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Abstract

In this paper we obtain Liouville type theorems for positive supersolutions of the elliptic problem −�u + |∇u|q = λf (u) in
exterior domains of RN . Here q > 1 and the function f can be compared with a power p near zero or infinity. We show that
positive supersolutions do not exist in some ranges of the parameters p and q which turn out to be optimal for the model case
f (s) = sp . The related problem −�u − |∇u|q = f (u) is also analyzed.
© 2012 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on obtient des théorèmes de type Liouville pour des sursolutions positives du problème elliptique
−�u + |∇u|q = λf (u) dans des domaines extérieurs de R

N . Ici q > 1 et la fonction f peut être comparée à une puissance p

proche de zéro ou de l’infini. On montre qu’il n’existe pas de sursolutions positives pour certaines valeurs des paramètres p et q

qui s’avérent être optimales pour le cas modèle f (s) = sp . Le problème lié −�u − |∇u|q = f (u) est également analysé.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Nonlinear Liouville theorems play an important role in the study of some nonlinear partial differential equations
of elliptic type. As a typical application, they are used to obtain a priori bounds for solutions to such equations.
An example of this is the by now classical result in [17], which in turns relies on the nonexistence theorem of [16].
In the latter it is shown that the problem

−�u = up in R
N
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does not admit any positive solution provided that p < N+2
N−2 (N � 3), see also [11]. It was later proved in [15] that even

positive supersolutions of this equation cannot exist with the more restrictive assumption p � N
N−2 (see Theorem 8.4

in [27] for a simple proof of this assertion; this restriction on the exponent is optimal).
Subsequently, this result has been generalized to deal with some more general semilinear, quasilinear and fully

nonlinear elliptic equations and systems. Without being exhaustive with the huge amount of references concerned
with this topic, let us mention the works [2,4–9,11,12,19,20,25] and [30]. For a more extensive list of references,
we refer to the book by Véron [32] and to the survey by Kondratiev, Liskevich and Sobol [21].

A rather general result in this line has been recently obtained by Armstrong and Sirakov [3]. Among other things,
they showed that the differential inequality

−Qu � f (u) in R
N \ BR0 ,

where N � 3 and Q is a fully nonlinear operator does not admit positive (viscosity) solutions provided that f is
continuous and positive in (0,∞) and verifies a condition at zero related with the fundamental solution of Q. Notice
that this condition reduces to

lim inf
s→0+

f (s)

s
N

N−2

> 0,

when Q is the Laplacian. This approach works due to the homogeneity of the differential operator Q, since it is
essential to obtain Hadamard type results (cf. also [11]).

Thus a natural question to ask is whether the previous results are modified when the differential operator is not
homogeneous. This is precisely the question we are addressing in the present paper. As a model problem, we will be
mainly dealing with

−�u + |∇u|q = λf (u) in R
N \ BR0 , (1.1)

where N � 3, q > 1 and f : (0,∞) → R is continuous and positive. This problem has been considered in the reference
case f (u) = up , p > 0, by Chipot and Weissler [10] and later by Serrin and Zou [29] and Voirol [33] (cf. the extension
to the p-Laplacian setting considered in [13,14]). See also [31] for a survey on the problem. However, the authors of
these papers were interested in the existence and nonexistence of radial solutions in R

N .
We will be always dealing with positive classical supersolutions to (1.1), that is, functions u ∈ C2(RN \ BR0)

verifying (1.1) point-wise. However, we are not making any assumption about asymptotic behavior of the
supersolutions near infinity, nor do we assume that they are bounded. In this regard, let us mention that the presence
of the gradient term in (1.1) allows the existence of supersolutions which blow up at infinity, that is,

lim|x|→∞u(x) = +∞. (1.2)

Hence, to be more precise, we will distinguish in what follows between supersolutions which blow up at infinity
and those which do not. Let us remark that in the case where supersolutions are being considered in the
whole space R

N , they cannot blow up at infinity. This follows because, according to the maximum principle,
min|x|=R u(x) = min|x|�R u(x), and this is a decreasing (hence bounded) function of R.

Let us next state our main theorems. We begin by considering positive supersolutions which do not verify (1.2).
As for the nonlinear term f (u), aside being positive and continuous in (0,∞), we will assume that

γ1 := lim inf
s→0

f (s)

sp
> 0, (1.3)

for some p > 0. The first nonexistence result is concerned with a case which could be termed as “subcritical”.

Theorem 1. Assume f : (0,∞) → R is a continuous positive function verifying (1.3). If 1 < q < N
N−1 and p <

q
2−q

or q � N
N−1 and p < N

N−2 , then there are no classical positive supersolutions to (1.1) which do not blow up at infinity.

Let us consider now the first “critical” case, in which p = q
2−q

, but with 1 < q < N
N−1 (the problem can be

termed critical because of the scale invariance in the reference situation f (u) = up , p > 0: if u is a supersolution then

μ
2−q
q−1 u(μx) also is for every μ > 0). To deal with it we need to assume in addition that the function f is nondecreasing.
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It turns out that in this case the presence of the parameter λ in (1.1) is important, because the existence or
nonexistence of positive supersolutions depends on the size of λ. Actually, observe that a supersolution to (1.1)
for some value of λ̃ is also a supersolution for every value λ < λ̃. Thus we can define

λ∗ = inf

{
λ > 0: there are no positive supersolutions

for (1.1) which do not blow up at infinity

}
, (1.4)

and we obtain that the set of values of λ for which a positive supersolution to (1.1) does not exist is precisely one of
the intervals (λ∗,∞) or [λ∗,∞), provided that λ∗ < ∞. Our next result shows that this is indeed the situation and
gives some bounds for the value λ∗.

Theorem 2. Assume f : (0,∞) → R is a continuous, nondecreasing positive function verifying (1.3), and
1 < q < N

N−1 , p = q
2−q

. Then the value λ∗ given in (1.4) verifies:

λ∗ � 2 − q

2γ1

(
q(2 − q)

2(N − q(N − 1))

) q
2−q

. (1.5)

If in addition

γ2 := lim sup
s→0

f (s)

sp
< ∞,

then

λ∗ � 2 − q

2γ2

(
q(2 − q)

2(N − q(N − 1))

) q
2−q

and for λ ∈ (0, λ∗) there exist positive supersolutions to (1.1) which do not blow up at infinity.

Now we consider the second critical case, in which q > N
N−1 and p = N

N−2 . In this situation, the parameter λ

is again of no importance.

Theorem 3. Assume f : (0,∞) → R is a continuous, nondecreasing positive function verifying (1.3), and q > N
N−1 ,

p = N
N−2 . Then problem (1.1) does not admit positive supersolutions which do not blow up at infinity.

It is worth remarking that in all cases not covered by the previous theorems, positive supersolutions can be
constructed at least for the model case f (s) = sp . In fact, in most cases positive solutions exist (see [10,29,33]).
Therefore our results are seen to be optimal (see Fig. 1 below).

Fig. 1. Regions of nonexistence of positive supersolutions which do not blow up at infinity in the plane q , p.
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Last but not least, we consider positive supersolutions to (1.1) blowing up at infinity. In this case, the behavior of f

at zero is of course not important, and the key assumption is:

lim inf
s→∞

f (s)

sp
> 0, (1.6)

for some p > 0. Our result regarding this case is the following:

Theorem 4. Assume f : (0,∞) → R is a continuous positive function verifying (1.6) for some p > q . Then there are
no positive classical supersolutions to (1.1) blowing up at infinity.

When lim sups→∞ f (s)/sp < ∞ for some p � q , it is easy to show that positive supersolutions blowing up
at infinity exist: they are just exponential functions of the form u(x) = eμ|x|. Thus Theorem 4 is essentially optimal
as well.

When the supersolutions are assumed to be defined throughout RN instead of in exterior domains, the results are
almost exactly the same as before, except that supersolutions which blow up at infinity do not exist, and the value λ∗
in Theorem 2 cannot be directly estimated from below.

Let us make some comments on our methods of proof. Our method relies in analyzing the function
m(R) = min|x|=R u(x). By means of a device introduced in [11], we obtain an inequality for this function, which,
after an iterative procedure, leads us to some suitable upper bounds. At the same time, some lower bounds can be
produced, but it is precisely here that the nonhomogeneity of the left-hand side in (1.1) prevents us from obtaining
a Hadamard type property, hence we are forced to obtain the properties of m(R) by means of a slightly different (more
involved) approach.

In the subcritical cases, the upper bound and the lower bound are in contradiction, hence the proof of nonexistence.
However, in both critical cases there is no contradiction whatsoever so that a finer analysis is due. Let us explicitly
mention that this proof is completely different to that in [11], which does not seem to be generalized when a gradient
term comes into play.

Finally, it is important to notice that the essential feature in all proofs is the comparison principle. In the framework
of classical solutions which we have chosen, the comparison is furnished for instance by Theorem 10.1 in [18]. But the
reader will notice that almost all results have an extension to some more general nonlinear elliptic problems like

−Q(u) + |∇u|q = λf (u) in R
N \ BR0,

where Q is a fully nonlinear operator invariant under rotation and supersolutions are considered in the viscosity sense
(cf. [3] when the gradient term is absent).

Likewise, some similar problems can be treated with much the same techniques. As an example, we briefly consider
the related problem

−�u − |∇u|q = f (u) in R
N \ BR0 , (1.7)

which is slightly simpler than (1.1), since its supersolutions are superharmonic functions.
We finally mention that our results have immediate implications on the analysis of the growth of positive solutions

to equations of the type −�u = f (x,u,∇u) near a singularity, in the spirit of [26]. In particular, Theorem 6.1 there
can be extended to deal with nonlinearities with a critical growth in the gradient (see also the comments right after
Theorem 6.1 in [26]).

The paper is organized as follows: in Section 2 we deal with some preliminary properties of the supersolutions,
in particular of the function m(R) = inf|x|=R u(x) and Section 3 is devoted to the proof of Theorems 1, 2 and 3.
In Section 4 we consider supersolutions to (1.1) which blow up at infinity, while the final Section 5 contains
nonexistence theorems for problem (1.7) which can be achieved with similar methods.

2. Some preliminaries

In this section we perform a preliminary analysis of supersolutions of (1.1). Thus if u is a supersolution of (1.1),
we mainly deal with monotonicity properties and upper estimates for the function:

m(R) = min u(x), (2.1)
|x|=R
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for R > R0. Observe that, thanks to the strong maximum principle, and enlarging R0 if necessary, we can always
assume that u > 0 in R

N \ BR0 , so that m(R) > 0 if R > R0.
When our problem is analyzed in R

N , this minimum coincides with the minimum in the ball of radius R by the
maximum principle, hence m(R) is a decreasing function. In the case at hand, however, this need not be so. Let us
begin by clearing this point.

Lemma 1. Let u ∈ C2(RN \ BR0) be a positive function verifying −�u + |∇u|q � 0 in R
N \ BR0 with q > 1 and

m(R) be given by (2.1). Then there exists R1 > R0 such that m(R) is monotone for R > R1.

Proof. For R2 > R1 > R0, consider the annulus A(R1,R2) = {x ∈ R
N : R1 < |x| < R2}. Thanks to the maximum

principle applied to u in this annulus we obtain

min
A(R1,R2)

u = min
{
m(R1),m(R2)

}
.

Since the annulus decreases with R1 and increases with R2, we obtain minA(R1,R2) u increases with R1 and
decreases with R2. Therefore the function min{m(R1),m(R2)} is increasing in R1 and decreasing in R2 whenever
R2 > R1 > R0.

It follows from this property that m(R) cannot have a strict local minimum. Indeed, if we had a strict local minimum
at some R then we could choose δ1 > 0 so that m(R) < m(R − δ1), m(R) < m(R + δ1). As we have seen, the function

h(δ) = min
{
m(R − δ),m(R + δ)

}
is decreasing in 0 � δ � δ1, contradicting the fact that h(δ1) > h(0).

Since local minima cannot exist, we obtain one of the three alternatives: either m(R) is increasing, or it is
decreasing, or it is increasing in (R0,R1) for some R1 > R0 and then decreasing in (R1,∞). Whatever the case,
m(R) is monotone for R > R1. This concludes the proof. �

To proceed further, we will assume that f is positive in (0,∞), and that it has a prescribed behavior near zero.
More precisely, we will impose the hypothesis

lim inf
s→0

f (s)

sp
> 0 (2.2)

for some p > 0. The proof of the next result is based on a device introduced in [11] and refined in [12].

Lemma 2. Let q > 1 and u ∈ C2(RN \ BR0) be a positive supersolution to (1.1) in R
N \ BR0 and m(R) be given

by (2.1). Then:

(a) If p > 0 and m(R) is bounded, then m(R) is decreasing for large R and it converges to zero as R → ∞. Moreover,
if f verifies (2.2), then there exists C > 0 such that

m(2R)p � C

(
m(R)

R2
+ m(R)q

Rq

)
(2.3)

for R > R0.
(b) If m(R) is unbounded, then m(R) is increasing for large R and it diverges to infinity as R → ∞.

Proof. Choose a cut-off function ϕ ∈ C∞
0 (R) such that ϕ = 0 in (0,1) ∪ (4,∞), 0 � ϕ � 1 and ϕ = 1 in [ 3

2 , 7
2 ].

For R > R0 consider the function

v(x) = u(x) − m(2R)ϕ

( |x|
R

)
.

Observe that there exists a point xR with |xR| = 2R and u(xR) = m(2R), so that v(xR) = 0. Since v > 0 in BR \ BR0

and in R
N \ B4R , we conclude that v achieves a nonpositive minimum at some point yR with R � |yR| � 4R.

This implies �v(yR) � 0, ∇v(yR) = 0, so that
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−�u(yR) + ∣∣∇u(yR)
∣∣q � −m(2R)

R2
�ϕ

( |yR|
R

)
+ m(2R)q

Rq

∣∣∣∣∇ϕ

( |yR|
R

)∣∣∣∣q

� C

(
m(2R)

R2
+ m(2R)q

Rq

)
,

where C is a positive constant which only depends on ϕ (from now on, we will use the letter C to denote positive
constants, not necessarily the same everywhere), and in particular since u is a supersolution of (1.1), we obtain

λf
(
u(yR)

)
� C

(
m(2R)

R2
+ m(2R)q

Rq

)
. (2.4)

Notice that we also have u(yR) � m(2R), since the minimum of v is nonpositive and ϕ � 1.
Now we show part (a). Since m(R) is bounded, we deduce from (2.4) that f (u(yR)) → 0 as R → ∞, and

since u(yR) � C, then it follows that u(yR) → 0. Hence Lemma 5 implies that m(R) is decreasing for large R

and limR→∞ m(R) = 0. From (2.2) we then achieve f (u(yR)) � Cu(yR)p � Cm(4R)p . Hence

m(4R)p � C

(
m(2R)

R2
+ m(2R)q

Rq

)
,

and part (a) follows.
Showing part (b) is straightforward. Indeed, since m(R) is unbounded, then m(R) has to be increasing for R > R0,

again by Lemma 1, so that limR→∞ m(R) = ∞. �
The last two results in the section are key points, since they allow to extract upper bounds for the function m(R) by

means of the inequality (2.3). These upper bounds are essential to achieve the nonexistence of supersolutions to (1.1).

Lemma 3. Let q > 1, p > 0 and h(R) be a positive decreasing function defined for R > R0 and verifying

h(2R)p � C

(
h(R)

R2
+ h(R)q

Rq

)
(2.5)

for R > R0 and some positive constant C > 0. Then:

(a) If 1 < q < 2 and 0 < p � 1, then for every θ > 0 there exists a constant C such that

h(R) � CR−θ

for every R > R0.
(b) If 1 < q < 2 and 1 < p <

q
2−q

, then for every θ ∈ (0, 2
p−1 ) there exists a constant C such that

h(R) � CR−θ

for every R > R0.
(c) If q � 2 and 0 < p � 1, then for every θ > 0 there exists a constant C such that

h(R) � CR−θ

for every R > R0.
(d) If q � 2 and p > 1, then for every θ ∈ (0, 2

p−1 ) there exists a constant C such that

h(R) � CR−θ

for every R > R0.

Proof. We consider first the case 1 < q < 2 and 0 < p <
q

2−q
. Since h(R) is bounded, we have from (2.5)

h(2R) � CR−γ0 , where γ0 = q
p

. Assume that γ0 � α := 2−q
q−1 . Then

h(2R)p � C
(
R−γ0−2 + R−γ0q−q

) = CR−γ0q−q
(
Rγ0q+q−γ0−2 + 1

)
� CR−γ0q−q,
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since γ0q + q − γ0 − 2 � 0. This yields h(2R) � CR−γ1 , where γ1 = γ0q+q
p

. We can iterate this argument:

if h(2R) � CR−γk−1 for some γk−1 � α, then

h(2R) � CR−γk ,

where γk = γk−1q+q

p
. Now we observe that γ1 > γ0, this implying that the sequence {γk} is increasing. If we had

γk � α for every k, then we would obtain that γk converges to some value γ � α. It follows that γ = q
p−q

(this is only

possible if p > q), and then q
p−q

� 2−q
q−1 , which implies p � q

2−q
, against the assumption.

Thus there exists a first value of k, called k0, such that γk0 > α. Of course, this holds with k0 = 0 when q
p

> α.
Then

h(2R)p � C
(
R−γk0 −2 + R−γk0 q−q

) = CR−γk0 −2(1 + Rγk0 +2−γk0 q−q
)

� CR−γk0 −2, (2.6)

and we obtain h(2R) � CR−τ0 , where τ0 = γk0+2
p

. We can iterate similarly as before to obtain an increasing

sequence {τj } given by τj = τj−1+2
p

and h(R) � CR−τj for every j . Since τj+1 − τj = (τj − τj−1)/p, we deduce

τj+1 = τ1 + (τ1 − τ0)
∑j

k=1 p−k . Therefore, when 0 < p � 1, τj → ∞, which shows part (a). When 1 < p <
q

2−q
,

τj → τ∞ = τ1 + (τ1 − τ0)
1

p − 1
= 2

p − 1
,

which proves part (b). Observe that we need only a finite number of iterations to reach each value of θ in the statement,
and therefore we do not need to keep track of the different constants appearing in each step.

Let us prove parts (c) and (d), so we assume q � 2 and p > 0. We notice that γ0 = 2
p

< 2
p−1 and we can argue

using (2.6) to construct an increasing sequence γk given by γk = γk−1+2
p

. We arrive as in parts (a) and (b) at γk → ∞
when 0 < p � 1, while γk → 2

p−1 if p > 1, and the lemma is thus proved. �
The bounds provided by Lemma 3 can be improved to reach the critical value 2

p−1 in the exponents if we can
compare the values of h(2R) and h(R) for large R (this will be indeed the situation in Section 3). In the next result
we only state the bounds we are going to need later.

Lemma 4. Let q > 1, p > 0 and h(R) be a positive decreasing function defined for R > R0 and verifying

h(R)p � C

(
h(R)

R2
+ h(R)q

Rq

)
(2.7)

for R > R0 and some positive constant C > 0. Then:

(a) If 1 < q < 2 and p = q
2−q

, then there exists a constant C such that

h(R) � CR
− 2

p−1

for R > R0.
(b) If q > N

N−1 and p = N
N−2 , then there exists a constant C such that

h(R) � CR−(N−2)

for R > R0.

Proof. The proof is based in the same iterative argument as in Lemma 3, but having a precise control on the constants
appearing in each step.

Let us proceed with the proof of part (a). Without loss of generality we assume R0 > 1, and also that the constant C

in (2.7) is such that 2C > 1. We have initially h(R) � C0R
−γ0 for R > R0, where γ0 = q

p
. Taking C0 larger

if necessary we may also assume

C0 > (2C)
1

p−q > 1
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(observe that p > q in this case). Then

h(R)p � C

(
C0R

−γ0

R2
+ C

q

0 R−γ0q

Rq

)
� CC

q

0

(
R−γ0−2 + R−γ0q−q

)
� CC

q

0 R−γ0q−q
(
Rγ0q+q−γ0−2 + 1

)
� 2CC

q

0 R−γ0q−q,

since γ0 = q
p

= 2 − q < α = 2−q
q−1 and R > 1. We deduce that h(R) � C1R

−γ1 for R > R0, where C1 = (2CC
q

0 )
1
p and

γ1 = γ0q+q
p

. Observe that (2C)
1

p−q < C1 < C0 and γ1 > γ0.

We can iterate this procedure to obtain a decreasing sequence {Ck} with Ck > (2C)
1

p−q and an increasing

sequence {γk} with γk � α such that h(R) � CkR
−γk for R > R0. It is not hard to show that Ck → C = (2C)

1
p−q ,

γk → α as k goes to infinity. Passing to the limit we achieve h(R) � CR−α for R > R0, and the proof concludes by
noticing that α = 2

p−1 .
To show (b), observe that, since h is bounded, (2.7) implies

h(R)p � C

(
h(R)

R2
+ h(R)q

′

Rq ′

)

for R > R0 and every q ′ < q (enlarging R0 if necessary). Hence we can always assume that q is close to N
N−1 , so that

p > q and q
p

< α. Thus the first part of the proof applies and we obtain that h(R) � CR−α for some C > 0.

Now we iterate as in Lemma 3 to obtain sequences τj and Cj such that h(R) � CjR
−τj , where

τj+1 = τ1 + (τ1 − τ0)
∑j

k=1 p−k and Cj = (2CC
q

j−1)
1
p . Thus τj → 2

p−1 = N − 2 while Cj → C = (2C)
1

p−q .
This concludes the proof. �
3. Proof of Theorems 1, 2 and 3

In this section we collect the proof of our main results dealing with positive supersolutions which do not blow up
at infinity. We begin by considering the “subcritical” case contained in Theorem 1, which is considerably easier than
those covered by Theorems 2 and 3.

Proof of Theorem 1. We analyze separately the cases: 1 < q < N
N−1 and 0 < p <

q
2−q

, and q � N
N−1 and

0 < p < N
N−2 .

Case: 1 < q < N
N−1 and 0 < p <

q
2−q

. We first remark that the function Φ(x) = A|x|−α is a subsolution to the

equation −�v + |∇v|q = 0 in R
N \ {0}, where

α := 2 − q

q − 1
and 0 < A � A0 = 1

α
(α + 2 − N)

1
q−1 .

Let u be a positive classical supersolution to (1.1) in R
N \ BR0 which does not blow up at infinity and denote,

as in Section 2, m(R) = min|x|=R u(x). By Lemma 2, m(R) is decreasing for large R and m(R) → 0 as R → ∞.
We claim that

lim inf
R→∞ m(R)Rα > 0. (3.1)

Assuming the contrary, there exists a sequence Rk → ∞ with m(Rk)R
α
k → 0. Fix k0 large enough so that

m(Rk0)R
α
k0

< A0. The function

Ψ (x) = m(Rk0) − m(Rk)

R−α
k0

− R−α
k

(|x|−α − R−α
k

) + m(Rk)

is a subsolution to −�v + |∇v|q = 0 in the annulus A(Rk0 ,Rk) provided that k is sufficiently large. Since Ψ � u on
∂A(Rk0 ,Rk), by comparison (see for example [18] or [28]) we have Ψ � u in A(Rk0 ,Rk). Letting k → ∞ we achieve

u(x) � m(Rk0)R
α
k |x|−α in |x| > Rk0 .
0
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In particular, taking x such that |x| = Rj , we get m(Rj )R
α
j � m(Rk0)R

α
k0

if Rj > Rk0 . Letting j → ∞ we arrive at
a contradiction with m(Rj )R

α
j → 0. This shows the claim.

To conclude the proof in this case, we just notice that, thanks to Lemmas 2(a) and 3(a) and (b), we have

m(R) � CR−θ for large R,

where θ > 0 is arbitrary if 0 < p � 1 and 0 < θ < 2
p−1 if 1 < p <

q
2−q

. When combined with (3.1), we have an

immediate contradiction if 0 < p � 1 and also when 1 < p <
q

2−q
, since this implies that α < 2

p−1 .

Case: q � N
N−1 and 0 < p < N

N−2 . It can be easily checked in this case that the function Φ̃(x) = A|x|2−N−ε is
a subsolution to the equation −�v + |∇v|q = 0 in |x| > 1 when ε is small enough, and

0 < A � Ã0 = ε
1

q−1

N − 2 + ε
.

If u is a positive classical supersolution to (1.1), we claim that

lim inf
R→∞ m(R)RN−2+ε > 0. (3.2)

If this were not true, there would exist a sequence Rk → ∞ such that m(Rk)R
N−2+ε
k → 0. In this case, choosing k0

such that m(Rk0)R
N−2+ε
k0

< Ã0 and then a large k, the function

Ψ̃ (x) = m(Rk0) − m(Rk)

R2−N−ε
k0

− R2−N−ε
k

(|x|2−N−ε − R2−N−ε
k

) + m(Rk)

is a subsolution to −�v + |∇v|q = 0 in the annulus A(Rk0 ,Rk) with Ψ̃ � u on ∂A(Rk0 ,Rk). By comparison we
get Ψ̃ � u in A(Rk0 ,Rk). Letting k → ∞, we obtain u(x) � m(Rk0)R

N−2+ε
k0

|x|2−N+ε in |x| > Rk0 , and we reach
a contradiction when we take x with |x| = Rj and let j → ∞. This shows the claim.

Observe next that 0 < p <
q

2−q
when N

N−1 � q < 2, so that Lemma 2 together with Lemma 3 can be applied to

obtain m(R) � CR−θ , where θ > 0 is arbitrary for 0 < p � 1 and N
N−1 � q < 2, while θ ∈ (0, 2

p−1 ) for 1 < p < N
N−2

and q � N
N−1 . Thanks to (3.2), we obtain a contradiction if N − 2 + ε < θ , which is certainly possible if ε is selected

small enough. This concludes the proof. �
The first critical case: 1 < q < N

N−1 and p = q
2−q

.

To deal with the critical cases, some extra work needs to be done. The first step in proving Theorem 2 is to show
that the function m(R)Rα is increasing, where α is as in the proof of Theorem 1. This is not so direct as in the case
where the gradient term is absent, due to the nonhomogeneity of the operator. Recall that we are assuming that f is
nondecreasing and verifies (1.3).

Notice that thanks to (1.3), there exists δ > 0 such that f (s) � (γ1 − η)sp for 0 < s � δ if η > 0 is sufficiently
small. Now let us fix η > 0 sufficiently small and observe that Lemma 2 implies that m(R) is decreasing for large R

and m(R) → 0 as R → ∞, so that enlarging R0 if necessary, we may always have m(R) � m(R0) � δ if R > R0.
Let us begin by assuming that λ has been chosen so that

−α(α + 2 − N)s + αqsq < λ(γ1 − η)sp for every s > 0 and η small. (3.3)

It is not hard to check that (3.3) holds provided

λ >
2 − q

2γ1

(
q(2 − q)

2(N − q(N − 1))

) q
2−q

, (3.4)

and η is small enough (cf. [10]). Recall that we are considering p = q
2−q

> q .

Lemma 5. Let 1 < q < N
N−1 and u be a positive classical supersolution to (1.1) which does not blow up at infinity,

where f is nondecreasing and verifies (1.3) with p = q
2−q

. Assume (3.3) holds. Then the function m(R)Rα

is increasing.
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Proof. Let A0 = 0, and for every positive k define Ak to be the unique positive solution of the equation

−α(α + 2 − N)Ak + αqA
q
k = λ(γ1 − η)A

p

k−1.

It easily follows that {Ak} is an increasing sequence, since 1 < q < N
N−1 implies that α + 2 − N > 0.

Moreover, Ak → ∞, since if it were bounded we would have Ak → A, which should be a solution to
−α(α + 2 − N)A + αqAq = λ(γ1 − η)Ap , contradicting (3.3).

Let us see that m(R)Rα is increasing as long as 0 < m(R)Rα < A1. Indeed, if R1 > R0 is such that m(R1)R
α
1 < A1,

then the function

Ψ (x) = m(R1) − m(R2)

R−α
1 − R−α

2

(|x|−α − R−α
2

) + m(R2)

verifies

−�Ψ + |∇Ψ |q = αCR1,R2

(
(αCR1,R2)

q−1 − α − 2 + N
)|x|−α−2 < 0

for large R2, where CR1,R2 = m(R1)−m(R2)

R−α
1 −R−α

2
, since 0 < CR1,R2 < A1 for sufficiently large R2, and

A
q−1
1 = α + 2 − N

αq−1
.

Also note that Ψ � u on ∂A(R1,R2). On the other hand, since

−�u + |∇u|q � 0 in A(R1,R2),

by comparison we get u � Ψ in A(R1,R2). Letting R2 → ∞ we have u(x) � m(R1)R
α
1 |x|−α in |x| > R1. In particular

m(R)Rα � m(R1)R
α
1 if R > R1. This shows that m(R)Rα is increasing as long as m(R)Rα < A1, and also by

continuity that if m(R1)R
α
1 = A1 for some R1 > R0, then m(R)Rα � A1 for every R > R1.

In the latter case we would have u(x) � A1|x|−α for |x| > R1 and since f is nondecreasing, we obtain
f (u(x)) � f (A1|x|−α). Observe that A1|x|−α � A1R

−α
1 = m(R1) � δ, so that u verifies −�u + |∇u|q �

λ(γ1 − η)A
p

1 |x|−αp if |x| > R1. Now assume that R2 > R1 is such that m(R2)R
α
2 < A2. Consider the function

Ψ̃ (x) = m(R2) − m(R3)

R−α
2 − R−α

3

(|x|−α − R−α
3

) + m(R3)

for R3 > R2 > R1. If R3 is large enough, we have Ψ̃ verifies −�Ψ̃ + |∇Ψ̃ |q � λ(γ1 − η)A
p

1 |x|−αp . By comparison,
u � Ψ̃ in A(R2,R3), and letting R3 → ∞ we obtain as before that m(R)Rα � m(R2)R

α
2 if R > R2.

The same argument shows that, whenever Ak−1 < m(R)Rα < Ak for some R, then m(R)Rα is increasing as
long as it is less than Ak , and if it reaches this value, it stays above this value. Since Ak → ∞, we have that the
function m(R)Rα is increasing, as we wanted to prove. �

Once the monotonicity of m(R)Rα has been established, the proof of nonexistence can be carried out. We remark
again that our proof is completely different than that of the critical case in [11].

Lemma 6. Let 1 < q < N
N−1 and assume that f is nondecreasing and verifies (1.3) with p = q

2−q
. Suppose in addition

that (3.3) holds. Then there are no positive supersolutions to (1.1) which do not blow up at infinity.

Proof. According to Lemma 5, the function m(R)Rα is increasing for large R. In particular, we deduce that
m(R) � 2αm(2R) for large R, and then Lemma 2(a) gives that m(R) verifies (2.7) for some positive constant C

and large R. By Lemma 4(a), we deduce that m(R)Rα is bounded. Denote

l = lim
R→∞m(R)Rα.

Choose a small ε > 0. There exists R1,ε > R0 such that m(R)Rα � l − ε if R > R1,ε , so that u(x) � (l − ε)|x|−α if
|x| > R1,ε . Take a point x0,ε ∈R

N with |x0,ε| > 2R1,ε and u(x0,ε) = m(|x0,ε|). Introduce the function

vε(y) = |x0,ε|αu
(
x0,ε + |x0,ε|y

)
, y ∈ B1/2,
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where B1/2 stands for the ball of radius 1/2 centered at zero. It is not hard to see that the function vε verifies
vε(0) = |x0,ε|αu(x0,ε) = |x0,ε|αm(|x0,ε|) � l, together with

vε(y) � (l − ε)|x0,ε|α
∣∣x0,ε + |x0,ε|y

∣∣−α = (l − ε)|eε + y|−α, y ∈ B1/2,

and −�vε + |∇vε|q � λ(γ1 − η)(l − ε)p|eε + y|−αp in B1/2, where eε = x0,ε/|x0,ε| (notice that
(l − ε)R−α

1,ε � m(R1,ε) � δ). In particular, vε is a supersolution of the problem{−�w + |∇w|q = λ(γ1 − η)(l − ε)p|eε + y|−αp in B1/2,

w = (l − ε)|eε + y|−α on ∂B1/2.
(3.5)

Since v(y) = (l − ε)|eε + y|−α is a subsolution to the same problem, we deduce by using the standard method
of sub and supersolutions (cf. [1]) that there exists a classical solution wε to (3.5), verifying in addition
wε(y) � (l − ε)|eε + y|−α in B1/2, l − ε � wε(0) � vε(0) � l.

Our next intention is to pass to the limit as ε → 0. For this aim, we are obtaining appropriate bounds for the
solutions wε . Notice that since |eε| = 1, we have |eε + y| � 1

2 for every y ∈ B1/2. Thus −�wε � 2αpγ1l
pλ in B1/2,

with wε � 2αl on ∂B1/2 and by comparison we obtain that wε is uniformly bounded.
On the other hand, all first derivatives of the right-hand side in (3.5) are also uniformly bounded, so that we can

use Theorem A.1 in [22] to obtain uniform local bounds for |∇wε| in B1/2. This provides with uniform local bounds
for |�wε|, so that by standard regularity (cf. [18]) we get local bounds for |wε|C1,γ for every γ ∈ (0,1). These entail
local bounds for |�wε|Cγ , which provide with local bounds for |wε|C2,γ . In particular, we have

|wε|C2,γ (B1/4)
� C,

where C is independent of ε. Thus there exists a sequence εn → 0 such that wεn → w in C2(B1/4). By passing to
a further subsequence we may also assume that eεn → e0 where |e0| = 1. Then w verifies:

−�w + |∇w|q = λlp(γ1 − η)|e0 + y|−αp in B1/4,

together with w(y) � l|e0 + y|−α in B1/4 and w(0) = l. If we let z = |e0 + y|αw(y), it easily follows that z � l

in B1/4, z(0) = l and

−α(α + 2 − N)z + 2α(e0 + y)∇z − |e0 + y|2�z + ∣∣|e0 + y|∇z − α|e0 + y|−1(e0 + y)z
∣∣q = λ(γ1 − η)lp.

(3.6)

To conclude just notice that z has a minimum at y = 0, so that �z(0) � 0, ∇z(0) = 0, and we obtain from (3.6):

−α(α + 2 − N)l + αqlq � λ(γ1 − η)lp,

which is a contradiction to the hypothesis (3.3) since l > 0. This contradiction proves the lemma. �
Proof of Theorem 2. The inequality (1.5) follows from (3.4) and Lemma 6 and the last assertion of the theorem is
a direct consequence of Proposition 5.5 in [10]. �
The second critical case: q > N

N−1 and p = N
N−2 .

Now we turn our attention to the second critical case, that contained in Theorem 3. Recall that we are assuming f

to be nondecreasing and verifying (1.3) with p = N
N−2 , while q > N

N−1 . There are some differences in the proof

depending on whether p � q or p < q , and this entails that the monotonicity of m(R)RN−2 is difficult to prove.
However, it suffices to have less information.

Lemma 7. Let q > N
N−1 . Assume u is a positive supersolution to (1.1) which does not blow up at infinity and f is

nondecreasing and verifies (1.3) with p = N
N−2 . Then the function m(R)RN−2 is bounded from below.

Proof. Since q > N
N−1 , we can choose a small ε so that q(N − 1)−N − ε N

N−2 > 0. Observe that m(R) � C0R
2−N−ε

for some positive constant C0, by (3.2) in the proof of Theorem 1, so that u(x) � C0|x|2−N−ε and since f is
nondecreasing then u is a supersolution to

−�u + |∇u|q = C1|x|−N−ε N
N−2 (3.7)
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if |x| > R and R is large, for some C1 > 0. Assume that there exists a sequence Rn → ∞ such that m(Rn)R
N−2
n → 0.

Then we may choose and fix a large enough k to have m(Rk)R
N−2
k <

C
1/q
1

N−2 (we may as well suppose Rk > 1), and this
yields

m(Rk) − m(Rn)

R2−N
k − R2−N

n

<
C

1/q

1

N − 2

for large enough n. This and our choice of ε entail that the function

Ψ (x) = m(Rk) − m(Rn)

R2−N
k − R2−N

n

(|x|2−N − R2−N
n

) + m(Rn)

is a subsolution to (3.7) in A(Rk,Rn) (recall that |x| > 1 there). Since Ψ � u on ∂A(Rk,Rn), we have by comparison
that Ψ � u in A(Rk,Rn). Letting n → ∞ we arrive at u(x) � m(Rk)R

N−2
k |x|2−N when |x| > Rk . Taking x with

|x| = Rj for large enough j , we arrive at

m(Rj )R
N−2
j � m(Rk)R

N−2
k .

We arrive at a contradiction when we let again j → ∞. This contradiction concludes the proof. �
Lemma 8. Under the same hypotheses of Lemma 7, for every sufficiently small ν > 0, there exists R̃ > R0 such that
the function m(R)RN−2+ν is increasing for R > R̃.

Proof. For R1,B > 0, denote by S(R1,B) the unique solution A to

−ν(N − 2 + ν)ARθ
1 + Aq(N − 2 + ν)q = λ(γ1 − η)BpR

θ− 2ν
N−2

1 , (3.8)

where θ = q(N − 1 + ν) − N − ν (taking ν sufficiently small we can achieve θ > 0 due to q > N
N−1 ) and define

recursively A0(R1) = 0, Ak+1(R1) = S(R1,Ak(R1)). Then it can be easily checked that the sequence Ak(R1) is
increasing in k. When p � q , if R1 is taken large enough, it follows that Ak(R1) → ∞ as k → ∞, while for p < q

we have Ak(R1) → A(R1), which is the smallest solution of the equation

−ν(N − 2 + ν)ARθ
1 + Aq(N − 2 + ν)q = λ(γ1 − η)ApR

θ− 2ν
N−2

1 . (3.9)

It is important to remark that, as a direct consequence of (3.9), A(R1) � CR

θ− 2ν
N−2

q−p

1 , where C is a positive constant
which does not depend on R1.

Next, observe that if we had u(x) � B|x|2−N−ν for |x| > R1 � R0, then as in the previous subsection:

−�u + |∇u|q � λ(γ1 − η)Bp|x|−N−ν N
N−2 (3.10)

if |x| > R1, where η is small. Notice that the function u = A|x|2−N−ν is a subsolution to (3.10) if |x| � R1 (we may
assume with no loss of generality that R0 > 1) provided that (3.8) holds.

When p � q , the proof is just an adaptation of that of Lemma 5, so we skip it. Hence we will assume in the rest
of the proof that p < q . Observe that, thanks to Lemmas 2(a) and 3(b) and (d), we have m(R) � CR2−N+ν , so that
m(R)RN−2+ν � CR2ν . By diminishing ν if necessary, we may also achieve 2ν < (θ − 2ν

N−2 )/(q − p), so that for

large R1, m(R1)R
N−2+ν
1 < A(R1). We assume in what follows that R1 is so large as to have this inequality.

Arguing similarly as in Lemma 5 we obtain that m(R)RN−2+ν is increasing as long as R > R1 and
Ak(R1) < m(R)RN−2+ν < Ak+1(R1), this yielding that m(R)RN−2+ν is increasing as long as R > R1 and
0 < m(R)RN−2+ν < A(R1).

Define

A∞ = sup
{
A: m(R)RN−2+ν increases in the range

(
m(R1)R

N−2+ν
1 ,A

)}
.

If A∞ = ∞ then we are done. If A∞ < ∞, then we have two situations: (i) m(R)RN−2+ν < A∞ for every R,
in which case the conclusion is trivial, or (ii) m(R)RN−2+ν = A∞ for some R, where we can repeat the above
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argument by setting A0(R) = A∞ to deduce that m(R)RN+2−ν is increasing as long as A∞ < m(R)RN+2−ν < A(R),
which contradicts the maximality of A∞. Hence this last possibility cannot occur, and this concludes the proof of the
lemma. �

The actual proof of Theorem 3 is in spirit very close to that of Lemma 6. There is one important difference when
dealing with the method of sub and supersolutions, since q > 2 is possible here and the standard method does not
work unless the sub and the supersolution are chosen properly.

Proof of Theorem 3. Choose and fix a small ν > 0 (less than one, say) such that Lemma 8 holds. We then have
m(R) � 2N−2+νm(2R) � 2N−1m(2R) if R > R1. Since m(R) > 0 for every R, the inequality m(R) � Cm(2R)

is valid for every R and a suitable positive constant C. Hence we may use Lemmas 2(a) and 4(b) to achieve that
m(R)RN−2 is bounded. Since it is also bounded away from zero by Lemma 7, we can define

l = lim inf
R→∞ m(R)RN−2 > 0.

For fixed small ε > 0, there exists R1,ε > R0 such that m(R)RN−2 � l − ε if R � R1,ε . Hence u(x) � (l − ε)|x|2−N

if |x| � R1,ε . Choose x0,ε ∈ R
N with |x0,ε| � max{2R1,ε, ε

−1} (so that |x0,ε| → ∞ when ε → 0) and
u(x0,ε) = m(|x0,ε|) � l + ε. Define

vε(y) = |x0,ε|N−2u
(
x0,ε + |x0,ε|y

)
, y ∈ B1/2.

Then we have vε(y) � (l − ε)|eε + y|2−N , for some unit vector eε , and

−�vε + |x0,ε|N−q(N−1)|∇vε|q � λ(γ1 − η)(l − ε)p|eε + y|−N in B1/2.

Also vε(0) � l + ε.
Next, if δ > 0 is fixed, we have |x0,ε|N−q(N−1) � δ if ε is small enough, so that vε is a supersolution to the problem{−�w + δ|∇w|q = λ(γ1 − η)(l − ε)p|eε + y|−N in B1/2,

w = (l − ε)|eε + y|2−N on ∂B1/2.
(3.11)

Also v := (l − ε)|eε + y|2−N is a subsolution and they are ordered, but we cannot directly apply the method of sub
and supersolutions since q > 2 is possible. Thus we need to work as in [23]. Let v be the unique solution to{−�v = λ(γ1 − η)(l − ε)p|eε + y|−N in B1/2,

v = (l − ε)|eε + y|2−N on ∂B1/2,

which is a supersolution to (3.11). By comparison v � v in B1/2. Thus we may use Theorem III.1 in [23] (we remark
that the proof there can be adapted to deal with nonhomogeneous Dirichlet problems, as long as the sub and
supersolution coincide on the boundary, as in our case) to obtain that (3.11) has a solution wε with v � wε � v

in B1/2. By comparison it also follows that w � vε . As a consequence, l − ε � wε(0) � l + ε.
We can now pass to the limit exactly as in the proof of Lemma 6, to arrive at a solution w to the equation

−�w + δ|∇w|q = (γ1 − η)lp|e0 + y|−N in B1/4

verifying w � l|e0 + y|2−N , w(0) = l, for some unit vector e0. Setting z = |e0 + y|N−2w, we obtain a function which
has a minimum at y = 0 and verifies

2(N − 2)|e0 + y|−N(e0 + y)∇z − |e0 + y|2−N�z

+ δ
∣∣|e0 + y|2−N∇z − (N − 2)|e0 + y|−N(e0 + y)z

∣∣q = (γ1 − η)lp|e0 + y|−N

in B1/4. Using �z(0) � 0, ∇z(0) = 0, z(0) = l we obtain

δ(N − 2)q lq � (γ1 − η)lp.

Letting δ → 0 we deduce l = 0, a contradiction. The proof is concluded. �
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4. Supersolutions which blow up at infinity

We turn now to the question of positive supersolutions to (1.1) which blow up at infinity. It is worth mentioning
that the approach to prove Theorem 4 is essentially different to the one followed in the previous theorems. The proof
actually relies in reducing the problem to a one-dimensional situation, where the condition p > q is easily seen to be
responsible for the nonexistence.

Lemma 9. Assume q > 1, p > 0, and that there exists a positive function u ∈ C2(RN \ BR1) verifying

−�u + |∇u|q � Cup in R
N \ BR1

and limx→∞ u(x) = +∞. Then there exists an increasing positive function v ∈ C2(R1,∞) such that
limr→∞ v(r) = +∞, and

−v′′(r) + v′(r)q � Cv(r)p (4.1)

for r > R1.

Proof. Choose R2 > R1 and consider the problem{−�z + |∇z|q = Cm
(|x|)p

in A(R1,R2),

z = 0 on ∂A(R1,R2),
(4.2)

where the function m is given by (2.1) and A(R1,R2) is the annulus {x ∈ R
N : R1 < |x| < R2}. Since z = 0 is clearly

a subsolution to this problem, we may apply Theorem III.1 in [24] to deduce that (4.2) has a unique (strong) solution
z ∈ W 2,θ (A(R1,R2)) for every θ > N . Setting w = z + m(R1), we have that w is the unique strong solution to{−�w + |∇w|q = Cm

(|x|)p in A(R1,R2),

w = m(R1) on ∂A(R1,R2).
(4.3)

Let us denote this unique solution by wR2 . It is important to notice that wR2 is radially symmetric.
Next, observe that m(R) is an increasing function by Lemma 2(b). Then, since −�u + |∇u|q � Cup � Cm(|x|)p

together with u � m(R1) in A(R1,R2), the comparison principle implies u � wR2 � m(R1) in A(R1,R2).
Our intention is letting R2 → ∞. Observe that we have uniform local bounds for wR2 . Using part 2 in Theorem A.1

in [22], we also obtain local bounds for |∇wR2 | in Lθ for every θ > 1. It follows from here that �wR2 is locally
bounded in Lθ for every θ > 1, and hence by classical regularity wR2 is locally bounded in C1,α for every α ∈ (0,1)

(cf. [18]).
Hence, we may choose a sequence Rn → ∞ such that wRn → w in C1

loc(R
N \ BR1), where w is a radially

symmetric weak solution to −�w + |∇w|q = Cm(|x|)p in |x| > R1, with

m(R1) � w(x) � u(x). (4.4)

It follows by bootstrapping and the fact that w is radially symmetric that w is indeed a classical solution.
Setting w(x) = v(r), where r = |x|, we see that (4.4) implies m(R1) � v(r) � m(r), so that v verifies

−v′′ − N − 1

r
v′ + ∣∣v′∣∣q � Cvp. (4.5)

Note that v(R) = min|x|=R v(|x|) =: mv(R). Then 0 < m(R1) � mv(R) for any R � R1. Applying Lemma 2
to mv(R), we deduce that mv(R) is unbounded and increasing. Therefore, v is increasing and limr→∞ v(r) = ∞.
The proof concludes by observing that (4.5) implies (4.1). �

Let us finally prove Theorem 4. The main point is to reduce the one-dimensional problem to the inequality
v′ � Kvp/q for some K > 0. This inequality cannot have global solutions if p > q .

Proof of Theorem 4. Thanks to condition (1.6), there exist R1 > R0 and C > 0 such that −�u + |∇u|q � Cup

in R
N \BR1 . We may then use Lemma 9 to obtain an increasing, positive C2 function v verifying −v′′ + (v′)q � Cvp
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for r > R1. Since v′ � 0, if we had v′ = 0 at some point then v′ would reach a minimum at this point so that v′′ = 0,
contradicting the inequality. Hence v′ > 0.

Inspired by [29], we consider the function S(r) = Cv(r)p − 2v′(r)q for r > R1. Then it is easily seen that

S′(r) � pCv(r)p−1v′(r) + 2q
(
Cv(r)p − v′(r)q

)
v′(r)q−1.

In particular, if we had S(r0) = 0 for some r0 > R1, then S′(r0) � pCv(r0)
p−1v′(r0)+ 2qv′(r0)

2q−1 > 0. This means
that S has at most one zero for r > R1, and in particular S(r) keeps sign for large enough r .

Assume first that S is positive for large r . Then it also follows that −v′′ � Cvp/2 for large r . Multiplying by v′
and integrating in (r1, r) for some large enough r1 we obtain

−(
v′)2 � C

p + 1
vp+1 + D

for some constant D. However, this implies that v is bounded, which is impossible.

Thus S is negative for large r . Then v′ � Kv
p
q for some positive constant K and large enough r . Since p > q , it is

well known that this inequality implies that v blows up in finite time, which is also impossible. Thus no nonnegative
supersolutions to (1.1) blowing up at infinity may exist. The proof is concluded. �
5. A related problem

In this final section, we will show that similar ideas as the ones used throughout the paper apply to deal with the
related problem

−�u − |∇u|q = f (u) in R
N \ BR0, (5.1)

where q > 1 and f is a continuous, positive function, verifying

lim inf
s→0

f (s)

sp
> 0 (5.2)

for some p > 0. One important difference with respect to (1.1) is that supersolutions to (5.1) are superharmonic, hence
they cannot blow up at infinity.

Notice by the way that supersolutions to (5.1) are also supersolutions to −�u = f (u) in R
N \ BR0 , so that when

p � N
N−2 they cannot exist, according to previous works (cf. [3]). Hence we may restrict our discussion to p > N

N−2 .
Our result for problem (5.2) can be summarized as follows:

Theorem 5. Assume f : (0,∞) → R is a continuous positive function verifying (5.2), and that p > N
N−2 ,

1 < q � N
N−1 . Then problem (5.1) does not admit positive classical supersolutions.

It can be easily seen that, when q > N
N−1 and f verifies

lim sup
s→0

f (s)

sp
< ∞

for some p > N
N−2 , supersolutions to (5.1) for large enough R0 can be constructed in the form u(x) = A|x|−α , where

A is positive and small enough and

max

{
2

p − 1
,

2 − q

q − 1

}
< α < N − 2.

Thus Theorem 5 is optimal.
We now give the proof of Theorem 5. Since it is very similar to the previous ones, we do not give full details, only

sketch the relevant points.

Lemma 10. Let u ∈ C2(RN \ BR0) verify −�u − |∇u|q � f (u) in R
N \ BR0 . If 1 < q < N

N−1 , then for every

α ∈ (0,N − 2) the function m(R)Rα is increasing for large R. When q = N
N−1 , either m(R)Rα is increasing for

large R and every α ∈ (0,N − 2) or m(R)RN−2 is bounded.
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Sketch of proof. Let us begin by observing that for α ∈ (0,N −2], the function v = A|x|−α verifies −�v−|∇v|q � 0
for |x| > R1 provided that

A � (N − 2 − α)
1

q−1

α
R

α− 2−q
q−1

1 . (5.3)

We also notice that −�u � f (u), hence m(R)RN−2 is always increasing and m(R) → 0 as R → ∞ (cf. for in-
stance [3,11]). Thus

m(R1)R
α
1 � CRα−N+2

1 . (5.4)

If 1 < q < N
N−1 and 0 < α < N − 2, we have 2−q

q−1 > N − 2, then (5.4) implies that A = m(R1)R
α
1 verifies (5.3) for

large R1. Then for large R1 and R, the function

Ψ (x) = m(R1) − m(R)

R−α
1 − R−α

(|x|−α − R−α
) + m(R)

verifies −�Ψ − |∇Ψ |q � 0 and by comparison u � Ψ in A(R1,R). Letting R → ∞ we arrive at
u(x) � m(R1)R

α
1 |x|−α in |x| > R1, which implies that m(R)Rα is increasing if R > R1.

When q = N
N−1 , if we assume that m(R)RN−2 is not bounded, then A = m(R1)R

α
1 always verifies (5.3) for every

α and large enough R1. Thus the same reasoning implies that m(R)Rα is increasing for large R. �
Sketch of the proof of Theorem 5. We notice that supersolutions to (5.1) verify −�u � f (u). Thus by the results

in [3] or [11] we obtain m(R) � CR
− 2

p−1 and m(R)RN−2 is increasing.

When 1 < q < N
N−1 , by Lemma 10, m(R) � CR−α for every α ∈ (0,N − 2), so that R−α � CR

− 2
p−1 , and we

arrive at a contradiction by choosing α small enough.
If q = N

N−1 and m(R)RN−2 is not bounded, we reach the same contradiction as before, so we may assume that
m(R)RN−2 is bounded. The rest of the proof is now similar to those of Lemma 6 and Theorem 3.

For large enough Rε , we have u(x) � (l − ε)|x|2−N if |x| > Rε , where l = limR→∞ m(R)RN−2 > 0. Taking x0,ε

with u(x0,ε) = m(|x0,ε|) and introducing the function

v(y) = |x0,ε|N−2u
(
x0,ε + |x0,ε|y

)
, |y| < 1

2
,

we have −�v − |∇v|q � 0 in B1/2, with v � (l − ε)|eε + y|2−N in B1/2, where eε is some unit vector. We deduce the
existence of a solution z = zε to the problem{−�z − |∇z|q = 0 in B1/2,

z = (l − ε)|eε + y|2−N on ∂B1/2,

verifying z � (l−ε)|eε +y|2−N , z(0) � l. We may pass to the limit to obtain zε → w, which verifies −�w−|∇w|q =
0 in B1/4, w � l|e0 + y|2−N , w(0) = l, for some unit vector e0. Setting w = |e0 + y|2−NW , we get that W has a
minimum at 0, so that �W(0) � 0, ∇W(0) = 0. Hence

0 � lq(N − 2)q,

which is a contradiction. �
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