �1
p∗�

)
by (4.12). Thus for small 


���1�
∗� ≤ C
2

p−1 ��2 + 2� + p� + �2 + �p� ≤ �
2

p−1

if we fix � > 0 small and then let  → 0. Hence ��� � ⊂ � for small .
Now we show that � is a contraction mapping in � . Let us take �1, �2 in � .

Then


���1�− ���2�
∗� ≤ C
N��0 + �1�− N��0 + �2�
∗∗�� (4.14)

Write

N��0 + �1�− N��0 + �2� = D�̄N��̄���1 − �2�

where �̄ lies in the segment joining �0 + �1 and �0 + �2.
For �x� ≤ 1


,

��x�2+��N��0 + �1�− N��0 + �2�� ≤ �x�2�D�̄N��̄��
�1 − �2
∗�
while, for �x� ≥ 1


,


2

p−1 �x�2+ 2
p−1 �N��0 + �1�− N��0 + �2�� ≤ �x�2�D�̄N��̄��
�1 − �2
∗��
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1242 Dávila et al.

Then we have


N��1�− N��2�
∗∗� ≤ C sup
x

(�x�2�D�̄N��̄��
)
�1 − �2
∗�� (4.15)

Directly from the definition of N , we compute

D�̄N��̄� = DN1��̄�− p
(
1− �p−1

)
�

p−1
 (4.16)

where

DN1��̄� = p
[
��� + �̄�p−1 − ����

p−1
]
�

Thus

�DN1��̄�� ≤ C
(
w

p−2
 ��̄� + ��̄�p−1

)
�

For all x we have

�x�2wp−2
 ��̄�x�� ≤ C−

2
p−1 �
�1
∗� + 
�2
∗�� ≤ C�� (4.17)

Similarly, for all x

�x�2��̄�x��p−1 ≤ C−2
(
�1
p−1

∗� + 
�2
p−1
∗�

) ≤ C�p−1� (4.18)

Estimates (4.16)–(4.18) show that

sup
x

(�x�2�D�̄N��̄��
) ≤ C

(
�+ �p−1 + 2

)
� (4.19)

Gathering relations (4.14), (4.15) and (4.19) we conclude that � is a contraction
mapping in � , and hence a fixed point in this region indeed exists. This finishes the
proof of the theorem. �

Proof of Theorem 2. Let us observe that N��� and E are even with respect to each
of their coordinates if so is �. One can then formulate the fixed point problem (4.2)
restricting it to the space of functions respecting these symmetries, using the linear
operator predicted by Proposition 3.1, part (b). The rest of the proof continues in
identical way as that of Theorem 1. �
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