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1. Introduction

This paper concerns to the study of positive radial solutions for equations of the type

Au+K@uP =0 inRN, (11)

where N > 2, p > 1, |x| =r and K(r) > 0, which was proposed by Matukuma [18] as a model in
Celestial Mechanics for the dynamics of a cluster of stars, where u is the gravitational potential and
K(r)uP is the density of stars, see Li [13] for more details.

This type of equations has been studied in last decades by many authors under certain monotonic-
ity conditions related with K. Under this assumption the solution set is very simple and there is only
one fast decay ground state.

Recently, Felmer and Quaas [7] found examples of K functions such that the solution set becomes
very complex and a large number or infinitely many fast decay ground states exist.
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In this article we prove the existence of a large number of bubble-tower fast decay ground states
0 (1.1) for a large class of K functions. This establishes two interesting features: i) the complexity
found in [7] some how persists for a large class of K functions, and ii) this type of equations are
closely connected with other type of semilinear elliptic equations without weight function, as we will
see below. Moreover, this paper is a first step in relating these types of problems since analogous
results hold.

We first start reviewing some known results.

If K =1, then (1.1) is known as Emden-Fowler equation, and there exists only one fast decay

ground state, up to scaling, for p = N—f% the critical number. Here we understand as a fast decay

ground states a positive solution satisfying lim,_, o rN~2u(r) = ¢ for certain c > 0.
When K is given by a pure power function K =r?, then there is a new shifted critical value which
is

N+242¢
N-2 ~

as was proved by Ni and Nussbaum [20].
To continue with the known results, let us define now the growth rate function of K as

rK'(r)
P(r)= .
K(r)
. - L N4242P(1) ., .
If this function is not constant, then the critical exponent ~——x=5—— will vary with r and the structure

will be more complex. Under the condition on P
(H) P(r) is non-increasing and non-constant over (0, c0).

Writing
o=1limP(r) and {¢= lim P(r),
r—0 r—00
then the Sobolev critical number is shifted to an interval (pso, po) Where

_N+2+20‘

N+2+2¢
po= N—3 and poo=maxjl, —— ¢.

N-2

In this situation Yanagida and Yotsutani [26] proved, under the additional condition pg > 1, that there
is a unique £ such that the initial value problem

" N-1 ’ p_ _ ’ _
u +Tu + K(ru¥ =0, r=>0, u0)=£&¢£=>0, u'(0)=0,

has a positive fast decay solution if p € (po, Po)-
In another paper Garcia-Huidobro, Manasevich and Yarur [11] studied Eq. (1.1) for the operator
p-Laplacian and formulated the growth rate of K by means of a different function

2rVK (1)

mn=N"2 JEsNTK (syds”
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Moreover, assuming that
(H) m(r) is non-increasing and non-constant over (0, co),

the authors in [11] defined the critical numbers
po=Ilimm()—1 and ps = max[l, lim m(r) — 1]
r—0 r—00

and also proved that, for p € (pso, Po), a unique fast decay solution exists. Asymptotically, poo and pg
are equivalent for m and P, but (H) and (H) are not. In fact, the authors in [11] gave an example
for which condition (H) holds while (H) is not true. The existence of a fast decaying solution can be
done by a topological argument, however the proof of the uniqueness of the fast decaying solution is
highly non-trivial. For the Matukuma equation, that is K(r) = ]J:—rz the uniqueness was first proved
by Yanagida in [23]. Since then many authors contributed to the study of this type of equations. For
instance, we mention here the work by Garcia-Huidobro, Kufner, Manasevich and Yarur [10], Kawano,
Yanagida and Yotsutani [12], Li and Ni [14-16], Ni and Yotsutani [21], and Yanagida and Yotsutani [24,
25].

In the present paper we want to study the case 0 < o < ¢ or equivalently pg < p for a general
class of K functions, not only for an example as in [7]. Roughly speaking, under this condition the
equation behaves like supercritical for small values of r and subcritical for large values of r and the
structure of the solution set that appears will be the same as in other equations mixing supercritical

and subcritical non-linearities, as we will see next. We start with the problem

Au+uP +ul=0 inRV, (1.2)
p< % < g, first considered by Lin and Ni [17] and further investigated by Bamén, Flores and del
Pino [1], Flores [9] through a dynamical system approach and recently Campos [2] which is closely
connected with our results.

Another type of equation with this phenomena is

Au+ f(uy=0 inRVN, (1.3)

with f given by f(u) =uP if0<u<1and f(u)=ud ifu>1, where 1 <p < %—f% < q. When the
role of p and q are reversed, the structure of positive solutions has been completely described by
Erbe and Tang in [6], see also [22] and [5], where there is a unique fast decay solution.

Now let us state our results. We start with the precise assumption on K. The function

K :[0, +00) — R is non-negative and continuous such that

K@) —C K(r
M:Q >0 and lim L=Coo >0, (14)
r—00

lim
rl

r—0 ry

where 0< 0 <€ <2(0 +2) and M2 < .

A model case is K(r) = Cor® + Br#* 4 Coor® for o < ju < £, with the above condition on the param-
eters and B > 0.

Our first result gives the existence of a large number of fast decay ground states to (1.1) with an

exact asymptotic formula.

Theorem 1.1. Let N > 2. For any k € N, k > 2, there exists &9 > 0, such that, for all 0 < € < &g, the prob-
lem (1.1) with p = po + ¢ has a solution u, of the form
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; 1
are” TR

U () =45y —(1+0(D)).

i 1
i=1 (14 (o(l.*)poﬂgf(t—vpoﬁ)(po—n|X|2+0)F

1
with o(1) — 0 uniformly in [0, +00) as € — 0. Here, £&; = (%) Po~1 and the o’s are explicit con-
stants depending only of N and K.

Remark 1.1. a) This bubble-tower type of solution were first found by Chen and Lin [3] in the case
of Eq. (1.1) with a function K which is a perturbation from a constant and p is the critical exponent.
This result is obtained through an ODE approach. Note that Eq. (1.1) arises also from problems in
conformal geometry (see [3] and the references therein).

b) We believe that our result has an analogous for Eq. (1.2) with 1 < p < % <q.

c) In [26] and [19] the authors show, through some numerical example, that the uniqueness of the
fast decay solutions fails.

Finally, we give some how the dual of our main theorem, which corresponds to flat bubbles.

Theorem 1.2. Let N > 2. For any k € N, k > 2, there exists &g > 0 such that, for all 0 < ¢ < &g, problem (1.1)
with p = p — € has a solution u. of the form

k

ue () =%y —(1+0(1)),

. 1
i1 (14 (P17 Pl 240y ot

; 1
prel~1 e

1
with o(1) — 0 uniformly in [0, +-00) as € — 0. Here, & = (%) =T and the B;*’s are explicit con-
stants depending only of N and K.

The method used in the proof of our two theorems is a variation of Lyapunov-Schmidt reduction,
that has become now very classical in singular perturbed problems. This reduction was first used by
Floer and Weinstein [8] in the context of partial differential equations. This method was adapted to
find bubble-tower solution in the Brezis—Nirenberg problem by Del Pino, Dolbeault and Musso [4] and
after that by many other authors in similar problems. We mention here the paper by Campos [2] for
Eq. (1.2) which is close to our work. Here we do not give the proof of our second theorem, since the
arguments are similar to those used in the proof of Theorem 1.1.

In all equations before mentioned the existence of a large number of fast decay solutions can be
seen in a three-dimensional dynamical systems (by Emden-Fowler transformation) as a large number
of intersection points between a two-dimensional stable manifold with a two-dimensional unstable.
Our results and the results in [2] and [1], can be seen as a perturbation argument from a homoclinic
orbit in some plane of this dynamical system. Moreover, if there exists a slow decay solution (which
is always unique, because it corresponds to a one-dimensional manifold) it implies that these inter-
section points are infinitely many, see Flores [9] for Eq. (1.2). Notice that Eq. (1.1) with the model
case K(r) =1+ r? admits a slow decay solution of type u(r) = A(B +1?)S, s = —% for suitable
exponents p and constants A and B. In this case using the same argument as in [9] it can be proven
that there exist infinitely many fast decay solutions.

Finally, observe that the complete understanding of the dynamical systems or all solution set is
wide open in these three types of equations, with exception of the particular case found in [7]. So,
many basic and challenging questions still remain open for all these equations. Moreover, we strongly
believe that they are closely connected and that the complexity found in [7] is present in all of them.

This paper is organized as follows. In Section 2 we compute the energy for our approximate solu-
tion of the transformed problem, through Emden-Fowler change of variable. In Section 3 we discuss
the finite-dimensional reduction scheme that we will use to establish our main result, which is proved
in Section 4 by means of degree theory.
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2. Preliminaries and the reduced energy
We start introducing the change of variable
v(t) = e’tu(e’ﬁt), vt € R,
which is a slight variation of the Emden-Fowler transformation so fast decay solution of (1.1) satisfies

V'(6) = v(t) — BPe POl K (eff)vPoTE(r), teRR,
lim V(t)=0

(2.1)
llm v(t)et =
t——00
where g = —ﬁ. Note that if ¢ — 0, the equation above is carried out to the following limit equation
V() = v(t) — BRe PR (eF) v TRE (b). (2.2)
On the other hand, note that conditions over K in (1.4) are equivalent to
—Boty (pBty _ Bt
. e K(eP') — Co K(eP*)
In particular, the condition above on the left-hand side implies that
lim e P7'K (ef') = Co > 0. (2.4)
t——+00
Then, one can choose constants tq, t>, with t; < 0 <, and ty, |t1] sufficiently large, such that
Coom P <K () <(cC U )estt e <y
00 2n0 x o + 2Tl0 s s
0< K(eﬂt) < sup K(e’st), ift; <t <ty (2.5)
telty, ] )
1 Bot Bt 1 Bot : Iy
Co—=— JeP' <K(eP) < Co+ — )Pl ift>ty,
2ngp 2ngp
for some ng € N fixed large enough verifying Co — ﬁ >0 and Cyp — —O > 0. In this way, for p >0

fixed but arbitrary, it is suitable to consider the following equation
2 2 inea
U'-U+p(—"=) UT"2 =0 inR,
N N-2

and its explicit solution is

N-2
_ 22F0) - _
WHo)N=2) 2)> et (1 4 e R O

U(,O;t):< . )@

Now, we define U := U(Cyp; -) and introduce the functions
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k
Uit)=U(t—7) and V()= Ui, (2.6)
i=1

where 7; € R and k € N, k > 2. Roughly speaking, we are looking for solutions v of (2.1) which are
approximately of the form

V() =V () + (1),

which for suitable points t; < T < Tp < --- < Ty, with tp given by (2.5), we will have the remainder
term ¢ of small order all over R.
Here we do the following choice of the points t;

T = loge — log A1,

1
po+1 (2.7)
Tit1 — Ti = —loge —log A1, Vi=1,2,....k—1,

and by simplicity we put T = (t1,72,..., %) € R¥ and A = (A1, A2, ..., Ax) € R¥. Since solutions
of (2.1) correspond to stationary points of its associated energy functional E, defined by

+o00
/32 / es(,—Bos Bs 1
Ec(v)= Jo(v) — —— | e%5(e K (ePS) — Co)vPotiteds, 2.8
a()]a()p0+1+8 ( (e”¥) — Co) (2.8)
—0Q
where
lJroo lJroo CIBZ +00
- N2 2 2 tobT esypo+1+e g 29
Je(v) 2/(V)+2/v po+1+8/ev s, (2.9)
—00 —00 —00

our first goal is to estimate E. (V).
Lemma2l.letN > 2,0 <{ <20 + N,keN, k >2andlet § > 0 be fixed. Moreover, assume that
S<ri<8l, Vi=1,2,... k. (2.10)

Then, for V defined by (2.6) and points t; as in (2.7), there are positive numbers o1, a2, a3, 04 and a5 de-
pending only on N, K, such that

- 2+ (k=1 1 -
Eo (V) = kary + e (0) +8k( - Dipo+ D) IOgE)Ots + £6: (1), (211)
2(po+1)
where
k k
Ye(h) = — leaz — 2P s kg + (Z(k —i+1) logki)ot5 (212)
i=2 i=1

and 6 (X) — 0as &€ — 0, uniformly in the C1-sense with respect to the values X; satisfying (2.10).
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Here and in the rest of this paper, we denote by C a generic positive constant which is independent

of ¢ and of the particular t;’s chosen satisfying (2.7).

Proof of Lemma 3.1. Firstly, we estimate (V). Note that

Je(V) = ]O(V) + Al,s + Az,s + A3,s»

where
1 +00 1 +o0 C /32 +o0
2 0
Vi== [ (V) += | V2 —— [ vPotl
]o()Z/()+2/ —
—00 —00 —00
—+00
2 2
Algz(c‘)ﬂ _ G >fv1’°“,
’ po+1 po+1l+e¢
-0
2 +o00
Azg:(icoﬁ )/(vPoH—vPO““)
' po+1+¢
—00
and

c 2 +o00
Aze = (70'3 ) / (1- e“)V”OHJ’E ds.
' po+1+¢

—00

Using a Taylor expansion, is not difficult to check that

keC 2 +o00
e
o = eCOP / UPot! 4 o(e),
' (po+1)
keC 5 +00
ke
Age=— of UPInU +o(e)
po+1
—00
and if we consider from now on
T+ T .
o = —00, M,-ZITIH, fori=1,2...,k—1, and ui=+o0,
we obtain
k Mi k +00
Aze=—) &Co / st0+1ds+o(s)=—sCOZr,-/UP°+1+o(s).

i=1 Hi-1 i=1 5

Then, from the choice of the t;’s in (2.7), we yield

(2.13)

(2.14)

(2.15)
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k

+00
I k(k —1
A3,8:gc0<<p011+ (‘2 ))log8+2(k—i+1)logki>/Up‘)“—i—o(s). (2.16)
i=1

—0o0

On the other hand,

k Cop? Tk k po+1 ok k-1
]o(V)—X:Jo(Ui)ZPOJrl (ZU}’OH—(ZM) )+C0,32/ZZU{’°UJ»
i=1 oo \i=1 i=1 "

—o0 J=2i=1
i<j

and so
k k
JoV)=Y"JoWUi) + Y (B1i+Bai+ B3,
i=1 i=1
where
c ,32 M k po+1 k
0
Bii= [ ol =Y U] e+ U Y U ).
Po+ 1# i=1 =1
1-1 .
J#l
M k
By =—Cop? / uy U
i1 j=1
j<l
and

Cop? ek k ok
1
B3 = ot 1 /(Z%m +(P0+1)§:§:Uip°Uj>~

i=1 =1 i=1
M1 i#l j# 1<]

From the Mean Value Theorem we have that

He 2k
|B1l<C / (ZU,) Surt,
i=1 i=1

MHi-1 i;él
Hence, for I € {2,3,...,k — 1}, putting 0 = |loge| and using the fact that U(t) = 0 (e~ ), we obtain

g+m
1Byl < C / =20=9)o—(po—1)s g5 < Ce~20
0 0

[SIES)

+M
e

~(Po=3s g5 = o(e),

where M is a constant that depends only on §, and if I = {1, k}, we easily get

[B1il =o0(e).
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Now, if € > 0 is small enough, then from the choice of the 7;’s in (2.7) and of the ;s in (2.15) we
get

i
By =—Cop? / UPoU_1 +o(e)
M1
+00
:—Coﬂszef(flff’*‘) / Upoefls‘ds—i—o(s)
—00
+00
=—gc0ﬂ2m,/UPOe—‘S'ds+o(s),

—0Q

240
where yy = 273 U(0) and B,1 =0. To estimate B3; we note that

Mk k i k
Ba<c [ Yy uru<c [up Yy
pig J=1i=1 i i=1

A <]
where p’s are given by (2.15). Hence, setting again ¢ = |log&| and since U(t) = 0 (e~!), we obtain

M

|B3,| < Ce® e~ (Po=Ds gs — o(¢),

o\"_’f

where M is a constant that depends only on §. So, we get

k +oo
]O(V)zkjo(U)—gﬂzyNZAi / UPoe sl ds + o(e). (217)
i=2

Finally, we have that

+00 k po+1+e
/ e®S(e P75 K (%) — Co) (Z Ui) ds=Cre+Coe + C3e,

e i=1

where

+0o0 k po+1+¢
Cie= f e_ﬂ‘”K(eﬁs)(e“—1)<ZU,-) ds,
i

—00

+00 k po+1+e
Coe = / (e7P75K (%) — Co) (Z U,-) ds

—00
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and

+o0 k po+1+e
c3,8=co/ (1—e (ZU) ds.

—0o0

Bearing in mind the constraints (2.10) over A;'s and the choices of w;'s in (2.15), and considering
0 <{¢ <N+ o0 and constants Co, and Cp such that

max{|Co — Col, |Coo — Cocl} < —

we obtain by means of straightforward calculations

+00
C]’é\:gﬁoz‘[i f Up0+1+0(8)
i —00
and
E] E2
Coe =e—(P0+1)Tlc<6oo / e—(Poo—ZPo—l)SdS+/e—ﬁ(20+N)SK(eﬂS)ds)
—00 f]
+00 +00
+ B yN(Co—Co)Ze (Ti=ti-1) / uPoe~ sl ds + k(Co — Co) / UPot! Lo(e).
i=2 —00 —00
Also we obtain
+00o
C3e= —ECOZti / UPotl Lo(e).
i —00

Hence, from previous estimates for Cq ¢, C2 ¢ and C3 ¢, we get

+o0

po+1+¢
/ S(ePoiK (e#7) — 1) (Zu) ds

—0o0

I k(’—]) k
~, K K
&(Co 0)((0 1+ 2 ) g E( i+1)log 1)/

i=1

—0o0

t1 t
+8Af0+1c<600 / e(pm2p°1)sds+/e‘3(2“+N)5K(6‘35)d5)

N ;
k +oo
+&(Co—COB*IN Y _hi /Upoe '5‘ds+k(co—co)/UP°+1+o(s) (218)

i=2 % —00
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Now, we choose

~ 5 —+00
on = Jow) - LSO [y,
po+1
—00
+o00
oy = 60ﬂ2)71\] / U"Oe_m dS,
—00
g 2 i
a3 = Coo e’(pw’po’l)sds+/e’ﬂ(2°+N”K(eﬂs)ds , (219)
po+1 < f
—00 El
B2 [ CoB? [
oy =—20 / gpotl _ —2F [ yrotlhy,
(po+1)? po+1
—00 —00
~ 2 “+oo
s = COﬂ / UpOJrl’
po+1
—00

and since o < £ <20 + N, we have that a3 € R*. From estimates (2.13), (2.14), (2.16), (2.17), (2.18)
and the choice of the constants «;'s in (2.19), it follows that

2+ (k—-D(po+1)
2(po+1)

Ec (V) =koy +8ll/k(7\)+£k< logs)as +o0(e), (2.20)

where ¥ is given by (2.12). Moreover, in all previous estimates the quantity o(¢) is actually of
this size in the C'-norm as function of the values A;’s satisfying (2.10). Therefore, (2.11) is obtained
from (2.20). O

Remark 2.1. Note that ¥ has a unique critical point which is non-degenerate and it is given by:

o (( kats )pﬁ k—Das k—2as 205 oz5>

a3(po+1) o o T o
3. The finite-dimensional reduction

Let us consider points 7; such that t < 71 < T <--- < T, with f given by (2.5) and functions
U;, V, defined in (2.6). Now, for each i =1, 2, ..., k, we define the following functions

/ eBO+2)(E-T) _q
Zi(t) =U/(t) = (W) Ui(0). (3.1)

Here we are interesting in the problem of finding a function ¢ such that
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k

—(V+¢) +(V +¢) — pZe e PUK(P)(V + )P = iz inR,
i=1

+00

/ Zip=0, Vi=1,2,... .k

—00

m_60=0

(3.2)

for certain scalars c;. Note that V + ¢ is a solution of (2.1) if the scalars ¢; in (3.2) are all zero. Also,
we note that the differential equation in (3.2) is equivalent to

k
Le(@) = Ne(@) +Re + ) ciZi inR, (33)
i=1

where
Le(9) = —¢" + ¢ — B2e e 7K (") (po + &) VPO g, (34)
Ne(¢) = Befte PILK (eP') (V + ¢)R0 T — VPOTE — (pg + £)VPOTe71g) (3.5)

and
k

Re = ﬁzeste—ﬁatK(eﬁt) _ Z Ulpo’ (3.6)

i=1
A first step is to study the following linear problem: given h € C(R), find ¢ such that

k
Le(@)=h+) ciZi inR,
i=1

+00
/zi¢:0, Vi=1,2,...k,
—00

im0 =0

(3.7)

for certain constants c;. We prove the next lemma.

Lemma 3.1. Assume that o < £ < 2(0 +2) and that there exist a sequence &, — 0 and points 0 < T} < 13 <
-+ < 7! depending on &, which verify

7y — 400,

mink(r{jrl — 1) = +oo, and T!=o(g;"), (3.8)

such that for certain scalars c}, and functions ¢y and hy, with ||hy||, — 0, one has
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k

Le,(@n) =hn+ Y clZ]' inR,
i=1

400

fz?qb”:o, Vi=1,2,...,k,

—0o0

im0 =0

(3.9)

where ZI'(t) = U'(t — t["). Then
lim ||¢n | = 0.
n—oo

Here

I )|« = sup
teR

-1
(Ze e "') v,

where 7 > 0 is a number to be fixed.

Proof. Firstly we prove that
lim ||¢nlloc = 0.
n—oo

Arguing by contradiction, we can assume that ||¢,|lcc = 1. Testing the differential equation in (3.9)
with Z' and integrating twice by parts, we obtain

+00 +oo
/Lg( ) — /h z" _ch fz,”z;?.

The previous equality defines an almost diagonal system on the ¢}'’s as n — 4-oc because if i #1, then
by the Dominated Convergence Theorem we have that

+00
/ 20z = 0
—0o0
and if i =1, then directly we obtain
+oo +00
2
[ @z = [l
—00 —00

On the other hand, ||hy ||« — O implies that

k
|hn(O)] < 6n ()Y e,

i=1
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for some 6, — 0 uniformly, and bearing in mind that Z? t) = O(e"“fnﬂ), we get

+00 +o00
/hnz;? < Clbnlloo /e—'s‘ds -0
—0o0 —00

as n — +o0. Also, since

—ZV 4+ 71 — poB2CoUP ' ZN =0 inR,

0 < <2(o +2) and from (2.5) one has |K (ef!) — Cg| < n1—0 for all t > ty, it follows that

i ta +00
< c( / e*ﬁ(afl)tvpoqzy_i_/Vpoqzln_i_ / urizr

I t t

-0

as n — +oo. Therefore c? — 0 as n— +oo.

+oo +00
/Lg(z;')qsn = /(—z{'”+z?—(po+s)ﬁze“e*ﬂ"fk(eﬂf)VP0+8*12;?)¢,1
—00 —00

879

Now we choose t; € R such that ¢,(t;) = 1. By theory of elliptic regularity, we can assume that

Jie{1,2,...,k} such that for n large enough one has

3R >0 suchthat |t —1'| <R.

(3.10)

Let us fix an index i such that (3.10) holds and put q@n(t) = ¢u(t + 7'). From (3.9), (3.10) and elliptic
estimates, choosing a suitable subsequence, &a(t) converges uniformly on compacts to a non-trivial

solution ¢ of

—¢" +¢ — B2poCoUP" 1 =0 inRN.

Hence ¢ = CU’ for some positive constant C. Nevertheless

+oo +00
0=fz;1q§n—>c U’ > o,
—00 —00

which is a contradiction. Then ||¢p|co — O.
Now, we note that

_¢r/1/ +¢n=¢8n InR,

with

k
2n(®) =ha(t) + Y Z1 (1) + B e PIK (eP) (po + ) VPO (1) ghn (1)

i=1

(3.11)
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Since [|hnll+ — 0, ¢] — 0, Z}(t) = 0 (e~ lt=Tily,

|B2e® e POt K (') (po + &) VPO (D) (1)
Clignlloo YK, e~ @Po—Poo=DI=T ifr <,
< Clignlloo YK, e~ Po-DIE=TT, iff; <t <y,
Clignlloo Yk_q e 1=, ift >,

with ||¢nllcc = 0 as n — 400, and 0 < € < 2(2 + 0), it follows that if 0 < 77 < min{1, po — 1,2po —
1 — pso}, then

k
|gn(©)] <6n(t) Ze—ﬁ\t—r{'\7

i=1
with 6, — 0 uniformly. Choosing C > 0 large enough, we have that

k

@n(t) = COp(t) Yy e M=

i=1
is a super-solution of (3.11), and —g;,(t) is a sub-solution of (3.11). Therefore

k

|fn| < On(0) Y e~

i=1
for some 6, — 0 uniformly. The proof is finished. O

Proposition 3.1. There exist positive numbers &g, 8o and Ry such that if T € R¥ satisfies

. o
Ro < 11, Ro < mml(r,-ﬂ —7) and T < —,
i=1,...k &

,,,,,

then for all € € (0, &) and all h € C(R), with ||h||. < oo, problem (3.7) admits a unique solution ¢ := T¢(h).
Besides, there exists a constant C > 0 such that

[T |, <Clihlls and |cil < Clh]l..

Proof. Let us consider the space
+00
He = [¢eH1(R): / Zip =0, i=1,...,k]
—0o0

endowed with the usual inner product of H'(R) that here we denote by [-,-]. Then problem (3.7)
written in sense weak with respect to H. is equivalent to find ¢ € H such that

+00

+o00
6, ] = B f (e 7K (P) (po + &) VPO () gy + f hy. V¥ e H,.

—0o0
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Moreover, H. is Hilbert, then from the Riesz Representation Theorem we deduce that there exists a
linear isomorphism Z, € L(H}, He) such that to each ¢* € H} corresponds a unique ¢ € Hg which
verifies

Ze(6)W1=1¢, ¥, V¥ €He.

Hence, we can identify ¢ with Z.(¢*). Also, note that the operator M, : H, — H} defined, for each
¢ € Hg, by the functional

+00
¥ > Me(9)[y] = B2 / (e5TePotK (eP) (po + ) VPO~ 1 (1)) Py

is compact, and the functional

+00

vhon= [ hy

—00

belongs to H¥, and clearly depends linearly of h. Then, (3.7) can be interpreted by way operational
in Hg as: find ¢ € He such that

¢ :=Te(h) = Mc(¢) +h.

The Fredholm Alternative Theorem guarantees that this problem possesses a unique solution for any
h € He under the supposition that the homogeneous equation

¢ =Me(o)

has by solution only to the null solution in H.. Observe now that in sense weak in H. this last
equation is equivalent to problem

k
Le(@) =) cZi inR,
i=1
+00

/Zi¢=0, Vi=1,2,...,k,
—00

lim ¢(t) =0,

t—+oo

(3.12)

for certain constants c;. For proving that (3.12) has only by solution the null solution in H; we argue
by contradiction. Let ¢ be a non-null solution of (3.12). Without loss of generality we can assume that
ll¢ll« = 1. Hence, if we put ¢ = ¢,, h, =0 and we consider some sequence &, — as n — +oo and
7'’s as in (3.8), then we have all conditions for applying Lemma 3.1 and conclude that [¢n|+« — 0;
but this is a contradiction. Therefore, for suitable €y, 8o and Rg, we have that for 0 < & < & and
h € C(R), with ||h|l+ < oo, problem (3.7) admits only one solution in H,.

Now we check that ¢ = T.(h) verifies |¢|l« < C|h|l« for some constant C > 0. Again, we argue
by contradiction. Let ¢ be a non-null solution of (3.12). Without loss of generality we can assume
that ||¢ ||, = 1. If we put h =h, and ¢ = ¢, with ||hnll« <~ !¢gnll«, then all conditions for applying
Lemma 3.1 are given and we can conclude that ||¢, ||+ — 0; which is a contradiction.
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Finally, we recall that from the proof of Lemma 3.1 we have that

+00 +00

+00
m([Z%w00<‘[u@m+-/ha<qwm+wm.

Therefore, |ci| < C|lh]ls«. O

Now, we are interested in study properties of differentiability of T, in the variables t;, which will
be very important in future purposes. By simplicity, from now on we will consider the Banach space

Co={f €CR): IIfllx <00},

endowed of the | - |«+-norm, and the space L£(C,) of the linear operators in C,. Also we consider
numbers &g, 8o and Rg, given by Proposition 3.1, and the set

- i do
Mg:{reRk: Ro <71, Rp < min (1:,-+1—1:,-)andrk<— s
i=1,....k &

.....

for 0 < € < g9. We define the map
Se: Mg x Cy = L(Cy)
(T,h) = Se(T,h) =Te(h).

Proposition 3.2. For each h € C,. the map T — S (T, h) is of class C'. Besides, there exists a constant C > 0
such that

|DzTe(h)|, < Clihlls
uniformly on vectors T € M.

Proof. Let us fix h € Cy, and put ¢ = T, (h) for 0 < & < £9. We are interested in study the differentia-
bility of ¢ respect to 7j, for each j=1,2,... k. Putting & = % we obtain from (3.7) that ¢ verifies

k

3 3Z;
—0" 49 — 2efTe PIK (eP) (po + €)<V"°+*’_ll‘/‘ + —(V”°+8_])¢> =) ¢y iR
ITj o 9T
+o0 +00
/32’ = /192—0 VI j
0T; N =" 2
—00 —00
+00 +0o
/3Zj¢_ /ﬁZ'
0T; a I
— 00 —00

Consider now constants r; such that

400 k
/ (ﬁ—Zr,Z,-)Zl:O, vi=1,2,... k.
i=1

—00
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These relations lead to

k +o00 +00
dZ;
ZT,’ ZiZ) = — —¢, VI=1,2,...,k.
. 31’]'
i=1 oo —00
In other words, for each i =1,...,k, the constants r; will be given by the following system
k +00 k +00 +00
Z / Z,=0, Vi#j, and Zr-/z-z-z—/%
, , ’ i itj B‘Uj
i=1 5 i=1 5 —00

Clearly this system is almost diagonal. Hence, putting

k
V=0-) 1z,
i=1

it follows that

Le(y)=f inR,
where
f(t) = p2e" *ﬂ”fK(eﬂf)(poJre) (vPote=T) ¢>+q Zr,LE(Z) (313)
Tj
and
+00
/z,-w:o, Vi=1,2,....k
—00

Moreover, it is easy to check that lim;— 1o ¥ (t) = 0. Also, observe that from Proposition 3.1 and the
definition of ¢ we have

I¢ll« < Clihll. and || < Clihlls,

and, by definition of r;, |rj| < C||¢||«. Hence, from (3.13) we get || f|l« < C|lh|l«, and so f € C,. Then,
again from Proposition 3.1, we conclude that ¥ = T.(f), and in this way

9 =Te(f)+ ) riZi inR,
i=1

with ¢ verifying ||9 . < C||h|.
Finally, note that ¢ depends continuously on 7; and h for the | - [l«-norm, for each j =
1,2,...,k. O

For later purposes, from now on it is suitable to assume that, for A > 0 fixed and large enough,
the following constraints hold
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log(Ae)~! <11,

po+1

log(At))™' < min {t — 71},
i=2,3,....k

7, < klog(Ag) ™!

(3.14)

Besides, we prove two technical results related with the size of N.(¢), Rs and their derivative corre-

spondents in the || - ||4-norm.

Lemma 3.2. There exists C > 0 such that if ||¢||« < % then

HN£(¢) ” ”¢”mm{l)o .2} + ”(b”glm 2p07poc,2})

and

i -1,1} {(2P0—Poo—1,1
[DoNe@)], < C(IgIT™ P11 g inerop= =t ).
Proof. From the definition of N¢(¢) in (3.5) and the Mean Value Theorem we have that
Ne(¢) = tﬁ (pot+&)(po+e— 1)e’le _ﬂUtK(eﬁt)“/ +f¢|p0+€—2¢2’
for some ¢, € (0, 1). Then, if |¢| < C|V| we get

INe(@)| < Ce® PR (e |V |Pote—2|p2

_|cvieer, t> 0,
kK (Deo—Do)T: kK (po— _z _ -
CXqe (P Po)T:)(Z,F:le (Po—Poo)lt=Tily|/|P0—2|p |2, ¢ <1,

_ {C|V|P°2|¢|2, t>5,
CIVPo-P>-2ig2, £ <F,

and, if |¢| > C|V| we get

ClglPo, t>1,

Ne(9)] < i
[Ne (@] {C|¢|2P°—P°°, t<fp.

Therefore (3.15) is obtained directly from estimates for |N.(¢)| above. On the other hand,
DyNe(¢) = B2(po + £)eTe oLk (L) (V + )20 ~! — ypotety,
Hence, from the Mean Value Theorem, it follows that

DyNe(¢) =TB%(po + &) (po + & — 1ele PIIK (eP) |V + tp|Po+e 24,

for some t € (0, 1). In similar way that in the previous case we prove that (3.16) holds. O

(3.15)

(3.16)
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Lemma 3.3. Assume that constraints (3.14) hold. Then there exist C > 0 and 0 < p < 1 such that
IRell« < Ce” and [DzRell < Ce”. (317)
Proof. From the definition of R, in (3.6), we have that

R, = ﬁzegt(e_ﬂatl((eﬁt) _ Co)vPo+8 + COﬂZ(eet _ 1)vP0+€

k
+ Coﬂz(Vp°+$ _ Vpo) + Coﬂz (Vpo _ Z UIPO>
i=1

= R1,6(t) + Ry ¢(t) + R3,6(t) + Ry £ (t).

Note that by (2.3), after a redefining of ; in (2.5) if is necessary, for all t > t; one has

1 1
C1— — Jefrt < e‘ﬁ“K(eﬁ‘) —Co<[Cy+— )efrt.
2no 2ng

Hence, for t > t

|Rl.s(t)| < 61,32|e€te/37/fvpo+s| <C

k Po
eﬁﬂ(ze—lf—ﬁl) )

i=1
k Po
i=1

[R1e®], < Ce™,

Also we have for t < tp that

[R1el <C

Therefore

for p1 = min{pé’%, %}. Similarly, the derivative Ry ¢ respect to t; satisfies

On the other hand, using a Taylor expansion, respectively, it is easy to check that

<Ce, forj=2,3.

*

oR;
IRj.e®], <Ce and H ?118

Finally, using the Mean Value Theorem and analyzing R4, (t) for t and for o in suitable ranges of R,
straightforward calculations lead to

Mﬁ < CeP?,

Ti %

|Rae(®)], <Ce” and H
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where p; = HT” for 0 < u <min{pg — 1, 1}. Then, choosing p = min{p1, p,} the proof of this lemma

is completed. O

Proposition 3.3. Assume that the constraints (3.14) hold. Then there exists C > 0 such that, for all ¢ > 0 small
enough, there exists a unique solution ¢ = ¢ (%) to problem (3.2). Moreover, the map T — ¢ (%) is of class C!
for the | - ||«-norm and satisfies

l¢ll« <Ce” and [|Dz¢l« < Ce”,
with p asin (3.17).
Proof. Let us consider the operator
Fe: Ar— H'(R)
¢ — Fe(¢) = —Ts(Ne((f)) + Re),
with T, given by Proposition 3.1 and
Ar={p € Cy: 1ol <re’},

for a suitable r =r(N) > 0 which will be chosen later. Note that if we show that F, is a contraction,
then there is a fixed point in A, for F¢, which is equivalent to solving (3.2).
We have

[Fe(@)]l, < [ Te(Ne(e) + Re)|,
< C|Ne(9) + Re |,

<G ((rsﬁ)min{l?o,z} + (rs,é)min{ZPO*Poo,Z} + 8,0).

Also we note that

| Fe (1) — Fs(¢2)]|, < C||Ne(@1) — Ne(¢2)]

)

for ¢1, ¢ € A;. Hence, F. is a contraction if N is.
We have

ONg -
|Ne(¢1)—Ns(¢2)|=’ (¢>)‘|¢>1 — 2l

d¢

for some ¢ on the line that join ¢; with ¢;. It follows that

- min{po—1,1 < Min{2peo—po—1,1
[Ne(@1) = Ne@2) ||, < CIgI™ P11 4 g EPomPo=ty gy — g .

Hence

|Fe(@1) — Fe(@2) |, < Co((re?)™™ P71 4 (rep)™nPomPom Tl 1 — g,

Now, choosing r > (3C; + 2C3) one has
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[Fe@)|, <re”, V¢ e A,

and

|Fe(p1) — Fe(e2) |, < 1 — d2lls

for &€ > 0 sufficiently small.
Concerning to the differentiability properties, let us recall that ¢ is defined by the relation

B(Z,¢):=¢ —Te(Ne(¢) +Re) =0.

Hence, we see that

DyB(T,$)[0]1 =06 — Te(0DyNe()) :=6 + M(9),

where M(0) = —T¢(@DyN¢(¢)). Now, note that if we use the fact that ¢ € A, one proves easily
from (3.16) that

|M®)], < Cce”li6]l,.
This implies that for & small, the linear operator Dy B(7, ¢) is invertible in the space of the continuous
functions in R with bounded || - ||«-norm, with uniformly bounded inverse depending continuously on

its parameters. Then, applying the Implicit Function Theorem we obtain that ¢ (%) is a C'-function
into C,, with

D:¢=—(DgB(F,¢) ' (DB, 9)).

Since

D?B(i(b) = _D?(N8(¢) + Rs) - TS(D?Ns(d’) + DfRs),

where all these expressions depend continuously on their parameters, it follows that

1Dzl < C(|Ne(@) + Re |, + | D:Ne@) |, + 1Dz Re ),

and using the first part of this proposition, the estimates in the previous lemmas, Proposition 3.1 and
the constraints (3.14), we conclude that

IDzgll. <Ce”. O
4. The reduced functional and the proof of Theorem 1.1
Here we consider the constraints (3.14) and the function ¢ = ¢(7) given by Proposition 3.3. Ac-

cording to the previous sections, let us note that ¢c; =0 in (3.2), for all i =1, 2,3,...,k, is equivalent
to say that v =V + ¢ (%) is a solution of problem (2.1), and therefore

N-2 N-2
uimy=r z v(Inr—"z ), re(0,+o0),
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will be a solution of problem (1.1). A first result appearing to prove that problem (3.2) has solution,
consists in proving that this problem is equivalent to a variational problem. For this, it is convenient
to consider

Ic(T) =E¢(V +¢(D)).
Lemma 4.1. The function v =V + ¢(T) is a solution of (2.1) if and only if T is a critical point of I.

Proof. First we assume that v =V + ¢(T) solves (2.1). Then directly one obtains

_[aw T .
DEAV#—(;&(T))[%}:O, Vi=1,2,3,...,k
i
In other words
dale .
() =0, Vi=1,2,3,...,k,
daT;

so that T is a critical point of I,.
On the other hand, if T is a critical point of I, then

AV +¢(7))
oT;

DES(V+¢(f))[ }:o, Vi=1,2,3,...,k

or equivalently, from (3.2),

> ci(Zizj+o(1)) =0, Vj=1,2,3.....k
i=1

where o(1) — 0 uniformly in the || - ||,-norm, because %f;(f)) = Zj + o(1). Now, noticing that the
last system on c;’s is almost diagonal, one can conclude that ¢; =0 for all i =1, 2, 3, ..., k. Therefore

v=V 4+¢(7) solves (2.1). O
The next step is to validate an expansion for I, which will be crucial to find its critical points.

Proposition 4.1. Under the assumptions of Lemma 3.1, and considering V as in (2.6), ¢ = ¢(T) given by

Proposition 3.3 and N% <y, the following expansion holds

I¢(T) = Ee(V) +o(e),
where o(g) is uniformly of this size in the C!-sense on the vectors T satisfying (3.14), for given A.

Proof. We note that

I(T) = Ec(V) = Eo(V + @) — Ec(V),
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where
— 2 2 es,—pos Bs\.,po+1+€
Ec(v) == v - Ve — e“e K(e”)v .
e(v) 2/()+2/ P0+1+8/ (")
—00 —00 —00

It is easy to check from the Fundamental Theorem of Calculus and one integrating by parts that

1

I[o(T) = Ee(V) =~ / tD’Ec(V +tg)[gpllg]dt.

0
Now, note that after a Taylor expansion and integrating by parts, one has for each ¢ € H, that

+00

DEs(V +tg)[¢] = f (V" +V +t(—¢" +¢) — e e PTK(eF)(V + tp)P ),
—00
and since
k
—(V+¢)"+ (V + ) — B2 e PTK(P)(V + p)PT = "ciZi inR,
i=1
and
“+00
/z,.¢=0, Vi=1,2,3,...,k
—00

it follows that

D?Eo(V +t)[o, $]

+00 +00
= (- 1)( / (Ne(@) + Rs)‘f’) + / (e%5e P K (eP5) ((V + ¢)PoFe — (V +t§)P0+)) .

—0o0 —o0

Also, as % <p<1and

1 +o00
/t(t - 1)( / (Ne(@) + R8)¢) dt

0 —00

1 +o0, | 1
< EHN£(¢)+R5“*”¢”* / (Zez(’“ﬁl)) dt
i=1

—0o0

SC([Ne(@) ], + IRell<) 111

< Cg?P

889
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we have that

1 +o00
/t(t—l)(/(Ng(qb)—l—Rg)qb) dt =o(s).

0 —00

On the other hand, after a Taylor expansion, we get

1 +00
f t( f (e55e IS K (ePS) ((V + p)Pote — (V + t¢>)”°+€))¢) dt
0 —00

+00
:(8+po)/t(1 —t)( / s —ﬁas1<(eﬁs)vg+p0 1¢2> dt
0

—00
and given that <p<1and

ty

/ ets ﬂSGSK(eﬂs)VawLpo 1¢

—0o0

t
< Ce= ot DT |12 / ePo=P)sg(Po=15g25 _ (51429,

—00

t
/ et —ﬁasl<(eﬂs)vs+p0 1¢

t

<Ce—(P0+1)T1”¢” / e BISe(Po—1)sp2s O(SH_ZKB),

1

+00
/ easefﬂasK(eﬁs) V8+p071¢2

%)

+00
< Cllg)? f vPort = 0(e??),

%)

it follows that

<o(e).

1 +00
'_/ t(f eSePTK () ((V + )Pt — (v +r¢>P°+8))¢> o
0 —00

Therefore

[¢(T) — Ee(V) = 0(¢).

For the differentiability only note that

a -
5(13(1’) —Ee(V))

1 +00

_/t(t—l)</ 881((Ng(¢)+R )¢)) dt

0 —00

+00

— (¢ + Po) / t(l—t)( / ee Pk (e s)aaf‘ (V“PO—%Z)) dt +o(e)
0 1

—00
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and that
O] + 12k Vit + (Nl +1Re1) | Lo = 0(e27)
ITi * 9T * * 0T *
and
IGI%+ g1l | 2| =0(e*).
Ti %
Therefore

i(1 T)—Ee(V))=o(e O
aT, e( e(V)) =o(e).

Proof of Theorem 1.1. Consider the change of variables

T = loge — log A1,

Cpo+1
Tit1 — T = —loge —logA; Vi=23,...,k,
where the A;’s are positive parameters. Hence, it is sufficient to find critical points of
D) =" (T(V)).
From the previous lemma and the expansion given by Lemma 3.1, we obtain
V@ () = V() +0(1),

where o(1) — 0 uniformly on the vectors x satisfying M~1 < A; < M for any M fixed large sufficiently
large. As we pointed in Remark 1, ¥, (1) has an only one critical point A* which is non-degenerate.

It follows from local theory degree that deg(V@E,u, 0) is well defined and is non-zero, where ¢/ de-
notes an arbitrarily small neighborhood of A*. Then, for &£ > 0 small enough we have

deg(l,U,0) #0.
We conclude that there exists a critical point ¥ of @, such that
Ap=2%+o0(1).
Hence, for T* = f(ij) we get
k k
v =) U(E-7) +(g) =D _U(t—17)(1+0(D)
i=1 i=1
is a solution of (2.1), and then we get

k . ‘
w0 =8 Y& TG (14 (o) e OV TRE P 240) TR (14-0(1)

i=1
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is a solution of (1.1), where o} = H;zl(kj)*l and

. (( kars >P01+1 k—Das k-2as  2a5 %)

 \Nas(po+1) (%) [0%) T ay o
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