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Abstract

We consider the elliptic equatiorAu+u=0 in a bounded, smooth domathin R? subject to
the nonlinear Neumann boundary conditi%"h:se”. Heree > 0 is a small parameter. We prove
that any family of solutions:, for which ¢ [, ¢" is bounded, develops up to subsequences a
finite numberm of peaksé; € 4Q, in the sense thate" — 213 }' ; 6, ase — 0. Reciprocally,
we establish that at least two such families indeed exist for any giverl.
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1. Introduction

Let Q be a bounded domain iR? with smooth boundaryQ. This paper deals with
the analysis of solutions of the boundary value problem

—Au+u=0 inQ,

0 1

o ge on 09, @
ov

wherev denotes outer unit normal vector &6 ande > 0 is a small parameter.

Elliptic equations with this type of nonlinear Neumann boundary condition arise in
conformal geometry (prescribing Gaussian curvature of the domain and curvature of the
boundary), see for instand8] and references therein, and in corrosion modelling, see
[3,6,9]. The Trudinger—Moser and trace inequalities imply the validity of the Sobolev—
Orlicz (compact) trace embedding

sup /exp( ! ><—|—oo, (2)
ueHL(Q)\{0} / 0Q llull g

see[6] for a proof. Note that an extremal of this inequality with|| 51, = 1 solves
(1) for certaine > 0. Given a fixed value of the parametersolutions of (1) correspond
precisely to critical points inH1(Q) of the free energy functional

1
Jo(u) = E/Q|Vu|2+u2—8/ne”. )
o

The maximum principle implies that solutions df)(are automatically positive. Small-
ness ofe is necessary for existence of a solution as integration against a suitable
test function shows. On the other hand, inequality (2) implies that a (unique) local
minimizer exists near zero, provided that> 0 is sufficiently small. This minimizer
represents a “small” solution of Problem (1). The functional is not bounded below,
thus suggesting the presence of a second, large solution$0® small. Compactness

of the trace embedding yields the sufficient PS condition for this second solution to
exist thanks to the standard mountain pass theorem. In [3,6,9], the following related
problem was analyzed:

=0 in Q,
(4)

= ¢gsinhu on 0Q.

gk

Evenness of the associated energy functional

1
I(u):—/ |Vu|2—sf coshu
2 Ja o0
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and the above-mentioned compactness makes Ljusternik—Schnirelmann theory applica-
ble to find that actually infinitely many solutions exist associated to critical values

Cigcgg...gcig....

For each fixedk it turns out thatc; is bounded above by Iog%. This is shown to
imply that & [, coshu is uniformly bounded for the associated solutionssas> 0.
Applying similar arguments as those[B] one can show that the mountain pass solution

of (1) has a similar property, namely thatf(39 e*s remains bounded. Our first result
characterizes the asymptotic behavior of families of solutignwith ¢ [, e"s bounded.

It turns out that, up to subsequences, there is an integeuch thats [, e — 2mm.

More precisely,ce”s approaches the sum oh Dirac masses at the boundary. The
location of these possible points of concentration may be further characterized as critical
points of a functional ofm points of the boundary which we introduce next: let us
consider the Green’s function for the Neumann problem

—AG(x,y)+G(x,y) =0, xeQ,

0
—G(x, y) = 210, (x), x € 0Q ®)
ovy
and its regular part
1
H(x,y)=G(x,y) —log——. (6)

lx — y|?

We defineg,, on (0Q)™ by

PGt &) =— | Y HE EN+ ) G, &)

j=1 i#]
Theorem 1.1. Let u, be a family of solutions t¢1) with ¢ — 0. If SfaQ e's < C for

some constant C independentthere exists a subsequenfdenoted the same wgy
and a finite collection of distinct point§; € 0Q i =1, ..., m such that

ug — u®,
whereu™ is the solution to
—Au*+u*=0 in Q,

ou* "
= 2n; e onoQ.
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Moreover

m
8/ e — 2nm  and ge't — ZRZ o¢.,
o -1

weakly in the sense of Radon measured® u, — u* in L7 (0Q) and L?(Q) for all
1<p <ooandin C&)C(Q— {&1,.... &0 Additionally (&4, ..., &,,) Is a critical point
of ¢, thatis forallk=1,...,m

Ve H Crs Sp) + Z Vi Gk &) =0, (7)
ik

wheret(&;) is a tangent vector t@Q at &.

We remark that ife [, ¢ is unbounded after extracting a subsequence for which
e [, " — co we haveu, / oo uniformly in Q.

A natural question is whether families of solutions such as those described in the
previous theorem do indeed exist. It can be shown that the mountain pass large solu-
tion does correspond to one exhibiting a single spike. However, it is not clear how to
set up a Ljusternik—Schnirelmann scheme that predicts the existence of higher-energy
solutions, in particular since the functiona8)(does not seem to exhibit any useful
symmetries. In this paper, we develop a completely different approach to this ques-
tion which allows us to prove an existence result, which we suspect optimal: given
any integerm >1, there are at leadivo distinct families of solutions:, for which
g [sp€" — 2mm.

Theorem 1.2. Let m >1. Then fore > 0 sufficiently small there exist two solutiong
to (1) satisfying

lim ¢ e's = 2mm.
e—0 o0

The peaks of these two solutions are located near pdnts.., ¢, € 0Q corre-
sponding to two distinct critical points ap,,.

We can actually show stronger versions of this result. For instang#) ihas more
than one component, then pairs of families mfpeak solutions on each component
happen to exist. In reality, associated to edopologically nontrivial critical point
situation associated t@,, (for instance local maxima or saddle points possibly degen-
erate), a solution with concentration peaks at a corresponding critical point exists. We
elaborate further on these issues at the end of Section 8.
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It is important to remark the interesting analogy between these results and those
known for the Liouville-type equation

Au+¢ee* =0 in Q,
{u:O on 0Q. (8)

Asymptotic behavior of familiest, of solutions of 8) for which ¢ J, e remains
uniformly bounded is well understood after the works [2,7,10]. It is known that up
to subsequences,

lim e/ e's = 8mn 9
Q

e—0

for some integem > 1. More preciselyge's peaks up asn Dirac masses at points of the
domain which correspond to a critical point of a functional similaxptp defined from
Green'’s function of—~A under Dirichlet boundary condition. The reciprocal question of
existence has been addressed among other woids4y5]. In particular in [4], a result
is established which may be thought of as an analog of Theorem 2: if the domain is
not simply connected, then at least one solution witlpeaks exists.

In the rest of this paper we will prove Theorems 1 and 2. Sections 2—8 are devoted to
the proof of Theorem 2. Scaling out propedyaround a single point of the boundary
leads us formally to the limiting problem

in R2
=0 IinR{,

v
v 2 (10)
=e” onJdR7Y,

g)lQ)D

where IREi denotes the upper half-plangx1, x2) : x2 > 0} and v the unit exterior
normal to OR? .
A family of solutions to (0) is given by

2u
(x1 — D2+ (x2 + w?’

wy, (X1, x2) = log (11)

wherer € R and u > 0 are parameters. It is interesting to point out that the results in
[8,11,12] imply that any solutiom of (10) which satisfies additionally

/Ze”<+oo
R+

must be of the formX1). The solutions predicted in Theorem 2 are constructed using
as building blocks these solutions, suitably scaled and projected to make it up to a good
order for the boundary condition. Solutions are found as a small additive perturbation
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of these initial approximations. A linearization procedure leads to a finite-dimensional
reduction, where the reduced problem corresponds to that of adjusting variationally the
location of the concentration points.

Theorem 1 is established in Section 9. The point concentration behavior of the family
is established first, then Pohozaev-type identities in balls around the singularities lead
to the desired result.

2. An equation in the upper half-plane

The family of solutions 11) is invariant under translations in thg-direction and
under the scaling — w(sx)+2logs, s > 0. An important property that we will need
is the nondegeneracy of these solutions (11) except for the above natural invariances
of Eq. (10). Let us define

1 5 X2+ p

wn=-——-2—— 12
o X2+ (x2 + 2 (12)
and
X1
o= 13
“ xf + (x2 + )2 13)
We have the following:
Proposition 2.1. Any bounded solution of
L m2
gqs =0 , in Ry,
—¢—2—“¢:o on 0R2, (14)
o xf+p?

is a linear combination oty and z;.

Proof. Let ¢ be a solution to 14) and set
y
w(y) = ¢ (W - (O, M)) ~

The functionw is just the Kelvin transform ofp about the point0, —u). The domain
of w is the diskD = B((0, ﬁ), 2—1ﬂ) andw is a bounded function that satisfidsy = 0
in D,

% =2uw on ¢D\{0}, (15)
v
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where V' is the exterior unit normal td. To see this observe that the map—
K(y) = I# — (0, w) is anti-conformal (preserves angles and reverses orientation) and

maps the normal vector tB to a normal vector tcﬁ[R{ﬁ. More precisely, ifv’ is the
exterior unit normal vector t® then

ow 1 ¢
o |y|I2 ov’

Thus ondD
av_ iewu,o(lf(y))w
o yl?

and a calculation shows that

1 weekoy L2

—— =2p.
2 2 2
Iyl V1= oy 2

Sincew is bounded, by elliptic regularityls) holds in alloD.

By translating in they, direction we can assume thBtis the disk centered at the
origin with radiusﬁ. We think of w as the real part of an analytic functiah and
write

o
b(y) =) arke
k=0
with y = re'’. Condition (L5) is equivalent to

Re (Z a(k — 1)eik9) -0 V0

k=0

and henceig =0, a; = 0 for all k > 1. Looking at the real pan of w, and recalling
that we shifted in they, direction we see that it is a linear combination of

X1 1 X2+ U 1

Nn=—————- Vg = — 5
xf + (2 + 2 U x4 (2t w2 2
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3. Ansatz for the solution

We can produce a solution to

2

%u:O in R%,
u 2

— =¢e" on iRy,

by taking

2u
x) =w,(x/e) —2loge = log —————.
() = wyx/e) = 210ge = log ==

Based on this, giverd; € 0, p; >0 we define

2u;
lx — éj —Eﬂjv(éjﬂz.

uj(x) = log

The choice of¢; and K will be made later on.
The ansatz is

Ux) = i uj(x)+ Hf(x),
j=1
where H]’? is a correction term defined as the solution of
gflflf +Hj? =a—uj in Q,
a—v" = geli — % on Q.
Lemma 3.1. ForanyO0O<a < 1

HE(x) = H(x, &) —log2u; + O(e”)

uniformly in Q, where H is the regular part of Gre&n function defineds).

We will give the proof of this lemma at the end of the section.
It will be convenient to work with the scaling of given by

v(y) = u(ey) + 2loge.

437

(16)

(17)

(18)
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If u is a solution of 1) thenv satisfies

—Av + g2y = 262 loge in Q,

0 19
@ e’ on 0Q,, (19)
ov

where Q, = Q/e. With this scalingu; becomes

2u;
y =& — uv@I2’

vj(y) = log

where é/j = ¢;/e and where we will writev for the exterior normal unit vector t6Q
and 0Q),.
We will seek a solutiorv of (19) of the form

v="V+ ¢,
where
V(y) = U(ey) + 2loge (20)

and U is defined by 16). Problem (19) can be stated as to fiada solution to

—Ap+e%p =0 in Q,,
21
aa—¢:ev¢+N(¢)+R on 09, 1)
vV
where the “nonlinear term” is
N(@) =e"( —1-¢) (22)
and the “error term” is given by
Reev - (23)
v

At this point it is convenient to make a choice of the parametgrsthe objective
being to make the error term small. We claim that if

log2u; = H(E;. &)+ Y G(&. &), (24)
i#]
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then we achieve the following behavior fé for any 0 < o < 1 there existsC

independent ok, such that

1

— VyeQ,
/
1+|y_§j|

m
IR(y)I<Ce™
j=1

and forw = ¢V

m

2u;
W(y) = — — (14 0; Vy € Q¢
) ;w—i,»—u,-v(éplz( () Vye

with 0, satisfying the following estimate:

0:(NI<Ce* +Ce Y |y =& VyeQ.
j=1
Proof of (26).

W(y)=¢” exp (Z ui(ey) + Hf(sy))

i=1

m o
= 2 ex (IO H; n e > .
) p(; ? &2y — & — v (N2 i (ey)

Let us fix a small constani > 0 and consider this expression for— f’j| <2

&€

Wy = 7 ! 7 exp| H; (ey) + |:|0 7 : /
T AREATE p( i ; T

+H,-€(8y)} ) .

Using (18) and the fact thad is C1(Q?) we have
Hf (ey) = H(ey, &) —10g(2u;) + O(e™)  Vy e Q,

— H(; &) —10g2) + O™ + O(ely — &1 ¥y € Q..

(25)

(26)
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Hence for|y — &;| < 2

£ 2:“1' 3
" (EyH;('Og T AT T (8”)

_HELE) |Og(2u,)+2(log|é L H G - Iog(ZMl))
i#] !

+0(e™) + O(ely = &},
i#]

= 0"+ 0Cly = &)

by the choice ofu;, cf. (24). Therefore

2u;
ly =& — (&)

: ;9
W(y) = A+ 0E)+0Ely =) Yy=&l<—. @7

If |y— é’j| > g forall j =1,...,m we haveW = 0(¢?), and this together with27)
implies (26). O

Proof of (25). We definedR = ¢" — ‘Z—‘v/ with V given by (20). We need to compute

v _ U
o =5 But

ou ” % i _ 2
PP D ‘826 €Z|x—é,—eu,v(é)|2'

Hence

m

ov oU 2
— ) =e—(ey) = -
v Y ov Y ; ly — & — wv(EDI?

Thus, nearé’j by the above computation an@7) we obtain

v B 2.“]'
T AR EATE

0
R(y)=e" - OE) +0Gly =&, Iy=&l<-.
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If |y — &l > Sforall j =1,...,m thene” = 0(¢?) and i—‘f = 0(¢?) and @5)

follows. O

Proof of Lemma 3.1. The boundary condition satisfied by; is

ov ov lx — & —epv(E)I?
—2ep, 1—v(&)) - v(x) n (x = &) vx)
J|X—5j—8lljv(fj)|2 |x_€j_8/v‘jv(§j)|2.
Thus
&

. j (x = &) -v(x)

lim —Lx)=2—2L_"° V¥ .

Iy %y & X — &2 sl
The regular part of Green’s function satisfies

1
_AXH(xﬂy)_’_H(xvy):_logﬁv .XEQ,
xX=y
H — V).
a—(x,y)=2w, x € 0Q.
vy lx — y/?

For the differencez (x) = H;(x) + log 2u; — H(x, ¢j) we have

_AZS + 2 = — lOg in Q,

~ +lo
=& — e ORI =&,
0H¢ —v).
%z J —2(x y) - vx) on oQ.
ov ov Ix — y|?

We claim that for anyp > 1 there existaC > 0 such that

<cellr,
LP(0Q)

0H? B 2()C —&j) - v(x)
ov lx — &;1?

For this it will be convenient to observe first that

11— V() v@)I<Clx — &% |(x = &) v <Clx — &7 Vx € 0Q,

(28)

(29)

(30)
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which can be proved, for example, assuming that= 0 and that near the origifQ

is the graph of a functioG : (—a, a) — R with G(0) = G’(0) = 0. Now

aH;_Z(X—fj)'V(X): L 1—v(&;) - v(x)
o v — &1 M =& —env P
(x = &) v R0 — &) - v(E ) — ey
el
T T T P = & — e @)

By (30)

<Ce+C

&l2(x — fj) : V(fj) —3#j|

OH} = &)v()
ov |x—fj|2

lx — 51 - €,L{/V(§j)|2

Fix p > 0 small. Then

OH] (=) v
0ov |X—fj|2

Now let p > 1. Changing variables — ¢; = ey we have

el20x — &) -v(&) —eui| |
/ j j M dy — Cs/
B,(£;)N0Q Bye(0)N0Q,

[x — fj - €#jv(5j)|2

< Ce.

Combining this with 81) and (32) we conclude that (29) holds.
For p > 1 let us estimate now

log —1 log 1 ’
2 2
lx — &l lx — & —eu;v(E)l L@
Bigey; (£,)NQ Q\Baoey; (£))

For I; observe that

/ lo
Bioen; (€)NQ

g 1
lx —¢&;12

<Cs¢ V|x—§j|2p,x€69.

2y -v(0) — p;
Iy — u;v(Q)?

ple 1
< Cs/ ds
o @A+s)7?

p Ce 1\?
2
dxéC/ llogr|Prdr<Ce <|Og—>
0 &

p

(381

(32)
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The same bound is true for the integral |bdg mﬂ in Blowj(é,) nQ.
Hence

1\ 7
|| < Ce? <Iogg> .

Let us estimate, as follows:

log

1 log ! < sup ce
lx — &2 lx — & —eupv(EI?| T o<icalx — & —teppv(Ep)

But if |x — &l >10ep; then|x — &;|<Clx - & — tsujv(fj)| for anyr € [0, 1] as can

be seen fromx — &;|<|x — &; — repv(Ep|+ pje <|x — & — tepv(EP] + folx — &1,
Thus

1

1 ~log Ce
lx —&;1? lx — &; —euv(&)I?

< .
lx — &l

log

Take 1< p < 2 and integrate

D
|I2] <C8P/ 1P dr < Ce?,
10ue

whereD is the diameter of). In conclusion, for any k p < 2 we have

1

—lo <Ce.
=GP V=& — eGP

LP(Q)

log

By L? theory

0z

ov

Iz | wieer @) <C (‘ + ||Azg||mg>> <ce'/r

LP(0Q)

for any O< s < . By the Morrey embedding we obtain

A

1
Ize ll ooy < CeY/P

for any 0<y < 3 + %. This proves the result (with = %). O
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. . . OH® .
Remark. The convergence2B) is not uniform in general becauséivi(éj) = 0 while

the functionx > 28—
lx—&;l

to the curvature oPQ at ¢;.

can be extended continuously g with a value equal

4. Solvability of a linear equation

The main result of this section is the solvability of the following linear problem:
given h find ¢, c1, ..., ¢y, Such that

—Adp+e2p =0 in Q,,

a m

6_(\{)_W¢:h+ch’(lzll on an, (33)
j=1

fQ&.ijljd’:O Vi=1,...,m,

whereW is a function ondQ, that satisfies46), h € L*°(0€;) and Zy;, xj are defined
as follows: letz;; denote the functionsg, z; defined in (12) and (13) with parameter
K=K i=01;=1...,m)

1 5 X2 + 1 X1

T TR (o pp)? ! X2+ (x2+ )2

Around each poinf’j € 0Q, we consider a smooth change of variables

1
Fo(y) = = Fj(ey), (34)
&

where F; : B,(¢;) — M is a diffeomorphism andM an open neighborhood of the
origin such thatF(QN B,(¢;)) = RENM, F(@QNB,(¢;)) = IRZNM. We can select
F; so that it preserves area. Define

Zij(y) = zij (F; (y)), i=01 j=1...,m.

Next, we choose a large but fixed numbRs and nonnegative smooth function
y: R — R so thaty(r) =1 for r<Rp and y(r) =0 for r>Ro+ 1, 0<y<1. Then
set

%) = 2(F; D.

All functions above depend oxn but we omit this dependence in the notation.
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Eq. 33) will be solved forkh € L*°(0Q.), but we will be able to estimate the size
of the solution in terms of the following norm:

lh(y)l
121400, = SUP : (35)
B e E (A [y = &)
where we fix O< ¢ < 1 although the precise choice will be made later on.

Proposition 4.1. Let d > 0 and m a positive integer. Then there exigt> 0, C such
that for any0 < ¢ < &g, any family of pointsfy, ..., &, € 0Q with

& —&jl=d Vi#E | (36)

and anyh € L*°(0Q,) there is a unique solutiop € L*(Q,), c1, ..., cn € R to (33).
Moreover

1
161,y <Clog ~ Il go,
To prove this result we shall study first the linear equation

—Ap+e%p=f inQ,,

%—Wq’):h on 0Q,,
ov

(37)

whereW satisfies 26) andf, h are in suitable weighted spaces: we considerhfdhe
norm defined in (35) and fof

/)]
1f w0, = SUP - S
T e 2y (L |y — &)

We begin by stating an a priori estimate for solutions 3f)(satisfying orthogonality
conditions with respect t&o; and Zy;.

Lemma 4.2. There areRp > 0 and g9 > 0 so that forO < ¢ < gg and any solutiong
of (37) with the orthogonality conditions
/ Z,-jx/qS:O Vi=0,1 Vj:l,...,m, (38)
Q. ‘

we have

[PllLoe@) <SC UL 00, + ILf 0.

where C is independent ef
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The idea behind this estimate comes from looking 3&) (with f = 0, h = 0 as
¢ — 0 at a fixed distance from one of the points, sﬁjy After a translation and a

rotation so thak), converges to the upper half-plalﬁaF and 5’/ is located at the origin
this equation approaches precisely (14).
For the proof of this lemma we need to construct a suitable barrier.

Lemma 4.3. For ¢ > 0 small enough there exis®; > 0, and

‘// 1 Qe \U BRl(é/j) - R

j=1

smooth and positive so that

" 1 : " "
—AY Y=Y A e® in Q. \U Bri(C)),
J j=1

j=1

m m
3 1
oy 2 : - /
E_Wlp> |y_€/,|1+a+8 on OQS\U BRl(fj)’
j j=1

j=1
¥ >0 in Q. \ | Br (&),
j=1
=1 on Q. N || J @Br, (&)
j=1

The constantsk; > 0, ¢ > 0 can be chosen independently ofand  is bounded
uniformly

m
0<y<C inQ \ | Br(&).
j=1

Proof of Lemma 4.2. We takeRg = 2R1, R; being the constant of Lemma 4.3. Thanks
to the barrieny of that lemma we deduce that the following maximum principle holds
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in Q\ U, Br,(&):if e HL(Q,\ UTy Br,(&)) satisfies:

_A(ZS + gz(j)}O in Qg \U BRl(é/j)f
j=1

(;—(f - W¢=0 ondQ, \U Br, (&),
j=1

$=0 onQ.n ([ 0Br(&)].
j=1

then >0 in Q.\ U7_; BRl(é/J-).
Let f, h be bounded and) a solution to 87) satisfying (38). Following [4] we

first claim that|¢| ~q,) can be controlled in terms of f ..o, . 7l 00, and the
following inner norm of ¢:

ol = sup Pl

Qsm(UT:]_ BRl (CV/,))

Indeed, set
5 =C1y (II¢>|Ii + 1 f 0, + IIhII*,agS)

with C1 a constant independent ef By the above maximum principle we hadega
and —¢p<¢ in Q.\ U’;’:l BRl(é’j). Sincey is uniformly bounded we deduce

18l <C (101 + 1/ llev.0, + WA 00, (39)

for some constan€ independent ofp ande¢.

We prove the lemma by contradiction. Assume that there exist a sequgnree0,
points &y, ..., &, on 0Q satisfying 86) and functionsp,, f, andh, with [l¢, L= q,,)
=1, I fallsx0,, = O, ||h,,||*,m€n — 0 so that for eacn ¢, solves (37) and satisfies
(38). By (39) we see thalj¢,|; stays away from zero. For one of the indices, say
j, we can assume that SAJR?@;_) |¢,|=c > 0 for all n. Consider&ﬁn(z) =¢,(z— cf;)
and let us translate and rotaf®, so thatQ,, approaches the upper half-plalﬁéF
and f’j = 0. Then by elliptic estimateén converges uniformly on compact sets to a

nontrivial solution of (14). By Proposition 2.&: is a linear combination ofp; andzy;.
On the other hand, we can take the limit in the orthogonality relations (38), observing
that limits of the functionsZ;; are just rotations and translations gf, and we find

Jw2 2z =0 for i = 1,2. This contradicts the fact that 0. O
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Proof of Lemma 4.3. We take

(y =& -v(&)
l//1]‘()’) = #,

wherer = |y — g”j — ujv(é’j)|. A computation shows that
Apy;=007%% inQ (40)
and if 6 > 0 is small but fixed andR; > 0 is large and fixed then

W
ov

>cr 10 for Ry <r < d/e,

wherec > 0 is fixed. To prove the last assertion we may suppose citmais at the
origin and assume that the normal vectorf?tis (0, —1). Hence

Y2
lﬁlj()’) = T Tre

Let us writedQ, nearé’j as the grapH(y1, y2) : y2 = G¢(y1)} with G.(y1) = %G(syl)

and G a smooth function such tha¥(0) = 0 and G’(0) = 0. Fix 6 > 0 small. Then
for R1 < r < d/e we have thatr is comparable withy,, G.(y1) = O(er) and
G:(y1) = O(er?). Then

Wy 1 G:(y1)G,(yD)y1 1
= —1 £ -
ov G'(eyn2 +1 < (1+0) p3+o rlto
Ge(y1)? Ge(y1)
v+ 0Z s a0 5)

B 1 < 1, 06 00
- /G/(gyl)z +1 _rl+0' + r3to + r2to
1 ( 1 0@ 00

- T 4o 1+o 2+0
0@ +1\ " " "

from where the claim follows by taking small enough.
Consider also

) for R1 <r <d/e

) for Ry <r < /e,

1
‘//zj(”) =1- e
r
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Then

1
y2to

~Ayy; = o

and proceeding analogously as f#y; we find

0ra; a 1
= -n1G.(y1), G -
T Jormray (200 Gl + )

1
— 0(er?) VR1 <r <d/e

240
T JodH +1

=0 (£> VR1 <r < d/e.

Now let

Y3; = Y1+ Ciy;.

For C large enough (but independent of using @0) and (41) we have

1
—Ay3; + 52Wsj 202@ VR1 < |y =&l < d/e.

Now recall thatW satisfies 26) and therefore

1 0
W(y) =0 — VR <r < —.
r e

Thus

0V3; c 1 c
J
5 T WeZ g —Cn2 g for Ru<r<dfe

with a constant’ > 0 if we chooseR; larger if necessary.

449

(41)

(42)

(43)

Let n; € C(R?) be such that &n; < 1,7, =1 in Q. N By (&), n; =0 in
Qg\Bg/E(é’j), |Vn;|<Ce in Q, |A;7/‘|<Cs2 in Q.. Let yo(y) = Y(ey) wherey is

the solution to

Ay +Y=1 inQ
% =1 on 0Q,
ov
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so that—Ayy + 2y = €2 in Q. and % =& on 0Q,. In particular,y, is uniformly
bounded inQ,. The function

V= Z nj¥s;j + Cig

j=1

with C a sufficiently large constant meets the requirements. Indeed 2y (

m

2
g
j=1 j

wherer; = |y — £’ and hence

o2

0
—Al//—i—&‘zl//Z 2+G + Ce?, Ri<rj< 2

J

By construction we hav¢pr3j| = O(r;%) and hence, choosingG large we have
J

! +C8>8 0 0
c —<r;< -
2¢ J £

—AY + 2y > 0(? )+0(
/

if ¢ is small enough, and also

1 0 0
—Alﬁ+82lp>c 2+a 5 <Ti <7
Finally, a similar argument usingl8) yields
i
™ —Wy>c 1+U+C‘97 R1<rj<g

J
forall j=1,...,m. O

We will establish next an a priori estimate for solutions to probl&m) that satisfy
orthogonality conditions with respect ;; only.

Lemma 4.4. For ¢ sufficiently smallif ¢ solves

—Ap+e%p=f inQ,,

M) —Wo=h on 0Q, (44)
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and satisfies

/Qzljxj¢=0 Vi=1....m, (45)
then

1
1pllLe@) < Clog ikl aq, + If lhe@.)- (46)

where C is independent ef
Proof. Let ¢ satisfy @4) and (45). We will modify¢ to satisfy all orthogonality

relations in (38) and for this purpose we consider modifications with compact support
of the functionsZp;. Let R > Ro + 1 be large and fixed. Set

Zoj(y) = ¥ Zo; (y),
where

log(d/e) — log |x|
log(d/¢) — log R

Y =h(F; 0D, hx) =

and F]’?‘ is the change of variables defined B4j. Hered > 0 is a small fixed constant.
Note thath is just the solution to

A =0 in Bs:(0)\Br(0).
h=1 |x|=R,
h=0
Let 771;, 77; be radial smooth cut-off functions dR? so that
0<ijy; <1, |Vijy;|<C in R,
M1 =11in Br(0). 7j; =0 in R*\Bg.1(0)
and
My =11in By (0), ii; =0 in RZ\B%(O),

0<ijp; <1, |Vily;|<Ce/d, |VZijp;|<Ce?/8% in B2,
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Write
ny,; (0) = 1 (F; (), M2 (X) = 12 (F; (). (47)
Now define
Zoj = N1jZoj +(1— ﬂlj)ﬂ2j20j~

Given ¢ satisfying @4) and (45) let

~ A fQ 017/
¢=¢+ Z djZoj, whered; = .
j=1 fQ O]yj
Estimate 46) is a direct consequence of
Claim.
1 .
djl<Clog= (Il o, + 1/ lwe.) Yi=1....m. (48)

We start proving this by observing, using the notatibr= —A + ¢2, that

L@)=f+> diLZy) inQ (49)
j=1
and
(i—W)a—h—i—id(i—W)f' on 4Q (50)
ov N ] I\ ov 0 -

Thus by Lemma4.2 we have

1Pl < CZ 1dj] (H <% - W) Zoj

+ ||L(20j)||**,98)
*,0Q,

+ Clihll, o0, + ClLf 0, - (51)
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Multiplying Eq. (49) by Zok, integrating by parts and using (50) we find

~ o~ ~ 0 ~
di [/ L(Zok) Zok +/ Zok (— - W) ZOk]
Q. o0, ov
~ ~ ~ /(0 ~ ~ o~
= —/ hZo, — / fZok +/ (0] <— - W) Zok +/ GL(Zok).
20, 0, o0,  \0v Q.

This combined with (51) yields
- o~ - [0 -
dy [ / L(Zo) Zox + / Toc (— - W) Zo;{}
Q. o0, ov
( 0_ W) 7
% Ok

P -
S(Cllhll, o0 + 1f lex,Q.) (1+ H <5 - W> Zok

SClIAll o0 + Cl f i, + lI@lLe

*,0Q%

+ 1Pl I1L(Zow) s,

+ ||L(ZOk)||**,Qg>
*,0Q

2

+cj2r: \dj| <H <% - W> Zo,

+ ||L<ZO,,~>||$*,QS> :
*,0Q,

We will achieve (48) proving the following estimates: for some cons@nt- 0
independent ot we have

s~ ~ [0 ~ 1
L(Zoi)Zoi Zoil\=——W) Zoi > , 52
/Qg (Zo)) Oj+/agg o <6v ) o Clogl 52)
1LZop) ler.0 <7 (53)
&
0 ~ C
H(Ov ) o *,00, IogzgL (54)

Proof of (52). We write

/ L(Zoj)Zoj = o+ I+ I2 + I3,
Q.
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where I; = [, L(Zoj)Zo; and the regionsRy, ..., Rz are defined in terms of the
change of variablest defined in 84) as follows. Writex = (F;?)*l(y), r = |x| and

define the following subsets @®,:

Ro = (Fj)—l({r <RINR%), Ri= (Fj)—l({R <r <R+1NR%),

0 0 0
-1 2 -1 2
We will prove that

c

hz—s-
log ¢

with ¢ > 0 independent of, ¢ and R while the other termsly, 2, I3 and fagg

foj(% — W)Zoj can be made small compared fﬁ%—; by choosingd > 0 small and

R > 0 large, but fixed independently of
Estimate of I;: We change variables = F]?(y) and recall that this map preserves
area, so

I :/ Z(Zoj)EOj,
{R<r<R+1NR2
Z0;(x) = Zo; (F)™1(x)) = fiy;20; + (1 — 7i1)h(x) 20 (55)

and L is a linear operator, which thanks to the definitiori (y) = %F(sy), has the
expansion

L=—A+O0(|x)DV2+ 0(e)V + &2 (56)

Therefore

I = A(Zoj) Zoj + O(Re).

_ / 2
{R<r<R+1NR%L

Using thatzo; is harmonic and that in the regioR < < R +1 we havei,; =1 we
compute

AZoj = A(iy;20; + (1 — fi)hz0;) = Aijy;(1 = h)zoj + 2Vijy; V(L — h)z0;)

+(1_7_71j)A(ﬁZOj), R<r<R+1



J. Davila et al./Journal of Functional Analysis 227 (2005) 430-490 455

Since Ah = 0, Azg; = 0 for the last term in the expression above, we have

A(hzoj) = 2VhVzo;, R<r <R+1

But

20 xl(x2+,uj) 520] (x2+,uj)2—x%

—— (1, x2) =4— 53" (x1, x2) = 2— >

0x1 (x1 + (x2+ u)?) 0x2 (1 + (x2+ 1))
Thus

. 2 x2(xf + (x2 + 1)?) + 23y,
ViVzo; = —— 5 ! <0,
|x|*(log(é/¢) — log R) (] + (x2 + p1j)?)?

so that

A(iyjz0j + (1= ij1)hz0;) <Afjy; (1 — h)zoj + 2Vijy; V(L — h)z0)),
R<r<R+1

It follows that

> Afiy; (1 — hzo5%0; + 2 /

Vity; Vhzo;Zo;
{R<r<R+1NR2

_ / 2
{R<r<R+1NR%L

_2/ Vi1 Vzo;(1— E)ZOJ' + O(Rs¢).
{R<r<R+1}ﬂRi
We integrate by parts the first term on the right-hand side above

I1 > / Vﬁleflzonoj —/ Vi1;Vzo;(1— E)ZOJ
{R<r<R+1JNR?Z {R<r<R+1NRZ

+f Vi1 VZoj (1 — )zo; + O(Re), (57)
{R<r<R+l}ﬂRi

observing that the boundary term @mi N{R <r < R+1} is zero becaus@,; is
radial.
The second term on the right-hand side above is bounded by

|Vﬁlijo,»<1—fz)zo,-|<c/ 1 — 1] 92051

/{R<r<R+1}nRi {R<r<R+1JNRZ
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But in the regionR < r < R+1 we havelh —1|< -5, and|Vzo;| < 5 which yields
log =

&

_ ~ C
Vity; Vaoj (1 = os] < — (58)

[ ——
{R<r<R+1NR%L

The third term on the right-hand side &%) is similar since in the regioR < r < R+1

we have|Vi| < —5— and hence

Rlogg

IVZoj| = |V (i1, (1 — h)z0)) + hzo;]

= |Vily; (1 — h)zoj — 11 Vhzo; + iiy;(1 — 1) Vzo; + Vhzoj + hVzo)

C ~|_C

&

R<r<R+1

Integrating

o . CR C
/ , Vi1 Vioi (1= Mzoj| S —55 + —- (59)
{R<r<R+1NR log¢ Rlog$

+

Thus from 67)—(59) we obtain

- R 1
112/ Vi1;Vhzojzoj + O(Re) + O + 0 — 1.
(Rer<R+1ARZ = log? ¢ Rlog?

In the first integral aboveo; andzo; have a lower bound independent @fd, R and
|Vh| = (Jx|(log(d/e) — log R))~L. Hence

c R 1
Iiz——+ O(Re)+ O 55| T © 5 (60)
log ¢ log= £ Rlog ¢

with ¢ > 0 independent of, J, R
Estimate of Io: By (56) and sinceAzg; = 0 we have

L(Goj)) =0(), r<R (61)
and this implies

Io = O(Re). (62)
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Estimate of Io: Changing variables as before

12=/ Loy
{R+1<r<%}ﬂRi

In the regionR +1 <r < % we haveZo; = hzo; and therefore

~ ~ 0
[AZoj| = 2|VhVzoj| < R+1<r< e
’ £

r3log ¢’
For the other terms we find

IV220;| < |V2h|z0; 4 2IVAVzoj| + h|VZ20)]

o[-t )01 +0<1> R+1 0
= N N —= | <r < -—-—,
r2log ¢ r3log ¢ r3 4e

S0
o e e 0
0 (elx)IVZ0;| = O s)+o(%).  R+l<r<_
rlog ¢ r 4¢
Also
3 . . 1 1 B
VZoj|<|Vhlzoj + h|Vzgj| = O 5 + 0 =] R+1l<r < —.
rlog ¢ r 4e
Hence

~ 1 & & 0
LZyj))=0|—— |+0|——]+0 (= +8220-, R+1<r<—. (63
! (r3log§> (rlogg) <V2> / 2 ©3
This yields

~ 1 o
 IGopig=0(—-) o
/{R+l<r<fs}ﬂRi I (R log g) (Iog g)

2 ~2
+ 0(&9) s %0
{R+1<r<z INRL
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We estimate the last integral using the fact that in the redignl < r < 4% Z0j = ﬁzgj
and zo; is bounded, thus

R s 2

- 2 (log? — logr 62
/ 5o zoj<C/ — rdr<C———.
{R+1<r<zz)NRE rR+1 \log ¢ —logR

This and the previous estimate show that

1 0
Ip=0 5]1+0|l— - (64)
Rlog ¢ log ¢

Estimate ofI3: In the region% <r< % the definition ofZg; is Zg; = ﬁzjﬁzoj. We

will estimate each term of56) using the facts thaVﬁzj = 0(%), |V2;7/2j| = O(%Zz)
and that in the considered regign= O(IL&) which implies alsgo; = 0(—15). We
o0g 2 0

P log :

obtain

AZoj = Aip;hzoj + 2Viip;V (hzoj) + fi2;Alhzo;)

= AﬁzjﬁZOj + 2V17]2J-V]’~1Z0j + 2V17]2jVZojﬁ + ZﬁzjVﬁVZoj

o= Vio(— Vo[- Yro(t
8*log ¢ rélog? r25log ¢ r3log ¢

Next

0

V2Z0; = VPijajhzoj + 2Viip; V(hzo)) + iiz; V*(hzoj), =<' <3

and by the above computations

2
V%0, =0 | —
' 5%log ¢

&€

0 g2 0 0
= —<r< _—.
52 log g ’ 4¢ 3e

) + ﬁzj(VZEZOj +2VhVig; + EVZZOJ‘)
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Similarly

VEOJ = Vﬁzjilzoj + ﬁZJVilZOJ + ﬁzjszZoj

0 e 0 0
= —<r < —.
5|ogg ’ 4e " 3e

This shows that
- g2 o 0
LZoi))=0|——1, — —. 65
o)) <52I0g§ 2e = T3 (65)

and integrating

1
I3=0 <|og2 Q) . (66)

Estimate offmg ZOJ(% — W)Zoj: We change variables through the mﬁp:

- [0 N ) ) N
/mé, Zoj <5 B W> Zoj = /(;RZ 20j(B(Zoj) — WZoj)b(x),

+

whereZg; is defined in §5), W(x) = W((Fj)*l(x)) andb is a positive function arising
from the change of variables bounded uniformly&snB is a differential operator of
order one orﬁRi. RotatingQ, so thatVF]‘?(é/j) = I we find the following expansion
for B

A

0
B=-—
0x2

+ O(e)x V.

Let us estimate first the integral in the regiprj < R, wherezg; = zo;. Then

- 0z0;
B(Zo)) = —% + O(¢), x| < R,x € ﬁRi.

On the other hand recalR6), that is

2u;
ly — f/j - ij(f/j)lz

W(y) = 1+ 0@E" A+ lyh)).
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Since we have the expansi(nﬁf)*l(x) = é’j + x + O(elx]) we find

W (@) = W(F)HTH0) = W(E +x + Oelx))

2u; e*(1+ IxI)) 0
= ol—"-"-"7"), = (x1,0), - 67
2y i ( P x = (01, 0), x| < 2 (67)
Thus
B(Zoj)) — WZo; = O(s%),  x € dR2, |x| <R (68)

and therefore
/ 2 20, (B(Goj) — Wiop)b(x) = O(Re®).
OREN{|x|<R}

Next, in the regionR < |x| < R + 1 we have

Vioj = V(iy; (1 — h)zo; + hzo;)

= Vij1;(1 = h)zoj — 11;Vhzoj + i1; (1 — 1) Vzo; + Vhzoj + hVz0;

1 _ - -
&

Since’ is radial this implies

020 1 R
BGoj) = —h=2 + 0 J+o %) R<lxl<R+LlxedR?.
0x2 RZ?log ¢ log ¢

Using 67) we see that

~ 1 R
B(Goj) ~ Wioj= 0 ——— | +0 —= |, R<lxl<R+1LxcdR’ (69)
R?log ¢ log ¢

It follows that

- - ~ 1 Re
/ 20j(B(Zoj) — Wzoj)b(x) = O (ﬁ) + 0 < 5) .
ORZN{R<|x|<R+1) R<log ¢ log ¢

&
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Using the fact that has zero normal derivative ofR2 we deduce

6z0/

B(hzoj)—— + O(Er)(thO] +hVZO])

-0
Y Sl AN +0() Ril<r=<?. (70)
0x2 Iog €

On the other hand, usin@®T) we have

. ~ € e”
B(Zoj) — WZo; = O (—5> +0 (—)
log ¢ r

and we conclude

- ~ _ 0
/ : 20j(B(Zoj) — WZop)b(x) = 0 | — | -
R? ﬂ{R—i—1<r<4 } lo

€

Finally we consider4‘—>:9 <r< —8 Here we havé&p; = nzjhzo, and#, 20; = 0( o)

Vip; = O(5). Using these facts, estimatéQ) and thatj,; has zero normal derlvatlve
we find

B(oj) = B(iiz;)hzo;j + i1z, B(hzo))

&r 1 € 0 0
=0 ~]+o +o|— +0(-), Zoor<
5|ogE r2 |(_')gE r 4e 3e

(71)
Integrating we have
/ 20 BGob(r) = 0 [ —
Z0j 207 X) = < .
RNLar<g) log? ¢
From 67) we have
~ o 0 0
W:O<8—>, —<r<- (72)
r 4e £

and this implies
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Thus

~ 1 0
20j(B(Zoj) — WZoj)b(x) = O ( 5 5) +0 (8“Iog —)
log- ¢ €

&

/ﬁjRiﬂ{fE<r<§Z}

and therefore

~ 0 ~ 1 0
Zoil\l—— W) Zopi=0| —]+0|——]. 73
/mg 0 <0v ) 0 (Rﬂog?) (Iog§> (79)

Combining 60), (62), (64), (66) and (73) we obtain

~ ¢ 1 0
L(Zoj)Zoj 2 —— + O +0 - ).
/Qg 017201 log ¢ (R Iogg) (Iogg)

Choosingd > 0 small andR > 0 large (fixed independently of) we conclude that
(52) holds fore > 0 small enough.

Proof of (53). By (61) we deduce
L(Zo) = O(), r <R. (74)

Also (63) implies

~ 1 3 3 25
L(ZOj)ZO 5 + 0 5 +0(—2)+8 ZOj,
r3log < rlog ¢ r

R+1<r<£ (75)
4e

and from 65) we obtain

~ g2 0 0
L(Zpj))=0 | ———=], —<r<_—. 76
o (52Iog§> (76)

Thus, we only need to estimate the sizequioj) in the regionR <r < R+ 1. In
this region we haveZg; = n1jZoj + (1— nlj)u,bZoj and hence

AZoj = Any;(1— W) Zoj — 2V01; VY Zoj + 2V, V Zoj (1 — ) + 11 ;A Zo;
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+ A= n1)AW Zoj)

1
=0 (IOg 5) + ’11jAZoj +(1- ’71j)A(lﬁZoj), R<r<R4l
&

Using the change of variables = Fj(y) and recalling the definitions ofg; and y
we have

AyZoj = Avzoj + O(e) = O(e), R<r<R+1

and
Ay(fZoj) = Ax(hzoj) + O(e)
=2VhVzg; + O(e), R<r<R+1
1
=0 — + O(e), R<r<R+ 1L
log ¢
Thus

~ 1
L(Zoj) =0 — |- R<r<R+1
log £

This bounds and74d)—(76) imply (53).
Proof of (54). By (68) we see that

070,
ov

— WZo; = O(s), y € 0Q,, |y| < R.

From (69) we also obtain

0Z0; ~
0j —WZOJ-=0<|£—r(3)+O(8“), yedQe,, R<|y|<R+1
Ogg

Finally using (70), (72) and (71) we also see that

0Zo; ~ 2 1
L WZoj =0~ +0(‘2>+0 ) o)
ov dlog? r log 2 r

&

0
yedQ, R+1<|yl < —.
3e

These inequalities readily imply (54). O
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Proof of Proposition 4.1. To prove the solvability of (33) we consider first a related
problem: that of giverh € L*°(0Q,) find ¢ € L*°(Q,) andd, ..., d, € R, such that

m
—Ap+e2p =) diy;Z1; in Q.
j=1
0
¢ —Wo=h on 0Q,, (77)
v
Jo, 2jZ1j¢ =0 Vi=1....m.
First we prove that for any, d1, ..., d, solution to {7) the bound
1
¢l L@, < C log z Al o0, (78)

holds. Indeed, by Lemm4.4 we have
Il L. <Clog - (Ilhll*,ggg + Z |dj|) (79)
j=1

and therefore it is enough to prove tha| < C|Aall, a0, -
Let 1,; be the cut-off function defined ind¥) and multiply Eq. (77) by Z1x.
Integrating by parts we find

on
dk/Q szsz—/F h’12kZlk+/ ¢ %z / O <— - WZlk)

+/Q O(—Ao Z1k) + 20y Z k). (80)

But Z1; = O(g};) and Vipy; = 0(e) S0 | [5 ¢ ‘”Zk Zy|<Celogi. Also, using 67)
and proceedlng similarly as with (68) we obtaln

- e e* 5
—-WZi; =0 —— o|——s |, <, 0Q
% 1 <1+r)+ (1+r2> Il <3, y el

and this implies

ale

= 0(&%). (81)
ov

—WZ2Zi;

/(;Qs
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We also compute

—o( Vv o) mazy,
a 1+7r 1+ 72 2j841)-

But —AZ1; + ¢2Z1; = L(z1j) whereL is the linear operator5g). Thus

2
“AZy+ %21, =0 (—— )+ 0=
1472 1+r

and this readily implies

2 1
A | = A(np;Z1j) +&°np;Z1j1 = O 8|09; .

£

Combining 80)—(82) we conclude that

dk/Q szfkgcllhll*,ags + Ce¥| Pl e,

€

and this combined with7Q) yields
1 m
|di| <C | Ikl sq, + Ce™log = > 1d)|
€ =
This implies
ldkl < CllAll, a0,

which proves 18).
Now consider the Hilbert space

H:{qﬁeHl(Qg):/ 7jZ1j¢ =0 Vj:l,...,m}
0,

465

(82)

(83)

with the norm||$|7,, = fo V|2 + e24?. Eq. (77) is equivalent to findp € H, such

that

/Qs<v¢w+82¢w> —/@QE qu:fmghw Vi€ H.
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By Fredholm’s alternative this is equivalent to the uniqueness of solutions to this
problem, which is guaranteed by§).

To show solvability of (33) lett; € L*°(€,), d;; € R be the solution to (77) with
h = y; Zy;, that is

m
—AY; + 82Yi = Z d,-j;(jzlj in Q,,

j=1
i 84
o~ Wi=nty on 0Q;. &Y
Jo, 7jZ1;Yi =0 Vi=1,...,m.

By the previous argument there is a uniggec L°°(€,) solution to this equation, and
moreover we have the estimates

1
1Yill o, < C log 2’ |dij|<C (85)

for some constan€ independent ot. We shall show that
“ 1

whereA > 0 is independent of andé;; = 1 andd;; = 0 if i # j is Kronecker's delta.
Assuming this for a moment, we see that the maBiwith entriesd;; is invertible
for small ¢ and || D71 <C uniformly in e. Then, giveni € L>(0Q,) we find ¢,,

di,...,d, the solution to 77) and define

m
b=+ Z ciYi,
i=1
wherec; is such that)"!" ; ¢jdij = —d;j Vj =1,...,m. Then¢ satisfies 83) and we
have the estimate
1w 1 1«
19l < ldall@,) +10g= Y leil <Clog |l s, +109= ) Idi|
i=1 i=1

1
< CloQg”h”*ﬁQE,

by (83).
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To prove 86) we multiply (84) byn,;Z1; and integrate by parts

0Z1; ony;
d ”~ZZ‘+5" »'ZZ'Z/ ( ] _wzZ ) 'Y'+/ S 7. Y
; /Q E 121 3 0. 121 . En 1j ) M2 ti oo, 0V 1jti

+ /Q Yi(=A(n2;Z1j) + 82172jZ1j)

1
=0 (e“log—) ,
&

Remark. A slight modification of the proof above also shows that for any L°°(0€,)
and f € L°°(€Q,) the equation

using (81), (82) and (85). I

—A(]S + 82(]5 = f in QSv

a m

a—f -Wo=h+ chszlj on 09,
j=1

Jo, 1jZ1jp =0 Vi=1...,m

has a unique solutiog, c1, ..., ¢, and that the estimates

1
@l L=, < Clog SRl o, + 1 o)
lejl < Clhlly o, + 1)  Yi=1....m
hold with C independent ot.

The result of Proposition 4.1 implies that the unique solutibn= T (h) of (33)
defines a continuous linear map from the Banach sgacef all functionsh in L™
for which Al 50, < oo, into L.

It is important for later purposes to understand the differentiability of the operator
T with respect to the variable§. Fix h € C, and let¢ = T'(h). We want to compute
derivatives of¢ with respect to, say,. Formally, Z = 6%(1) should satisfy inQ, the
equation

~AZ+6’Z=0 inQ,
and on?dQ, the boundary condition

0Z
ov

—WZ =0 (W) +cxdg (Zug) + Y d; Zj1;,
j
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where (still formally)d; = 562 (cj). The orthogonality conditions now become

| zyzz=0 Wiz
Q.
f ZupZ = —f Og (Zu) -
Q. Q.
Let us write Z = Z + by, Zie Where
217 12 _ ;
bk/ Xk Z1k] 2/ ¢a§]’((/(kzlk)-
Q. Qe
Hence [, Zy;Z1; =0 for all j,

~AZ+&%*Z=a inQ

and

0z .

S Wz =b+ ) d;i Zjy;.

j

where

a = b (~A( Zw) + €20 Z1)
and

Ok Zw)
b= 0y (W) ¢+ g (Zuze) + 2wy, 7y
ov
with
1 1
161, 00, <Clog g”h”*,aQE’ llall..q, <Clog Ellhll*,ag€~

The remark above gives

1 2
e (N

(87)



J. Davila et al./Journal of Functional Analysis 227 (2005) 430-490 469
5. The nonlinear problem

Consider the nonlinear equation

—Adp +2¢ =0 in Q.

a m

a_q\?_qu:R-f—N((f))-l-ZCijle on 0Q,, (88)
j=1

Jo, 1;Z1j¢ =0 Vi=1,....m,

whereW is as in 6) andN, R are defined in (22) and (23), respectively.

Lemma 5.1. Let m > 0, d > 0. Then there existg > 0, C > 0, such that for
0<e <egoand anyly,..., ¢, € 0Q satisfying

I&i —¢jl=d Vi # J,
the problem(88) admits a unique solutiowp, c1, ..., ¢, such that
Pl L=,y < Ce*|logel, (89)

where o is any number in the interval0, 1). Furthermore the functioné’ — ¢(&) €
C(Q,) is ¢! and

1Dl (@, < C e*[loge|?. (90)

Proof. In terms of the operatoF defined in the previous section, proble&8) becomes

¢ =T(N(@)+R)=A(P). (91)
For a given numbep > 0, let us consider the region
Fy={¢p € CQ) : 1dllLe,) <ye’llogel).
From Propositiord.1, we get

1Al (0 <Cllogel [IN@I.. o, + IRl zq, ]

Estimate 25) implies that|| R|, s, <Ce¥, for any o € (0, 1). Also, the definition of

N in (22) immediately yields4|N(¢)||*,m£<C ”qs”iwms)' It is also immediate thah
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satisfies, forg,, ¢, € F,,
IN(¢1) — N(P2)ll,. o0, <Cre®lloge| | d1 — PollLe@,),
where C is independent of. Hence we get
|4@)lx@,) < Ce”lloge] 72" lloge? + 1],

[A(py) — A(P)llL=@,) < Cye*llogel [Py — dallo@,) -

It follows that for all sufficiently smalle we get thatA is a contraction mapping of
F,, and therefore a unique fixed point Afexists in this region.

Let us now discuss the differentiability @f. SinceR depends continuously (in the
*-norm) on them-tuple

&= .8
the fixed point characterization obviously yields so for the riap> ¢. Then, formally,
—0y N(@) =0y W(e? —¢— 1)+ Wle? — 110y ¢.
Since ||652W||*7598 is uniformly bounded, we conclude
105 NPl 00, <C [”(b”LC’C(Qg) + ||a§}{¢||L°°(QS):|||¢||L°°(Qg)
< C[e"lloge| + 110 @l @) |¢llogel.
Also observe that we have
05 ® = (041 (~(N(@) + R) + T (=04 [N@) + R]).
so that, using &7),
1059l < C llogel|llogell (N () + Rl sq,
105 N @ o0, + 105 R, 0,

Since it is also easily checked th|a1€/kR||*,ms <Ce” for any o’ € (0, 1), we conclude
from the above computation that

105 PllL~@,) <C &”lloge|*  for all k.
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The above computation can be made rigorous by using the implicit function theorem
and the fixed point representatiofil) which guarantee€® regularity in&'. O
6. Variational reduction

In view of Lemma 5.1, givert = (&3, ..., §,) € 0Q" satisfying|&; —&;|>d Vi # j,
we defineg (&) andc; () to be the unique solution to (88) satisfying the bound (89).
Given & = (&4, ..., ¢&,) € Q" we write

U@ =Y (w0 +H @),
j=1
the ansatz defined in (16). Set

Fe(&) = Jo(U©E) + d(&)), (92)

where J; is the functional defined in3) and
POW =90 (3). xeQ (93)

Lemma 6.1.~If E=(&q,...,&,) € (0Q)™ satisfying(36) is a critical point of F, then
u=U() + ¢ is a critical point of J,, that is a solution to(1).

Proof. Let

1
I.(v) = —/ |Vv|2+82v2—/ ev.
2 Jo, 00,

Then F. (&) = J.(U (&) + (&) = L.(V(E) + ¢(&)), where & = &/e. Therefore

OF, _13L(V(E) + @) _ 1 N
e = SDL.(V(E) + 9|

ov(E) (&)
o, oG, |

Sincev = V(&) + ¢(&') solves (88)

OF: 135 [V | 99
aék—slgc,/&x,zh[ e e ]
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Let us assume thddF (&) = 0. From the previous equation we conclude that

ZC'/ y 5‘:(5)+M]:o Vk=1,....m.
o0 0 Ok

Since | 0"5“ )| Lo, < Ce*lloge|? and aV(g) = +Z4 + o(1) whereo(1) is in the
L norm, |t foIIows that

m
Zc,/ 1Z1u(EZy+01) =0  Vk=1,....m,
. 0Q,

which is a strictly diagonal dominant system. This implies that0 Vi=1,...,m. 0O

In order to solve for critical points of the functioR, a key step is its expected
closeness to the functios, (U), which we will analyze in the next section.

Lemma 6.2. The following expansion holds
Fe () = J:(U) + 0:(0),
where
10¢] + VO | — O,

uniformly on points satisfying the constrain36).

Proof. Let 95(5’) = I.(V + ¢) — I.(V). In order to get the proof of this lemma, we
need to show that

10:] + YV 0:| = o(1).

Taking into accountDI.(V + ¢)[¢] = 0, a Taylor expansion and an integration by
parts give

L(V+¢) = I.(V)

1
_ / D21V + 112 (L — 1) di
0

1
=/ </ [N(¢)+R]¢+/ eV[l—ef¢]¢2) (1—1)dt, (94)
o \Joa. Q.
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so we get
L(V +¢) — L,(V) = 0. = 0(e*[loge[3).

taking into account that]| ¢l ~q,) <Ce*|loge|. Let us differentiate with respect
to &,

1
0uUe(V + ) — L(V)] = / / 041N (@) + R) 1
Ch 0 \Jag,
+/ af;c[ev[l—efqb](ﬁz])(l—t)dz.
0Q,

Using the fact thaﬂ|aé/¢>ll*<C8“|loga|2 and the estimates of the previous sections
we get

0g,[1:(V + §) = L.(V)] = 0y 0 = O(¢*|logel*).

The continuity in of all these expressions is inherited from thatjoénd its derivatives

in £ in the L° norm. The proof is complete. [

7. Expansion of the energy

Lemma 7.1. Let u; be given by(24). Then for any0 <« <1

Ja(U)Zm(ﬁ_ZTC-FZTHOgZ)+27‘Em|09§ —EZ |:H(5j,§j)+ZG(fi,5j):|

j=1 i#]

+ 0%,

where

p /oo ! lo ! d
= X.
oo 1422 gl—i—x2

Proof. Define

Uj () = uj(x) + Hj (x),
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so we may rewrite X6) in equivalent formlU = Z;Ll U;. Then
2

JS(U)ZE/ ZVUJ' +§f ZU]' —8/ exp ZU]'
o vt o\ 0 =
m m
Z/(VU,-VU,-+U,-U]-)—€/ exp| > U;
Q 0Q ;

m
:Z/(WU,-IZ—FU]?)—F

j=17¢ i#] j=1
=1+ 1Ip+ Ic.

Let us analyze the behavior d@f;. We have

/(2|VUj|2+U]2=[£2|Vuj|2+/£2u§+fg2|VH;|2+/Q(H;)2+2[QVWVH;

(95)
+2/QujHj. (96)
Multiplying (17) by H]‘“? yields
0H?
2 2_ ‘ J
v == [+ [ =La;
Ou i
=— -H§+g/ ”.f[—]?_'/ I ge
/Quj ! w0’ T S
and replacing in (95) we obtain
/Q|VU,-|2+Uf:/g|w,»|2+/gu§+2/QW,-VH;+/QMJ-H; (97)
0 Quj e
+8/6;961H;—‘/[;QEHJ-. (98)

Multiplying (17) by u; and integrating we find

2 e e uj
u»—i-/H»u-:—/VH-Vu-—}—e/ e-’u-—/
/Q*’ o o o 7 Jaa ov
Combining this and47) we arrive at

/|vuj|2+U]?=s/ e (uj + HY),
Q 0Q ’



J. Davila et al./Journal of Functional Analysis 227 (2005) 430-490

where we have used

ou; . Ou; e
Vu,-Vujz —uj, Vu;VH: = —H?
o) oQ 0v Q / o ov

with i = j. Let us find the asymptotic behavior of the expression:

2u; 1
VU P+ U?= / / |
~L' ir+uj=e anx—éj—ewv@pﬁ<°gu—éj—wqqu2
+H(x,5j)+0(8°‘)>.

Changing variablesu;y = x — ¢;

/|VU,-|2+U?=/ 2 <Iog L +H(E +ep;y, &)
0 P Joau,, Iy —v©@R Ty =2 T T
- 2Iog(8,uj)> + 0(%).

But

2

475

(99)

2 1
/agwj ly — v(0)|2 n+ O(e) /C’quj ORI o B+ O(”)

and for O<a <1

|2(H(8M,-y, 5j)—H((fj,5j))=f G

fo, 5= 2
00y, ly — v(0) 0y, ly —v(0)|2
=0(%).
Therefore
/ |VUj|2 + sz =2B+2rnH(E), &) — 4nlog(ep;)
Q

2 o
+LQMBi:ﬁmﬂH@w»éﬂ—H@ﬁq»+0@)

=2B+21H (&}, ;) — Anlog(ep;) + O(e%).
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Thus

1 m
Iy =mp+2mmlog >+ [H(gj, &) -2 |og(suj)] + O0@Y). (100)
j=1

We consider now

m
Ig=Y" /Q VU;VU; + U;U,
i#]

m
:Z/ w,-w,-+2/ VuiVHj—}—/ VHiEVHf—i—/ u,-uj+2f uiH;
it Q Q Q Q Q

&€ &€
+Lm%.

Multiplying Eq. (17) by H and integrating we find

ou ;
/VH;?VHi8+/ H;Hfz_/uijJrsf e“ij—f —LHf.
Q Q Q o0 o ov

Hence

m
IB:Z/QVMiVMj+2/g;vuiVH;+/Quiuj+/§1uin+8/{qQ€MjHig

i#]

_/ 0j e
o v !

Multiplication of (17) by u; and integration by parts yields

ou;
wini + | Héuj=— | VHVu; +¢ | “iu; — ;.
J J J
Q Q Q - a0 o Ov

Replacing in the expression above and usi@g) (we find

m
& .
Ip = E;/Qeul(uj+f1j).
7]
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A similar argument as for4, shows that
m
Ig=m) G, &)+ 0@E™. (101)
i#]
Regarding the expressialr we have
Ic = —8/ exi=Ui = 82 =1 THj
0Q =1 0Q
Using the definition ofu; and (8) for each term we have

Zm 1MJ+H . eH(x’é_/)ﬁLO(g‘ )
€ i=¢ 5 Ej(x),
Fle) o lx — & —epv(C))l

where

Ej(x) =exp Zlog |

2t H(x, &)+ 0™
i#]j

1
x =& —epv(&)
Changing variablesy;y = x — ¢; we have
T Ejten;y.CHHO0E) — JHE ¢ 4 0 (*|y|%)
and

1
& — & +epyy —epv(EDI?

Ej(&;+eu;y. &) =exp| > log
i#]j

+H(C; +ep;y, &)+ 0™

=exp Zlog |2+H(€,,f) + 0(e%y|")
i#]

=exp (Z G(@@)) +O0E* Iy,

i#]
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Therefore, by the definition of; in (24)

/ Xt _ L T, 66 | o e
=21+ 0(%).
Thus
Ic = —2nm + O(e%). (102)

Thanks to 100)—(102) we have

Jo(U)=(mp — 2n)+2nm|ogl+nz|:—2log(,ul)+H(£j,£j
j=1

+ ) G, éj)} + 0",
i#]

Employing again (24) we have

Je(U) =m(f — 2n) + 2nm IOgg + 2nmlog 2 — nZ |:H(fj, ¢j)+ ZG(@', fj):|

j=1 i#]

+ 0(&%). O

8. Proof of Theorem 1.2

Let Q,, = (0Q)™\D, whereD denotes the diagonal. Namely,
Qu =1{(Ey, . &) € Q" = & £ &0 i # j}

Proof. According to Lemma &, the functionU(c’f)+<}S(é), whereU and[p are defined,
respectively, by 16) and (93), is a solution of Problem (1) if we adjdsso that it is a
critical point of F (&) = J.(U (&) +<Z>(é)) defined by (92). This is obviously equivalent
to finding a critical point of

F.(&) = % (Fe(&) — mpB + 2nm(1—log 2) 4+ 2nm loge) .
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On the other hand, from Lemmds2 and 7.1, we have that fdre fzm, such that its
components satisfy¢; — ;1 >d,

Fo (&) = 0, (&) + 67O (&), (103)

where ®, and V:O, are uniformly bounded in the considered regioneas- 0.

Given one componerty of 0Q, let A : ST — Co be a continuous bijective function
that parametrizeg. We call Q,, the region inCy'\D, where {; — ;| > d and we
show thatgp,, has at least two distinct critical points i,,.

The function¢,, is C1, bounded from above 62, (and hence inQ,,) and such
that

O (1. &) — —00 as|g — ¢l — 0 for somei # .

Hence, sincd is arbitrarily small,¢,, has an absolute maximuM in Qm.
On the other hand, the Ljusternik—Schnirelmann theory is applicable in our setting
so that the number of critical points fas,, can be estimate from below by ),
the Ljusternik—Schnirelmann category @f, relative toQ,,. Let us recall that c&€,,)
is the minimal number of closed and contractlbleflm sets whose union covef%m
Observe that can) > 1. Indeed, by contradiction, assume that(ﬁa,;) = 1. This
means thatQ,, is contractible in itself, namely there exist a poufﬂ € Q, and a
continuous functiorl : [0, 1] x Q,, — Q,., such that, for all¢ € Q,,,

[0 ¢&=¢ I@Qé=2E.

Define f : §1 — Q,, to be the continuous function given by

FED = (A(ED). A éy). ... A" &),

Let 5 : [0, 1] x ST — S be the well defined continuous map given by

nt, &) = At om0 Tt, f(¢D)),

wherer; denotes the projection on the first component. The funafieda contraction
of S to a point and this gives a contradiction.
Thus we conclude that o&,,) > 2, for anym >1. Hence, if we define

c Q,, : C closed and cat)>2}

[x]
Il
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and

¢ = sup inf qpm(c) (104)
CeE &eC

Ljusternik—Schnirelmann theory gives thais a critical level.

If ¢ # M, we conclude that there are at least two distinct critical pointsgigrin
ﬁm. If ¢ = M, hence 104) implies that there is at least one $&stwith cat(C)>2,
where the functionp,, reaches its absolute maximum. In this case we conclude that
there are infinitely many critical points fap,, in Q.

These critical points persist under smalP- -perturbation of the function. For this
reason, from (103) we can conclude that also the funcfigrwhich is C° close th)m
in Q,,, has at least two distinct critical points 0,,. Sinced is arbitrarily small, F,
has at least two critical points @m and hence problem (1) has at least two distinct
solutions. [

Remark 8.1. As mentioned in the introduction, one can get a stronger result than
Theorem1.2 under the assumption that the functipp has, in addition to the ones
described in the proof of Theorem 1.2, some other critical poiné,,inwith the prop-

erty of beingtopologically nontrivial for instance (possibly degenerate) local minima
or maxima, or saddle points.

Let us define what we mean ligpologically nontrivial critical point for ¢,,.

Let £ be an open set compactly contained(}, with smooth boundary. We recall
that ¢,, links in X at critical level C relative to B andBg if B and Bg are closed
subsets off with B connected andBg C B such that the following conditions hold:
let us setl” to be the class of all map® € C(B, X) with the property that there exists
a functionW € C([0, 1] x B, X), such that

Y(@©,)=Idg, Y@ )=, Y(@,-)lp,=Idp, forall t €[0,1].

We assume

sup ¢, (y) <C = inf sup g, ((y)) (105)
Qel’ yeB

y€Bo

and for ally € 0%, such thatp,,(y) = C, there exists a vector, tangent todX at y
such that

V(/)m(y) * Ty # 0. (106)

Under these conditions a critical pointe X~ of ¢,, with ¢, (y) = C exists. Not
only this: any functionC? close tog,, inherits such critical point.
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Going back to our problem, Lemnt&2 and 7.1 yield that, ifp,, has a topologically

nontrivial critical pointé = (¢4,...,¢&,,) in f)m which satisfies (36), theif, itself has
a critical point&® = (&1, ..., &), close to¢ for ¢ small, such that

V(pm(iﬁgaéfn)_)()? (pm(ggavéfn)_)c

Hence Lemma6.1 guarantees the existence of a solutign for (1). Furthermore,
from the ansatz (16), we get that, as— 0, u, remains uniformly bounded on

O\ Uj=1 B5(&)), and

Sup ug — +00
Bs(&))

for any 0 > 0.

9. Blow up behavior as¢ - 0
In this section we give a proof of Theorefnl, but before we need a couple of

preliminaries.
Consider the linear equation

—Au+u=0 inQ,

e _ h on 0Q (107)
ov

with h € L1(0Q).
The next result is a variant of an estimate of Brezis and M@]e

Lemma 9.1. For any 0 < k < 7 there is a constant C depending on k afdsuch
that for anys € L1(6Q) and u the solution 0{107) we have

k
/exp M dx<C.
0Q ||h||L1((7Q)

Proof. We have the representation formula

u(x) = / Glx, Wh(y) dy, (108)
oQ



482 J. Davila et al./Journal of Functional Analysis 227 (2005) 430-490

where G = 2,TG and G is Green’s function defined irbJ. Hence

klu(x)] = lh(y)l
exp| ——— | dx < exp| k |G(x, y)| —————dy | dx.
0Q ||h||Ll(5Q) Q oQ ||h||Ll(5Q)

Using Jensen’s inequality we find

klu(x)] /Q/ G lh(y) vd
Agexp<||h||L1(0Q)> exp(kIG (x, )I) ”h”Ll(DQ) x.

But |G(x, y)|<|log|x — y||/m + C SO

/

explk|G(x, y)|) < m

for all x, y since we are in a bounded domain. Therefore

klu(x)| // lh(y)l
ex ds(x) d
/ag p(||h||L1(aQ)> 20 Jeo |x—y|’</’f 1l 2o

"

1—k/n

~

We also need the following “strong maximum principle”.

Lemma 9.2. There exists a constanrt > 0 such that for allh € L1(0Q) with h>0,
the solution u of(107) satisfies

u(x)}c/ hds ae Q
0Q

Proof. First note thatG >0 and by the classical strong maximum principle, for each
y € 0Q G(-, y) cannot attain its minimum 6. Also, by the Hopf lemma iiG(x, y) =

0 for somex, y € dQ, x # y then the normal derivativ%(x, y) is negative, which

is impossible. Therefore, for eache dQ we haveG(-, y) > 0 in Q.
By a compactness argument we can find a constantO such that

Gx,y)=zc
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for all y € dQ and allx € Q. If h € L1(0Q), h>0, from the representation formula
(108) we see that the conclusion holds[]

Let u, be family of solutions to (1). Ifee*s is unbounded_inLl(aQ) then by
Lemma 9.2 we see that for a subsequenge” oo uniformly in Q.

Proof of Theorem 1.1. The first part of this proof is an adaptation of the argument
used in [2]. Since we assume that* is bounded inL1(dQ) we can select a sequence

ej — 0 and a Radon measupez0 in 0Q such thats;e*/ — y weakly in the sense of
Radon measures i6Q where

u; =u£j.

We keep this notation throughout the rest of this section.

Claim. There is a constanf, > 0, such that if for somer € 0Q2 we have

7({xD < Bo

then there exist® > 0 so that

lim Sup||uj||Lw(QmBR(x)) < OQ. (109)
J

Indeed, fix somep > 1 and choos&y = %. Let Bgr(x) denote the open ball with
center atx and radiusR > 0. Note thaty(Bg(x)) — y({x}) as R — 0" so we can

selectR > 0 so that

P(B2gr (x)) <20

and from now on we fix thisR > 0 depending only orx.
By standard properties of the weak convergence of Radon measures

limsupe; f e"i ds <y(Br(x)) <2B,. (110)
j 0QNBR(x)

Leta; = ¢je"  yp,(r) @andv; be the solution of

—Avj +v; =0 inQ,
51)]‘

En =aj on 0Q.
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Let alsob; = ¢je"/ —a; andw; = u; —v;. Note thath; = 0 in Br(x) therefore by
elliptic estimates

lwjlleeeBrae) S Clwill L) <C-

Therefore

/ (Sje”f)p = {;‘f/ epwjepvj
(?QQBR/Q(X) (3‘QﬂBR/2(X)

< Csf/ ePvi
0QNBR/2(x)

<Ce’.’/ exp(k;—2 |, (111)
J 0Q ”aj”Ll((}Q)

wherek; = pllajll 140, But observe that by1(10) and the definition ofi; we have

limsupk; = limsup plla;ll 100, <2pBo < 7.
J J

Hence from {11) and Lemma 9.1 we find

/ (gj€"7)? dséCsf — 0.
0QNBR/2(x)

This inequality and elliptic estimates imply that

lim supliu; |l Lo @nB a0y < 00
J

which is the desired conclusion.
Let S denote the set

S ={xe€dQ|y({x}) > o}

ThenSis finite and for every € 0Q\S we have thai:; is bounded in a neighborhood
of x. Thereforex; is bounded in compact subsetsa§\ S and soe;e"/ — 0 uniformly
on compact subsets @fQ\S. This shows that the support afi is contained inS and
therefore we can write

m
7= Zaiéij’
=1
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wherea; > 0 and¢; € 0Q. From the preceding remarks we see that— »* andu*
satisfies

—Au*+u*=0 inQ,

Ou :Za./ééj on 0Q.
ov o

From this it follows that
* 1 u
u () = o ZajG(x, 3 (112)
j=1

We shall now prove {) through Pohozaev-type identities in balls around the singu-
larities. Let us concentrate ofy and assume that it is located in the origin. For the
computations we will make a change of variables to flatten the bounda§y arbund
0. Pick some radiusg small enough and consider a mdp: H N B, - QN B,,
where H = {(y1, y2) | y2 > 0}. We can choosé&l to be a conformal diffeomorphism,
c3up 0H N Bg,, and such tha¥’(0) = 0 and D'Y'(0) = I (after rotation ofQ2). Define

ij(y) =u;(¥(y)), y€ HN Bg,.
Theni; satisfies

—Aiij +b()i; =0 in HN Bg,,
i N (113)
6—\; :g]h(y)e J on 5HﬂBR0,

whereb and h are smooth functions, given by

b(y) = |detD¥(y)|,
h(y) =|D¥(y)e1]

ande1 = (1, 0). Note, since we assumB¥(0) = I we can drop the absolute values
in b andh.

For simplicity we will drop the indexX in #; and we write the partial derivative
?5% with a subscript(-)y,, e.g. % = iy,. We use the convention of summation over
repeated indices, and denote byhe exterior normal vector t6(H N Bg). v1 and vy

are the components ofand we write a partial derivative with respect\tcas% = lUy.
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Take now O< R < Ro and multiply the equation in1(3) byi,, and integrate on
H N Bg to find

/ —lly, y; ity + b(y)uity, = 0.
HNBg
Integrating by parts, and using the boundary conditionlib3] we get
& / he'ity, + / iiyily,
0HNBR O0BrNH
- - - - 1. 1
= / Uy Uy yy + bty = / _(ui-))d +50b (”z)yl
HNBg HNBg 2 2
1 1
= —f (V| + bi®)vy — -/ by, @i, (114)
2 Joprna 2 JunBg

Integrating by parts the first term irt14) we find

/ he'iiy, = he" ‘fR —/ h'e"
JHNBg JHNBg

and substituting inX14) we obtain

- 1
R, —s/ e +f ﬁvay1=—/ (Va2 + ba?)vy
OHNBR OBRNH 2 JornH

1
-5 / by, @i, (115)

che"

Before we take the limit ag — oo we recall that¥ : H N Bg, — Q is a conformal
map, smooth up té@dH N Bg,, and that we assume#!(0) = 0 and DW¥(0) = I. Using
complex variableg = y1 + iy2, and expanding? in its Taylor series, we have

W) =7+ gzz + 0@, (116)

where 0 (z®) denotes a quantity which is bounded hy? for z in a fixed neighborhood
of the origin. Leta, f € R denote the real and imaginary parts of= ¥’ (0) that

isc =oa+if. Thenf is the curvature of thedQ at 0 and« is curvature at 0 of
t — W(0,t) which is a curve transverse t&2. We can modifyW to prescribe this
number. Indeed, consider a change of variables

1 w
= —(eM — 1),
4 A(e )
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where w is in a neighborhood of the origin. Fot € R this map restricted to a
neighborhood of the origin sends the upper half-plane in itself, the real line into the
real line, and the lower half-plane into itself again. A computation shows that the
expansion of? in the variablew is

P(w) = w+ 3(c+ Hw? + 0wd.
Let u*(y) = u*(W(y)) denote the limit function in the coordinates, and observe that
ii; — i* in Ct.(HN Bg — {O)).

Taking the limit in (L15) we get

o 1 - 1 .
—oai + / ufu; == / IVii*|?v1 + = / bii*%vy
OBrNH 2 O0BrNH 2 O0BrNH

1
- —/ by, ii*2. (117)
2 JHnBy
We rewrite now {12) into a singular and a regular part near the origin
uf=s+w,

where

ail 1 ai 1 &
s =rlogr andw(x) = 2 H(x.0)+ 2 ;a,G(x, .

We define then the corresponding functions in the new coordinates

s() =5, w(y) =w™(y), y€HN Bg,.

Using this decompositionl(7) takes the form

—oay + / SvSy 4 SyWyy + Sy Wy + Wyy,
O0BRrNH
1 5 1,
= —|Vs|©+ VsVw + =|Vw|® ) v1
oBrnH \2 2
/ <1~2 . ~2)
+ bl =s“+5w+ -w )
0BgnH \2 2

1 1
—/ by, <§§2 + 50 + Euvz) . (118)
HNBg
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Sincew satisfies—Aw + w = —% Iogﬁ in Q we find for w

—AD +b()B = —Zm(y) in HN Bg,,
T

where

1
= b(y)log ———.
m(y) (y)log B)]

Multiplying this equation byf—’b = wy, and integrating on{ N By (similarly as foru
o1 7

o o 1 V2 4+ bi2 1 b 2
WyWy; — Wyz Wy = 5 (IVw|* + bw vy — > y1 W
OBRrNH JHNBg OBRrNH HNBR

ai -
- —= m(y)wy,.
T JBrNH

Solving for fangH wywy, in this equation and replacing in18) we obtain

—oal + / Sy8yy F SyWyy + 8y Wy
O0BRNH
1 ~ 2 ~ ~ 1,.,2 ~ ~
= —|Vs|©+ VsVw ) v1 + bl =s“+5w|v
oBrNH \2 oBpnH \2
1~2 ~ o~ ~ ~
— by, Es +sw | — . Wy, Wy,
OHNBg OHNBR

ai

+ m(y) Wy, . (119)

T JBrNH

Now we take the limit in this relation aR — O.

Lemma 9.3. Recall thatc = /" (0) = o + i . We have

lim - 3o,
i Sy8y, = —af,
R—0 O0BRNH VN 4n 1

lim / SyWy, = —a1wy, (0),
R—0JoBrnH

1 - o
lim -/ |V5|2vy = —a?,
R—02 O0BRNH 4n

. —— al .
lim / VsVwvy = ——=1y, (0) (120)
R—0 O0BRNH 2 7

and all other terms in(119) have limit zero ask — 0.
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We prove this lemma later on.

Proof of (7) completed. Using this lemma together with (119) we obtain

3o - o ai .
—oay + Eaf — agiby, (0) = 4—naf - Ewyl(O)
that is
o (ﬂ _ 1) ) (121)
N\2n — M

But a; # 0 anda can be taken to be any real number, @o= 2n and w,, (0) = 0,
which is equivalent tov,w(0) = 0, wherez is tangent tooQ at 0. [

Proof of Lemma 9.3. We present a proof of (120) only, the others being analogous.
Recall that

- 1
S0) =s(PO). s = ZLlog .
T |x]
Using the expansionl(6) for ¥ we have
- air (y 1
Vi) = -4 (—2 + i —ﬁ)) Loy, (122)
T \lylc 2

where we recall that = o« +iff = ¥P”(0). One way to see this is to consider the
complex valued function lof¥, and express the expansion of its derivative in terms of
7z = y1+iyp. Using (122) we have

/ 5,5 “%/ (1 + X — pvo) + O(R)> (vl +ia4 O(R)) d
SvSy = —5 — + 5 (v — Pz =+ s
OBRNH T g2 oBpnH \R 2 R 2

2
“1 V1 1 2

=-1 — 4+ s (1 +v)) — pviva) + 0D ds
72 Jopenn R2 T 2R D-Fb

2
3
- % S+ o). O
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