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a b s t r a c t

The main goal of this paper is to study the asymptotic expansion near the boundary of the
large solutions of the equation

−∆u+ λum = f in Ω,

where λ > 0,m > 1, f ∈ C(Ω), f ≥ 0, and Ω is an open bounded set of RN, N > 1,
with boundary smooth enough. Roughly speaking, we show that the number of explosive
terms in the asymptotic boundary expansion of the solution is finite, but it goes to infinity
asm goes to 1. We prove that the expansion consists in two eventual geometrical and non-
geometrical parts separated by a term independent on the geometry of ∂Ω , but dependent
on the diffusion. For low explosive sources the non-geometrical part does not exist; all
coefficients depend on the diffusion and the geometry of the domain by means of well-
known properties of the distance function dist(x, ∂Ω). For high explosive sources the
preliminary coefficients, relative to the non-geometrical part, are independent on Ω and
the diffusion. Finally, the geometrical part does not exist for very high explosive sources.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we are interested in the solutions of the equation

−∆u+ g(u) = f inΩ, (1)

with an explosive behavior on the boundary

u(x)→∞ as x→ ∂Ω. (2)

In general, the solutions of (1) and (2) are called large solutions if a Comparison Principle holds. This is because the inequality

u(x) ≥ v(x), x ∈ Ω,

is satisfied for any other solution v of (1) with bounded boundary values.
Singular boundary value problems as (1)–(2) have been extensively studied in the literature starting with the results of

L. Bieberbach and H. Rademacher for precise choices of the function g (see for instance [1–4]). From our point of view, the
pioneer works in the topic are due to Keller [5] and Osserman [6] on 1957 who proved the existence of large solutions of (1)
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provided that f ≡ 0, g is a nondecreasing function andΩ is a bounded open set of RN,N > 1. They also establish necessary
and sufficient conditions to guarantee that the large solutions exist under the so called Keller–Osserman condition∫

∞ ds√∫ s
0 g(τ )dτ

< +∞. (3)

From that time forward an extensive literature has been produced (see again [1–4,7] and the references therein). In sight of
results in [3] or [7] about the existence and uniqueness of the classical large solutions of (1), we focus our attention on their
asymptotic behavior on the boundary ∂Ω .
As it is usual in studying properties near the boundary, the distance function dist(x, ∂Ω), here denoted by d(x), plays an

important role. As it is well known, if the boundary is bounded with ∂Ω ∈ Ck, k ≥ 1, one proves d(·) ∈ Ck in the parallel
strip near the boundary

Ωδ0 = {x ∈ Ω : 0 ≤ d(x) < δ0}. (4)

Obviously, the positive constant δ0 only depends on ∂Ω (see [2] or [8]). In particular, as it was proved in [3] if ∂Ω ∈ C2 then
the first term of the boundary explosive expansion is uniform and independent onΩ for the large solution of

−div(|∇u|p−2∇u)+ λum = f inΩ (1 < p <∞)

provided the condition m > p − 1 which is the extended version of (3). Other sharp properties on the uniform first term
of the expansion of the large solution of (1), for f ≡ 0, have been obtained by C. Bandle, G. Díaz, J. García Melián, A. Greco,
A. Lazer, S. Kim, N. Kondrat’ev, R. Letelier, J. López-Gómez, M. Marcus, J. Matero, P. McKenna, V. Nikishkin, M. del Pino, G.
Porru, J. Sabina and L. Véron among many other authors. We remit to [1] and [2] for some illustrations.
Certainly the geometric properties of the domain can appear in the asymptotic expansion near the boundary. Indeed

this influence occurs in secondary terms under more regularity assumptions on the boundary. It is obtained by considering
terms containing∆d(x) neglected in the leading coefficient of the expansion. We note the important property

∆d(x) = −(N− 1)H(x),

where H(x) denotes the mean curvature of ∂{y ∈ Ω : d(y) < d(x)} at x (see again [2] or [8]). The simplest geometry is
derived on balls, asΩ = BR(0), for which

∆d(x) = −
N− 1
|x|

, |x| < R.

The first contribution on this geometrical influence is due to M. del Pino and R. Letelier who proved in [9] that the large
solution of (1), for g(r) = rm, 1 < m < 3, ∂Ω ∈ C4,N > 1 and f ≡ 0, admits the expansion

u(x) =
(
2(m+ 1)
λ(m− 1)2

) 1
m−1 (

d(x)
)− 2

m−1

(
1−

(
(N− 1)H(x0)
m+ 3

+ o(1)
)
d(x)

)
, (5)

whereH(x0) is themean curvature of the boundary at the point x0 ∈ ∂Ω , given by d(x) = |x−x0|, and o(1)→ 0 as d(x)→ 0.
More recently, C. Bandle andM.Marcus have extended the results of [9] by obtaining the dependence on themean curvature
of ∂Ω in the second order term of the asymptotic behavior of the large solution of (1), again if f ≡ 0 (see [2]).
As it was pointed out in the Abstract, the main goal of this paper is to study the whole asymptotic explosive expansion

near the boundary of the large solution of (1), here viewed as the source equation

−∆u+ λum = f inΩ (m > 1, f ≥ 0). (6)

As in [3], we will use a simple scheme characterized by means of the behavior

f (x) ≈ f0
(
d(x)

)−qτ as d(x)→ 0

with

ατ =
2+ τ
m− 1

and qτ = mατ , (τ is a non-negative integer),

for which the low explosive sources are given by τ = 0 and f0 ≥ 0 and the high explosive sources by τ > 0 and f0 > 0. We
note that large solutions for low explosive sources have been considered in the literature, mainly for null sources f ≡ 0
(see the above references). On the other hand, to the best of our knowledge only in [3, Theorem 3.8] large solutions for high
explosive sources have been studied.
So that, our main contribution is sketched as follows (see Theorem 1). Let us assume ∂Ω smooth enough and f ∈

C(Ω), f ≥ 0, verifying

f (x) =
(
d(x)

)−qτ(f0 + Mτ∑
n=1

fn
(
d(x)

)n)
, x ∈ Ωδ0 ,
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where fn, 0 ≤ n ≤ Mτ , are known constants, with f0 ≥ 0, and Mτ to be defined later (see (8)). Then we prove that the large
solution of (6) admits an explosive expansion given by

u(x) = C0
(
d(x)

)−ατ(1+
the non-geometrical and non-diffused part︷ ︸︸ ︷

min{τ ,Mτ }−1∑
n=1

Cn(d(x))n +

it does not appear if min{τ ,Mτ }=0︷ ︸︸ ︷
Cmin{τ ,Mτ }

(
d(x)

)min{τ ,Mτ }
+

Mτ∑
n=min{τ ,Mτ }+1

Cn(x)(d(x))n︸ ︷︷ ︸
the geometrical part

)
+ o

((
d(x)

)−ατ+Mτ)
,

where Mτ + 1 is the number of all explosive terms. As it will be proved later, if 3+ τ ≤ m the expansion is very simple, it
consists of a unique explosive term (see Remarks 1 and 6). Furthermore, one has

lim
m→1

Mτ = ∞

(see (9)). We prove that the main explosive rate C0 is a precise positive constant independent on Ω , even independent on
the diffusion whenever τ > 0. Moreover, Cn, 1 ≤ n ≤ min{τ ,Mτ } − 1 are precise constants independent on Ω and the
diffusion and Cmin{τ ,Mτ } is a constant independent on Ω but dependent on the diffusion. The other explosive coefficients
Cn(x),min{τ ,Mτ } + 1 ≤ n ≤ Mτ , are explicit functions depending on the geometry of Ω and the diffusion. Equality
min{τ ,Mτ } = 0 corresponds with the low explosive source case for which only the first term is uniform and independent
on Ω; otherwise one has the high explosive source case. Certainly, if min{τ ,Mτ } = Mτ the sources can be called very high
explosive because all Mτ + 1 explosive coefficients in the expansion are uniform and independent on the geometry and the
diffusion.
For the simple caseΩ = BR(0) the geometrical part is uniform on ∂Ω , consequently the expansion is uniform on ∂Ω . In

general, we may illustrate the results by noting that for two boundary points x0, y0 ∈ ∂Ω if∣∣Cn (x0 − s−→n x0)− Cn (y0 − s−→n y0)∣∣→ 0 as s→ 0

is satisfied for min{τ ,Mτ } + 1 ≤ n ≤ Mτ , then we deduce∣∣u (x0 − s−→n x0)− u (y0 − s−→n y0)∣∣→ 0 as s→ 0;

otherwise∣∣u (x0 − s−→n x0)− u (y0 − s−→n y0)∣∣→∞ as s→ 0,

here−→n x0 and
−→n y0 denote the relative unit outward vector.

The paper is organized as follows. The influence of the geometric properties of the domain requires several awful
straightforward computations in constructing a formal boundary explosive expansion. It is studied in Section 2. In Section 3
we apply the formal expansions to obtain the boundary explosive expansion of the large solution of (6). Examples 1 and
2 can illustrate the contribution. The paper ends with some technicalities. So, in Appendix A we expand the power of
polynomials by means of an explicit expression which extends the old formula of Federico Villarreal (1850–1923). It is
applied in Appendix B where we obtain representations of the power of auxiliar sub and supersolutions used in the paper.
We finish this Introduction by noting that the partial differential equation (6) appears in several contexts: equilibrium of

a charged gas in a container, invariance under conformal or projective transformations (see [3] and the references therein).
We also note that for the particular case m = 2, problem (6)–(2) is of interest in the study of the subsonic motion of a
gas (see [10]) and when 1 < m ≤ 2 it is related to a problem involving superdiffusion (see [11], [12]). Also the singular
value boundary problem (6)–(2) can be viewed as the Dynamic Programming approach of a Stochastic Optimal Control
problem (state constraints). Here, at least in a heuristicway, the nonlinear term

(
u(x)

)m−1 denotes a kind of optimal feedback
control.

2. Constructing the boundary explosive expansion of the large solutions

As in Theorem 3.8 of [3] we study the boundary behavior by two different ways to proving that
(
d(x)

)−α satisfies
−∆u+ λum = f near ∂Ω.

The first one is based on the scheme
∆u︷ ︸︸ ︷(

d(x)
)−α0−2

≈

λum︷ ︸︸ ︷(
d(x)

)−mα0
−

f︷ ︸︸ ︷(
d(x)

)−q near ∂Ω ⇒ q ≤ α0m
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for which α0 + 2 = α0m⇔ α0 =
2
m−1 is the explosive exponent. The second scheme is

∆u︷ ︸︸ ︷(
d(x)

)−α−2
�

λum︷ ︸︸ ︷(
d(x)

)−mα
≈

f︷ ︸︸ ︷(
d(x)

)−q near ∂Ω ⇒ q > α0m.

Now αm = q⇔ α =
q
m > α0 is the explosive exponent. Both cases can be represented by

ατ =
2+ τ
m− 1

and qτ = mατ , (7)

where τ is a non-negative integer number.
Therefore, the main boundary behavior can be written as

C0
(
d(x)

)−ατ
+ o

((
d(x)

)−ατ ) as d(x)→ 0.

Next we expand this behavior by means of formal expansions near the boundary

C0
(
d(x)

)−ατ(1+∑
n≥1

Cn(x)
(
d(x)

)n)
.

Here C0 is a positive constant and Cn(x), n ≥ 1, are real functions. Certainly we are interested in to obtain the explosive
terms, thus, governed by n < ατ . So the maximum numbers of explosive terms Mτ + 1 is given by ατ − 1 ≤ Mτ < ατ ,
whence

Mτ =
{
ατ − 1, if ατ is an integer number,
[ατ ], otherwise, (8)

where [ατ ] denotes the integer part of ατ .

Remark 1. Consequently, a maximum number of explosive terms Mτ + 1 is available if

2+ τ
m− 1

− 1 ≤ Mτ <
2+ τ
m− 1

whence

m ∈ IMτ
.
=

[
Mτ + 3+ τ
Mτ + 1

,
Mτ + 2+ τ

Mτ

[
⇔ ατ ∈ ]Mτ ,Mτ + 1] . (9)

Since I0 = [3+ τ ,∞[, one proves

]1,∞[=
⋃
Mτ≥0

IMτ .

For the purpose of the paper we focus our attention in the case Mτ ≥ 1 or, equivalently, 1 < m < 3+ τ . �

We will assume thatΩ ⊂ RN,N > 1, is a bounded open set with ∂Ω smooth enough. Then, we consider the functions

V±δ (x) = C0
Mτ∑
n=0

V±δ,n(x)

with

V±δ,0(x) =
(
d(x)∓ δ

)−ατ and V±δ,n(x) = Cn(x)
(
d(x)∓ δ

)−ατ+n
, 1 ≤ n ≤ Mτ ,

defined for x ∈ Ω such that d(x)∓ δ > 0 and δ > 0 small enough. Straightforward computations yield

∆V±δ,0(x) = ατ (ατ + 1)
(
d(x)∓ δ

)−ατ−2
|∇d(x)|2 − ατ∆d(x)

(
d(x)∓ δ

)−ατ−1
∆V±δ,n(x) = (−ατ + n)(−ατ + n− 1)Cn(x)

(
d(x)∓ δ

)−ατ+(n−2)
+ (−ατ + n)

[
2〈∇Cn(x),∇d(x)〉 + Cn(x)∆d(x)

](
d(x)∓ δ

)−ατ+(n−1)
+∆Cn(x)

(
d(x)∓ δ

)−ατ+n
, 1 ≤ n ≤ Mτ .

So that we derive

∆V±δ (x) = C0
(
d(x)∓ δ

)−ατ−2(A0|∇d(x)|2 + Mτ+2∑
n=1

An(x)
(
d(x)∓ δ

)n)
,
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with 

A0 = ατ (ατ + 1),
A1(x) = ατ (ατ − 1)C1(x)− ατ∆d(x),
A2(x) = (−ατ + 2)(−ατ + 1)C2(x)+ (−ατ + 1)

[
2〈∇C1(x),∇d(x)〉 + C1(x)∆d(x)

]
,

An(x) = (−ατ + n)(−ατ + n− 1)Cn(x)
+ (−ατ + n− 1)

[
2〈∇Cn−1(x),∇d(x)〉 + Cn−1(x)∆d(x)

]
+∆Cn−2(x), 3 ≤ n ≤ Mτ ,

AMτ+1(x) = (−ατ +Mτ )
[
2〈∇CMτ (x),∇d(x)〉 + CMτ (x)∆d(x)

]
+∆CMτ−1(x),

AMτ+2(x) = ∆CMτ (x).

(10)

Remark 2. We note that all functions An(x), 1 ≤ n ≤ Mτ + 2, depend on the geometry ofΩ through the distance function
d(x). More precisely, A1(x) depends only on the mean curvature. On the other hand, since |∇d(x)| = 1, x ∈ Ωδ0 (see (4)
and [8]), in these parallel strip near the boundary one has

∆V±δ (x) = C0
(
d(x)∓ δ

)−ατ−2(A0 + Mτ+2∑
n=1

An(x)
(
d(x)∓ δ

)n)
. � (11)

In order to construct the semilinear differential operator on V±δ , we need a representation as

(
V±δ (x)

)m
= Cm0

(
d(x)∓ δ

)−ατm(1+ Mτ∑
n=1

Dn(x)
(
d(x)∓ δ

)n
+

∞∑
n=Mτ+1

Dn(x)
(
d(x)∓ δ

)n) (12)

that will be obtained in (43) later. Certainly it requires straightforward and tedious computations that, in order to simplify
the exposition, we have collected in Appendix B. So, we prove in (45)

Dn(x) = mCn(x)+
n∑
i=2

(m
i

)
Bn−i,i(x), 1 ≤ n ≤ Mτ , (13)

where

Bi,n(x) =
i∑
j=1

(
n
j

) (
C1(x)

)n−j ∑
`1 ·γ`1

+`2 ·γ`2
+···+`j ·γ`j

=i+j

γ`1
+γ`2

+···+γ`j
=j

2≤`1<···<`j≤i−j+2

{γ`k
}
j
k=1⊂{0,1,...,j}

j!
γ`1 !γ`2 ! · · · γ`j !

(
C`1(x)

)γ`1 · · · (C`j(x))γ`j

for i = 1, 2, . . . , n (see (42)). Moreover one proves that, in (13), each Cn(x), 1 ≤ n ≤ Mτ , does not appear in Bn−i,i(x), i 6= 1.
On the other hand, all coefficients Cn(x), 1 ≤ n ≤ Mτ , are involved in Dn(x),Mτ + 1 ≤ n.

Remark 3. In order to illustrate we give some examples in Remark 12 (see Appendix B). �

A last comment on the power
(
V±δ (x)

)m. From (12) we may write
(
V±δ (x)

)m
= Cm0

(
d(x)∓ δ

)−ατm(1+ Mτ∑
n=1

Dn(x)
(
d(x)∓ δ

)n
+ Ψ

(
x; d(x)∓ δ

))
(14)

for the continuous function

Ψ (x; r) .=
∞∑

n=Mτ+1

Dn(x)rn.

In fact, since Ψ is continuous uniformly on the set

{x ∈ Ω : 0 ≤ 2d(x) ≤ δ0},

we may prove an inequality as

Ψ−(r) ≤ Ψ (x; r) ≤ Ψ+(r) (r small enough) (15)

for some functions

Ψ−(r) ≤ 0 ≤ Ψ+(r)
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with

lim
r→0

Ψ±(r) = 0.

Remark 4. In Remark 13 also it is proved that ifm is an integer for which Mτ ≥ 1, then we have

Ψ
(
x; d(x)∓ δ

)
=

mMτ∑
n=Mτ+1

Dn(x)
(
d(x)∓ δ

)n
�

So that, we assume on the source function f ∈ C(Ω) the explosive expansion near the boundary

f (x) =
(
d(x)

)−qτ(f0 + Mτ∑
n=1

fn
(
d(x)

)n)
, x ∈ Ωδ0 , (16)

where fn, 0 ≤ n ≤ Mτ , are real constants with f0 ≥ 0. With the above notation, an explosive expansion of the equation near
the boundary is

−∆V±δ (x)+ λ
(
V±δ (x)

)m
− f (x) = −C0

(
d(x)∓ δ

)−ατ−2(A0 + Mτ+2∑
n=1

An(x)
(
d(x)∓ δ

)n)

+ λCm0
(
d(x)∓ δ

)−ατm(1+ Mτ∑
n=1

Dn(x)
(
d(x)∓ δ

)n
+ Ψ

(
x; d(x)∓ δ

))
−
(
d(x)

)−qτ(f0 + Mτ∑
n=1

fn
(
d(x)

)n)
(see (11), (14) and (16)).

3. Proving the boundary asymptotic expansion of the solution

From the schemes of Section 2 we consider the parametrization

(ατ + 2)+ τ = qτ = ατm

(see (7)), for which

−∆V±δ (x)+ λ
(
V±δ (x)

)m
− f (x) =

(
d(x)∓ δ

)−qτ [
−C0

(
A0
(
d(x)∓ δ

)τ
+

max{Mτ−τ ,0}∑
n=1

An(x)
(
d(x)∓ δ

)n+τ)

+
(
λCm0 − f0

)
+

Mτ∑
n=1

(
λCm0 Dn(x)− fn

)(
d(x)∓ δ

)n
+ Φ

(
x; d(x)∓ δ

)]
, (17)

for

Φ(x; r) = −C0
Mτ+2∑

`=max{Mτ−τ ,0}+1

A`(x)r`+τ + λCm0 Ψ (x; r). (18)

As it was pointed out in the Introduction there are several class of coefficients in the boundary asymptotic expansion of
the solutions.
(a) Coefficients independent on the geometry and the diffusion. If τ > 0 we choose C0 and C1, . . . , Cmin{τ ,Mτ }−1 from the
equalities

−C0 · 0+ λCm0 Dn(x) = fn, 0 ≤ n ≤ min{τ ,Mτ } − 1.

Since n = 0 implies λCm0 = f0, one has

Cn =
1
mf0

(
fn − f0

n∑
i=2

(m
i

)
Bn−i,i

)
, 0 ≤ n ≤ min{τ ,Mτ } − 1. (19)

From theproperties ofDn (see (13)), the coefficients Cn, 1 ≤ n ≤ min{τ ,Mτ }−1, are constants independent onΩ . Obviously,
they are independent on the diffusion too. Certainly, we will assume

f0 > 0 whenever τ > 0. (20)



2432 S. Alarcón et al. / Nonlinear Analysis 72 (2010) 2426–2443

Remark 5. The examples of Remark 12 lead to

C0 =
(
f0
λ

) 1
m

,

C1 =
1
mf0
f1,

C2 =
1
mf0

(
f2 −

m− 1
2

1
mf0
f 21

)
,

provided 2 ≤ min{τ ,Mτ } − 1. �

(b) The coefficient Cmin{τ ,Mτ } independent on the geometry but dependent on the diffusion. It is obtained by

−C0A0 + λCm0 Dmin{τ ,Mτ } = fmin{τ ,Mτ },

i.e.

Cmin{τ ,Mτ } =
1

mλCm0

(
fmin{τ ,Mτ } + C0ατ (ατ + 1)− λC

m
0

min{τ ,Mτ }∑
i=2

(m
i

)
Bmin{τ ,Mτ }−i,i

)
. (21)

Clearly, here there are two limit cases.
(b.1) If Cmin{τ ,Mτ } is the last coefficient of the eventual explosive expansion of the solution, thus if

min{τ ,Mτ } = Mτ ≥ 0 (22)

holds, one has

−ατ (ατ + 1)C0 + λCm0 DMτ = fMτ .

Therefore, if τ > 0 one has

CMτ =
1
mf0

[
fMτ +

(2+ τ)(m+ τ + 1)
(m− 1)2

(
f0
λ

) 1
m

− f0
Mτ∑
i=2

(m
i

)
BMτ−i,i

]
. (23)

Then the relative high explosive sources involved, called very high explosive sources, induce that all coefficients on the
expansion are independent on the geometry. Also they are independent on the diffusion, unless this last coefficient CMτ .

Remark 6. 1. Remark 1 implies

Mτ = 0 ⇔ 3+ τ ≤ m,

for which the expansion has a unique explosive term uniform and independent onΩ .
2. In general, condition (22) implies{

(m− 2)τ ≥ 3−m, if ατ is an integer number,
(m− 2)τ > 3−m, otherwise

(see Remark 1 again). �

(b.2) If 0 = τ < Mτ , the coefficient Cmin{τ ,Mτ } = C0 is obtained from

− C0A0 + λCm0 = f0 ⇔ λCm0 − α0(α0 + 1)C0 = f0. (24)

We note that C0 is independent on the geometry but dependent on the diffusion and it coincides with

C0 =
(
2(m+ 1)
λ(m− 1)2

) 1
m−1

,

whenever f0 = 0. This case corresponds with low explosive sources for which only the geometrical part of the expansion is
available.
(c) Coefficients dependent on the geometry and the diffusion. We choose Cmin{τ ,Mτ }+1(x), . . . , CMτ (x) from the equalities

− C0An−min{τ ,Mτ }(x)+ λC
m
0 Dn(x) = fn, min{τ ,Mτ } + 1 ≤ n ≤ Mτ . (25)

Bymeans of An(x),min{τ ,Mτ }+1 ≤ n ≤ Mτ , these coefficients depend on the geometry ofΩ . In particular, Cmin{τ ,Mτ }+1(x)
depends only on the mean curvature (see Remark 2).
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Certainly, when τ > 0, from the properties of Dn(x) (see (13)), one has

Cn(x) =
1
mf0

(
fn + C0An−min{τ ,Mτ }(x)− f0

n∑
i=2

(m
i

)
Bn−i,i(x)

)
, min{τ ,Mτ } + 1 ≤ n ≤ Mτ ,

that is a simple explicit formula. Whenever τ = 0 the condition (25) becomes

− C0An(x)+ λCm0 Dn(x) = fn, 1 ≤ n ≤ M0. (26)

Then the relative coefficients Cn(x), 1 ≤ n ≤ M0, chosen in (26), also admit an explicit expression as

AnCn(x) = F
(
m, λ, f0, . . . , fn, C0, C1(x), . . . , Cn−1(x)

)
,

where

An
.
= λmCm0 − (−α0 + n)(−α0 + n− 1)C0
= C0

(
(2+ n)(α0 + 1)+ n(α0 − n)

)
+mf0

is a positive constant due to the definition of C0 and−α0 + n ≤ −α0 +M0 < 0.

Remark 7. The obtainment of functions Cn(x) requires tedious computations. For example, for τ > 0 one obtains

Cmin{τ ,Mτ }+1(x) =
1
mf0

(
fmin{τ ,Mτ }+1 +

(
f0
λ

) 1
m [
ατ (ατ − 1)C1(x)− ατ∆d(x)

]
− f0

min{τ ,Mτ }+1∑
i=2

(m
i

)
Bmin{τ ,Mτ }+1−i,i(x)

)
.

When τ = f0 = 0 the computations are easier. So, one proves

C0 =
(
2(m+ 1)
λ(m− 1)2

) 1
m−1

,

C1(x) =
1

m+ 3

[
γ (m)f1 −∆d(x)

]
,

C2(x) =
m− 1
12C0

f2 −
1

12(m+ 3)

[
(m− 3)

{
2〈∇(∆d(x)),∇d(x)〉 − γ (m)f1∆d(x)+ (∆d(x))2

}
+
m(m+ 1)
m+ 3

(
γ (m)f1 −∆d(x)

)2]
,

for

γ (m) =
(
λ(m− 1)m+1

2m(m+ 1)

) 1
m−1

. �

The above choices lead to

−∆V±δ (x)+ λ
(
V±δ (x)

)m
− f (x) =

(
d(x)∓ δ

)−qτ
Φ
(
x; d(x)∓ δ

)
(27)

(see (17)). Then the relative properties ofΦ(x; r) (see (18)) prove

Proposition 1. Let us consider f ∈ C(Ω) verifying (16) and (20), as well as ∂Ω ∈ C2(Mτ+1). Then the function

V(x) = C0
(
d(x)

)−ατ(1+ Mτ∑
n=1

Cn(x)(d(x))n
)
, (28)

where the coefficients Cn, 0 ≤ n ≤ min{τ ,Mτ } − 1 are given by (19), Cmin{τ ,Mτ } is given by (21) and Cn ∈ C2(Mτ−n)

(Ωδ0),min{τ ,Mτ } + 1 ≤ n ≤ Mτ , are given by (25), is a well defined C2 function near ∂Ω . Moreover, one has(
d(x)

)qτ(
−∆V(x)+ λ

(
V(x)

)m
− f (x)

)
= O(d(x)). �
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Clearly, the function V is the candidate to govern the boundary asymptotic behavior of the large solution. In order to
prove it, sending δ→ 0 in (27) we may obtain

−∆V(x)+ λ
(
V(x)

)m
− f (x) =

(
d(x)

)−qτ(Pτ (C0)+ Φ
(
x; d(x)

))
,

where C0 is the positive root of

Pτ (µ) =

{
λµm − α0(α0 + 1)µ− f0, if τ = 0,
λµm − f0, if τ > 0,

obtained in (19), if τ > 0, or in (24), whenever τ = 0. So that the main contribution is

Theorem 1. Under the assumption of Proposition 1, the explosive boundary expansion of the large solution of (6) has the property

u(x) = C0
(
d(x)

)−ατ(1+
the non-geometrical and non-diffused part︷ ︸︸ ︷

min{τ ,Mτ }−1∑
n=1

Cn(d(x))n +

it does not appear if min{τ ,Mτ }=0︷ ︸︸ ︷
Cmin{τ ,Mτ }

(
d(x)

)min{τ ,Mτ }
+

Mτ∑
n=min{τ ,Mτ }+1

Cn(x)(d(x))n︸ ︷︷ ︸
the geometrical part

)
+ o

((
d(x)

)−ατ+Mτ)
.

Proof. In order to apply a comparison argument, we consider the modifications

W±εδ (x) = C0
(
d(x)∓ δ

)−ατ(1± ε + Mτ∑
n=1

Cn(x)
(
d(x)∓ δ

)n)
,

where ε > 0 will be sent to 0. So, we construct the perturbed polynomials

P±ετ (µ) =

{
λ
(
(1± ε)µ

)m
− α0(α0 + 1)(1± ε)µ− f0, if τ = 0,

λ
(
(1± ε)µ

)m
− f0, if τ > 0,

for which

P+ετ (C0) > 0 and P−ετ (C0) < 0.

The reasoning is based on to prove thatW±εδ (x) are upper and lower solutions in a thin strip near the boundary. Then, arguing
as in Proposition 1, we have

−∆W+εδ (x)+ λ(W
+ε
δ (x))

m
− f (x) =

(
d(x)− δ

)−qτ(P+ετ (C0)+ Φ
(
x; d(x)− δ

))
,

thus

−∆W+εδ (x)+ λ(W
+ε
δ (x))

m > f (x)

in a parallel strip δ < d(x) < δ1, provided 2δ1 < δ0 small enough (see (4), (15) and (18)). So that Comparison Principle leads
to

u(x)−W+εδ (x) ≤ sup
d(y)=δ1

(
u(y)−W+εδ (y)

)
, δ < d(x) < δ1,

or

u(x)
W+εδ (x)

− 1 ≤

sup
d(y)=δ1

(
u(y)−W+εδ (y)

)
W+εδ (x)

, δ < d(x) < δ1.

Now, sending δ1 → 0 and then ε→ 0 we derive

lim sup
d(x)→0

u(x)
V(x)
≤ 1,

where V(x) is the expansion function (see (28)). Analogously, one proves

−∆W−εδ (x)+ λ(W
−ε
δ (x))

m
− f (x) =

(
d(x)+ δ

)−qτ(P−ετ (C0)+ Φ
(
x; d(x)+ δ

))
,
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thus

−∆W−εδ (x)+ λ(W
−ε
δ (x))

m < f (x)

in a parallel strip 0 < d(x) < δ1, provided 2δ1 < δ0 whence

1−
u(x)
W−εδ (x)

≤

sup
d(y)=δ1

(
W−εδ (y)− u(y)

)
W−εδ (x)

, 0 < d(x) < δ1.

As above, sending δ→ 0 and then ε→ 0 we conclude

lim sup
d(x)→0

u(x)
V(x)
≤ 1 ≤ lim inf

d(x)→0

u(x)
V(x)

. �

Remark 8. Certainly Theorem 1 extends Theorem 3.8 of [3] as well as the results obtained in [1,2] or [9] where only the
second explosive term was considered for f ≡ 0. �

Theorem 1 can be illustrated as follows

Example 1 (Low Explosive Sources). As it was pointed out, the influence of the geometry was obtained in [9] (see also [2])
where one proves that the large solution verifies (5) assumed ∂Ω ∈ C4, 1 < m < 3 and f ≡ 0. It can be improved
by Theorem 1 whenever the values of m are more accurate. For instance, let us suppose 53 ≤ m < 2 (or equivalently
2 < α0 ≤ 3), for which M0 = 2, and

f (x) =
(
d(x)

)−q0(f1d(x)+ f2(d(x))2), f1 ≥ 0,

if ∂Ω ∈ C6, then Remark 7 enables us to obtain

u(x) =
(
2(m+ 1)
λ(m− 1)2

) 1
m−1 (

d(x)
)− 2

m−1

{
1+

1
m+ 3

[
γ (m)f1 −∆d(x)

]
d(x)

+
1
12

((
λ(m− 1)m+1

2(m+ 1)

) 1
m−1

f2 −
1

m+ 3

[
(m− 3)

{
2〈∇(∆d(x)),∇d(x)〉

− γ (m)f1∆d(x)+ (∆d(x))2
}
+
m(m+ 1)
m+ 3

(
γ (m)f1 −∆d(x)

)2])(d(x))2}+ o((d(x))− 2(2−m)m−1

)
,

where γ (m)was given in Remark 7. �

Example 2 (High Explosive Sources). 1. In order to simplify, we start by constructing an example without geometrical part
in the expansion. So, for instance an inequality as τ ≥ Mτ = 1 requires

Mτ = 1⇔
4+ τ
2
≤ m < 3+ τ (see Remark 1)

τ ≥ Mτ ⇔ (m− 2)τ > 3−m⇔
3+ 2τ
τ + 1

< m (see Remark 6).

Since 3+2τ
τ+1 ≤

4+τ
2 for τ ≥ 1, both conditions hold when

4+τ
2 < m < 3+ τ , for which

f (x) =
(
d(x)

)−qτ (f0 + f1d(x)), f0 > 0.

Theorem 1 proves that the expansion of all explosive terms of the large solution is

u(x) =
(
f0
λ

) 1
m (
d(x)

)−ατ {1+ 1
mf0

(
f1 +

(2+ τ)(m+ τ + 1)
(m− 1)2

(
f0
λ

) 1
m
)
d(x)

}
+ o

((
d(x)

)−ατ+1)
,

provided ∂Ω ∈ C4 (see Remarks 5 and 6 and (23)). Clearly, the first coefficient is independent on the geometry of Ω and
the diffusion, however the second one depends on the diffusion. Here τ is an arbitrary positive integer number.
2. Finally, we construct an example where the expansion has two coefficients uniform and independent on Ω plus three
coefficients dependent on Ω; it implies τ = 1 and M1 + 1 = 5. So, Remark 1 enables us to consider 85 ≤ m < 7

4 (or
equivalently 4 < α1 ≤ 5) and, for simplicity, we suppose

f (x) = f0
(
d(x)

)− 3m
m−1 , f0 > 0.
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Then the expansion of all explosive terms of the large solution is

u(x) = C0
(
d(x)

)− 3
m−1

(
1+ C1d(x)+ C2(x)

(
d(x)

)2
+ C3(x)

(
d(x)

)3
+ C4(x)

(
d(x)

)4)
+ o

((
d(x)

)− 7−4mm−1

)
,

for the coefficients

C0 =
(
f0
λ

) 1
m

, (independent on the diffusion)

C1 =
α1(α1 + 1)
mf0

C0, (dependent on the diffusion)

C2(x) =
α1C0
mf0

[
(α1 − 1)C1 −∆d(x)

]
−
m− 1
2
C21,

C3(x) =
(1− α1)C0
mf0

[
(2− α1)C2(x)+ C1∆d(x)

]
−
m− 1
6
C1

[
(m− 2)C21 + 6C2(x)

]
,

C4(x) =
(2− α1)C0
mf0

[
(3− α1)C3(x)+ 2〈∇C2(x),∇d(x)〉 + C2(x)∆d(x)

]
−
m− 1
2

[
(m− 2)(m− 3)

12
C41 + (m− 2)C

2
1C2(x)+ 2C1C3(x)+

(
C2(x)

)2]
,

where α1 = 3
m−1 and provided ∂Ω ∈ C10 (see Remarks 3 and 7). �

We end this Section with a careful glance on the proof of Theorem 1 for which we note that the above boundary behavior
holds for the interior and the exterior boundaries of open sets with holes. It enables us to extend the result for more general
domains. So that, we derive

Theorem 2. Let z ∈ ∂Ω be a regular boundary point in the sense of an interior and exterior ball condition are satisfied. If
f ∈ L∞(RN), f ≥ 0, then the behavior

lim
s→0
u(z − s−→n z)s

2
m−1 =

(
2(m+ 1)
λ(m− 1)2

) 1
m−1

holds for the large solution of (6). Here−→n z stands for the unit outward normal vector to ∂Ω at z.
Proof. Let BR+z (x

z
0) ⊂ Ω such that BR+z (x

z
0) ∩ (R

N
\Ω) = {z} and uε the radially symmetric large solution of

−∆uε + λumε = f in B(1−ε)R+z (x
z
0)

for 0 < ε � 1. Comparison Principle implies inequality

u(x) ≤ uε(x), x ∈ B(1−ε)R+z (x
z
0).

Since all coefficients of the expansion (16) of f near ∂B(1−ε)R+z (x
z
0) are all nulls, applying Theorem 1 to uε we deduce

lim sup
s→0

u(z − s−→n z)s
2
m−1 ≤

(
2(m+ 1)
λ(m− 1)2

) 1
m−1

by sending ε → 0. On the other hand, let BR−z (y
z
0) ⊂ RN \ Ω such that BR−z (y

z
0) ∩ Ω = {z}, with R

−
z small enough, and uε

the radially symmetric solution of−∆uε + λu
m
ε = f in B2R−z (x0) \ B(1+ε)R−z (x0),

uε(x)→∞ as |x− z| → (1+ ε)R−z ,
uε(x)→ 0 as |x− z| → 2R−z .

Since function u is non-negative, Comparison Principle implies

u(x) ≥ uε(x), x ∈ Ω, (1+ ε)R−z ≤ |x− z| ≤ 2R
−

z .

On the other hand the relative coefficients of the expansion (16) of f near ∂B(1+ε)R−z (x
z
0) are all nulls too. Now Theorem 1

applied to uε leads to

lim inf
s→0

u(z − s−→n z)s
2
m−1 ≥

(
2(m+ 1)
λ(m− 1)2

) 1
m−1

by sending ε→ 0. �
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Remark 9. For f ≡ 0 Theorem 2 was first proved in [7] by using the asymptotic explosive behavior on interior boundaries
of annulus and exterior boundaries of balls. �
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Appendix A. Expanding the power of polynomials

In 1879 the mathematician peruvian Federico Villarreal (1850–1923) obtained a simple algorithm in order to expand
the power of polynomials (see La Gaceta Científica, 2, Mars 1886, (Perú)). Here we show a short presentation by using the
expression

(G(x))n = F(x) (29)
where

G(x) =
q∑
j=0

ajxj and F(x) =
qn∑
j=0

bjxj

and the coefficients aj, bj ∈ Rwith a0 6= 0 and q, n ∈ N. Since differentiating the expression (29) one obtains

F′(x) = n(G(x))n−1G′(x) = n
F(x)
G(x)

G′(x),

it must verify the equality

nF(x)G′(x) = F′(x)G(x). (30)
where

G′(x) =
q∑
j=1

jajxj−1 =
q−1∑
j=0

(j+ 1)aj+1xj

F′(x) =
qn∑
j=1

jbjxj−1 =
qn−1∑
j=0

(j+ 1)bj+1xj.

Our introduction of the Villarreal formula is based on the general equality( µ∑
j=0

αjxj
)( ν∑

j=0

βjxj
)
=

ν∑
k=0

( k∑
j=0

βjαk−j

)
xk +

µ∑
k=ν+1

( ν∑
j=0

βjαk−j

)
xk +

µ+ν∑
k=µ+1

( ν∑
j=k−µ

βjαk−j

)
xk

=

µ+ν∑
k=0

( min{k,ν}∑
j=max{0,k−µ}

βjαk−j

)
xk,

obtained by straightforward computations, provided µ, ν ∈ Nwith µ ≥ ν. Next several choices are considered. So
• µ = qn, αj = bj, ν = q− 1, βj = (j+ 1)aj+1 lead

F(x)G′(x) =
q−1∑
k=0

(
k∑
j=0

(j+ 1)aj+1bk−j

)
xk +

qn∑
k=q

(
q−1∑
j=0

(j+ 1)aj+1bk−j

)
xk +

qn+q−1∑
k=qn+1

(
q−1∑
j=k−qn

(j+ 1)aj+1bk−j

)
xk

=

q−1∑
k=0

(
k+1∑
j=1

jajbk−j+1

)
xk +

qn∑
k=q

(
q∑
j=1

jajbk−j+1

)
xk +

qn+q−1∑
k=qn+1

(
q∑

j=k−qn+1

jajbk−j+1

)
xk. (31)

• µ = qn− 1, αj = (j+ 1)bj+1, ν = q, βj = aj lead

F′(x)G(x) =
q∑
k=0

(
k∑
j=0

(k− j+ 1)ajbk−j+1

)
xk +

qn−1∑
k=q+1

(
q∑
j=0

(k− j+ 1)ajbk−j+1

)
xk

+

qn+q−1∑
k=qn

(
q∑

j=k−qn+1

(k− j+ 1)ajbk−j+1

)
xk. (32)

By substituting (31) and (32) in equality (30) and identifying the relative powers of k, one obtains the following relations.
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• If k = 0, 1, . . . , q− 1 then

n
k+1∑
j=1

jajbk−j+1 =
k∑
j=0

(k− j+ 1)ajbk−j+1

and therefore

n
k+1∑
j=1

jajbk−j+1 =
k∑
j=1

(k− j+ 1)ajbk−j+1 + (k+ 1)a0bk+1.

Therefore, as a0 6= 0, one has

bk+1 =
1

(k+ 1)a0

(
n
k+1∑
j=1

jajbk−j+1 −
k∑
j=1

(k− j+ 1)ajbk−j+1

)

=
1

(k+ 1)a0

(
n(k+ 1)ak+1b0 +

k∑
j=1

(nj− k− 1+ j)ajbk−j+1

)

=
1

(k+ 1)a0

k+1∑
j=1

((n+ 1)j− k− 1)ajbk−j+1

=
1

(k+ 1)a0

k∑
j=0

((n+ 1)(k− j+ 1)− (k+ 1))ak−j+1bj.

In this way, we obtain the coefficients {bi}
q
i=0 given by

b0 = an0

bi =
1
ia0

i−1∑
j=0

((n+ 1)(i− j)− i)ai−jbj, i = 1, 2, . . . , q. (33)

• If k = q then

n
q∑
j=1

jajbq+1−j =
q∑
j=0

(q+ 1− j)ajbq+1−j

whence

n
q∑
j=1

jajbq+1−j =
q∑
j=1

(q+ 1− j)ajbq+1−j + (q+ 1)a0bq+1.

Again, as a0 6= 0, one has

bq+1 =
1

(q+ 1)a0

(
n
q∑
j=1

jajbq−j+1 −
q∑
j=1

(q− j+ 1)ajbq−j+1

)

=
1

(q+ 1)a0

q∑
j=1

((n+ 1)j− q− 1)ajbq−j+1

=
1

(q+ 1)a0

q∑
j=1

((n+ 1)(q− j+ 1)− (q+ 1))aq−j+1bj. (34)

• If k = q+ 1, q+ 2, . . . , qn− 1 then

n
q∑
j=1

jajbk−j+1 =
q∑
j=0

(k− j+ 1)ajbk−j+1

hence

n
q∑
j=1

jajbk−j+1 =
k∑
j=1

(k− j+ 1)ajbk−j+1 + (k+ 1)a0bk+1.



S. Alarcón et al. / Nonlinear Analysis 72 (2010) 2426–2443 2439

As a0 6= 0, one has

bk+1 =
1

(k+ 1)a0

(
n
q∑
j=1

jajbk−j+1 −
q∑
j=1

(k− j+ 1)ajbk−j+1

)

=
1

(k+ 1)a0

q∑
j=1

((n+ 1)j− k− 1)ajbk−j+1

=
1

(k+ 1)a0

k∑
j=k−q+1

((n+ 1)(k− j+ 1)− (k+ 1))ak−j+1bj. (35)

Now, we obtain the coefficients {bi}
qn
i=q+2 given by

bi =
1
ia0

i−1∑
j=i−q

((n+ 1)(i− j)− i)ai−jbj, i = q+ 2, q+ 3, . . . , qn.

Finally, from (33), (34) and (35) we conclude

Theorem 3 (Extended Villarreal Formula). For all q, n ∈ N the coefficients of the expansion( q∑
j=0

ajxj
)n
=

qn∑
j=0

bjxj (aj ∈ R, a0 6= 0) (36)

satisfy the extended Villarreal formula

bi = an0, if i = 0,

1
ia0

i−1∑
j=0

(
(n+ 1)(i− j)− i

)
ai−jbj, if i = 1, 2, . . . , q,

1
ia0

i−1∑
j=i−q

(
(n+ 1)(i− j)− i

)
ai−jbj, if i = q+ 1, q+ 2, . . . , qn. �

(37)

Remark 10. Straightforward computations lead to

b0 = an0
(n
0

)
, q, n ∈ N

b1 = an−10
(n
1

)
a1, q, n ∈ N

b2 = an−20

[(n
1

)
a0a2 +

(n
2

)
a21

]
, if min{q, n} ≥ 2,

b3 = an−30

[(n
1

)
a20a3 +

(n
2

)
2a0a1a2 +

(n
3

)
a31

]
, if min{q, n} ≥ 3,

b4 = an−40

[(n
1

)
a30a4 +

(n
2

)
a20
(
2a1a3 + a22

)
+

(n
3

)
3a0a21a2 +

(n
4

)
a41

]
, if min{q, n} ≥ 4,

b5 = an−50

[(n
1

)
a40a5 +

(n
2

)
2a30
(
a1a4 + a2a3

)
+

(n
3

)
3a20
(
a1a22 + a

2
1a3
)
+

(n
4

)
4a0a31a2 +

(n
5

)
a51

]
,

provided min{q, n} ≥ 5. �

The next contribution here is devoted with the explicit version of (37). More precisely, we note that each summand in
the brackets of the coefficients in Remark 10 can be written as(

n
j

)
ai−j0

∑
`1 ·γ`1

+`2 ·γ`2
+···+`j ·γ`j

=i

γ`1
+γ`2

+···+γ`j
=j

1≤`1<`2<···<`j≤i−j+1

{γ`k
}
j
k=1∈{0,1,2,...,j}

(
j

γ`1γ`2 · · · γ`j

)
a
γ`1
`1
a
γ`2
`2
· · · a

γ`j
`j
, 0 ≤ j ≤ i ≤ min{q, n},
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where(
j

γ`1γ`2 · · · γ`j

)
=

j!
γ`1 !γ`2 ! · · · γ`j !

denotes the permutations of j objects of which γ`1 are of one kind, γ`2 are of a second kind, . . . , γ`j are of a jth kind.
So that, one has

Theorem 4 (Explicit Villarreal Formula). The first coefficients of the expansion (36) are given by

b0 = an0

bi = an−i0

[(n
1

)
ai−10 ai +

(n
2

)
ai−20

∑
`1 ·γ`1

+`2 ·γ`2
=i

γ`1
+γ`2

=2
1≤`1<`2≤i−1

{γ`k
}
2
k=1∈{0,1,2}

(
2

γ`1γ`2

)
a
γ`1
`1
a
γ`2
`2

+

(n
3

)
ai−30

∑
`1 ·γ`1

+`2 ·γ`2
+`3 ·γ`3

=i
γ`1
+γ`2

+γ`3
=3

1≤`1<`2<`3≤i−2

{γ`k
}
3
k=1∈{0,1,2,3}

(
3

γ`1γ`2γ`3

)
a
γ`1
`1
a
γ`2
`2
a
γ`3
`3
+ . . .

+

(
n
j

)
ai−j0

∑
`1 ·γ`1

+`2 ·γ`2
+···+`j ·γ`j

=i

γ`1
+γ`2

+···+γ`j
=j

1≤`1<`2<···<`j≤i−j+1

{γ`k
}
j
k=1∈{0,1,2,...,j}

(
j

γ`1γ`2 · · · γ`j

)
a
γ`1
`1
a
γ`2
`2
· · · a

γ`j
`j
+ . . .

+

(
n
i− 1

)
a0(i− 1)ai−21 a2 +

(n
i

)
ai1

]
, if i = 1, 2, . . . ,min{q, n}.

Thus

bi = an−i0
i∑
j=1

(
n
j

)
ai−j0

∑
`1 ·γ`1

+`2 ·γ`2
+···+`j ·γ`j

=i

γ`1
+γ`2

+···+γ`j
=j

1≤`1<`2<···<`j≤i−j+1

{γ`k
}
j
k=1∈{0,1,2,...,j}

(
j

γ`1γ`2 · · · γ`j

)
a
γ`1
`1
a
γ`2
`2
· · · a

γ`j
`j

(38)

for i = 0, 1, 2, . . . ,min{q, n}. In particular, when n ≥ q the formula (38) provides the first q+ 1 coefficients of (36).

Sketch of the Proof. The obtainment of (38) requires awful computations based on transfinite induction arguments. In
order to simplify, we only are going to obtain b6 in terms of the coefficients {bj}5j=0 given in Remark 10. By assuming
min{q, n} ≥ 6, from definition, one has

b6 =
1
6a0

[(
(n+ 1)(6− 0)− 6

)
a6b0 +

(
(n+ 1)(6− 1)− 6

)
a5b1 +

(
(n+ 1)(6− 2)− 6

)
a4b2

+

(
(n+ 1)(6− 3)− 6

)
a3b3 +

(
(n+ 1)(6− 4)− 6

)
a2b4 +

(
(n+ 1)(6− 5)− 6

)
a1b5

]
= nan−10 a6 +

5n− 1
6

nan−20 a1a5 +
2n− 1
3

an−30

(
na0a2 +

n(n− 1)
2

a21

)
a4

+
n− 1
2
an−40

(
na20a3 +

n(n− 1)
2

2a0a1a2 +
n(n− 1)(n− 2)

6
a31

)
a3

+
n− 2
3
an−50

(
na30a4 +

n(n− 1)
2

a20(2a1a3 + a
2
2)+

n(n− 1)(n− 2)
6

3a0a21a2 +
n(n− 1)(n− 2)(n− 3)

24
a41

)
a2

+
n− 5
6
an−60

(
na40a5 +

n(n− 1)
2

2a30(a1a4 + a2a3)+
n(n− 1)(n− 2)

6
3a20(a

2
1a3 + a1a

2
2)

+
n(n− 1)(n− 2)(n− 3)

24
4a0a31a2 +

n(n− 1)(n− 2)(n− 3)(n− 4)
120

a51

)
a1.
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Then by arrangement one proves

b6 = an−60

[
na50a6 +

(
5n− 1
6
+
n− 5
6

)
na40a1a5 +

(
2n− 1
3
+
n− 2
3

)
na40a2a4 +

n(n− 1)
2

a40a
2
3

+

(
2n− 1
3
+
n− 5
3

)
n(n− 1)
2

a30a
2
1a4 +

(
n− 1
2
+
n− 2
3
+
n− 5
6

)
n(n− 1) a30a1a2a3

+
n− 2
3

n(n− 1)
2

a30a
3
2 +

(
n− 2
3
+
n− 5
6

)
n(n− 1)(n− 2)

2
a20a

2
1a
2
2

+

(
n− 1
6
+
n− 5
6

)
n(n− 1)(n− 2)

2
a20a

3
1a3 +

(
n− 2
3
+
2n− 10
3

)
n(n− 1)(n− 2)(n− 3)

24
a0a41a2

+
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

720
a61

]
= an−60

[(n
1

)
a50a6 +

(n
2

)
a40(2a1a5 + 2a2a4 + a

2
3)+

(n
3

)
a30(3a

2
1a4 + 6a1a2a3 + a

3
2)

+

(n
4

)
a20(6a

2
1a
2
2 + 4a

3
1a3)+

(n
5

)
5a0a41a2 +

(n
6

)
a61

]
,

which corresponds with (38) whenever i = 6. �

Certainly without loss of generality we may assume aq 6= 0. Then, multiplying by x−qn we derive( q∑
j=0

ajx−q+j
)n
=

qn∑
j=0

bjx−qn+j,

whence y = x−1 satisfies( q∑
j=0

âjyj
)n
=

qn∑
j=0

b̂jyj (̂a0 = aq 6= 0)

for âj = aq−j, j = 0, 1, . . . , n, and b̂j = bqn−j, j = 0, 1, . . . , qn. Therefore (38) enables us to conclude

Corollary 1. When aq 6= 0 the last coefficients of the expansion (36) are given

bqn = anq,

bqn−i = an−iq
i∑
j=1

(
n
j

)
ai−jq

∑
`1 ·γ`1

+`2 ·γ`2
+···+`j ·γ`j

=i

γ`1
+γ`2

+···+γ`j
=j

1≤`1<`2<···<`j≤i−j+1

{γ`k
}
j
k=1∈{0,1,2,...,j}

(
j

γ`1γ`2 · · · γ`j

)
a
γ`1
q−`1
a
γ`2
q−`2
· · · a

γ`j
q−`j (39)

for i = 1, 2, . . . ,min{q, n}. In particular, when n ≥ q the formula (39) provides the last q+ 1 coefficients of (36). �

Appendix B. Expanding the power of the auxiliar sub and supersolutions

As it was pointed out, the proof of Theorem 1 uses the power of suitable polynomials relative to certain auxiliar sub and
supersolutions. So we get back to the formal expansion

V±δ (x) = C0
(
d(x)∓ δ

)−ατ(1+ Mτ∑
n=1

Cn(x)
(
d(x)∓ δ

)n)
for which

(V±δ (x))
m
= Cm0

(
d(x)∓ δ

)−ατm(1+ Mτ∑
n=1

Cn(x)
(
d(x)∓ δ

)n)m
= Cm0

(
d(x)∓ δ

)−ατm
Φ

(
Mτ∑
n=1

Cn(x)
(
d(x)∓ δ

)n−1)
,
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where

Φ(s) =
(
1+ s(d(x)∓ δ)

)m
.

Since the Taylor expansion of functionΦ gives

Φ(s) =
∑
n≥0

(
1
n!
dnΦ
dsn

(0)
)
sn,

we get

(V±δ (x))
m
= Cm0

(
d(x)∓ δ

)−ατm∑
n≥0

(m
n

)( Mτ∑
k=1

Ck(x)
(
d(x)∓ δ

)k−1)n(d(x)∓ δ)n,
due to

1
n!
dnΦ
dsn

(0) =
(m
n

) (
d(x)∓ δ

)n
=
m(m− 1) · · · (m− n+ 1)

n!

(
d(x)∓ δ

)n
, m ∈ R.

On the other hand, we may write( Mτ∑
k=1

Ck(x)
(
d(x)∓ δ

)k−1)n
=

(Mτ−1∑
k=0

Ck+1(x)
(
d(x)∓ δ

)k)n
=

(Mτ−1)n∑
i=0

Bi,n(x)
(
d(x)∓ δ

)i (40)

where

Bi,n(x) =
(
C1(x)

)n
, if i = 0,

1
iC1(x)

i−1∑
`=0

(
(i− `)(n+ 1)− i

)
Ci−`+1(x)B`,n(x), if i = 1, 2, . . . ,Mτ − 1,

1
iC1(x)

i−1∑
`=i−Mτ+1

(
(i− `)(n+ 1)− i

)
Ci−`+1(x)B`,n(x), if i = Mτ , . . . , (Mτ − 1)n

(41)

(see (37) in the Appendix A).

Remark 11. The coefficients Bi,n(x), for i = 0, 1, . . . , n and n ∈ N are obtained by straightforward computations. For
instance

B0,n(x) =
(
C1(x)

)n (n
0

)
,

B1,n(x) =
(
C1(x)

)n−1 (n
1

)
C2(x),

B2,n(x) =
(
C1(x)

)n−2[(n
1

)
C1(x)C3(x)+

(n
2

) (
C2(x)

)2]
,

B3,n(x) =
(
C1(x)

)n−3[(n
1

) (
C1(x)

)2C4(x)+ (n2) 2C1(x)C3(x)C2(x)+ (n3) (C2(x))3
]
,

B4,n(x) =
(
C1(x)

)n−4[(n
1

) (
C1(x)

)3C5(x)+ (n2) (C1(x))2
(
2C4(x)C2(x)+

(
C3(x)

)2)
+

(n
3

)
3C1(x)C3(x)

(
C2(x)

)2
+

(n
4

) (
C2(x)

)4]
.

Adjusting the formula (38) (see again the Appendix A), by means of a transfinite induction argument, we obtain the explicit
expression of (41)

Bi,n(x) =
i∑
j=1

(
n
j

) (
C1(x)

)n−j ∑
`1 ·γ`1

+`2 ·γ`2
+···+`j ·γ`j

=i+j

γ`1
+γ`2

+···+γ`j
=j

2≤`1<···<`j≤i−j+2

{γ`k
}
j
k=1⊂{0,1,...,j}

j!
γ`1 !γ`2 ! · · · γ`j !

(
C`1(x)

)γ`1 · · · (C`j(x))γ`j (42)

for i = 1, 2, . . . , n. �
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Then one has(
V±δ (x)

)m
= Cm0

(
d(x)∓ δ

)−ατm∑
n≥0

(m
n

) (Mτ−1)n∑
i=0

Bi,n(x)
(
d(x)∓ δ

)i+n
= Cm0

(
d(x)∓ δ

)−ατm(D0(x)+ Mτ∑
n=1

Dn(x)
(
d(x)∓ δ

)n
+

∞∑
n=Mτ+1

Dn(x)
(
d(x)∓ δ

)n) (43)

where

Dn(x) =
n∑
i=1

(m
i

)
Bn−i,i(x), n = 1, 2, . . . . (44)

Remark 12. In order to illustrate we note that the first five coefficients Dn(x) are

D0(x) =
(m
0

)
B0,0(x) =

(
C1(x)

)0
= 1,

D1(x) =
(m
1

)
B0,1(x) =

(m
1

)
C1(x),

D2(x) =
(m
2

)
B0,2(x)+

(m
1

)
B1,1(x) =

(m
2

) (
C1(x)

)2
+

(m
1

)
C2(x),

D3(x) =
(m
3

)
B0,3(x)+

(m
2

)
B1,2(x)+

(m
1

)
B2,1(x)

=

(m
3

) (
C1(x)

)3
+

(m
2

)
2C1(x)C2(x)+

(m
1

)
C3(x),

D4(x) =
(m
4

)
B0,4(x)+

(m
3

)
B1,3(x)+

(m
2

)
B2,2(x)+

(m
1

)
B3,1(x)

=

(m
4

) (
C1(x)

)4
+

(m
3

)
3
(
C1(x)

)2C2(x)+ (m2 )
[
2C1(x)C3(x)+

(
C2(x)

)2]
+

(m
1

)
C4(x),

provided Mτ ≥ 4. �

Choosing n = 1 in (40) we deduce

Bi,1(x) = Ci+1(x), i = 0, 1, 2, . . . ,Mτ−1,

so that, from (44), we obtain

Dn(x) =
(m
1

)
Cn(x)+

n∑
i=2

(m
i

)
Bn−i,i(x), 1 ≤ n ≤ Mτ , (45)

whence, in (45), each Cn(x), 1 ≤ n ≤ Mτ , does not appear in Bn−i,i(x), i 6= 1. Certainly all coefficients Cn(x), 1 ≤ n ≤ Mτ ,
are involved in the other Dn(x),Mτ + 1 ≤ n.

Remark 13. Whenm is an integer number one has

1
n!
dnΦ
dsn

(0) = 0, n > m,

therefore the Taylor expansion is finite. So, from (44) we deduce that Dn(x) = 0 if n > (Mτ − 1)m. �
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