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Abstract. We introduce new nonlinear equations which provide soliton-like solutions. The exist-
ence of such solutions is obtained by a minimization argument and by using a variant of the
concentration-compactness principle.
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1. Introduction

The aim of this Letter is to present new nonlinear equations which provide
soliton-like solutions and to study their dynamics. In the last few years, several
new researches have been devoted to the study of existence and multiplicity of
soliton-like solutions for nonlinear problems (see [1-7, 9, 11, 12]).

A soliton is a solution of a field equation whose energy travels as a localized packet
and which preserves its form under perturbations. In this respect, solitons have a
particle-like behavior and they occur in many questions of mathematical physics,
such as classical and quantum field theory, nonlinear optics, fluid mechanics, plasma
physics (see [11, 14, 16-18]).

To ensure some form of stability of solutions under perturbations to certain
nonlinear equations, it is natural to look for solutions which are local minima
of the energy functional related to the problem. For instance, the classical
Schroédinger equation

i _ L Ay + Vo — [yr~! = N
= o=, =y, xeRY, treR  (L1)
ot 2m

does not provide soliton-like solutions: the energy functional is not bounded from
below, it has no local minima, and solutions correspond to saddle points. On
the other hand, if a nondispersive term is added in Equation (1.1), the problem gains
stability and, in particular, soliton-like solutions (see [1]).

A common pattern of problems which have soliton-like solutions is the fact that
the existence of such solutions is guaranteed by some suitable topological constraint:
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they naturally appear from the discussion of all admissible configurations on which
the related functional is finite (see, for instance, [12, 13, 16]) .

The sine-Gordon equation is the simplest example of equation with soliton-like
solutions. A first generalization of the sine—Gordon equation is the case of the
3-space dimension model

Op+ V' () =0 ¢=d¢(x 1), xR reR (1.2)

where 0¢ = —c?Ap + 8¢ /31> (A is the three-dimensional Laplace operator) and V'
is the gradient of a C' nonnegative real function.

For stability reasons, one is interested in static solutions of (1.2), that is functions
u = u(x) satisfying

—Au+V'(u)=0in R?, (1.3)

which correspond to local minima of the energy functional

5(u)=%fn{3 |Vu|2+/]R3 V(1) dx. (1.4)

In [10], the author proves that £ does not admit local minima: in fact, assume u is a
local minimum for &, then u;(x) = u(Ax) with 4 > 0 is such that £(u;) < E(u) for
certain 4 > 1.

In order to overcome this difficulty, Derrick proposed some models which are the
Euler-Lagrange equations of the action functional

S:/f[,dxdt (1.5)

with special Lagrange density L.
In [2], the authors carry out a wide existence analysis of the finite energy static
solutions for a class of Lagrangian density £ of the form

L(¢. 0) = —5(0) = V($) (1.6)

where ¢: RV*! — R¥*! o = |V¢|*> — |¢,1> (V¢ denotes the Jacobian with respect to
x € R and ¢, the derivative with respect to ¢ € R), V' is a real nonnegative function
defined on an open subset Q@ ¢ RY*! and «(p) = ap + blo|?/*> withp > N, a > 0 and
b > 0 (see also [6, 7, 9]).

The Euler-Lagrange equations related to S (see (1.5)) with £ of the form (1.6) are

O (£ (@b)—V (o (V) + V() = 0. (1.7)
ot

A static solution of (1.7) is a map u: RY — RM*! which satisfies the following
system:

—ahu — bgApu V() =0, (1.8)



NEW NONLINEAR EQUATIONS WITH SOLITON-LIKE SOLUTIONS 163

where A,u = V(|Vul’"*Vu); the vector field

— vt
o, (x, t)=u<;ll—v2,xz,---,xN), v <1,
—

is then a solution to (1.7).

In[2], it is proved that (1.8) has a weak solution, which is a minimizer of the energy
functional in the class of maps which are topologically nontrivial (in a certain sense).
Moreover, under certain assumptions of symmetry on V/, a result of existence of
infinitely many solutions is provided.

In this Letter we are concerned with existence of soliton-like solutions for the
following system of equations

0, + ¢y + V'(¢y) =0, O¢, = ¢4, (1.9)

where ¢, ¢, are maps defined in R**! with values in R* and V" is the gradient of a
real nonnegative function defined on an open subset of IR*.

This model corresponds to coupling two wave equations which actually corre-
sponds to considering a nonlinear nonlocal wave equation for one of the waves,
or a fourth-order equation for the other one.

In fact, plugging the second equation in the first one, it is easy to see that (¢, ¢,) is
a solution to (1.9) if ¢, = O¢,, where ¢, solves

D¢, +0¢, + V'(¢,) =0 in R>. (1.10)

Static solutions to (1.10) are maps which satisfy

. v .
—Ag + A +£(¢)=0 in R? (1.11)
J
for j=1,...,4, where ¢: IR > R* is a map whose components in IR* are
(@', ....0%.

It is standard to verify that, if ¢ = ¢(x) is a solution of (1.11) and ¢(x) = —Ag(x),
then

v L x1—=t
o1(x, 1) = ¢(ﬁ,xz,x3)

and

X1 — vt
d)é(x, l) = (p<\/117—2’ X2, X3)
—V

are solutions of system (1.9), for any vector field v = (v, 0, 0) with |v| < 1.
Weak solutions of (1.11) are maps ¢:IR* — IR* which satisfy

/ (Dq/DW - AGAY + ﬂ(w)&//) dx =0,

Vi=1,...,4, Y e CP(R*RY.
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Hence, weak solutions of (1.11) correspond to critical points of the energy functional

Bo) = [ [50P +180P) + V()] dx (1.12)

in particular we are interested in those critical points of E which are minimum points
of FE in a suitable class of maps.

Since Equations (1.11) involve maps which are defined on IR?, our variational
problem has a lack of compactness, that is the Palais—Smale condition fails. Hence,
in this case the direct methods of the calculus of variations are useless.

In order to overcome this obstruction, we use the Splitting Lemma (Lemma 3.1),
which is a direct consequence of the concentration-compactness principle (see [6,
15]) and it gives a precise description of the behavior of the minimizing sequences.

Moreover, we point out that the maps on which we minimize the functional E are
classified by means of a topological invariant, the charge, which also gives a quali-
tative characterization of the solutions of (1.11).

Let & be a fixed point in IR*. The potential ¥ is a real function defined on
Q = R*\{&} such that

(V) Ve CY(Q; R);

(V2) V(x) = V(0) =0 for every x € Q;

(V3) V is twice differentiable in 0 and the Hessian matrix V”(0) is nondegenerate;
(V4) there exist ¢, r > 0 such that

if || <r, then V(E+¢) > c|¢™" (1.13)
for sake of simplicity we consider |&| = 1.

Observe that, since 0 is a nondegenerate minimum for V', we can choose a base in R*
which diagonalizes V”(0) so that

m? 0
V'(0) = - ,

0 my

where m; #0 for any j=1,...,4.
We obtain the following result.

THEOREM 1.1. There exists at least one weak solution of system (1.11) which is a
minimum of the energy functional (1.12) in the class of maps which are not homotopic
to the null map (defined in a suitable sense, see Definition 2.2).

Remark. If the target space has a more complicated topology, if say Q =
R*\{&,,..., &}, then a proper topological invariant can be associated to each



NEW NONLINEAR EQUATIONS WITH SOLITON-LIKE SOLUTIONS 165

map ¢ and a similar existence result can be easily obtained (see [7] for a related
problem).

This Letter is organized as follow: in Section 2 we first choose the space A of maps
on which the functional E is defined, we introduce a topological invariant of such
maps, the charge, and we state some useful properties of it. Then we study the behav-
iour of the functional E. In Section 3 we give the proof of Theorem 1.1.

2. Variational Framework

Let H denote the space obtained as the completion of C§° (IR%; IR*) with respect to the
norm

lloll = el + [IVell 29 + 1A@]l L2, 2.1

where || - ||;2 denotes the norm in L2(IR3; R*). H is a Banach space continuously
embedded in W22(IR*; RY).

From well-known Sobolev embeddings (see [8]), the space H has the following
useful properties.

(I) There exist two constants Cy, C, such that, for every ¢ € H,
ol < Cilloll (2.2)
and
0() = 9| < CollgllIx = v 23)

(IT) Forevery p € H
ll‘im o(x) = 0. (2.4)
X|—00
(III) If (¢,), C H (weakly) converges in H to ¢, then it converges uniformly on every
compact set contained in IR3.

Because of (2.3) the set
A={peH:Vx € R o(x) # &

is well-defined; it is open in H since (2.2) and (2.3) hold.
Moreover, the boundary of A is given by
dA = {¢ € H: 3% € R? such that ¢(x) = &}.

The set of maps on which we define E is precisely A.
For any ¢ € A we get E(¢) < +o0. Indeed, f]R3 V(p)dx < 4+oosince (V1) and (V2)
hold, ¢ € A and [is |p|? dx < +00. Moreover E € C'(A; R).
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Let us now introduce the topological charge defined for maps in A.
Let us consider the projection P:Q — X defined by

z, &-¢
PO =¢t+—=, VieQqQ
1€ =<l
where = {¢ e R*: |¢ — | = 1} and ¢ is the point which appears in (V.4).
For every £ € Q

P =2 i=(1+1E-¢E
and therefore
P@)=2= [ > L. (2.5)

DEFINITION 2.1. For ¢ € A, we call support of ¢ the compact set

K(p)={xeR*: 1 <o)}

(here the value 1 depends on the norm of the singularity &). Then the topological
charge of ¢ is the Brower degree of Po ¢ in the support of ¢ with respect to
2¢, namely

car(¢p) = deg(P o ¢, int(K(p)), 2¢).

In [6] some properties of the topological charge, introduced in a different setting of
maps, are showed; the same properties hold in our case and the proofs are quite
similar to those given in [6]. Hence, we limit ourselves in stating them.

PROPOSITION 2.2. The topological charge satisfies the following properties.
(1) For every @ € A and for every R > 0 such that K(¢) C B(0, R),
car(g) = deg(P o ¢, B(0, R), 28);

moreover, if K(¢) consists of m connected components K, ..., K, we can define
also

car(g, K;) = deg(P o ¢, K;, 28);

then, by additivity of the degree,
m
car(p) = ) _car(p, K)).
=1

(i1) Ifa sequence (¢,), C A convergesto ¢ € A uniformly on A C IR, then also P o 0,
converges to P o ¢ uniformly on A.
(iii) The topological charge is locally constant in A.
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Now for every g € Z, we set
Ay ={¢ € A: car(p) = g}.
From (iii), it follows that A, is open in H; moreover A = J,cz Ay, with A, N A, =0
if p # q. Hence, A, is a connected component of A.
If we set A* =, Ay, from (2.5) it follows that

Vo € A" = ||9]]o > 1 (2.6)

and, hence, K(¢p) # 0.
Let us now proceed with the properties of the functional £ we want to minimize.

PROPOSITION 2.4. The functional E is coercive in H. Moreover, there exists a
positive constant A* such that, for every ¢ € A,

ol =1 = E(p) = A" 2.7

Proof. Let (¢,), > 1 be a sequence of maps in H such that [|¢,|| — 4+00. We need to
show that E(¢,) — +oo. If ||V(p,,||(L2)3 + ||A@,||;2 = +oo we are done.
On the other hand, if

||V(/7n||(L2)3 + ||A(Pn||L2 <G, oyl = 400,

then [ps V(p,)dx — +o0.
Indeed, since 0 is a nondegenerate minimum of V/, there exist ¢ > 0 and 2 > 0 such
that

<o = V(O =
For any n > 1, let
Ap={x e R’: |p,(x)] <o}.

By a well known Sobolev inequality and the boundedness of || D¢,,| |25 We infer that
[l@,llrs < Ca; hence meas(CA,) < C3, where CA, denotes R3\4,.
Furthermore, by Holder inequality, we have

1
3 2
/ |, I* dx < (/ I(/J,,Iédx) (meas(CA4,))’ < Cy.

n CA,
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Finally, we get

/ V(p,)dx > f V(p,)dx =2 f @2 dx
R3 Ap Ay

=i<llqonlliz—/ wﬁdX>
CA,

> (19,1122 — Cy)

that is the coercivity of £ on H.
Since (2.2) holds one easily gets (2.7). O

PROPOSITION 2.4. Let (¢,,),, C A be bounded in the H-norm and weakly convergent
10 ¢ € A, then [is V(p,)dx — +oo. That is, if (¢,), C A is weakly convergent to ¢
and E(¢,,) is bounded, then ¢ € A.

Proof. Since ¢ € dA there exists X € IR such that ¢(%) = . Since V is positive it
suffices to show that

/ V(p,)dx — +o0 (2.8)
B(X.0)

for a suitable ¢ > 0.
By uniform convergence on compact sets, we have

lim ¢, (%) = C. (2.9)

n—oo

Since (||¢,|]), is bounded, (2.3) implies that
10u(x) — 9,(®| < Clx =%, Vxe R} (2.10)

for a suitable constant C.
From (2.9) and (2.10) it follows that

9,(x) — & < Clx — X + o(1) @2.11)

for n sufficiently large; hence we can fix ¢ > 0 such that, for all x € B(X, o),
|¢,(x) — &| <r where r is the number which appears in (1.3). Hence, using (1.3)
and (2.11), for every x € B(X, ¢) we have
C/ C//
— = —3 ;
lp,(x) =& Ix = X"+ o(l)

V(g (x)) =
from which (2.8) follows. O

PROPOSITION 2.5. For every a > 0, there exists d > 0 such that, for every ¢ € A,

E(p) < a = min|p(x) — | >d.
xeR?
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PROPOSITION 2.6. For every ¢ € A and for every sequence (¢,), C A, if (¢,),
weakly converges to ¢, then E(¢) < liminf,_.« E(¢,). For the proof of Propositions
2.6, one can argue like in [6].

PROPOSITION 2.7. The minimum points ¢ € A for the functional E are weak sol-
utions of the system (1.1).

Proof. Let ¢ € A be a minimum point of E and fix s arbitrarily in CgO(IRS; R). Let
€ denote the jth vector of the canonical base in R*.

If s > 0 is sufficiently small, then ¢ + sy/€; € A and E(¢ + sy/€;) < 4-o0. Differ-
entiating with respect to s in 0, taking into account that ¢ is a minimum point,
one gets

d _
0= aE(QD + Y€)=

= /E{S(V(/)iVlﬂ—FA(/)jAl//*l—g

5 ((p)lﬂ) dx.
3. Existence Theorem

We recall the splitting lemma, whose proof derives straightforwardly from the con-
centration compactness method (see [6, 15]).

LEMMA 3.1 (sSplitting lemma). Let (¢,), C A* be such that
E(p,) <a. (3.1

Then there exists | € IN, with

a

1<i< — 3.2
- (32)
(A* has been introduced in (2.7)) and there exist @y, ..., @, € A, (x}),, ..., (), C
R3, Ry,..., R, > 0 such that, up to subsequences,
Pu(-+x)—=@, in A as n— oo, (3.3)
[[@illoe = 1, (3.4)
X, = x| - 400 if i#j, as n— oo, (3.5)

!
> E@) < liminf E(p,), (3.6)
=1 n—oo
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I
Vx € R \(U B(x!, Ri)) |, (x)| <1 for n sufficiently large. (3.7)
i=1

Then we have also

/

car(p,) = anr(@) for n large enough, (3.8)
=1
l .
limsup|lg, = Y @(- = ¥l < 1. (3.9)

J=1
Remark 3.2. From (3.4) it follows that

E@)=A Vi=1,....,1L (3.10)

Remark 3.3. Using (2.4) and (3.5), it is not difficult to see that, for n large enough,
/ .
DB —x) e,
i=1

and

THEOREM 3.4. There exists ¢ € A* such that E(@) = infy E.
Proof. Let us set E* = inf,« E. From (2.6) it follows that A* < E*.
Consider now a minimizing sequence (¢,,), C A*. Let us apply the splitting lemma:

there exists / € IN and @, ..., ®; € A such that, up to a subsequence,
i
Z E(@,) < liminf E(p,) = E* (3.11)
i=1 e
and
i
car(p,) = Y _ car(®)). (3.12)
f

Since car(¢,) # 0, from (3.12) we deduce that there exists i € {1, ..., [}, for sake of
simplicity i = 1, such that car(¢,) # 0.
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Then, by (3.11), we obtain

E*> Y E@®) > E@®)) > E*;
i=1

so we get E(p,) = E*. O

For every g € IN, we set E; = inf 4 E = inf 4 E. It is obvious that the functional £
takes its absolute minimum O in the class Ay. Let us observe that, under a further
condition on V, one can prove the existence of a nontrivial weak solution for
(1.11) with charge 0. On the other hand, by Theorem 3.4, there exists at least
one g = car(p) # 0 such that Ej is attained.

PROPOSITION 3.5. For every q # 0, a sufficient condition to guarantee that E, is
attained is that there exists a minimizing sequence in A, which satisfies the properties
of the splitting lemma with | = 1. So, if E, is not attained, then every minimizing
sequence in Ay satisfies the properties of the splitting lemma with | = 2.

Proof. Let (¢,), be a minimizing sequence in .4, which satisfies the properties of
Lemma 3.1 with /= 1. From (3.8) we have car(g,) = car(¢,) = ¢, which implies
E(®,) = E,;. On the other hand, by (3.6),

E, =liminf E(¢,) = E(@)).
n— o0
So we conclude that E(¢;) = E,. O

PROPOSITION 3.6. For every q # 0, if E, < 2E*, then the value E, is attained in A,.
Proof. Let (¢,), be a minimizing sequence in .A,. For n sufficiently large we have

E(p,) < 2E*. (3.13)

Using the splitting lemma we see that there exist/ € INand ¢, ..., ®; € A such that,
up to a subsequence,

/

Y E@) < liminf E(p,) = E, (3.14)
=1 n—0o0
and
/
0# g =car(p,) = Y _car(@,). (3.15)
i=1

By (3.15) there exist i € {1,...,/} such that car(®;) # 0; by (3.13) and (3.14) such
index is unique; say i = 1. Then we have car(¢,;) = car(g,) = ¢ and, substituting
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in (3.14),

I
kg > Z E(9;) = E; + Z E(@)).
i=2

i=1

So we obtain

and we necessarily have / = 1. Then we can apply Proposition 3.5. OJ

Now let us define
S ={q e N*: E,is attained }.
S is not empty, by Theorem 3.4. Moreover, the following characterization holds.

THEOREM 3.7. The ideal spanned by S coincides with ZL.

Remark 3.8. Theorem 3.7 means that either the set .S contains 1, that is E attains its
minimum in the classes A4 ; or the set S contains at least two different elements, that
is E has two (pairs of) minima, with different charge.

Proof. Arguing by contradiction, assume that 4 = ZZ \spanS # . Then we set
A= quA Aq and E4 = il’lfAE.

Let (¢,), C A be such that E(¢,) — E4. Since A C A", we can apply the splitting

lemma: there exist / € IN, ¢, ..., ®; € A such that, up to a subsequence,
E@) > A* > 0; (3.16)
!
Y E@®,) < liminf E(p,) = E4; (3.17)
n—0o0
i=1
/
car(p,) = Y _ car(®,): = Q. (3.18)

i=1

Since (¢,,), C A, we have
QeAd. (3.19)

Then, since Ap C A and (3.18) holds, we have E, < Eg < E(¢,). So (¢,), is a
minimizing sequence in Agp.

From (3.18) and (3.19) we infer that there exists i € {1, ..., /}, say i = 1, such that
car(®,) € A; indeed, otherwise, if car(g;) & 4 for all i, then Q = car(g;) € S, which
contradicts (3.19).
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On the other hand, Ey is not attained, since Q € 4, then, by Proposition 3.6, we get
[ = 2. Therefore, using (3.16) and (3.17), we get a contradiction

1
Es>E@)+ Y E@)>Es+ (- DA > Ey. O

i=1
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