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In this paper we consider the elliptic boundary blow-up problems

{
�u ± g(|∇u|) = f (u) in Ω,

u = ∞ on ∂Ω,

where Ω is a smooth bounded domain and the functions f and
g are increasing and continuous. Our main concern will be to
prove both existence and nonexistence of nonnegative solutions,
depending on new integral conditions of Keller–Osserman type
involving f and g. We show in particular that the problem with
a minus sign may have solutions inclusive for some functions g
with slightly superquadratic growth at infinity that is somehow not
expected. We also obtain uniqueness of nonnegative solutions in
some cases.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The main objective of this paper is to analyze the existence and nonexistence of nonnegative
solutions to the problems {

�u ± g(|∇u|) = f (u) in Ω,

u = ∞ on ∂Ω,
(P±)
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where Ω is a C2 bounded domain of R
N and the functions f , g are continuous and increasing, with

f (0) = g(0) = 0. By a solution to (P±) we mean a function u ∈ C1(Ω) which verifies the equation in
the weak sense and u(x) → ∞ as d(x) := dist(x, ∂Ω) → 0.

The model problem without the gradient terms, namely{
�u = f (u) in Ω,

u = ∞ on ∂Ω,
(1.1)

has generated a good deal of research. The important case f (u) = eu was analyzed in the early works
of Bieberbach [9] when N = 2 and Rademacher [49] for N = 3, and later reconsidered in [36]. The
other significant example f (u) = up , p > 1, was dealt with in [47,41,32] (also in [17] when the Lapla-
cian is replaced by the p-Laplacian �p). These cases have been also studied when the underlying
domain Ω is not necessarily smooth: see [44,45,18].

As for general increasing nonlinearities f (u), it has been known since the pioneering works of
Keller [31] and Osserman [46] that problem (1.1) admits a solution if and only if the nowadays called
Keller–Osserman condition holds, i.e.

∞∫
1

ds√
F (s)

< ∞, (1.2)

where F (s) = ∫ s
0 f (t)dt (see also [20] when f is not increasing). Later, other important questions

concerning boundary behavior of solutions and uniqueness or multiplicity, have been considered in
many works. We quote for instance [5,37,25] for uniqueness for general nonlinearities and [1,2] for
multiplicity results. See also [7,8,37,15,3], where more precise information on the asymptotic behavior
of the solutions is obtained. A great amount of works have been also interested in the appearance of
weights in the equation, both vanishing on ∂Ω [19,26,13,14,12,42,43,24] or singular at ∂Ω [10,11,23].
More references can be found in the survey [50].

With regard to boundary blow-up problems containing gradient terms, Lasry and Lions [35] con-
sidered the following: {

�u − |∇u|p = λu + h in Ω,

u = ∞ on ∂Ω,
(1.3)

where p > 1, λ > 0 and h is smooth in Ω (it appears in stochastic control problems with state
constraints). Assuming h has a prescribed growth near ∂Ω , it was shown in [35] that there exists
a unique solution to (1.3) when 1 < p � 2. Further developments of this and related problems have
been made in [48,38,39]. In particular, in this paper we can extend the results in [35] when we
consider h = 0 and we replace the term |∇u|p by g(|∇u|) = |∇u|2 log(|∇u| + 1) which is slightly
superquadratic. We believe that this can be extended to cover the case of nontrivial h.

Another type of problems including gradient terms in the equation was proposed by Bandle and
Giarrusso in [4]. They considered {

�u ± |∇u|q = f (u) in Ω,

u = ∞ on ∂Ω,
(1.4)

for q > 0 and general differentiable functions f , paying special attention to the two “classical” non-
linearities f (u) = up , p > 1 and f (u) = eu . Some existence results were obtained, together with
boundary behavior of positive solutions in most cases. This problem was later analyzed again in [28]
and [29] (see also some extensions to problems containing weights in [27,34,52–54]).

However, at the best of our knowledge, no results are available for the general problems (P±)

aside the case g(t) = tq , q > 0. Thus in the present paper, and under quite general assumptions on f
and g , we will obtain conditions to ensure existence or nonexistence of nonnegative solutions. Let us
mention that our conditions are not sharp, due to the fact that the one dimensional version of (P±)
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is not integrable, but nevertheless they are in the case of power nonlinearities f (t) = t p , g(t) = tq ,
p,q > 0.

We would like to stress that for problem (1.4) with the minus sign, the results in [4] show that the
exponent q = 2 is critical in some sense, since no solutions are expected to exist when q > 2 (although
this fact is not proved there for smooth bounded domains). Among other things, we show that for
problem (P−) it is possible to have solutions for nonlinearities which grow faster than quadratically,
the essential feature being an integrability condition on s/g(s) at infinity.

In our results about existence we need to obtain interior bounds for the gradient of solutions. In
order to find these bounds we will assume one of the following two conditions on g:

(a) There exists t0 > 0 such that g is differentiable for t � t0 and

g′(t)
g(t)2

� C t−γ , t � t0

for some γ > 2, or
(b) There exists a positive constant C such that |g(t)| � Ct2, for large t .
Note that condition (a) is verified by the case g(s) = s2 log(s + 1) while (b) is the standard condi-

tion to get this kind of interior bounds.
Before proceeding to state our principal results below, it is important to stress that in all of them

we will assume the following general hypotheses on f and g:

f and g are continuous increasing functions

such that f (0) = g(0) = 0. ( f0 − g0)

A word of caution: we are always concerned with nonnegative solutions, but since f and g are
only continuous, the strict positivity of the solutions cannot be guaranteed, that is, the strong max-
imum principle is not always valid (cf. [22] and [21] for its validity in this context). In our present
situation the solutions could have a “dead core” in the interior of the domain, but we will be not be
concerned with this aspect of the problem.

We start considering problem (P+), and introduce

Γ (s) =
2s∫

0

g(t)dt + 2Ns2. (1.5)

Then we have the following existence/nonexistence result.

Theorem 1. Let f and g be functions satisfying ( f0 − g0). Then:

(i) If f does not verify the Keller–Osserman condition (1.2) or if

∞∫
1

ds

g−1( f (s))
= ∞, (1.6)

then problem (P+) does not admit nonnegative solutions.
(ii) If g verifies one of the conditions (a) or (b) above and

∞∫
1

ds

Γ −1( 1
2 F (s))

< ∞, (1.7)

where Γ is given by (1.5), then there exists at least a nonnegative solution u to (P+), which in addition
verifies u ∈ C1,α(Ω) for every α ∈ (0,1).
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Let us now turn to problem (P−). We have already mentioned that the power q = 2 is critical
among power-like nonlinearities regarding existence. In the general setting, we will prove that the
“criticality” of g for existence of solutions with large boundary condition depends on the divergence
of the integral

∫ ∞
1

s
g(s) ds, that is

∞∫
1

s

g(s)
ds = ∞. (1.8)

Theorem 2. Let f and g be functions satisfying ( f0 − g0), and assume that g verifies condition (1.8). Then:

(i) If

∞∫
1

ds

f (s) + g(s)
= ∞, (1.9)

then problem (P−) does not have nonnegative solutions.
(ii) If f verifies the Keller–Osserman condition (1.2) or f verifies limt→∞ f (t) = ∞ and g verifies one of the

conditions (a) or (b) above and is such that

∞∫
1

ds

g(s)
< ∞. (1.10)

then problem (P−) admits at least a nonnegative solution u, which verifies u ∈ C1,α(Ω) for every
α ∈ (0,1).

Remark 1. Some relations between the different conditions appeared above are expected to hold. For
instance, it is easy to check that (1.9) implies (1.8), while (1.8) is also implied by (b). On the other
hand, (a) with the additional condition limt→∞ g(t) = ∞ gives (1.10).

Our proofs of existence and nonexistence for nonnegative solutions to (P±) rely in comparison
with solutions to the same problems in balls of R

N . Thus it is important to analyze the radial version
of those problems, which is in turn close to the one-dimensional version. Since these equations are
not integrable, our method inspired in [21] will be to compare them with some integrable ones and
this leads to the previous integral conditions of Keller–Osserman type involving f and g .

In this work we also are able to prove that condition (1.8) is sharp in the sense that non existence
holds not only for (P−) but also for the problem

{
�u − g(|∇u|) = f (u) in Ω,

u = n on ∂Ω,
(1.11)

when n is large enough, provided that the integral in (1.8) converges, see Theorem 6 in Section 5.
Also we find some uniqueness results for nonnegative solutions to (P+) and (P−) under some extra

assumptions on f and g , which are used to obtain the precise asymptotic behavior of all solutions
near the boundary, and are essentially the usual hypotheses in the literature when g = 0 (cf. for
instance [7]). See Theorems 8 and 9, respectively, in Section 6. All our results are illustrated by means
of examples. Moreover, we complete the study in [4] of the particular choice f (s) = sp and g(s) = sq ,
proving uniqueness when one has existence and finding a new range for the exponent p and q where
non existence holds, see Corollary 13 in Section 7.



890 S. Alarcón et al. / J. Differential Equations 252 (2012) 886–914
The rest of the paper is organized as follows: in Section 2 we deal with some preliminary prop-
erties of radial solutions to the Cauchy problems related to (P±). Section 3 is devoted to obtain
existence of solutions to the finite boundary value problems associated to (P±) while in Section 4
the existence and nonexistence results are considered. In Section 5 we show that condition (1.8) is
necessary for existence in problems (P−) and (1.11). The uniqueness issue is undertaken in Section 6
while in Section 7 some illustrative examples are analyzed. Finally we include an Appendix A where
we prove some interior gradient bounds for solutions to (P±).

2. Properties of radial solutions

In this section we are going to prove some preliminary properties of solutions to the Cauchy
problem

⎧⎨
⎩ u′′ + N − 1

r
u′ = f (u) ± g

(
u′),

u(0) = u0, u′(0) = 0,

(2.1)

where f and g are functions satisfying ( f0 − g0), and u0 � 0. By continuity, it is well known that
there exists at least a solution to (2.1). We are interested only in nonnegative solutions.

Our main result in this section is the following:

Proposition 3. Let u be a nonnegative nontrivial solution to (2.1). If u0 > 0 then u′(r) > 0, u′′(r) � 0 for r > 0.
If u0 = 0, then there exists r0 � 0 such that u ≡ 0 in [0, r0], u′(r) > 0, u′′(r) � 0 for r > r0 . In particular, u
and u′ are nondecreasing functions and for every R > 0 such that u is defined in (0, R),

u(r) � u0 + Ru′(r), r ∈ (0, R). (2.2)

Remark 2. Note that when f and g are locally Lipschitz, standard ode’s theory implies r0 = 0.

Proof. Assume first u0 > 0. From the equation we obtain u′′(0) = 1
N f (u0) > 0, so that u′′(r) > 0 if

r > 0, r close enough to zero. This implies u′(r) > 0 for r > 0 close enough to zero. Assume there
exists r1 > 0 with u′(r) > 0 if r ∈ (0, r1) and u′(r1) = 0. Then we would have u′′(r1) � 0 and the
equation would give

u′′(r1) = f
(
u(r1)

)
> 0,

a contradiction. Hence u′(r) > 0 for r > 0.
Suppose next u0 = 0. Define

r0 = sup
{

r̃: u(r) = 0 in [0, r̃]},
and let us prove that u′(r) > 0 when r > r0. Notice first that there exists a sequence rn ↓ r0 such
that u′(rn) > 0. If not, we would have u′ � 0 in [r0, r0 + ε] for some ε > 0 and this leads to u = 0 in
[r0, r0 + ε], contradicting the definition of r0.

We may assume u(rn) > 0, since in the case u(rn) = 0 we could take r̄n > rn , close to rn with
u(r̄n) > 0. Now a similar reasoning as before shows that u′(r) > 0 if r > rn . Hence u′(r) > 0 for r > r0.

Let us now deal with the sign of u′′ . We need different proofs for problem (2.1) with a plus or
with a minus sign. Let us begin with the minus sign:

u′′ + N − 1
u′ = f (u) − g

(
u′).
r
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Assume u′′(r2) < 0 for some r2 > 0. Let

r̃0 = inf
{

r̃: u′′(r) < 0 in (r̃, r2)
}
.

Since u′′(0) � 0, we have u′′(r̃0) = 0. Moreover, u′′(r) < 0 for r > r̃0, r close to r̃0. This implies that u′
is decreasing for r � r̃0, r close to r̃0. Since u is increasing, we have that

u′′ = f (u) − N − 1

r
u′ − g

(
u′)

is increasing. But then u′′(r̃0) = 0 implies that u′′ > 0 if r > r̃0, r close to r̃0, a contradiction. Thus
u′′ � 0.

Next, let us deal with the plus sign:

u′′ + N − 1

r
u′ = f (u) + g

(
u′).

For every r > r0, there exists r3 ∈ (r0, r) such that u′′(r3) > 0. If not, we would have u′′ � 0 in (r0, r)
and since u′(r0) = 0, we arrive at u′ � 0 in (r0, r), which is impossible. Let us assume that r4 =
inf{s > r3: u′′(s) = 0} exists. Then, since u′′ + N−1

r u′ is increasing in (r3, r4), we have for sufficiently
small h > 0:

(N − 1)

(
u′(r4)

r4
− u′(r4 − h)

r4 − h

)
� u′′(r4 − h) − u′′(r4) > 0.

Dividing by h and letting h → 0 we obtain

−u′(r4)

r2
4

� 0,

which is impossible. Hence u′′(s) > 0 if s > r3, and we are done since r0 < r3 < r and r > r0 is
arbitrary.

Finally, since u′′ � 0, we have that u′ is nondecreasing. Thus, for r ∈ (0, R):

u(r) = u0 +
r∫

0

u′(s)ds � u0 + Ru′(r).

This concludes the proof. �
3. Existence of solutions with finite datum

In this section we assume that f and g are functions satisfying ( f0 − g0). Here we will prove that,
under suitable conditions on the growth of g , there always exists a solution to the problems with
finite datum {

�u ± g(|∇u|) = f (u) in Ω,

u = n on ∂Ω,
(Pn±)

where n ∈ N. We warn the reader that g may have a superquadratic growth in the gradient, thus to
ensure existence of solutions we will truncate the nonlinearity, and then look for right bounds for the
gradient, in the spirit of [40] (see also [4]).
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Since in what follows it will be easier to work with |∇u|2 instead of |∇u|, we denote g̃(t) = g(
√

t)
for t � 0. Now choose M > 0 and let gM be an increasing, bounded function such that gM(t) = g̃(t)
for t ∈ [0, M]. Consider the truncated problems

{
�u ± gM(|∇u|2) = f (u) in Ω,

u = n on ∂Ω.
(3.1)

Since u = 0 is a subsolution to (3.1) while u = n is a supersolution, the result in [16] ensures the
existence of a solution u ∈ H1(Ω) which verifies 0 � u � n, and then 0 � f (u) � f (n). In particular,
u ∈ L∞(Ω), and by standard regularity theory u ∈ C1,α(Ω) (Corollary 8.35 in [30]). According to the
comparison principle (see for instance Lemma 2.1(ii) in [22]), this solution is unique.

In order to prove that the solution u to (3.1) so obtained solves (Pn±), we need to show that
a suitable value of M can be selected. This will be accomplished by means of uniform bounds for
the gradient. Indeed, if we consider f̂ (t) = f (t) if t ∈ [0,n] and f̂ (t) = f (n) if t > n, it suffices with
obtaining bounds only on ∂Ω , as the following lemma shows.

Lemma 4. Let u be the solution to (3.1). Then

|∇u| � sup
∂Ω

|∇u|.

Proof. The proof relies on an application of the maximum principle to an equation satisfied by |∇u|2.
But we first regularize the problem: let { fk}∞k=1, {gk}∞k=1 ⊆ C∞(R) such that fk and gk are increasing

for all k and fk → f̂ , gk → gM uniformly on compact sets of R. We may moreover assume that the
functions fk , gk are uniformly bounded. Consider the problems

{
�u ± gk(|∇u|2) = fk(u) in Ω,

u = n on ∂Ω.
(3.2)

Arguing as before, there exists a unique solution uk ∈ C1,α(Ω) to (3.2). Indeed, it follows by classical
regularity that u ∈ C2(Ω) ∩ C∞(Ω). Let vk = |∇uk|2. A calculation shows that

�vk = 2
N∑

i, j=1

(∂i juk)
2 + 2

N∑
i=1

∂iuk�(∂iuk).

On the other hand, differentiating in (3.2) with respect to xi , we obtain

�(∂iuk) ± g′
k

(|∇uk|2
)
∂i vk = f ′

k(uk)∂iuk,

so that

�vk ± 2g′
k(vk)∇uk∇vk = 2

N∑
i, j=1

(∂i juk)
2 + 2 f ′

k(uk)vk � 0 in Ω.

Thanks to the maximum principle, we have vk � sup∂Ω vk , that is,

|∇uk|2 � sup |∇uk|2. (3.3)

∂Ω
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Our next purpose is passing to the limit in (3.3). Since fk, gk are uniformly bounded, we obtain that
�uk is uniformly bounded in Ω , and thanks to Theorem 8.33 in [30],

|uk|C1,α(Ω) � C

for some positive constant C , not depending on k, and some fixed α ∈ (0,1). Passing to a subsequence,
we have uk → u0 in C1(Ω), and therefore u0 is a solution to (3.1). By uniqueness, u0 = u, and in
particular uk → u in C1(Ω). We may pass to the limit in (3.3) to get the lemma proved. �

To obtain bounds for the gradient of u we need thus to estimate it on ∂Ω . We will achieve this
by constructing a suitable subsolution. Notice that, thanks to the regularity of Ω , it verifies a uniform
exterior sphere condition, and hence there exists R1 > 0 such that, for every x0 ∈ ∂Ω we can find
z0 /∈ Ω with B(z0, R1) ∩ ∂Ω = {x0}. For R2 > R1 let A be the annulus {x ∈ R

N : R1 < |x − z0| < R2}.
Set D = A ∩ Ω and denote Γ1 = {x ∈ R

N : |x − z0| = R1}, Γ2 = {x ∈ R
N : |x − z0| = R2}. Assume that

the problem ⎧⎨
⎩

�v ± g(|∇v|) = f (v) in A,

v = n on Γ1,

v = 0 on Γ2,

(3.4)

admits a radial subsolution v ∈ C1(A) and choose M > supR1�r�R2
v ′(r)2. In that case, g(|∇v|) =

gM(|∇v|2), and since v � u on ∂ D , we have by comparison v � u in D . Moreover, v(x0) = n = u(x0),
so that

∂u

∂ν
(x0) � ∂v

∂ν
(x0).

Now notice that u = n on ∂Ω implies, by Hopf’s principle, that ∂u
∂ν (x0) > 0, and thus ∂Ω is a level set

for u. This entails that ν is parallel to ∇u and hence |∇u(x0)| = ∂u
∂ν (x0). It follows that

∣∣∇u(x0)
∣∣2 � v ′(R1)

2 < M.

In conclusion, u is a solution to (Pn±), as we wanted to see.
Thus the important point in the proof of existence of nonnegative solutions to (Pn±) is the obten-

tion of a radial subsolution to (3.4), that is, a function v ∈ C1([R1, R2]) verifying⎧⎨
⎩

v ′′ + N−1
r v ′ ± g(|v ′|) � f (v) in R1 < r < R2,

v(R1) = n,

v(R2) = 0,

(3.5)±

in the weak sense. For this aim, the cases with a plus sign and with a minus sign in (3.5)± have to
be analyzed separately. It turns out that the problem with the + sign is substantially simpler, since
no further growth conditions on f nor g need to be imposed. On the other hand, the obtention of
a subsolution for problem (3.5) with a minus sign is more involved, and it strongly depends on the
function g . In this case, we need to assume condition (1.8) since we will show in Section 5 that it is
necessary for existence of solutions either to (P−) or to (Pn−) when n is large enough.

Proposition 5. Let f , g be functions satisfying ( f0 − g0). Then

(i) (Pn+) admits a unique nonnegative solution un ∈ C1,α(Ω) for every n ∈ N.
(ii) If (1.8) holds, (Pn−) admits a unique nonnegative solution un for every n ∈ N.

Moreover, in both cases one has that 0 < un < n in Ω and un ∈ C1,α(Ω) for every α ∈ (0,1).
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Proof. We start proving (i). To obtain a subsolution to (3.5)+ , it suffices with choosing the unique
nonnegative solution to

⎧⎨
⎩

�v = f (v) in A,

v = n on Γ1,

v = 0 on Γ2,

which is easily constructed by means of the method of sub and supersolutions, by taking v = 0, v = n.
Thus the existence of a solution to (Pn+) is obtained thanks to the previous discussion.

Now we prove (ii). As before, it suffices with constructing a radial function verifying (3.5)− . Thus
we need a function v ∈ C1([R1, R2]) verifying

⎧⎪⎪⎨
⎪⎪⎩

(
rN−1 v ′)′ � rN−1

(
f (v) + g

(∣∣v ′∣∣)),
v(R1) = n,

v(R2) = 0.

(3.6)

With the change of variables

s =
{

log r if N = 2,

− 1
N−2

1
rN−2 if N � 3,

and letting w(s) = v(r), the inequality (3.6) gets transformed into:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w ′′ � h(s)

(
f (w) + g

(
1

rN−1

∣∣w ′∣∣))
,

w(a) = n,

w(b) = 0,

(3.7)

where a = log R1, b = log R2 if N = 2, while a = − 1
N−2

1
RN−2

1
, b = − 1

N−2
1

RN−2
2

when N � 3. The function

h(s) = r2(N−1) and ′ stands now for differentiation with respect to s. To obtain (3.7), it is enough to
have

⎧⎪⎪⎨
⎪⎪⎩

w ′′ � R2(N−1)
2

(
f (w) + g

(
R−(N−1)

1

∣∣w ′∣∣)),
w(a) = n,

w(b) = 0.

Our intention is keeping R1 fixed (recall that it comes from the uniform exterior sphere condition)
and treating R2 as a parameter. Thus if we choose R̄ > R1 and take R2 � R̄ , we are looking for a
solution to

⎧⎪⎨
⎪⎩

w ′′ = R̄2(N−1)
(

f (w) + g
(

R−(N−1)
1

∣∣w ′∣∣)),
w(a) = n, (3.8)
w(b) = 0.
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It is easily seen that solutions to (3.8) are decreasing. If we set z(s) = w(b − s), then we look for an
increasing function z which solves⎧⎪⎪⎨

⎪⎪⎩
z′′ = R̄2(N−1)

(
f (z) + g

(
R−(N−1)

1 z′)),
z(0) = 0,

z(b − a) = n.

It is therefore natural to analyze the initial value problem⎧⎪⎪⎨
⎪⎪⎩

z′′ = R̄2(N−1)
(

f (z) + g
(

R−(N−1)
1 z′)),

z(0) = 0,

z′(0) = z0,

(3.9)

for z0 > 0 and see if it is possible to choose z0 so that z(b − a) = n.
For z0 > 0, problem (3.9) admits a minimal solution, which is defined in an interval [0, T ) with

T � ∞. Moreover, when T < ∞ we have z(s) → ∞ or z′(s) → ∞ as s → T −. Notice that solutions
are increasing and convex. They are also increasing with z0.

We claim that condition (1.8) implies that z(s) → ∞ as s → T (that is, the solution cannot cease
to exist because of the blow-up of the derivative). If this were not the case, we would have z(s) → z̄
as s → T for a certain finite z̄ and z′(s) → ∞ as s → T . Let us rule out this possibility. If we multiply
the equation by z′ , taking into account that z is bounded we have

z′z′′

A + Bg(R−(N−1)
1 z′)

� z′,

for some positive constants A and B . Integrating in [0, s) for s close to T and then letting s → T , we
obtain, with a change of variables in the integral:

∞∫
R−(N−1)

1 z0

τ

A + Bg(τ )
dτ � R−(N−1)

1 z̄,

which contradicts condition (1.8). Hence, we have shown that T < ∞ implies z(s) → ∞ (and thus
also z′(s) → ∞) as s → T .

Denote by T (z0) the maximal interval of existence of the minimal solution to (3.9). Two options
may occur: either T (z0) = ∞ for every z0 > 0, that is, the minimal solution is always global, or there
exists z1 > 0 such that T (z1) < ∞. In the first case, choosing δ > 0 small enough, and since z(s) � z0s
by convexity, we have z(δ) � z0δ > n, provided z0 is large enough. Hence there exists s0 ∈ (0, δ) such
that z(s0) = n. We may now choose R2 such that b − a = s0, and the existence of a function verifying
(3.5) is shown in this case.

In the remaining case T (z1) < ∞ for some z1 > 0, we have, since solutions are increasing with z0,
that T (z0) < ∞ for every z0 > z1. In particular, for every z0 > z1 there exists s0 ∈ (0, T (z0)) such that
z(s0) = n. Since z(s0) � z0s0, we also have s0 → 0 as z0 → ∞. We choose as before a large value of
z0 and then R2 so that b − a = s0, and in this way we have constructed the desired subsolution. This
concludes the proof. �
4. Existence and nonexistence of solutions to (P±)

This section is dedicated to prove Theorems 1 and 2, that is, existence and nonexistence results for
problems (P±). Let us first comment on the method of proof. To show the existence of a solution to
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either problem, we consider the solutions un to the finite problems (Pn±) furnished by Proposition 5.
If B ⊂ Ω is an arbitrary ball, then we obtain by the comparison principle in Lemma 2.1(ii) of [22] that
un � un,B , where un,B is the unique solution to (Pn±) in the ball B . Assume we prove

sup
n∈N

un,B(x) < ∞ x ∈ B. (4.1)

This would imply that un is locally uniformly bounded in Ω , and since the sequence un is increasing
we have un → u := supn∈N un point-wise in Ω . Thanks to Theorem A.1 in Appendix A, we would
have that |∇un| is locally uniformly bounded. Then we would obtain that �un = hn , for a function hn

which is locally uniformly bounded. Using classical regularity (for instance (4.45) in [30]), we obtain
bounds for un in C1,α(Ω) for every α ∈ (0,1). It is then standard to conclude by means of a diagonal
procedure that, passing to a subsequence, un → u in C1(Ω). Then u is a solution to (P±), and by
standard regularity u ∈ C1,α(Ω) for every α ∈ (0,1). We remark that in the previous reasoning the
radius of the ball B can be taken as small as desired.

As for the nonexistence issue, let B be a large ball containing Ω and denote again by un,B the
solution to (Pn±) in B . If either problem (P+) or (P−) had a solution, we would obtain by comparison
that u � un,B . We would arrive at a contradiction if we prove that

un,B → ∞ uniformly in B. (4.2)

Thus it is clear that only the radial case needs to be dealt with.
With these ideas in mind, we proceed to prove Theorems 1 and 2.

Proof of Theorem 1. We need only prove (4.1) or (4.2). For notational simplicity we will drop the
subindex B and denote the solution to (Pn±) in the ball B by un . Notice that un has to be radially
symmetric, and thus it verifies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′ + N − 1

r
u′ = f (u) − g

(∣∣u′∣∣),
u′(0) = 0,

u(R) = n,

(4.3)

where ′ stands for derivative with respect to r = |x|. Denote by u0,n = un(0) = min un .
Let us prove part (i), that is, nonexistence of solutions for (P+). Assume first f does not verify

the Keller–Osserman condition (1.2). Since, according to Proposition 3, u′ > 0 we have from (4.3) that
u′′ � f (u), so that multiplying by u′ and integrating in (0, r) we arrive at u′ �

√
2F (u), where F is

the primitive of f vanishing at zero. Thus

n∫
u0,n

ds√
2F (s)

� R.

Letting n → ∞ we obtain that u0,n → ∞ since f does not verify (1.2). Thus (4.2) holds and this shows
nonexistence.

Next, suppose condition (1.6) holds. Thanks to Proposition 3, we have u′, u′′ � 0, so that (4.3)
implies f (u) � g(u′). Hence

u′
−1

� 1,

g ( f (u))
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and integrating in (r0, R) for some r0 close to R:

n∫
un(r0)

ds

g−1( f (s))
� R.

Letting n → ∞ and using condition (1.6) we deduce again that un(r0) → ∞, so that u0,n → ∞, and
hence no nonnegative solutions to (P+) exist.

Let us prove now the existence result in part (ii). We first show that condition (1.7) allows us
to construct a radial supersolution in a ball B which blows up on ∂ B , provided that the radius R
of the ball is small enough. We will assume for the moment that R � 1/2, and will search for a
supersolution in the form

ū(r) = φ
(

R2 − r2),
where φ(0) = ∞. It is not hard to show that ū will be a supersolution if

4r2φ′′ − 2Nφ′ + g
(
2r

∣∣φ′∣∣) � f (φ),

where ′ stands for differentiation with respect to t = R2 − r2. Assume for the moment that φ′ < 0,
φ′′ > 0. Then it suffices to have

φ′′ − 2Nφ′ + g
(−φ′) � f (φ). (4.4)

Let us now choose the function φ. Thanks to condition (1.7), the problem

{
Γ (|φ′|) = 1

2 F (φ) t > 0,

φ(0) = ∞,
(4.5)

admits a unique solution. It is more or less standard tho check that φ′ < 0 (and moreover φ(t),
φ′(t) → 0 as t → ∞). Notice that the convergence of the integral in (1.7) implies

Γ −1( 1
2 F (s))

s
→ ∞ (s → ∞),

and hence

|φ′(t)|
|φ(t)| → ∞ (t → 0).

In particular, there exists ε > 0 such that φ(t) � |φ′(t)| if 0 < t � ε. Restrict R further to have R2 � ε,
so that t = R2 − r2 � ε. Let us see that φ verifies the required properties. Taking derivative in (4.5)
we have

φ′′ = 1

2
f (φ)

−φ′

2g(−2φ′) + 4N(−φ′)
.

We deduce then that φ′′ > 0 and

φ′′ � 1
f (φ). (4.6)
2
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On the other hand, we have by the monotonicity of f and g:

F (t) =
t∫

0

f (s)ds � f (t)t

and

Γ (t) =
2t∫

0

g(s)ds + 2Nt2 �
2t∫

t

g(s)ds + 2Nt2 � tg(t) + 2Nt2.

Then

g
(−φ′) − 2Nφ′ � Γ (−φ′)

−φ′ = 1

2

F (φ)

−φ′ � 1

2

f (φ)φ

−φ′ � 1

2
f (φ). (4.7)

Adding (4.6) and (4.7) we obtain (4.4).
To summarize, we have constructed a supersolution ū to (4.3) in B , with ū = ∞ on ∂ B , with the

only restriction that R is small enough. It follows by comparison that un,B � ū in B , and hence (4.1)
follows, provided only that R is sufficiently small. Thus existence of a nonnegative solution to (P+) is
proved in this case. �
Proof of Theorem 2. To show part (i), we prove (4.2). Recall that, the solution un,B to (Pn±) verifies
the Cauchy problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′ + N − 1

r
u′ = f (u) + g

(∣∣u′∣∣),
u′(0) = 0,

u(0) = u0,n,

(4.8)

and thanks to Proposition 3, it verifies u′(r) � 0, u(r) � u0 + Ru′(r). Hence if we assume that R � 1,
we also have u′′ � f (u)+ g(u′) � f (u0,n + Ru′)+ g(u′) � f (u0,n + Ru′)+ g(u0,n + Ru′). It follows after
an integration in (r0, R) for some r0 close to R that

u′(R)∫
u′(r0)

ds

f (u0,n + R s) + g(u0,n + R s)
� R.

Let us set u0,n + Rs = τ ; since the solution to (Pn±) verifies n = u(R) � u0,n + Ru′(R), we arrive at

n∫
u0,n

dτ

f (τ ) + g(τ )
� 1.

We mention in passing that u0,n = 0 is only possible when the integral converges at zero, so no
problem arises in this case (cf. a related situation in Theorem 1.2 in [21]). The divergence of the
integral implies u0,n → ∞ as n → ∞, and (4.2) gets proved. Thus no solutions exist under condition
(1.9).
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To show the existence result in part (ii), we argue as in Theorem 1 and prove (4.1). Notice that, if
f verifies the Keller–Osserman condition (1.2), and since un,B satisfies �u � f (u) in B , we obtain by
comparison that un,B � U , where U is the minimal solution to �U = f (U ) in B , with U = ∞ on ∂ B .
Thus (4.1) is immediate in this case.

So assume limt→∞ f (t) = ∞ and g verifies condition (1.10). Since the equation in (4.8) can be
written as (rN−1 u′)′ = rN−1( f (u) + g(u′)), we can integrate in (0, r) for an arbitrary r and use that u
and u′ are increasing (Proposition 3) to obtain

u′(r) = 1

rN−1

r∫
0

sN−1( f
(
u(s)

) + g
(
u′(s)

))
ds

� r

N

(
f
(
u(r)

) + g
(
u′(r)

))
.

Taking this inequality to (4.8) we obtain that

u′′ � 1

N

(
f (u) + g

(
u′)) � 1

N

(
f (u0,n) + g

(
u′)). (4.9)

When u0,n > 0, it follows by integrating in (0, R) and performing the standard change of variables
s = u′(r) in the integral that

1

N
R �

u′(R)∫
0

1

f (u0,n) + g(s)
ds �

∞∫
0

1

f (u0,n) + g(s)
ds. (4.10)

If we had u0,n → ∞ the last integral in (4.10) would tend to zero by dominated convergence and we
would reach a contradiction. Thus u0,n remains bounded and this shows (4.1), as was to be proved. �
5. Necessity of condition (1.8)

In this section we will prove that condition (1.8) is necessary for problem (P−) to have a solution.
Moreover, it is also necessary for problem (Pn−) when n is sufficiently large. This result is in the spirit
of the nonexistence example in [51] (see Theorem 1 in Chapter III, §16 there).

Thus our main result here is:

Theorem 6. Let f and g be functions satisfying ( f0 − g0), and assume that limt→∞ f (t) = ∞. If condition
(1.8) does not hold, that is,

∞∫
1

s

g(s)
ds < ∞, (5.1)

then problem (P−) does not have any nonnegative solution. Moreover, there exists n0 = n0(Ω) such that the
problem with finite boundary datum (Pn−) does not have nonnegative solutions u ∈ C1(Ω) for n � n0 .

Remark 3. A slight modification of the proof of Theorem 6 shows that if h ∈ C1(∂Ω) is positive, the
problem {

�u − g(|∇u|) = f (u) in Ω,

u = h on ∂Ω,

has no nonnegative solutions u ∈ C1(Ω) if |h|∞ is large enough.
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Let us begin by considering the particular instance where Ω = B R . In this case, we will show that
no radial solutions exist in both situations.

Lemma 7. Assume g verifies (5.1). Then problem (P−) does not have radial nonnegative solutions. Moreover,
the problem with finite datum

{
�u − g(|∇u|) = f (u) in B R ,

u = n on ∂ B R ,
(5.2)

does not have nonnegative solutions if n is large.

Proof. Let us show first that (P−) does not admit radial nonnegative solutions. It follows from (4.9)
in the proof of Theorem 2 that

u′u′′ � 1

N

(
f (u) + g

(
u′))u′ � 1

N
g
(
u′)u′.

Thus if we divide by g(u′) and integrate between r0 and r for some arbitrary r0 ∈ (0, R) and r close
to R , we obtain

u′(r)∫
u′(r0)

s

g(s)
ds � 1

N

(
u(r) − u(r0)

)
,

and we arrive at a contradiction when we let r → R thanks to (5.1). Hence no radial nonnegative
solutions to (P−) can exist.

Let us turn now to the proof that no solutions to (5.2) exist when n is large enough. We assume
that there exists a sequence nk → ∞ such that each problem (5.2) with n = nk has a nonnegative
solution uk . By uniqueness, this solution must be radial, and hence it verifies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′ + N − 1

r
u′ = f (u) + g

(∣∣u′∣∣),
u′(0) = 0,

u(R) = nk.

Let u0,k = uk(0). Since we may assume that nk is increasing in k and solutions to the associated initial
value problem are also increasing with respect to the initial datum, we have that u0,k is increasing. If
u0,k → ∞, we would obtain (4.10), leading to a contradiction as in the proof of Theorem 2. Thus u0,k
is bounded.

Let rk = inf{r ∈ (0, R): u′
k(r) > 1}. Observe that rk exists for large k, for otherwise u′

k � 1 in (0, R),
and this yields the contradiction nk � R + u0,k . It follows that uk(rk) is bounded, so that, arguing as
in the first part of the proof:

u′
k(R)∫
1

s

g(s)
ds � 1

N

(
nk − uk(rk)

)
,

leading to a contradiction with (5.1). Thus there can be no solutions to (5.2) when n is large enough,
and this concludes the proof. �
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Let us now prove Theorem 6. The proof relies in showing that if a solution to either (P−) or to
(Pn−) exists in a smooth bounded domain Ω , then we can construct a solution for the same problem
in a suitable ball B R , contradicting Lemma 7. The argument to do this is similar to the one used in
Section 3: we truncate the function g , find a solution to the truncated problem and then show that
it is a solution to the original problem by obtaining bounds for the gradient.

Proof of Theorem 6. Assume first that for some n there exists a solution u ∈ C1(Ω) to

{
�u − g(|∇u|) = f (u) in Ω,

u = n on ∂Ω.
(5.3)

Take an arbitrary ball B R ⊂ Ω which is tangent to ∂Ω at some x0 ∈ ∂Ω . For M > supΩ |∇u|2, consider
the truncated problem

{
�v − gM(|∇v|2) = f (v) in B R ,

v = n on ∂ B R ,

where gM is a bounded function with gM(t2) = g(t) if t2 � M . As in Section 3, there exists a nonneg-
ative solution v to this problem by means of the method of sub and supersolutions. By uniqueness
this solution is radial and by Proposition 3, it verifies v ′ � 0, while v ′ is nondecreasing.

On the other hand, we have by comparison that u < v in B R , and since u(x0) = v(x0):

∂v

∂ν
(x0) � ∂u

∂ν
(x0),

so that

v ′(R)2 �
∣∣∇u(x0)

∣∣2
< M.

Since v ′ is increasing and positive we have v ′(r)2 < M for 0 � r � R , so that v is a solution to (5.2),
contradicting Lemma 7 if n is large enough (depending only on R).

Finally, let us tackle the question of nonexistence for problem (P−). Assume there exists a solu-
tion u to (P−). Take a ball B R(x0) ⊂ Ω tangent to ∂Ω at some point z0. For small ε > 0 let xε =
x0 − εν(z0), where ν(z0) is the outward unit normal to ∂Ω at z0, so that B R(xε) ⊂⊂ Ω . Denote
n = n(ε) = sup∂ B R (xε) u. Then

{
�u − g(|∇u|) = f (u) in B R(xε),

u � n on ∂ B R(xε),

and an argument like in the first part of the proof shows that the problem

{
�v − g(|∇v|) = f (v) in B R(xε),

v = n on ∂ B R(xε),

has a solution. However, when ε → 0, n → ∞, and we arrive at a contradiction with the already
proved nonexistence of solutions to (5.3) for large n. This concludes the proof. �
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6. Uniqueness

In this section we consider some results concerning uniqueness of nonnegative solutions to (P±).
As we mentioned earlier, uniqueness is achieved thanks to some special monotonicity of the non-
linearities f and g , together with the knowledge of the exact boundary behavior of all possible
nonnegative solutions. To obtain this boundary behavior, we will assume that f verifies the Keller–
Osserman condition (1.2), and another condition which is usual in the literature, namely:

lim sup
t→∞

ψ f (λt)

ψ f (t)
< 1 (6.1)

for every λ > 1, where

ψ f (t) =
∞∫

t

ds√
F (s)

(6.2)

(cf. [7]). Let us mention that this condition holds for instance when f (t)/t p is increasing for some p
and large t , as can be easily checked.

We prove the following theorems:

Theorem 8. Let f and g be functions satisfying ( f0 − g0) and assume that f verifies (1.2), (6.1), f (t)/t is
increasing and g(t)/t is decreasing. Then problem (P+) admits a unique nonnegative solution.

Theorem 9. Let f and g be functions satisfying ( f0 − g0). Assume that g verifies (1.8) and (6.1) with ψ f
replaced by ψg , where

ψg(t) =
∞∫

t

ds

g(s)
. (6.3)

Assume moreover that f (t)/t and g(t)/t are increasing and that

lim
t→∞

f (t)

g(t)
= 0.

Then problem (P−) has a unique nonnegative solution.

Let us begin with problem (P+). The boundary behavior is given in the next lemma, where we
denote d(x) = dist(x, ∂Ω).

Lemma 10. Assume f and g verify ( f0 − g0) and that f verifies (1.2). Assume moreover that g verifies

lim sup
t→∞

g(t)

t
< ∞. (6.4)

Then every nonnegative solution u to (P+) is such that

lim
d(x)→0

ψ f (u(x))

d(x)
= 1, (6.5)
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where ψ f is given by (6.2). If in addition f verifies (6.1), then

lim
d(x)→0

u(x)

φ f (d(x))
= 1, (6.6)

where φ f is the inverse function of ψ f .

Proof. The proof of boundary estimates relies on comparison with solutions in balls and annuli. For
this sake, we need to analyze first the radial case. Thus let u be a solution to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′ + N − 1

r
u′ = f (u) − g

(∣∣u′∣∣),
u′(0) = 0,

u(R) = ∞.

It follows from Proposition 3 that u′′ � 0, u′ > 0, so that u′′ � f (u). Multiplying by u′ and integrating
we obtain u′ �

√
2F (u), so that in a standard way:

∞∫
u(r)

ds√
2F (s)

� R − r,

that is,

lim sup
r→R

ψ f (u(r))

R − r
� 1.

To obtain the complementary inequality, we first observe that since f verifies the Keller–Osserman
condition, it follows that

lim
t→∞

√
F (t)

f (t)
= 0

(see the Appendix in [6]) and thus condition (6.4) implies that for some positive constant C :

g(u′(r))
f (u(r))

� C
u′(r)

f (u(r))
� C

√
2F (u(r))

f (u(r))
→ 0 as r → R.

Now notice that u′(r)
r �

√
2F (u)
r0

if r � r0, where r0 ∈ (0, R) is arbitrary. Thus

u′′ � f (u) − g
(
u′) − N − 1

r0

√
2F (u)

� f (u)

(
1 − g(u′)

f (u)
− N − 1

r0

√
2F (u)

f (u)

)
� (1 − ε) f (u)

for some small ε, provided r is close enough to R . An integration as before provides

lim inf
ψ f (u(r)) � 1.
r→R R − r
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Thus (6.5) holds in this case. It is shown with only minor modifications that it also holds when the
domain Ω is an annulus.

Now let u be a solution to (P+) in a smooth bounded domain Ω . Choose a radius R > 0 such
that ∂Ω verifies the uniform interior sphere condition. For x ∈ Ω with d(x) < R , let x̄ ∈ ∂Ω be its
projection onto ∂Ω . There exists zx̄ ∈ Ω such that the ball B R(zx̄) is contained in Ω and is tangent to
∂Ω at x̄. Let uB be a solution to (P+) in this ball. We obtain by comparison:

u(x) � uB
(|x − zx̄|

)
,

for x ∈ B R(zx̄). Using d(x) = |x − x̄| = R − |x − zx̄|, and since ψ f is decreasing,

ψ f (u(x))

d(x)
� ψ f (uB(|x − zx̄|))

d(x)
= ψ f (uB(|x − zx̄|))

R − |x − zx̄| . (6.7)

Thanks to (6.5) in the radial case, we know that for a small ε > 0 there exists δ > 0 such that for
d(x) < δ the last term in (6.7) is � 1 − ε. Hence

ψ f (u(x))

d(x)
� 1 − ε when d(x) < δ.

This immediately gives

lim inf
d(x)→0

ψ f (u(x))

d(x)
� 1.

For the complementary inequality we use the uniform exterior sphere condition. Given x ∈ Ω close
to ∂Ω , we take its projection x̄ ∈ ∂Ω . There exist R ′ > 0 (not depending on x) and wx̄ /∈ Ω such that
B R ′ (wx̄) ∩ Ω = ∅, B R ′ (wx̄) ∩ Ω = {x̄}. Take R ′′ � 1 so that Ω ⊂ B R ′′(wx̄).

Then Ω ⊆ A := B R ′′(wx̄) \ B R ′ (wx̄) and taking any nonnegative solution u A to (P+) in the annulus
A we obtain by comparison u(x) � u A(|x − wx̄|), so that

ψ f (u(x))

d(x)
� ψ f (u A(|x − wx̄|))

|x − wx̄| − R ′ � 1 + ε,

when d(x) < δ. Thus (6.5) is proved.
Finally, when condition (6.1) holds, it is well known that (6.5) implies (6.6) (see [7]). �
We now prove the uniqueness result for problem (P+). The proof is an adaptation of the argument

in [26].

Proof of Theorem 8. Let u, v be arbitrary nonnegative solutions to (P+). Notice that under the as-
sumptions on g we have (6.4), so that Lemma 10 can be applied and it gives

lim
d(x)→0

u(x)

v(x)
= 1.

Choose ε > 0. Then there exists δ > 0 so that

(1 − ε)v(x) � u(x) � (1 + ε)v(x) (6.8)

for d(x) � δ. Let Ωδ = {x ∈ Ω : d(x) > δ} and consider the problem{
�w + g(|∇w|) = f (w) in Ωδ,

δ
(6.9)
w = u on ∂Ω ,
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which has as its unique solution w = u. Now the monotonicity of f (t)/t and g(t)/t implies that
(1 + ε)v is a supersolution to (6.9), while (1 − ε) v is a subsolution. It follows by comparison that
(1 − ε)v � u � (1 + ε)v in Ωδ . Hence the inequality (6.8) holds throughout Ω , and we can let ε → 0
to obtain u = v . This shows uniqueness. �

Now let us turn once again to problem (P−). We have an analogue of Lemma 10:

Lemma 11. Assume f and g verify ( f0 − g0), g verifies (1.8) and (6.1) holds with ψ f replaced by ψg , where
ψg is given by (6.3). If f satisfies in addition

lim
t→∞

f (t)

g(t)
= 0, (6.10)

then every nonnegative solution to (P−) verifies

u(x) ∼
1∫

d(x)

φg(t)dt (6.11)

as d(x) → 0, where φg is the inverse function of ψg .

Proof. The proof of (6.11) is obtained by comparison with solutions in balls and annuli, as in
Lemma 10. Thus we only prove it in the case Ω = B R . If u is a radial nonnegative solution, then

u′′ + N − 1

r
u′ = f (u) + g

(
u′) � g

(
u′). (6.12)

Notice that u′′ is not necessarily increasing, but the group u′′ + N−1
r u′ is, thanks to Proposition 3.

Thus for every r0 ∈ (0, R) and r ∈ (r0, R):

u′(r) = u′(r0) +
r∫

r0

u′′(s) � u′(r0) +
r∫

r0

(
u′′(s) + N − 1

s
u′(s)

)
ds

� u′(r0) + (r − r0)

(
u′′(r) + N − 1

r
u′(r)

)

� u′(r0) + (N − 1)
R − r0

r0
u′(r) + (R − r0)u′′(r).

Taking r0 close enough to R so that (N − 1)
R−r0

r0
� 1

2 , we obtain

u′(r) � 2u′(r0) + 2(R − r0)u′′(r).

Dividing by u′′(r), letting r → R and then r0 → R , we obtain u′(r)/u′′(r) → 0 as r → R . Thus from
(6.12):

(1 + ε)u′′ � g
(
u′),



906 S. Alarcón et al. / J. Differential Equations 252 (2012) 886–914
when r is close enough to R . Dividing by g(u′) and integrating in (r, R) for r close to R:

∞∫
u′(r)

ds

g(s)
� 1

1 + ε
(R − r).

Hence we arrive at

lim inf
r→R

ψg(u′(r))
R − r

� 1.

On the other hand, since u′ is increasing, it is shown as before that u(r)/u′(r) → 0 as r → R , and in
particular u � u′ if r is close to R . Thanks to condition (6.10) we also have f (t) � εg(t) when t is
large enough. Then

u′′ � u′′ + N − 1

r
u′ = f (u) + g

(
u′) � f

(
u′) + g

(
u′) � (1 + ε)g

(
u′),

and it follows that

∞∫
u′(r)

ds

g(s)
� (1 + ε)(R − r).

We then obtain

lim
r→R

ψg(u′(r))
R − r

= 1.

With the additional condition (6.1) with ψg we also have

lim
r→R

u′(r)
φg(R − r)

= 1,

as in Lemma 10. Thanks to l’Hôpital rule we deduce that

u(r) ∼ u(0) +
r∫

0

φg(R − s)ds = u(0) +
R∫

R−r

φg(t)dt ∼
1∫

R−r

φg(t)dt,

which is (6.11) in a ball of radius R . This concludes the proof. �
Remark 4. We notice that φ′

g = −g(φg), so that

1∫
R−r

φg(t)dt = −
1∫

R−r

φg(t)φ′
g(t)

g(φg(t))
dt =

φg (R−r)∫
φg (1)

s

g(s)
ds,
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and the boundary behavior (6.11) can be written as

u(x) ∼
φg (d(x))∫

1

s

g(s)
ds

when d(x) → 0.

We close this section by mentioning that the proof of Theorem 9 is a slight variation of that of
Theorem 8, using Lemma 11 instead of Lemma 10, and therefore it will not be given.

7. Some examples

In this section we quote some important cases of nonlinearities f and g , and particularize the
results of our paper to them. It is easily seen that conditions (a) or (b) in the Introduction hold for all
of them. Let us begin with (P+).

7.1. (P+) with g(t) = tq for some q > 0

In this case g−1(t) = t1/q , while Γ (s) = (2s)q+1

q+1 + 2Ns2. Thus when 0 < q � 1 we have Γ (s) ∼
constant · s2 as s → ∞, so that Γ −1(s) ∼ constant · √s as s → ∞, and condition (1.7) is nothing more
than Keller–Osserman condition (1.2). When q > 1, on the contrary, Γ (s) ∼ constant · sq+1 as s → ∞,

so that Γ −1(s) ∼ constant · s
1

q+1 and (1.7) reads as

∞∫
1

ds

F (s)
1

q+1

< ∞.

So that we obtain directly from Theorem 1:

Corollary 12. Let f be an increasing continuous function with f (0) = 0. Then for 0 < q � 1, the problem

{
�u + |∇u|q = f (u) in Ω,

u = ∞ on ∂Ω,
(7.1)

admits a nonnegative solution if and only if f verifies (1.2), while for q > 1, (7.1) admits a nonnegative solution
when

∞∫
1

ds

F (s)
1

q+1

< ∞ (7.2)

and does not have any nonnegative solution when

∞∫
1

ds

f (s)
1
q

= ∞. (7.3)

Let us mention that conditions (7.2) and (7.3) are not exhaustive. This is easily seen by taking
f (t) = tq(log t)α , for α verifying q < α � q + 1, where neither condition (7.2) nor (7.3) hold.
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As particular cases of Corollary 12, let us single out the functions f (t) = t p , p > 0 and f (t) = et −1,
where all possibilities are exhausted. The next two corollaries complement the results in [4], since
uniqueness and nonexistence were not considered there.

Corollary 13. Let p,q > 0. For the problem{
�u + |∇u|q = up in Ω,

u = ∞ on ∂Ω,

we have:

(i) If 0 < q � 1, there exists a nonnegative solution if and only if p > 1, and it is unique.
(ii) If q > 1, there exists a nonnegative solution if and only if p > q.

Corollary 14. The problem {
�u + |∇u|q = eu − 1 in Ω,

u = ∞ on ∂Ω,

admits a nonnegative solution for every q > 0. This solution is unique when 0 < q � 1.

7.2. (P+) with g(t) = et − 1

This is an interesting example since we are analyzing a problem with a huge growth in the gradi-
ent. Notice that Γ (s) ∼ e2s for large s so that Γ −1(s) ∼ 1

2 log s as s → ∞. Since also g−1(t) ∼ log t we
immediately have from Theorem 1 that the condition

∞∫
1

ds

log F (s)
< ∞ (7.4)

implies existence, while

∞∫
1

ds

log f (s)
= ∞ (7.5)

gives nonexistence. The important remark is that conditions (7.4) and (7.5) are complementary. This
is easily seen by noticing that F (2t) � f (t) for t � 1, so that the divergence of the integral in (7.4)
implies (7.5) and the convergence of the integral in (7.5) implies condition (7.4). Thus:

Corollary 15. Let f be a continuous increasing function verifying f (0) = 0. Then the problem{
�u + e|∇u| − 1 = f (u) in Ω,

u = ∞ on ∂Ω,

admits a nonnegative solution if and only if

∞∫
1

ds

log f (s)
< ∞.

Let us finally consider problem (P−).
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7.3. (P−) with g(t) = tq for some q > 0

Condition (1.8) is equivalent to q � 2, while (1.10) in Theorem 2 means q > 1. On the other hand,
condition (1.9), which in our present situation translates into

∞∫
1

ds

f (s) + sq
= ∞, (7.6)

is equivalent, when 0 < q � 1, to

∞∫
1

ds

f (s)
= ∞. (7.7)

Indeed, it is clear that (7.6) implies (7.7). For the other implication, if we assume that (7.6)
does not hold, since f (s) + sq is increasing, we have that lims→∞ s

f (s)+sq = 0, which implies that

lims→∞ s
f (s) = 0, so that f (s) ∼ f (s) + sq as s → ∞, and then (7.7) does not hold. Hence

Corollary 16. Let f be increasing and continuous. Assume moreover that f (0) = 0 and limt→∞ f (t) = ∞.
Then for 1 < q � 2 there exists at least a nonnegative solution to

{
�u − |∇u|q = f (u) in Ω,

u = ∞ on ∂Ω.
(7.8)

When 0 < q � 1 and f verifies (1.2) there exists a nonnegative solution to (7.8), and there exists none when

∞∫
1

ds

f (s)
= ∞.

As before, the two important cases f (t) = t p , p > 0 and f (t) = et − 1 give:

Corollary 17. Let p,q > 0. Then the problem

{
�u − |∇u|q = up in Ω,

u = ∞ on ∂Ω,

has no nonnegative solutions if either q > 2 or if p,q � 1. When 1 < q � 2 or p > 1, there exists a nonnegative
solution. Moreover, the solution is unique if 1 � p < q � 2.

Corollary 18. Let q > 0. The problem

{
�u − |∇u|q = eu − 1 in Ω,

u = ∞ on ∂Ω,

has no nonnegative solution if q > 2, while it has at least one when 0 < q � 2.

Remark 5. As in the case considered in Section 7.1, the conditions in Corollary 16 are not exhaustive.
For instance, the corollary cannot be applied to the function f (t) = t(log t)α when 1 < α � 2.
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7.4. (P−) with g(t) = t2 log(t + 1)

This is in our opinion one of the most interesting cases in our study, since it consists in an equation
with a superquadratic growth in the gradient. It is not hard to see that condition (1.8) is verified.
Moreover, also condition (1.10) in Theorem 2 holds, so that:

Corollary 19. Assume f is an increasing continuous function verifying f (0) = 0 and limt→∞ f (t) = ∞. Then
the problem

{
�u − |∇u|2 log(|∇u| + 1) = f (u) in Ω,

u = ∞ on ∂Ω,

admits a nonnegative solution. If moreover f (t)
t is increasing and

lim
t→∞

f (t)

t2 log t
= 0,

then the solution is unique.
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Appendix A. Gradient bounds

It is important for the existence proofs in Section 4 to dispose of interior gradient bounds for
solutions to the equations

�u ± g
(|∇u|) = f (u) in Ω. (A.1)

These bounds can be obtained independently of the growth of the function g . However, we need to
impose restrictions (a) or (b) in the introduction, which are of technical nature.

By modifying the arguments in the Appendix to [35], where the case g(t) = tq , q > 0 was consid-
ered, we are going to prove:

Theorem A.1. Let f and g be increasing continuous functions with f (0) = g(0) = 0. Assume g verifies one of
the following two conditions:

(a) There exists t0 > 0 such that g is differentiable for t � t0 and

g′(t)
g(t)2

� Ct−γ , t � t0

for some γ > 2, or
(b) There exists a positive constant C such that |g(t)| � Ct2 , for large t.
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Let u ∈ C1(Ω) be a nonnegative solution to (A.1). Then for every pair of smooth subdomains Ω ′ ⊂⊂
Ω ′′ ⊂⊂ Ω there exists a constant C depending only on | f (u)|L∞(Ω ′′) , Ω ′ , Ω ′′ and g such that

sup
Ω ′

|∇u| � C . (A.2)

Proof. As in the proof of Lemma 4, since it is easier to deal with |∇u|2 than with |∇u|, we set
g(t) = g̃(t2).

Let us begin with case (b), which is more or less classical. If u ∈ C1(Ω) is a solution to (A.1),
we have �u ∈ L∞

loc(Ω), so that by standard regularity u ∈ W 2,p
loc (Ω) for every p > 1. We may use

Theorem 6.5 in Chapter IV of [33] to obtain that for Ω ′ ⊂⊂ Ω , there exists α ∈ (0,1) and a constant
M > 0 which only depends on |u|L∞(Ω ′) , | f (u)|L∞(Ω ′) , the constant C in (b) and the distance from Ω ′
to ∂Ω , such that

|u|C1,α(Ω ′) � M.

This shows (A.2) in case (b).
As for case (a), notice that we may assume limt→∞ g(t) = ∞, otherwise (b) holds. The condition

on g implies

g̃′(t)
g̃(t)2

� Ct− 1+γ
2 (A.3)

for large t and some positive constant C . By direct integration it is also easy to see that this entails

g̃(t) � Ct
γ −1

2 (A.4)

for large t and some positive C .
By approximation, as in Lemma 4, we may assume that g̃ and f are C1. More precisely, let { fk},

{gk} be sequences of C1 functions such that fk → f , gk → g̃ uniformly in compacts of R. We may
also assume that fk is increasing and gk verifies condition (a) with a uniform constant C (notice that
g is C1 for large t , so we could take gk(t) = g̃(t) for large t if we wish). Let Ω ′ ⊂⊂ Ω ′′ ⊂⊂ Ω be
smooth subdomains. The problem

{
�v ± gk(|∇v|) = fk(v) in Ω ′,
v = u on ∂Ω ′,

has a unique solution vk ∈ C2(Ω ′). The existence follows by the method of sub and supersolutions
and the uniqueness is a consequence of the comparison principle in [22]. Assuming we prove

sup
Ω ′

|∇vk| � C (A.5)

for a constant C which does not depend on k, we can argue as in Lemma 4 to deduce that (passing
to a subsequence) vk → u in C1(Ω ′). Letting k → ∞ in (A.5) we obtain (A.2) for u.

Thus we assume f and g̃ are C1. Next take ϕ ∈ C∞
0 (Ω ′′) such that ϕ ≡ 1 in Ω ′ , 0 � ϕ � 1 and

|�ϕ| � Cϕθ , |∇ϕ|2 � Cϕ1+θ , for some θ ∈ (0,1) to be chosen later.
Let w = |∇u|2. We have seen in Lemma 4 that w verifies the equation

�w = 2
∣∣D2u

∣∣2 + 2 f ′(u)w ∓ 2g̃′(w)∇u∇w
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in Ω , so that the function z := ϕw verifies

�z = 2ϕ
∣∣D2u

∣∣2 + 2ϕ f ′(u)w ∓ 2g̃′(w)ϕ∇u∇w + 2∇w∇ϕ + w�ϕ.

Now notice that z = 0 outside Ω ′′ . Hence there exists x0 ∈ Ω ′′ such that z achieves its maximum
at x0. Since �z(x0) � 0 and ∇z(x0) = 0, we have

2ϕ
∣∣D2u

∣∣2 � ∓2g̃′(w)∇u∇ϕw + |∇ϕ|2
ϕ

w − w�ϕ

� 2g̃′(w)|∇u||∇ϕ|w + |∇ϕ|2
ϕ

w + w|�ϕ|

� C g̃′(w)ϕ
1+θ

2 w
3
2 + Cϕθ w, (A.6)

at the point x0, where we have used g̃′ � 0 and f ′ � 0. On the other hand, thanks to Cauchy–Schwarz
inequality, we have

(�u)2 =
(

N∑
i=1

∂iiu

)2

� N
N∑

i=1

(∂iiu)2 � N
∣∣D2u

∣∣2
,

so that (A.6) implies that

2

N
ϕ(�u)2 � C g̃′(w)ϕ

1+θ
2 w

3
2 + Cϕθ w

at the point x0.
Moreover, using Eq. (A.1),

(�u)2 = (
g̃(w) ∓ f (u)

)2 �
(

g̃(w) − C
)2 � C g̃(w)2 − C,

where C depends on g̃ and | f (u)|L∞(Ω ′′) , so that

ϕ g̃(w)2 � Cϕ + C g̃′(w)ϕ
1+θ

2 w
3
2 + Cϕθ w

at x0. Using (A.3) and w = z/ϕ we get

g̃(w)2 � C + C g̃(w)2z1− γ
2 ϕ

1+θ
2 −2+ γ

2 + Cϕθ−2z. (A.7)

We now choose θ � 3 − γ , which is always possible since 3 − γ < 1. Then (A.7) becomes

g̃(w)2 � C + C g̃(w)2z1− γ
2 + Cϕθ−2z. (A.8)

Now assume C z(x0)
1− γ

2 � 1/2, since on the contrary there is nothing to prove. Then (A.8) implies
g̃(w)2 � C + Cϕθ−2z and using (A.4) we arrive at wγ −1 � C + Cϕθ−2z, that is

zγ −1 � Cϕγ −1 + Cϕθ+γ −3z � C + C z.
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Taking into account that γ > 2, we obtain an upper bound for z(x0) which only depends on
| f (u)|L∞(Ω ′′) , Ω ′ , Ω ′′ and g . Since x0 is a point where z achieves its maximum

ϕ|∇u|2 � C in Ω,

and using that ϕ ≡ 1 in Ω ′ , we arrive at (A.2). This concludes the proof. �
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