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In this paper we consider the nonlinear elliptic problem —Au + au = g(|Vu|) + Ah(z)
in 2, u =0 on 812, where 2 is a smooth bounded domain of RY, o > 0, g is an
arbitrary C! increasing function and h € C''(£2) is non-negative. We completely
analyse the existence and non-existence of (positive) classical solutions in terms of
the parameter \. We show that there exist solutions for every A when o = 0 and the
integral [°1/g(s)ds = oo, or when a > 0 and the integral [*s/g(s)ds = oco.
Conversely, when the respective integrals converge and h is non-trivial on 92,
existence depends on the size of A. Moreover, non-existence holds for large A\. Our
proofs mainly rely on comparison arguments, and on the construction of suitable
supersolutions in annuli. Our results include some cases where the function ¢ is
superquadratic and existence still holds without assuming any smallness condition
on A.

1. Introduction

The concern of the present paper is the existence and non-existence of solutions to
the following nonlinear elliptic problem:
—Au+ au = g(|Vu|) + M\h(z) in 2,

1.1
u=20 on 897 ( )
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where (2 is a bounded domain of class C%" of RY for some 7 € (0,1), a > 0, and
g € CY(R) is increasing with g(0) = 0. We assume that the function h € C*(£2) is
non-negative, while A is regarded as a positive parameter.

We focus our attention on general functions g, obtaining sharp conditions that
imply that either (a) (1.1) has a unique solution for every A or (b) there exists a
critical size of A that divides existence from non-existence for (1.1) when h # 0
on 0f2.

This type of problem has been extensively studied. We give a quick review of the
topic here; other references can be found in the papers quoted below. The pioneering
work on the subject seems to be due to Serrin [28], Amann and Crandall [5] and
Lions [23]. The case o > 0 is considered in [10,11], where existence holds when ¢
has at most quadratic growth (see also [13]). The case a = 0 and g(t) = t*> was
studied, for example, in [16,17] (see also [2,19]). For related results see [1,12].

More recently, related fully nonlinear equations were also considered in [29] (see
also the case o < 0 in [21], where multiplicity results were obtained).

We finally mention that a starting point of our work can be found in [3]; actu-
ally we solve a problem given in that paper (see [3, remark, p. 29]). More precise
information on our contribution with respect to the known results is given in the
remarks after our main theorems.

By a solution to (1.1) we mean a function u € C?(2)NC () verifying the equa-
tion in the classical sense. Remark that, on the one hand, standard bootstrapping
gives u € C%*7((2), while, on the other hand, solutions are strictly positive in {2
by the maximum principle, since —Au + au > 0 in (2. An important remark with
regard to (1.1) is that uniqueness of solutions holds by the comparison principle
(see, for example, [18, theorem 10.1] or the results in [15,26]). Thus, we need only
show existence and non-existence of solutions. For other uniqueness results see, for
example, [7-9]. Observe also that non-uniqueness holds with less regularity on the
solution; see, for example, [2].

We now state our main results. We begin with the case a = 0. It turns out that
the existence of solutions depends on the condition

/100 gd(z) = o0. (1.2)

More precisely, we have the following.

THEOREM 1.1. Assume that g € C'(R) is increasing with g(0) = 0, while h €
CL(02) is such that h > 0 in Q. If « = 0, then

(i) if (1.2) holds, there exists a unique solution to (1.1) for every A > 0;

(ii) if (1.2) does not hold and h # 0 on 02, then there exists A > 0 such that,
for A€ (0,4), (1.1) has a unique solution, while there are no solutions when
A> A

REMARK 1.2. (a) The non-existence part in (ii) is already proved in the case where
g is convex (see [3, theorem 2.1]). In the particular case, g(t) = t* with p > 2;
see [20] for existence when h is a measure and A is small.
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(b) Part (ii) of theorem 1.1 extends the case g(t) = t? of the above-mentioned
papers.

We now turn to the case o > 0. In this case, the condition for the existence of

solutions is
| = (13)
——ds = 0. .
1 9(s)

Observe that condition (1.3) is implied by (1.2). We have the following.

THEOREM 1.3. Assume that g € C'(R) is increasing with g(0) = 0, while h €
CY(92) is such that h > 0 in 2. If a« > 0, then

(i) if (1.8) holds, there exists a unique solution to (1.1) for every A > 0;

(i) if (1.8) does not hold and h #£ 0 on OS2, then there exists A > 0 such that,
for X € (0,A), (1.1) admits a unique solution, while no solutions exist when
A> A

REMARK 1.4. (a) The non-existence part in (ii) is already proved in the particular
case g(t) = tP with p > 2 (see [3, proposition 2.3]).

(b) Part (i) in theorem 1.3 applies, for instance, to g(t) = ¢?In(1 + ¢), which is
superquadratic, and so existence holds without the smallness restriction on the
right-hand side. This means that, in the setting of classical solutions, and with
smooth data, most of the previous existence theorems are not optimal with respect
to the growth condition in g, since at most quadratic behaviour is required in the
case a > 0.

(c) Part (i) in our two theorems answers an open question raised in [3] (see [3, p. 29,
remark]). We are, indeed, a little more precise here, since our optimal conditions
are different for the cases a = 0 and a > 0. When g¢(¢) = ¢, part (i) holds in both
theorems, this particular case already being covered in [3] (see [3, theorem 3.1]).

(d) The case g(t) = O(t) has usually been the reference case for a general solvability
result (part (i) in theorem 1.1 or theorem 1.3); see, for example, [4,14] (note that
the symmetrization approach reduces the problem to a radial one, which is related
to our approach). The superlinear model case g(t) = [t|?, ¢ > 1, is studied in
depth in [20], in particular, as far as necessary conditions for the existence are
concerned. In [25], the case g(t) = t? with the limit @« — 0 is described, and
the maximal constant A is characterized in terms of stochastic state constraint
ergodic problems. For the superquadratic case, also see [6], where the existence of
a generalized viscosity solution is proved when « > 0, though this solution is not
classical and, in particular, may not attain the boundary datum.

We mention in passing that the positivity condition on h is only imposed in order
to simplify the presentation. In particular, it is relevant for the non-existence results
only. For a function h that takes both signs, we may still assert the existence of
solutions for every A > 0 in case (i) in both theorems, and for small X in case (ii),
although in this last situation the results are not expected to be optimal. Note also
that, when h is negative, the change of u to —u in (1.1) amounts to replacing g
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by —g. In most of the previous work, no distinction is made between the two cases,
but the results are far from optimal. Here, we have decided to restrict our attention
to non-negative h (hence, positive g) for definiteness. Also, the restriction that h is
non-trivial on 94?2 is probably not necessary for the non-existence of solutions. The
same result is expected to hold for functions A that are non-trivial on (2, although
the method of proof has to be modified. We are not pursuing this matter further
in the present paper.

On the other hand, we believe that the proofs can be adapted to deal with some
more general operators than the Laplacian, for instance, the p-Laplacian or even
some fully nonlinear operators that depend on the second derivatives of the solution.

The basic idea for proving the existence of solutions to (1.1) comes from [23]
(see also [22,24]). Tt consists in truncating the term ¢(]Vu|) in order to obtain a
problem in a classical setting, i.e. with subquadratic growth in the gradient. The
standard method of sub- and supersolutions can then be used to get a solution
to the truncated problem, and the final step is to show that the solution to the
truncated problem is indeed a solution to the original one. This can be achieved
by obtaining appropriate estimates for the gradient Vu of the solution u in £2. By
an adaptation of the classical method of Bernstein (see [23,28]), these estimates
are a consequence of a kind of maximum principle for |[Vu|? + u?, so everything is
reduced to estimating |Vu| on 92. This in turn can be done by comparing with a
suitable supersolution.

It is important to note that our approach does not rely on obtaining a superso-
lution @ to (1.1) that vanishes on the whole 92, something which is required to
apply [23, theorem III.1]. Rather, we construct the supersolution by analysing (1.1)
in an annulus that, after a suitable translation, is tangent to 0f2 at every fixed
o € 012. This enables us to deal with a radial problem that is in some sense inte-
grable, so we are able to find conditions that are both necessary and sufficient for
existence.

The paper has the following structure. In § 2 we construct supersolutions to (1.1)
in the particular case where (2 is an annulus. Section 3 is dedicated to showing the
non-existence of solutions to (1.1) when 2 is a ball. Finally, in §4 we deal with the
proofs of theorems 1.1 and 1.3.

2. Supersolutions for problems in annuli

We prove in §4 that the existence of a radial supersolution to (1.1) posed in an
annulus when h is constant suffices to ensure the existence of a solution to (1.1).
Thus, this section is dedicated to constructing a positive radial function u verifying
—( N =N Y —au 4 g(Ju/]) +¢), Ry <7 < Ry, 2.1)

U(Rl) = 0, U(RQ) 2 0, '

for suitable values of ¢, depending on whether o = 0 or a > 0, and also on the
integrability conditions on g at oo considered in § 1. In what follows, Ry > Ry > 0
are fixed.
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LEMMA 2.1. Assume that g € C1(R) is increasing with g(0) = 0 and o = 0. Then,

if ~ g
/1 7) = 00, (2.2)

for every ¢ > 0 there exists a positive radial function u verifying (2.1). If (2.2)
does not hold, the existence of such a function also follows provided that ¢ is small
enough.

Proof. Introducing the change of variables

log r, N =2,
s=9 1 1 (2.3)
N —2pN-2’

and defining u(r) = v(s), (2.1) is transformed into

_ 1
—v" > 2N (Q(TN_l |v/|) + c>7

v(a) =0, wv(b) >0,
where a = log Ry, b = log Ry when N = 2, while

11 11
o b=———— ifN>3
N—2 RN N-—2gry2 ' ?

Since g is increasing and positive, it suffices to have that

_ 1
" > Rg(N 1) (g(RN—1|’U/|> —|—C>,
1
v(a) =0, v(b) > 0.

Setting w(s) = v(s+a), this suggests that we consider the one-dimensional autono-
mous initial-value problem

_ 1
—w" = W 1)< < w'>+c),
2\ ! (2.4)

w(0) =0, w'(0) =~ >0,

which has a unique solution for every v > 0, and find a positive solution in (0,b—a).
Observe that the solutions to (2.4) verify, on one hand, that w” < fcRg(N_l), S0
an integration gives that w(s) < s(y — cRg(Nfl)s/Z). On the other hand, since
w’ is decreasing, we have that w’(sg) = 0 for some sy > 0, and it follows, by the
symmetry of the problem, that w is symmetric with respect to sg and w(2sg) = 0.
Letting 25y be the first zero of w and integrating the equation in (0, s¢), we obtain

that
<R1>N‘1/”/R¥1 dt
So = -y —_—.
RV 0 g(t) +c

We conclude that sg is an increasing function of v that verifies

0 (g)N [ o (25)
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as v — +oo. Therefore, in the case where (2.2) holds, since g is increasing, the
integral in (2.5) diverges. So, we can always choose ~y large enough such that sy >
(b —a)/2, and this provides us with a positive solution of (2.1). When the integral
converges, we can also obtain that sg > (b— a)/2 if we select ¢ small enough, since

the integral
o dt
/ At (2.6)
o 9(t)

diverges at 0, due to g(0) = 0 and g € C*(R). This concludes the proof. O

LEMMA 2.2. Assume that g € C1(R) is increasing with g(0) = 0 and o > 0. Then,
if

/1 7) ds = oo, (2.7)

for every ¢ > 0 there exists a positive radial function u verifying (2.1). If (2.7) does
not hold and c is small enough, such a function also exists.

Proof. Setting z = ¢/a — u, we look for a function verifying
(V) = N ez + g(12]),
c c
Ry)=—, Ry) < —.
2(B) =~ 2(R) <
We look for a positive solution z to this inequality. With the change of vari-

ables (2.3), and letting v(s) = z(r), we find, as before, that v is a supersolution,
provided, for instance, that

_ 1
UH 2 R;(N 1) (av+g<wvl|))7
1

v(a) = —, v(b) = 0.

Setting w(s) = v(b — s), it is thus natural to consider the initial-value problem

_ 1
w' = R2(N 1) (aw + ( w' ))’
2 9\ =] (2.8)
w(0) = 0, w'(0) =~ >0,

which has a unique solution for every « > 0, and see if we can select « such that
w(b— a) is as large as we please.

Note that w” > 0 as long as w > 0, so it is not hard to see that solutions are
positive, increasing and convex for s > 0. For every v > 0, the solution is defined
in an interval [0,7(7)), and when T'(y) < oo we have that

lim w(s)=+00 or lim w'(s)=+oo. (2.9)
s—T(7) s—T(v)
We shall see that, when the integral condition (2.7) is satisfied, we always have
both conditions in (2.9). Indeed, the first one implies the second, and if we had
that w(T(7)) < 400, then

w’ < RZNY (aw(T('y)) + g(RJ\l,lw')>
1
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Multiplying by w’ and integrating, we arrive at

T w/w// B
/o o) + gl S I))

which yields that

0o 2(N-1)
/ > ds < i N1
eV aw(T(y)) + g(s) Ry

contradicting condition (2.7). Thus, w,w’ — oo as s = T'(7).

We have two cases to consider: either T'(vp) is infinite for some vy > 0, or T'(7y) is
finite for every v > 0. In the first case, we see that this implies that T'(y) = oo for
every v > 0. Observe first that, when u, v are two solutions to the equation in (2.8)
with w(0) > v(0), v/(0) = v1 > 2 = v/(0), then u > v in the common interval of
definition; hence, T'(y1) < T'(72).

In particular, T'(y) = oo for v < 7p. If v > = and we temporarily denote by w,
the unique solution to (2.8), there exists § > 0 such that w’ (J) > v, since w/ is
increasing and converges to co. Let

() = wn, (@ +9).
Then, @ is a solution to the same equation with initial data w(0) = w,,(d) > 0,
w'(0) = w!, (0) > 7. It follows by the previous observation that w > w,, and, in
particular, T'(y) = oo. Thus, all solutions are global in this case and it is easy to
conclude that, since w(zx) > yx by convexity, we can have w(b — a) as large as we
please, so a supersolution can be constructed with large values of c.

The second possibility is that all solutions blow up in finite time, i.e. T'(y) < oo
for every v > 0. We see that, in such a case, T'(y) is a continuous function of . Take
“n 4 7. By comparison, we have that T'(vy,) < T'(v). Moreover, we can choose 6,, | 0
such that w’ (0,) > vn. Arguing as before, w, (x + 6,) > w, (), so T'(y) — d, <
T(~,) and we obtain that T'(vy,) — T(y). When ~,, 1 v the proof is similar.

Next, we claim that T'(y) — oo as v — 0. Indeed, assume that T'(y) < Tp when
~ — 0. Since w” > 0, we obtain that w < Tow', so

_ 1
w" < Rg(N 1) <9<RN—1w/> + aTOw’>,
1

and this leads, after an integration and a change of variables, to

> ds R3 Nl
<(2) 1.
/v/RiV‘1 g9(s) + aThRY s <R1> ’

A contradiction is reached when we let v — 0, since the integral then diverges.
Thus, lim,T'(y) = co.

We define T' = lim,_,oT'(y) (which is expected to be 0). If T < b — a, we can
use the continuity of T' to obtain that v > 0 such that T'(vy) = b — a + € for small
positive . Taking € as small as we please, we obtain w., (b — a) as large as we
please, and this provides us with a supersolution for large values of c. If, on the
contrary, T > b — a, then all solutions would be defined at least in [0,b — a], and
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since w(b—a) > v(b—a), we obtain that w.(b—a) is as large as we please by taking
large values of ~.
To conclude the proof, we now consider the case when

< s
/ ——ds < o0
1 9(s)
and c¢ is small enough. Observe that, in this case, all solutions blow up in finite
time. Indeed, let T' < T'(y). Since

_ 1
w’ > RE(N 1)9<RN1U/>,
1

we can integrate in (0,7) and let T'— T'(y) to arrive at

- > d
R A (2.10)

< o0,
5 9(s)

since this last integral also converges.

It also follows from (2.10) that T'(y) — 0 as v — oo (i.e. T = 0 in the above
proof). Since T(y) is continuous with T'(y) — oo as v — 0, we can choose 7y
such that T'(y) > b — a and obtain a supersolution for ¢ < aw.(T'(v)). It is worth
mentioning that in the present case, where (2.7) does not hold, we cannot guarantee
that the first equality in (2.9) holds, so the supersolution is not valid in principle
for large values of c. O

3. Nonexistence of solutions in balls

In this section we tackle the question of non-existence of solutions to (1.1). We
see in §4 that it suffices to show non-existence of radial solutions when {2 is a ball
of RV and h is constant. Thus, under several hypotheses, we show that the problem

"

N -1
. v =—-au+g(lu])+c, 0<r<R, (3.1)

u’(0) =0, u(R) =0,

does not admit positive solutions for large values of c.

LEMMA 3.1. Assume that g € C1(R) is increasing with g(0) = 0 and o = 0. Then,

if
/“3@0
1 9(5) ’

there exists co > 0 such that (3.1) does not admit positive solutions when ¢ = co.

Proof. Assume that u is a solution to (3.1). We first claim that «/(r) < 0 for
r € (0,R) and v’ (r) < 0 in [0, R). Observe that v”(0) = —¢/N < 0, so uv/(r) < 0
for r > 0 close enough to 0. If we had u'(rg) = 0 for some r¢ € (0, R) with v’ < 0
in (0,79), then u”(rg) > 0, so from the equation we obtain that u”(rg) = —c < 0,
which is impossible. Then, v/(r) < 0if 0 <r < R.
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Assume now that for some 7y € (0, R) we have that u”(7y) = 0. Since u'”(7p) > 0
in this case, we obtain, by differentiating the equation

w N=1., N-1

"
—u" - ——u

N N A/
r ?"QU_g( U)’U,

such that v (7p) < 0, a contradiction. Thus, v”(r) < 0 for r € (0, R) as well.
Next, if we rewrite the equation as —(r™ ~1u’) = rN=1(g(—u') +¢) and integrate

in (0,7), taking into account that g(—u') is increasing, we obtain that
T
—rN=h/ (r) = / sV (g(—=u/(s)) + ¢)ds
0

<l o [ s

so, substituting this into (3.1), we have that

—u" > %(g(—u’) +¢) in (0, R).

Integrating in (0, R), we obtain that

/°° dt /“’<R> dt 1
- > -~ >"R
o 9(t)+c 0 g(t)+c = N

This implies that ¢ cannot be too large in order to have a positive solution to (3.1).
O

LEMMA 3.2. Assume that g € C*(R) is increasing with g(0) = 0 and a > 0. Then,
if

/1 7) ds < oo, (3.2)

there exists co > 0 such that (3.1) does not admit positive solutions when ¢ > cg.

Proof. Let u be a positive solution to (3.1). We first claim that u < ¢/a. Indeed,
if we had that «(0) = ¢/, then u = ¢/a by uniqueness, which is not possible. If
u(0) > ¢/a, then w”(0) > 0 and w initially increases. According to the boundary
condition u(R) = 0, there should be a point where u achieves its maximum, but
this is in contradiction with the equation. We conclude that u(0) < ¢/a and, again
by the equation in (3.1), u initially decreases and cannot reach a minimum, so u is
always decreasing. It is seen, much as in the previous case, that v” < 0 in [0, R)
also. Thus, arguing as in that proof, we obtain that

—u" > %(—au +g(—u') + ¢). (3.3)

Assume that there exists a sequence ¢, — oo such that a positive solution u,
to (3.1) exists with ¢ = ¢, (with no loss of generality we may assume that ¢, is
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increasing). Let v,, = ¢,/ — uy,. Then,

N-1, ,
Up, + Tvn = aUp + g(vn)a
Cn

GO =0, wa(R) =2,

with v}, > 0, v]/ > 0. We claim that v,(0) is bounded as n — oco. Indeed, since
from (3.3) we have that

o> = (o + g(0))) > = (avn(0) + g(1),),

N

we can integrate to arrive at

1 /MR) ds /°° ds
—R< - < e
N 0 av,(0) +g(s) ~Jo ava(0)+g(s)

Therefore, if v, (0) — oo, we arrive at a contradiction. Since solutions are increasing
in ¢ (due to uniqueness), we can guarantee that v, (0) — o for some ¥ > 0. It also
follows that v,, — z, the unique solution to

2=

N-—-1
2 ——2 = az+g(7),
r

2(0) = 7, 2'(0) =0,

which is defined in a maximal interval [0, 7). When T < oo, lim,_,7z(r) = oo or
lim,_,72’(r) = co. By comparison, we also have that v, < z in [0, min{T, R}).

We see that T' < R. Indeed, if T > R, we have that v,(R) = ¢,/a < z(R), and
then it follows that T'= R and z(R) = oo. This is impossible, since z” > g(2’)/N,
and multiplication by 2’ and another integration between %R and R — ¢ for some
small positive € yields that

1 R 2/ (R—¢) 00
(z(R—e)—z())g/ ids</ s
N 2 2(ry2) 9(8) 2(Ry2) 9(8)

Letting ¢ — 0 we obtain a contradiction with (3.2). Thus, T' < R.
Now choose a small € > 0. Since v}, — 2z’ uniformly in [0,7 — €], we have that
(T —¢) 2 2/(T — ¢) — e if n is large enough. Therefore,

/

Un,

1 ViR q > d
—(R—T+e)</ —S</ =

N v! (T—e) g(S) 2/ (T—e)—e g(‘S)

Letting € — 0, we arrive at T' > R, a contradiction, which shows that no solutions
to (3.1) may exist if ¢ is large enough. O

4. Proof of the theorems

This final section is dedicated to the proof of theorems 1.1 and 1.3. The idea of the
proof of existence comes from [23], and it consists in truncating the function g in
order to obtain a solution, and then estimating the gradient of this solution in 2.
The essential point is to obtain a suitable supersolution.
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Since (2 verifies the uniform exterior sphere condition, there exists Ry > 0 such
that for every o € 92 there exists yo € R \ 2 with Bg, (yo) N2 = {z0}. Choose
Ry > R; large enough such that 2 C A := Bg,(yo) \ Br, (y0) for every z € 012.

Consider the radial problem

(4.1)

—(r N =N —au 4 g(Ju!]) +¢), Ry <7 < Ry,
U(Rl) = 0, ’U,(Rg) > 0,

where ¢ > 0. The first important existence result is the following.

LEMMA 4.1. Assume that g € C1(R) is increasing with g(0) = 0 and h € C*(2)
is non-negative. If there exists a positive supersolution @ to (4.1), then, for every
A € (0,¢/lh|so], (1.1) admits a positive solution.

With regard to non-existence results, the reference situation is a radial problem
in a ball. Observe that, since {2 verifies a uniform interior ball condition and h > 0,
h # 0 on 02, we can find zg € 92, yo € 2 and R > 0 such that Bgr(yg) C {2,
Br(yo) N 082 = {zo} and h > hg > 0 in Br(yo). Consider the problem

—(rV WY =N Y —au+ g(JW]) +¢), 0<r< R’} (4.2)

u'(0) =0, u(R) =0,
where ¢ > 0. We then have the following.

LEMMA 4.2. Assume that g € C(R) is increasing with g(0) = 0 and h € C1(0) is
non-negative with h > hg > 0 in Br(yo). If (4.2) does not admit a positive solution
for some ¢ > 0, then (1.1) does not have solutions for A\ = c/hg.

As we have quoted in § 1, the method we follow for proving existence (and indeed
also non-existence) relies on obtaining good estimates for the gradient of the solu-
tions. This last part is achieved by means of a kind of maximum principle for
the gradient of solutions to (1.1). The proof is inspired by the classical method of
Bernstein (see, for example, [23,28]).

LEMMA 4.3. Letu € C*(2)NC(2) be a solution to (1.1). Assume that g € C*(R)
is increasing with g(0) = 0 and h € CY(£2). There then exists a constant C that
depends on supglu|, supgo|Vu|, supn|Vh| and A such that

|Vu| < C  in 1.

Proof. Let u be a solution to (1.1), and define w = |Vu|? + u2. For simplicity, we
define g(|¢]) = §(|¢]?). By standard regularity, it follows that u € C3(42,), where
2, ={x € 2: |Vul? > p} for some 0 < p < ||ul|%,, and, hence, w € C%(£2,)NC(£2,).
It is then not hard to check that, in 2,, one has that

Aw = %|D2u|2 — 25 (IVu*)VuV (w — u?) — 2AVAVu + 2ulu + (2 + 2a)|Vul?.

On the other hand,

N

N 2
=1

i=1
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and since § is non-decreasing and u > 0, so 2¢'(|Vu|?)VuV(u?) > 0, we have that
Aw > %(Au)Q — 27 (|Vul?)VuVw — 2AVAVu + 2ulu + (2 + 2a)|Vul|?
in £2,. An application of the Cauchy-Schwarz inequality leads to
Aw > %(Auﬁ 2§ (IVu)VuVw — N2|VA2 — Nu? + |Vl

in £2,. Fix
M > sup |Vul® + 2N|[ulZ, + A?||Vh]|co,
902

and assume that the open set ) = {x € 2: w > M} is non-empty. It clearly
follows that 20 CC §2,, since

|Vaul|? > ||lul|2, > p in 2.

Hence, Lw < 0 in 2y, where Lw = —Aw — 2¢'(|Vu|)Vu - Vw, and the strong
maximum principle implies that w < supyg w = M in {2y, which is a contradiction.
Hence, w < M in (2. O

We now come to the proofs of lemmas 4.1 and 4.2.

Proof of lemma 4.1. For the moment, fix yo € 92 and define o(x) = u(|z — yol)-
Take K > 0 and let g € C'(R) be a bounded increasing function verifying that
gr(t)=gt)if 0 <t < K.

We consider the truncated problem

—Au+au=gx(|Vul) + M(z)  in £, } (4.3)

u=20 on O0f2.

When K > sup |@'|, the function @ is a supersolution to (4.3), and since v = 0 is a
subsolution, it follows that there exists a solution u to (4.3) (by using the results
in [5,27]), which verifies that 0 < u < @.

By the maximum principle, we have that « > 0 in 2 and that du/dv < 0 on 912.
Moreover, since o(xg) = 0,

o v )
o= (w0) > o (w0) =~ (Ry).

We see that the same inequality holds for every x{, € 952. Indeed, if we take such a x|,
and A’ is the corresponding annulus, then, since —Au + au < gx(|Vul) + Ah|so
in 2, the function u(|z — yj|) is a supersolution to (4.3), considered in A’. By
comparison, we obtain that u(x) < @(Jz — yj|) in §2. Thus,

ou
() >~ (R).
Hence,
iR < 22 <0 onon.
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We are in a position to apply lemma 4.3 to obtain a constant M > 0, which
does not depend on K, such that |[Vu| < M in 2. Taking K > M, we have that
gk (|Vul|) = ¢g(|Vu|) in £2, and u is a solution to our original problem. This concludes
the proof. O

Proof of lemma 4.2. Assume that (1.1) has a positive solution u for some A > ¢/hg.
Then, u is a supersolution to the problem

—Av+av = g(|Vv|) + Aho  in Br(yo),
v=20 on 0Br(yo).

A similar procedure to that in the proof of lemma 4.1 yields the existence of a
solution to this problem, which is unique, hence radial. This is in contradiction
to the hypothesis. It is important to remark that this procedure works, since the
supersolution vanishes at xg € 9Br(yo) N 9£2, which allows us to estimate v' on
OBRr(yo) in terms of |Vu(zo)l|. O

Finally, we proceed to prove our main theorems. We note that, once we have
separately analysed the cases & = 0 and o > 0 in §§2 and 3, the rest of the proof
is exactly the same in both cases.

Proof of theorems 1.1 and 1.3. (i) By lemmas 2.1 and 2.2, there exists a supersolu-
tion to (4.1) for every ¢ > 0. The existence of a positive solution to (1.1) for every
A > 0 follows due to lemma 4.1.

(ii) Again by lemmas 2.1, 2.2 and 4.1, there exists a solution for small values of A.
On the other hand, using lemma 4.2 in conjunction with lemmas 3.1 and 3.2 we
also have that no solutions to (1.1) exist for large values of A. Hence, we can define

A = sup{\ > 0: there exists a solution to (1.1)},

and A is finite and positive. By its very definition, there exist no solutions to (1.1)
for A > A. Now choose an arbitrary A € (0,A). There then exists p € (A, A)
such that (1.1) with X substituted by p admits a positive solution v. Since this
solution is a supersolution to (1.1), the existence of a positive solution follows as in
lemma 4.1. 0
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