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In this article we consider the Matukuma type equation

�u + K
(|x|)up = 0 in R

N , (∗)

for positive radially symmetric solutions. When K satisfies some
suitable monotonicity assumption, there exists a unique ground
state of (∗). In this work we find a large class of K functions for
which this monotonicity assumption fails and a large number of
bubble-tower ground states exist.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

This paper concerns to the study of positive radial solutions for equations of the type

�u + K (r)up = 0 in R
N , (1.1)

where N > 2, p > 1, |x| = r and K (r) � 0, which was proposed by Matukuma [18] as a model in
Celestial Mechanics for the dynamics of a cluster of stars, where u is the gravitational potential and
K (r)up is the density of stars, see Li [13] for more details.

This type of equations has been studied in last decades by many authors under certain monotonic-
ity conditions related with K . Under this assumption the solution set is very simple and there is only
one fast decay ground state.

Recently, Felmer and Quaas [7] found examples of K functions such that the solution set becomes
very complex and a large number or infinitely many fast decay ground states exist.
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In this article we prove the existence of a large number of bubble-tower fast decay ground states
to (1.1) for a large class of K functions. This establishes two interesting features: i) the complexity
found in [7] some how persists for a large class of K functions, and ii) this type of equations are
closely connected with other type of semilinear elliptic equations without weight function, as we will
see below. Moreover, this paper is a first step in relating these types of problems since analogous
results hold.

We first start reviewing some known results.
If K ≡ 1, then (1.1) is known as Emden–Fowler equation, and there exists only one fast decay

ground state, up to scaling, for p = N+2
N−2 the critical number. Here we understand as a fast decay

ground states a positive solution satisfying limr→∞ rN−2u(r) = c for certain c > 0.
When K is given by a pure power function K = r� , then there is a new shifted critical value which

is

N + 2 + 2�

N − 2
,

as was proved by Ni and Nussbaum [20].
To continue with the known results, let us define now the growth rate function of K as

P (r) = rK ′(r)
K (r)

.

If this function is not constant, then the critical exponent N+2+2P (r)
N−2 will vary with r and the structure

will be more complex. Under the condition on P

(H) P (r) is non-increasing and non-constant over (0,∞).

Writing

σ = lim
r→0

P (r) and � = lim
r→∞ P (r),

then the Sobolev critical number is shifted to an interval (p∞, p0) where

p0 = N + 2 + 2σ

N − 2
and p∞ = max

{
1,

N + 2 + 2�

N − 2

}
.

In this situation Yanagida and Yotsutani [26] proved, under the additional condition p0 > 1, that there
is a unique ξ such that the initial value problem

u′′ + N − 1

r
u′ + K (r)up = 0, r > 0, u(0) = ξ > 0, u′(0) = 0,

has a positive fast decay solution if p ∈ (p∞, p0).
In another paper García-Huidobro, Manásevich and Yarur [11] studied Eq. (1.1) for the operator

p-Laplacian and formulated the growth rate of K by means of a different function

m(r) = 2rN K (r)

(N − 2)
∫ r

0 sN−1 K (s)ds
.
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Moreover, assuming that

(H̃) m(r) is non-increasing and non-constant over (0,∞),

the authors in [11] defined the critical numbers

p0 = lim
r→0

m(r) − 1 and p∞ = max
{

1, lim
r→∞m(r) − 1

}

and also proved that, for p ∈ (p∞, p0), a unique fast decay solution exists. Asymptotically, p∞ and p0
are equivalent for m and P , but (H̃) and (H) are not. In fact, the authors in [11] gave an example
for which condition (H̃) holds while (H) is not true. The existence of a fast decaying solution can be
done by a topological argument, however the proof of the uniqueness of the fast decaying solution is
highly non-trivial. For the Matukuma equation, that is K (r) = 1

1+r2 , the uniqueness was first proved
by Yanagida in [23]. Since then many authors contributed to the study of this type of equations. For
instance, we mention here the work by García-Huidobro, Kufner, Manásevich and Yarur [10], Kawano,
Yanagida and Yotsutani [12], Li and Ni [14–16], Ni and Yotsutani [21], and Yanagida and Yotsutani [24,
25].

In the present paper we want to study the case 0 � σ < � or equivalently p0 < p∞ for a general
class of K functions, not only for an example as in [7]. Roughly speaking, under this condition the
equation behaves like supercritical for small values of r and subcritical for large values of r and the
structure of the solution set that appears will be the same as in other equations mixing supercritical
and subcritical non-linearities, as we will see next. We start with the problem

�u + up + uq = 0 in R
N , (1.2)

p < N+2
N−2 < q, first considered by Lin and Ni [17] and further investigated by Bamón, Flores and del

Pino [1], Flores [9] through a dynamical system approach and recently Campos [2] which is closely
connected with our results.

Another type of equation with this phenomena is

�u + f (u) = 0 in R
N , (1.3)

with f given by f (u) = up if 0 � u < 1 and f (u) = uq if u � 1, where 1 < p < N+2
N−2 < q. When the

role of p and q are reversed, the structure of positive solutions has been completely described by
Erbe and Tang in [6], see also [22] and [5], where there is a unique fast decay solution.

Now let us state our results. We start with the precise assumption on K . The function
K : [0,+∞) �→ R is non-negative and continuous such that

lim
r→0

r−σ K (r) − C0

rγ
= C1 > 0 and lim

r→∞
K (r)

r�
= C∞ > 0, (1.4)

where 0 � σ < � < 2(σ + 2) and N+σ
2 < γ .

A model case is K (r) = C0rσ + Brμ + C∞r� for σ < μ < �, with the above condition on the param-
eters and B � 0.

Our first result gives the existence of a large number of fast decay ground states to (1.1) with an
exact asymptotic formula.

Theorem 1.1. Let N > 2. For any k ∈ N, k > 2, there exists ε0 > 0, such that, for all 0 < ε < ε0 , the prob-
lem (1.1) with p = p0 + ε has a solution uε of the form
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uε(x) = ξσ

k∑
i=1

α∗
i ε

−(i−1− 1
p0+1 )

(1 + (α∗
i )p0−1ε

−(i−1− 1
p0+1 )(p0−1)|x|2+σ )

2
p0−1

(
1 + o(1)

)
,

with o(1) → 0 uniformly in [0,+∞) as ε → 0. Here, ξσ = (
(N+σ)(N−2)

4C0
)

1
p0−1 and the α∗

i ’s are explicit con-
stants depending only of N and K .

Remark 1.1. a) This bubble-tower type of solution were first found by Chen and Lin [3] in the case
of Eq. (1.1) with a function K which is a perturbation from a constant and p is the critical exponent.
This result is obtained through an ODE approach. Note that Eq. (1.1) arises also from problems in
conformal geometry (see [3] and the references therein).

b) We believe that our result has an analogous for Eq. (1.2) with 1 < p < N+2
N−2 < q.

c) In [26] and [19] the authors show, through some numerical example, that the uniqueness of the
fast decay solutions fails.

Finally, we give some how the dual of our main theorem, which corresponds to flat bubbles.

Theorem 1.2. Let N > 2. For any k ∈ N, k > 2, there exists ε0 > 0 such that, for all 0 < ε < ε0 , problem (1.1)
with p = p∞ − ε has a solution uε of the form

uε(x) = ξ�

k∑
i=1

β∗
i ε

(i−1− 1
p∞+1 )

(1 + (β∗
i )p∞−1ε

(i−1− 1
p∞+1 )(p∞−1)|x|2+σ )

2
p∞−1

(
1 + o(1)

)
,

with o(1) → 0 uniformly in [0,+∞) as ε → 0. Here, ξ� = (
(N+σ)(N−2)

4C∞ )
1

p∞−1 and the β∗
i ’s are explicit con-

stants depending only of N and K .

The method used in the proof of our two theorems is a variation of Lyapunov–Schmidt reduction,
that has become now very classical in singular perturbed problems. This reduction was first used by
Floer and Weinstein [8] in the context of partial differential equations. This method was adapted to
find bubble-tower solution in the Brezis–Nirenberg problem by Del Pino, Dolbeault and Musso [4] and
after that by many other authors in similar problems. We mention here the paper by Campos [2] for
Eq. (1.2) which is close to our work. Here we do not give the proof of our second theorem, since the
arguments are similar to those used in the proof of Theorem 1.1.

In all equations before mentioned the existence of a large number of fast decay solutions can be
seen in a three-dimensional dynamical systems (by Emden–Fowler transformation) as a large number
of intersection points between a two-dimensional stable manifold with a two-dimensional unstable.
Our results and the results in [2] and [1], can be seen as a perturbation argument from a homoclinic
orbit in some plane of this dynamical system. Moreover, if there exists a slow decay solution (which
is always unique, because it corresponds to a one-dimensional manifold) it implies that these inter-
section points are infinitely many, see Flores [9] for Eq. (1.2). Notice that Eq. (1.1) with the model
case K (r) = 1 + r2 admits a slow decay solution of type u(r) = A(B + r2)s , s = − 2

p−1 for suitable
exponents p and constants A and B . In this case using the same argument as in [9] it can be proven
that there exist infinitely many fast decay solutions.

Finally, observe that the complete understanding of the dynamical systems or all solution set is
wide open in these three types of equations, with exception of the particular case found in [7]. So,
many basic and challenging questions still remain open for all these equations. Moreover, we strongly
believe that they are closely connected and that the complexity found in [7] is present in all of them.

This paper is organized as follows. In Section 2 we compute the energy for our approximate solu-
tion of the transformed problem, through Emden–Fowler change of variable. In Section 3 we discuss
the finite-dimensional reduction scheme that we will use to establish our main result, which is proved
in Section 4 by means of degree theory.
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2. Preliminaries and the reduced energy

We start introducing the change of variable

v(t) = e−t u
(
e− 2

N−2 t), ∀t ∈ R,

which is a slight variation of the Emden–Fowler transformation so fast decay solution of (1.1) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v ′′(t) = v(t) − β2e−βσ teεt K
(
eβt)v p0+ε(t), t ∈ R,

lim
t→+∞ v ′(t) = 0,

lim
t→−∞ v(t)et = 0,

(2.1)

where β = − 2
N−2 . Note that if ε → 0, the equation above is carried out to the following limit equation

v ′′(t) = v(t) − β2e−βσ t K
(
eβt)v

2+N+2σ
N−2 (t). (2.2)

On the other hand, note that conditions over K in (1.4) are equivalent to

lim
t→+∞

e−βσ t K (eβt) − C0

eβγ t
= C1 > 0 and lim

t→−∞
K (eβt)

eβ�t
= C∞ > 0. (2.3)

In particular, the condition above on the left-hand side implies that

lim
t→+∞ e−βσ t K

(
eβt) = C0 > 0. (2.4)

Then, one can choose constants t̄1, t̄2, with t̄1 � 0 � t̄2 and t̄2, |t̄1| sufficiently large, such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
C∞ − 1

2n0

)
eβ�t � K

(
eβt) �

(
C∞ + 1

2n0

)
eβ�t, if t < t̄1,

0 � K
(
eβt) � sup

t∈[t̄1,t̄2]
K

(
eβt), if t̄1 � t � t̄2,

(
C0 − 1

2n0

)
eβσ t � K

(
eβt) �

(
C0 + 1

2n0

)
eβσ t, if t > t̄2,

(2.5)

for some n0 ∈ N fixed large enough verifying C0 − 1
2n0

> 0 and C∞ − 1
2n0

> 0. In this way, for ρ > 0
fixed but arbitrary, it is suitable to consider the following equation

U ′′ − U + ρ

(
2

N − 2

)2

U
2+N+2σ

N−2 = 0 in R,

and its explicit solution is

U (ρ; t) =
(

(N + σ)(N − 2)

ρ

) N−2
2(2+σ )

e−t(1 + e− 2(2+σ )
N−2 t)− N−2

(2+σ ) .

Now, we define U := U (C0; ·) and introduce the functions
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Ui(t) = U (t − τi) and V (t) =
k∑

i=1

Ui(t), (2.6)

where τi ∈ R and k ∈ N, k � 2. Roughly speaking, we are looking for solutions v of (2.1) which are
approximately of the form

v(t) = V (t) + φ(t),

which for suitable points t̄2 < τ1 < τ2 < · · · < τk , with t̄2 given by (2.5), we will have the remainder
term φ of small order all over R.

Here we do the following choice of the points τi

⎧⎨
⎩τ1 = − 1

p0 + 1
logε − logλ1,

τi+1 − τi = − logε − log λi+1, ∀i = 1,2, . . . ,k − 1,

(2.7)

and by simplicity we put 
τ = (τ1, τ2, . . . , τk) ∈ R
k and 
λ = (λ1, λ2, . . . , λk) ∈ R

k. Since solutions
of (2.1) correspond to stationary points of its associated energy functional Eε defined by

Eε(v) = Jε(v) − β2

p0 + 1 + ε

+∞∫
−∞

eεs(e−βσ s K
(
eβs) − C0

)
v p0+1+ε ds, (2.8)

where

Jε(v) = 1

2

+∞∫
−∞

(
v ′)2 + 1

2

+∞∫
−∞

v2 − C0β
2

p0 + 1 + ε

+∞∫
−∞

eεs v p0+1+ε ds, (2.9)

our first goal is to estimate Eε(V ).

Lemma 2.1. Let N > 2, σ < � < 2σ + N, k ∈ N, k � 2 and let δ > 0 be fixed. Moreover, assume that

δ < λi < δ−1, ∀i = 1,2, . . . ,k. (2.10)

Then, for V defined by (2.6) and points τi as in (2.7), there are positive numbers α1,α2,α3,α4 and α5 de-
pending only on N, K , such that

Eε(V ) = kα1 + εΨk(
λ) + εk

(
2 + (k − 1)(p0 + 1)

2(p0 + 1)
logε

)
α5 + εθε(
λ), (2.11)

where

Ψk(
λ) = −
k∑

i=2

λiα2 − λ
p0+1
1 α3 + kα4 +

(
k∑

i=1

(k − i + 1) logλi

)
α5 (2.12)

and θε(
λ) → 0 as ε → 0, uniformly in the C1-sense with respect to the values λi satisfying (2.10).
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Here and in the rest of this paper, we denote by C a generic positive constant which is independent
of ε and of the particular τi ’s chosen satisfying (2.7).

Proof of Lemma 3.1. Firstly, we estimate Jε(V ). Note that

Jε(V ) = J0(V ) + A1,ε + A2,ε + A3,ε,

where

J0(V ) = 1

2

+∞∫
−∞

(
V ′)2 + 1

2

+∞∫
−∞

V 2 − C0β
2

p0 + 1

+∞∫
−∞

V p0+1,

A1,ε =
(

C0β
2

p0 + 1
− C0β

2

p0 + 1 + ε

) +∞∫
−∞

V p0+1,

A2,ε =
(

C0β
2

p0 + 1 + ε

) +∞∫
−∞

(
V p0+1 − V p0+1+ε

)

and

A3,ε =
(

C0β
2

p0 + 1 + ε

) +∞∫
−∞

(
1 − eεs)V p0+1+ε ds.

Using a Taylor expansion, is not difficult to check that

A1,ε = kεC0β
2

(p0 + 1)2

+∞∫
−∞

U p0+1 + o(ε), (2.13)

A2,ε = −kεC0β
2

p0 + 1

+∞∫
−∞

U p0+1 ln U + o(ε) (2.14)

and if we consider from now on

μ0 = −∞, μi = τi + τi+1

2
, for i = 1,2 . . . ,k − 1, and μk = +∞, (2.15)

we obtain

A3,ε = −
k∑

i=1

εC0

μi∫
μi−1

sV p0+1 ds + o(ε) = −εC0

k∑
i=1

τi

+∞∫
−∞

U p0+1 + o(ε).

Then, from the choice of the τi ’s in (2.7), we yield
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A3,ε = εC0

((
k

p0 + 1
+ k(k − 1)

2

)
logε +

k∑
i=1

(k − i + 1) log λi

) +∞∫
−∞

U p0+1 + o(ε). (2.16)

On the other hand,

J0(V ) −
k∑

i=1

J0(Ui) = C0β
2

p0 + 1

+∞∫
−∞

(
k∑

i=1

U p0+1
i −

(
k∑

i=1

Ui

)p0+1)
+ C0β

2

∞∫
−∞

k∑
j=2

k−1∑
i=1
i< j

U p0
i U j

and so

J0(V ) =
k∑

i=1

J0(Ui) +
k∑

i=1

(B1,i + B2,i + B3,i),

where

B1,l = C0β
2

p0 + 1

μl∫
μl−1

(
U p0+1

l −
(

k∑
i=1

Ui

)p0+1

+ (p0 + 1)U p0
l

k∑
j=1
j �=l

U j

)
,

B2,l = −C0β
2

μl∫
μl−1

U p0
l

k∑
j=1
j<l

U j

and

B3,l = C0β
2

p0 + 1

μl∫
μl−1

(
k∑

i=1
i �=l

U p0+1
i + (p0 + 1)

k∑
j=1
j �=l

k∑
i=1
i< j

U p0
i U j

)
.

From the Mean Value Theorem we have that

|B1,l| � C

μl∫
μl−1

(
k∑

i=1
i �=l

U i

)2 k∑
i=1

U p0−1
i .

Hence, for l ∈ {2,3, . . . ,k − 1}, putting � = |logε| and using the fact that U (t) = O (e−|t|), we obtain

|B1,l| � C

�
2 +M∫
0

e−2(�−s)e−(p0−1)s ds � Ce−2�

�
2 +M∫
0

e−(p0−3)s ds = o(ε),

where M is a constant that depends only on δ, and if l = {1,k}, we easily get

|B1,l| = o(ε).



874 S. Alarcón, A. Quaas / J. Differential Equations 248 (2010) 866–892
Now, if ε > 0 is small enough, then from the choice of the τl ’s in (2.7) and of the μl ’s in (2.15) we
get

B2,l = −C0β
2

μl∫
μl−1

U p0 Ul−1 + o(ε)

= −C0β
2γ̃N e−(τl−τl−1)

+∞∫
−∞

U p0 e−|s| ds + o(ε)

= −εC0β
2γ̃Nλl

+∞∫
−∞

U p0 e−|s| ds + o(ε),

where γ̃N = 2− 2+σ
N−2 U (0) and B2,1 = 0. To estimate B3,l we note that

|B3,l| � C

μl∫
μl−1

k∑
j=1
j �=l

k∑
i=1
i< j

U p0
i U j � C

μl∫
μl−1

U p0
l

k∑
i=1
i>l

U i,

where μl ’s are given by (2.15). Hence, setting again � = |logε| and since U (t) = O (e−|t|), we obtain

|B3,l| � Ce�

�
2 +M∫
0

e−(p0−1)s ds = o(ε),

where M is a constant that depends only on δ. So, we get

J0(V ) = k J0(U ) − εβ2γ̃N

k∑
i=2

λi

+∞∫
−∞

U p0 e−|s| ds + o(ε). (2.17)

Finally, we have that

+∞∫
−∞

eεs(e−βσ s K
(
eβs) − C0

)( k∑
i=1

Ui

)p0+1+ε

ds = C1,ε + C2,ε + C3,ε,

where

C1,ε =
+∞∫

−∞
e−βσ s K

(
eβs)(eεs − 1

)( k∑
i=1

Ui

)p0+1+ε

ds,

C2,ε =
+∞∫ (

e−βσ s K
(
eβs) − C0

)( k∑
i=1

Ui

)p0+1+ε

ds
−∞
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and

C3,ε = C0

+∞∫
−∞

(
1 − eεs)( k∑

i=1

Ui

)p0+1+ε

ds.

Bearing in mind the constraints (2.10) over λi ’s and the choices of μi ’s in (2.15), and considering
σ < � < N + σ and constants C̃∞ and C̃0 such that

max
{|C̃0 − C0|, |C̃∞ − C∞|} <

1

n0
,

we obtain by means of straightforward calculations

C1,ε = εC̃0

k∑
i=1

τi

+∞∫
−∞

U p0+1 + o(ε)

and

C2,ε = e−(p0+1)τ1 C

(
C̃∞

t̄1∫
−∞

e−(p∞−2p0−1)s ds +
t̄2∫

t̄1

e−β(2σ+N)s K
(
eβs)ds

)

+ β2γ̃N(C̃0 − C0)

k∑
i=2

e−(τi−τi−1)

+∞∫
−∞

U p0 e−|s| ds + k(C̃0 − C0)

+∞∫
−∞

U p0+1 + o(ε).

Also we obtain

C3,ε = −εC0

k∑
i=1

τi

+∞∫
−∞

U p0+1 + o(ε).

Hence, from previous estimates for C1,ε , C2,ε and C3,ε , we get

+∞∫
−∞

eεs(e−βσ s K
(
eβs) − 1

)( k∑
i=1

Ui

)p0+1+ε

ds

= ε(C0 − C̃0)

((
k

p0 + 1
+ k(k − 1)

2

)
logε +

k∑
i=1

(k − i + 1) log λi

) +∞∫
−∞

U p0+1

+ ελ
p0+1
1 C

(
C̃∞

t̄1∫
−∞

e−(p∞−2p0−1)s ds +
t̄2∫

t̄1

e−β(2σ+N)s K
(
eβs)ds

)

+ ε(C̃0 − C0)β
2γ̃N

k∑
i=2

λi

+∞∫
U p0 e−|s| ds + k(C̃0 − C0)

+∞∫
U p0+1 + o(ε). (2.18)
−∞ −∞
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Now, we choose

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = J0(U ) − (C̃0 − C0)β
2

p0 + 1

+∞∫
−∞

U p0+1,

α2 = C̃0β
2γ̃N

+∞∫
−∞

U p0 e−|s| ds,

α3 = Cβ2

p0 + 1

(
C̃∞

t̄1∫
−∞

e−(p∞−p0−1)s ds +
t̄2∫

t̄1

e−β(2σ+N)s K
(
eβs)ds

)
,

α4 = C0β
2

(p0 + 1)2

+∞∫
−∞

U p0+1 − C0β
2

p0 + 1

+∞∫
−∞

U p0+1 ln U ,

α5 = C̃0β
2

p0 + 1

+∞∫
−∞

U p0+1,

(2.19)

and since σ < � < 2σ + N , we have that α3 ∈ R
+ . From estimates (2.13), (2.14), (2.16), (2.17), (2.18)

and the choice of the constants αi ’s in (2.19), it follows that

Eε(V ) = kα1 + εΨk(
λ) + εk

(
2 + (k − 1)(p0 + 1)

2(p0 + 1)
logε

)
α5 + o(ε), (2.20)

where Ψk is given by (2.12). Moreover, in all previous estimates the quantity o(ε) is actually of
this size in the C1-norm as function of the values λi ’s satisfying (2.10). Therefore, (2.11) is obtained
from (2.20). �
Remark 2.1. Note that Ψk has a unique critical point which is non-degenerate and it is given by:


λ∗ =
((

kα5

α3(p0 + 1)

) 1
p0+1

,
(k − 1)α5

α2
,
(k − 2)α5

α2
, . . . ,

2α5

α2
,
α5

α2

)
.

3. The finite-dimensional reduction

Let us consider points τi such that t̄2 < τ1 < τ2 < · · · < τk, with t̄2 given by (2.5) and functions
Ui, V , defined in (2.6). Now, for each i = 1,2, . . . ,k, we define the following functions

Zi(t) = U ′
i(t) =

(
eβ(σ+2)(t−τi) − 1

eβ(σ+2)(t−τi) + 1

)
Ui(t). (3.1)

Here we are interesting in the problem of finding a function φ such that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(V + φ)′′ + (V + φ) − β2eεte−βσ t K
(
eβt)(V + φ)p0+ε =

k∑
i=1

ci Zi in R,

+∞∫
−∞

Ziφ = 0, ∀i = 1,2, . . . ,k,

lim
t→±∞φ(t) = 0,

(3.2)

for certain scalars ci . Note that V + φ is a solution of (2.1) if the scalars ci in (3.2) are all zero. Also,
we note that the differential equation in (3.2) is equivalent to

Lε(φ) = Nε(φ) + Rε +
k∑

i=1

ci Zi in R, (3.3)

where

Lε(φ) = −φ′′ + φ − β2eεte−βσ t K
(
eβt)(p0 + ε)V p0+ε−1φ, (3.4)

Nε(φ) = β2eεte−βσ t K
(
eβt)((V + φ)

p0+ε
+ − V p0+ε − (p0 + ε)V p0+ε−1φ

)
(3.5)

and

Rε = β2eεte−βσ t K
(
eβt) −

k∑
i=1

U p0
i . (3.6)

A first step is to study the following linear problem: given h ∈ C(R), find φ such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lε(φ) = h +
k∑

i=1

ci Zi in R,

+∞∫
−∞

Ziφ = 0, ∀i = 1,2, . . . ,k,

lim
t→±∞φ(t) = 0,

(3.7)

for certain constants ci . We prove the next lemma.

Lemma 3.1. Assume that σ < � < 2(σ + 2) and that there exist a sequence εn → 0 and points 0 < τn
1 < τn

2 <

· · · < τn
k depending on εn which verify

τn
1 → +∞, min

i=1,...,k

(
τn

i+1 − τn
i

) → +∞, and τn
k = o

(
ε−1

n

)
, (3.8)

such that for certain scalars cn
i , and functions φn and hn, with ‖hn‖∗ → 0, one has
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lεn (φn) = hn +
k∑

i=1

cn
i Zn

i in R,

+∞∫
−∞

Zn
i φn = 0, ∀i = 1,2, . . . ,k,

lim
t→±∞φn(t) = 0,

(3.9)

where Zn
i (t) = U ′(t − τn

i ). Then

lim
n→∞‖φn‖∗ = 0.

Here

‖ψ‖∗ = sup
t∈R

∣∣∣∣∣
(

k∑
i=1

e−η̄|t−τi |
)−1

ψ(t)

∣∣∣∣∣,
where η̄ > 0 is a number to be fixed.

Proof. Firstly we prove that

lim
n→∞‖φn‖∞ = 0.

Arguing by contradiction, we can assume that ‖φn‖∞ = 1. Testing the differential equation in (3.9)
with Zn

i and integrating twice by parts, we obtain

+∞∫
−∞

Lε

(
Zn

i

)
φn −

+∞∫
−∞

hn Zn
i =

k∑
l=1

cn
l

+∞∫
−∞

Zn
l Zn

i .

The previous equality defines an almost diagonal system on the cn
l ’s as n → +∞ because if i �= l, then

by the Dominated Convergence Theorem we have that

+∞∫
−∞

Zn
l Zn

i → 0

and if i = l, then directly we obtain

+∞∫
−∞

Zn
l Zn

i =
+∞∫

−∞

∣∣U ′
l

∣∣2
.

On the other hand, ‖hn‖∗ → 0 implies that

∣∣hn(t)
∣∣ � θn(t)

k∑
e−η̄|t−τn

i |,

i=1
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for some θn → 0 uniformly, and bearing in mind that Zn
i (t) = O (e−|t−τn

i |), we get

∣∣∣∣∣
+∞∫

−∞
hn Zn

i

∣∣∣∣∣ � C‖θn‖∞

∣∣∣∣∣
+∞∫

−∞
e−|s| ds

∣∣∣∣∣ → 0

as n → +∞. Also, since

−Zn
i
′′ + Zn

i − p0β
2C0U p0−1

i Zn
i = 0 in R,

σ < � < 2(σ + 2) and from (2.5) one has |K (eβt) − C0| � 1
n0

for all t > t̄2, it follows that

∣∣∣∣∣
+∞∫

−∞
Lε

(
Zn

i

)
φn

∣∣∣∣∣ =
∣∣∣∣∣

+∞∫
−∞

(−Zn
i
′′ + Zn

i − (p0 + ε)β2eεte−βσ t K
(
eβt)V p0+ε−1 Zn

i

)
φn

∣∣∣∣∣

� C

( t̄1∫
−∞

e−β(σ−�)t V p0−1 Zn
i +

t̄2∫
t̄1

V p0−1 Zn
i +

+∞∫
t̄2

U p0−1
i Zn

i

)

→ 0

as n → +∞. Therefore cn
i → 0 as n → +∞.

Now we choose tn ∈ R such that φn(tn) = 1. By theory of elliptic regularity, we can assume that
∃i ∈ {1,2, . . . ,k} such that for n large enough one has

∃R > 0 such that
∣∣tn − τn

i

∣∣ < R. (3.10)

Let us fix an index i such that (3.10) holds and put φ̂n(t) = φn(t + τn
i ). From (3.9), (3.10) and elliptic

estimates, choosing a suitable subsequence, φ̂n(t) converges uniformly on compacts to a non-trivial
solution φ̄ of

−φ̄′′ + φ̄ − β2 p0C0U p0−1φ̄ = 0 in R
N .

Hence φ̄ = C U ′ for some positive constant C . Nevertheless

0 =
+∞∫

−∞
Zn

l φ̂n → C

+∞∫
−∞

∣∣U ′∣∣2
> 0,

which is a contradiction. Then ‖φn‖∞ → 0.

Now, we note that

−φ′′
n + φn = gn in R, (3.11)

with

gn(t) = hn(t) +
k∑

cn
i Zn

i (t) + β2eεte−βσ t K
(
eβt)(p0 + ε)V p0+ε−1(t)φn(t).
i=1



880 S. Alarcón, A. Quaas / J. Differential Equations 248 (2010) 866–892
Since ‖hn‖∗ → 0, cn
i → 0, Zn

i (t) = O (e−|t−τi |),

∣∣β2eεte−βσ t K
(
eβt)(p0 + ε)V p0+ε−1(t)φn(t)

∣∣

�

⎧⎪⎪⎨
⎪⎪⎩

C‖φn‖∞
∑k

i=1 e−(2p0−p∞−1)|t−τn
i |, if t < t̄1,

C‖φn‖∞
∑k

i=1 e−(p0−1)|t−τn
i |, if t̄1 < t < t̄2,

C‖φn‖∞
∑k

i=1 e−|t−τn
i |, if t > t̄2,

with ‖φn‖∞ → 0 as n → +∞, and σ < � < 2(2 + σ), it follows that if 0 < η̄ < min{1, p0 − 1,2p0 −
1 − p∞}, then

∣∣gn(t)
∣∣ � θn(t)

k∑
i=1

e−η̄|t−τn
i |,

with θn → 0 uniformly. Choosing C̄ > 0 large enough, we have that

ϕn(t) = C̄θn(t)
k∑

i=1

e−η̄|t−τn
i |

is a super-solution of (3.11), and −ϕn(t) is a sub-solution of (3.11). Therefore

|φn| � θn(t)
k∑

i=1

e−η̄|t−τn
i |,

for some θn → 0 uniformly. The proof is finished. �
Proposition 3.1. There exist positive numbers ε0 , δ0 and R0 such that if 
τ ∈ R

k satisfies

R0 < τ1, R0 < min
i=1,...,k

(τi+1 − τi) and τk <
δ0

ε
,

then for all ε ∈ (0, ε0) and all h ∈ C(R), with ‖h‖∗ < ∞, problem (3.7) admits a unique solution φ := Tε(h).
Besides, there exists a constant C > 0 such that

∥∥Tε(h)
∥∥∗ � C‖h‖∗ and |ci| � C‖h‖∗.

Proof. Let us consider the space

Hε =
{

φ ∈ H1(R):

+∞∫
−∞

Ziφ = 0, i = 1, . . . ,k

}

endowed with the usual inner product of H1(R) that here we denote by [·,·]. Then problem (3.7)
written in sense weak with respect to Hε is equivalent to find φ ∈ Hε such that

[φ,ψ] = β2

+∞∫ (
eεte−βσ t K

(
eβt)(p0 + ε)V p0+ε−1(t)

)
φψ +

+∞∫
hψ, ∀ψ ∈ Hε.
−∞ −∞
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Moreover, Hε is Hilbert, then from the Riesz Representation Theorem we deduce that there exists a
linear isomorphism Iε ∈ L(H∗

ε, Hε) such that to each φ∗ ∈ H∗
ε corresponds a unique φ ∈ Hε which

verifies

Iε

(
φ∗)[ψ] = [φ,ψ], ∀ψ ∈ Hε.

Hence, we can identify φ with Iε(φ
∗). Also, note that the operator Mε : Hε → H∗

ε defined, for each
φ ∈ Hε , by the functional

ψ �→ Mε(φ)[ψ] = β2

+∞∫
−∞

(
eεte−βσ t K

(
eβt)(p0 + ε)V p0+ε−1(t)

)
φψ

is compact, and the functional

ψ �→ h̃(ψ) =
+∞∫

−∞
hψ

belongs to H∗
ε , and clearly depends linearly of h. Then, (3.7) can be interpreted by way operational

in Hε as: find φ ∈ Hε such that

φ := Tε(h) = Mε(φ) + h̃.

The Fredholm Alternative Theorem guarantees that this problem possesses a unique solution for any
h ∈ Hε under the supposition that the homogeneous equation

φ = Mε(φ)

has by solution only to the null solution in Hε . Observe now that in sense weak in Hε this last
equation is equivalent to problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lε(φ) =
k∑

i=1

ci Zi in R,

+∞∫
−∞

Ziφ = 0, ∀i = 1,2, . . . ,k,

lim
t→±∞φ(t) = 0,

(3.12)

for certain constants ci . For proving that (3.12) has only by solution the null solution in Hε we argue
by contradiction. Let φ be a non-null solution of (3.12). Without loss of generality we can assume that
‖φ‖∗ = 1. Hence, if we put φ = φn , hn = 0 and we consider some sequence εn → as n → +∞ and
τn

i ’s as in (3.8), then we have all conditions for applying Lemma 3.1 and conclude that ‖φn‖∗ → 0;
but this is a contradiction. Therefore, for suitable ε0, δ0 and R0, we have that for 0 < ε < ε0 and
h ∈ C(R), with ‖h‖∗ < ∞, problem (3.7) admits only one solution in Hε .

Now we check that φ = Tε(h) verifies ‖φ‖∗ � C‖h‖∗ for some constant C > 0. Again, we argue
by contradiction. Let φ be a non-null solution of (3.12). Without loss of generality we can assume
that ‖φ‖∗ = 1. If we put h = hn and φ = φn with ‖hn‖∗ < n−1‖φn‖∗ , then all conditions for applying
Lemma 3.1 are given and we can conclude that ‖φn‖∗ → 0; which is a contradiction.
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Finally, we recall that from the proof of Lemma 3.1 we have that

|ci|
( +∞∫

−∞
Z 2

i + o(1)

)
�

∣∣∣∣∣
+∞∫

−∞
Lε(Zi)φ

∣∣∣∣∣ +
∣∣∣∣∣

+∞∫
−∞

h Zi

∣∣∣∣∣ � C
(‖φ‖∗ + ‖h‖∗

)
.

Therefore, |ci| � C‖h‖∗ . �
Now, we are interested in study properties of differentiability of Tε in the variables τi , which will

be very important in future purposes. By simplicity, from now on we will consider the Banach space

C∗ = {
f ∈ C(R): ‖ f ‖∗ < ∞}

,

endowed of the ‖ · ‖∗-norm, and the space L(C∗) of the linear operators in C∗ . Also we consider
numbers ε0, δ0 and R0, given by Proposition 3.1, and the set

Mε =
{


τ ∈ R
k: R0 < τ1, R0 < min

i=1,...,k
(τi+1 − τi) and τk <

δ0

ε

}
,

for 0 < ε < ε0. We define the map

Sε : Mε × C∗ → L(C∗)

(
τ ,h) → Sε(
τ ,h) = Tε(h).

Proposition 3.2. For each h ∈ C∗ the map 
τ �→ Sε(
τ ,h) is of class C1 . Besides, there exists a constant C > 0
such that

∥∥D 
τ Tε(h)
∥∥∗ � C‖h‖∗

uniformly on vectors 
τ ∈ Mε .

Proof. Let us fix h ∈ C∗ , and put φ = Tε(h) for 0 < ε < ε0. We are interested in study the differentia-
bility of φ respect to τ j , for each j = 1,2, . . . ,k. Putting ϑ = ∂φ

∂τ j
, we obtain from (3.7) that ϑ verifies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ϑ ′′ + ϑ − β2eεte−βσ t K
(
eβt)(p0 + ε)

(
V p0+ε−1ϑ + ∂

∂τ j

(
V p0+ε−1)φ)

=
k∑

i=1

ci
∂ Zi

∂τ j
in R,

+∞∫
−∞

∂ Zl

∂τ j
φ = −

+∞∫
−∞

ϑ Zl = 0, ∀l �= j,

+∞∫
−∞

∂ Z j

∂τ j
φ = −

+∞∫
−∞

ϑ Z j .

Consider now constants ri such that

+∞∫ (
ϑ −

k∑
i=1

ri Zi

)
Zl = 0, ∀l = 1,2, . . . ,k.
−∞
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These relations lead to

k∑
i=1

ri

+∞∫
−∞

Zi Zl = −
+∞∫

−∞

∂ Zl

∂τ j
φ, ∀l = 1,2, . . . ,k.

In other words, for each i = 1, . . . ,k, the constants ri will be given by the following system

k∑
i=1

ri

+∞∫
−∞

Zi Zl = 0, ∀l �= j, and
k∑

i=1

ri

+∞∫
−∞

Zi Z j = −
+∞∫

−∞

∂ Z j

∂τ j
φ.

Clearly this system is almost diagonal. Hence, putting

ψ = ϑ −
k∑

i=1

ri Zi,

it follows that

Lε(ψ) = f in R,

where

f (t) = β2eεte−βσ t K
(
eβt)(p0 + ε)

∂

∂τ j

(
V p0+ε−1)φ + cl

∂ Z j

∂τ j
−

k∑
i=1

ri Lε(Zi) (3.13)

and

+∞∫
−∞

Ziψ = 0, ∀i = 1,2, . . . ,k.

Moreover, it is easy to check that limt→±∞ ψ(t) = 0. Also, observe that from Proposition 3.1 and the
definition of φ we have

‖φ‖∗ � C‖h‖∗ and |cl| < C‖h‖∗,

and, by definition of ri , |ri| � C‖φ‖∗ . Hence, from (3.13) we get ‖ f ‖∗ < C‖h‖∗ , and so f ∈ C∗ . Then,
again from Proposition 3.1, we conclude that ψ = Tε( f ), and in this way

ϑ = Tε( f ) +
k∑

i=1

ri Zi in R,

with ϑ verifying ‖ϑ‖∗ � C‖h‖∗.
Finally, note that ϑ depends continuously on τ j and h for the ‖ · ‖∗-norm, for each j =

1,2, . . . ,k. �
For later purposes, from now on it is suitable to assume that, for A > 0 fixed and large enough,

the following constraints hold
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

p0 + 1
log(Aε)−1 < τ1,

log(Aτ1)
−1 < min

i=2,3,...,k
{τi − τi−1},

τk < k log(Aε)−1.

(3.14)

Besides, we prove two technical results related with the size of Nε(φ), Rε and their derivative corre-
spondents in the ‖ · ‖∗-norm.

Lemma 3.2. There exists C > 0 such that if ‖φ‖∗ < 1
2 , then

∥∥Nε(φ)
∥∥∗ � C

(‖φ‖min{p0,2}∗ + ‖φ‖min{2p0−p∞,2}∗
)

(3.15)

and

∥∥Dφ Nε(φ)
∥∥∗ � C

(‖φ‖min{p0−1,1}∗ + ‖φ‖min{2p0−p∞−1,1}∗
)
. (3.16)

Proof. From the definition of Nε(φ) in (3.5) and the Mean Value Theorem we have that

Nε(φ) = t̃β2(p0 + ε)(p0 + ε − 1)eεte−βσ t K
(
eβt)|V + t̄φ|p0+ε−2φ2,

for some t̃, t̄ ∈ (0,1). Then, if |φ| < C |V | we get

∣∣Nε(φ)
∣∣ � Ce(ε−βσ )t K

(
eβt)|V |p0+ε−2|φ|2

�
{

C |V |p0−2|φ|2, t > t̄2,

C(
∑k

i=1 e−(p∞−p0)τi )(
∑k

i=1 e−(p0−p∞)|t−τi |)|V |p0−2|φ|2, t < t̄1,

�
{

C |V |p0−2|φ|2, t > t̄2,

C |V |2p0−p∞−2|φ|2, t < t̄1,

and, if |φ| � C |V | we get

∣∣Nε(φ)
∣∣ �

{
C |φ|p0 , t > t̄2,

C |φ|2p0−p∞ , t < t̄1.

Therefore (3.15) is obtained directly from estimates for |Nε(φ)| above. On the other hand,

Dφ Nε(φ) = β2(p0 + ε)eεte−βσ t K
(
eβt)((V + φ)

p0+ε−1
+ − V p0+ε−1).

Hence, from the Mean Value Theorem, it follows that

Dφ Nε(φ) = t̄β2(p0 + ε)(p0 + ε − 1)eεte−βσ t K
(
eβt)|V + t̄φ|p0+ε−2φ,

for some t̄ ∈ (0,1). In similar way that in the previous case we prove that (3.16) holds. �
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Lemma 3.3. Assume that constraints (3.14) hold. Then there exist C > 0 and 0 < ρ̄ < 1 such that

‖Rε‖∗ � Cερ̄ and ‖D 
τ Rε‖∗ � Cερ̄ . (3.17)

Proof. From the definition of Rε in (3.6), we have that

Rε = β2eεt(e−βσ t K
(
eβt) − C0

)
V p0+ε + C0β

2(eεt − 1
)

V p0+ε

+ C0β
2(V p0+ε − V p0

) + C0β
2

(
V p0 −

k∑
i=1

U p0
i

)

= R1,ε(t) + R2,ε(t) + R3,ε(t) + R4,ε(t).

Note that by (2.3), after a redefining of t̄2 in (2.5) if is necessary, for all t > t̄2 one has

(
C1 − 1

2n0

)
eβγ t < e−βσ t K

(
eβt) − C0 <

(
C1 + 1

2n0

)
eβγ t .

Hence, for t > t̄2

∣∣R1,ε(t)
∣∣ < C̃1β

2
∣∣eεteβγ t V p0+ε

∣∣ < C

∣∣∣∣∣eβγ t

(
k∑

i=1

e−|t−τi |
)p0

∣∣∣∣∣.
Also we have for t < t̄2 that

|R1,ε| < C

∣∣∣∣∣
(

k∑
i=1

et̄2−τi

)p0
∣∣∣∣∣.

Therefore

∥∥R1,ε(t)
∥∥∗ � Cερ1 ,

for ρ1 = min{ p0
p0+1 ,

−βγ
p0+1 }. Similarly, the derivative R1,ε respect to τi satisfies

∥∥∥∥∂ R1,ε

∂τi

∥∥∥∥∗
� Cερ1 .

On the other hand, using a Taylor expansion, respectively, it is easy to check that

∥∥R j,ε(t)
∥∥∗ � Cε and

∥∥∥∥∂ R j,ε

∂τi

∥∥∥∥∗
< Cε, for j = 2,3.

Finally, using the Mean Value Theorem and analyzing R4,ε(t) for t and for σ in suitable ranges of R,
straightforward calculations lead to

∥∥R4,ε(t)
∥∥∗ � Cερ2 and

∥∥∥∥∂ R4,ε

∂τ

∥∥∥∥ < Cερ2 ,

i ∗
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where ρ2 = 1+μ
2 for 0 < μ < min{p0 − 1,1}. Then, choosing ρ̄ = min{ρ1,ρ2} the proof of this lemma

is completed. �
Proposition 3.3. Assume that the constraints (3.14) hold. Then there exists C > 0 such that, for all ε > 0 small
enough, there exists a unique solution φ = φ(
τ ) to problem (3.2). Moreover, the map 
τ �→ φ(
τ ) is of class C1

for the ‖ · ‖∗-norm and satisfies

‖φ‖∗ � Cερ̄ and ‖D 
τ φ‖∗ � Cερ̄ ,

with ρ̄ as in (3.17).

Proof. Let us consider the operator

Fε : Ar → H1(R)

φ → Fε(φ) = −Tε

(
Nε(φ) + Rε

)
,

with Tε given by Proposition 3.1 and

Ar = {
φ ∈ C∗: ‖φ‖∗ � rερ̄

}
,

for a suitable r = r(N) > 0 which will be chosen later. Note that if we show that Fε is a contraction,
then there is a fixed point in Ar for Fε , which is equivalent to solving (3.2).

We have

∥∥Fε(φ)
∥∥∗ �

∥∥Tε

(
Nε(φ) + Rε

)∥∥∗
� C

∥∥Nε(φ) + Rε

∥∥∗

� C̃1
((

rερ̄
)min{p0,2} + (

rερ̄
)min{2p0−p∞,2} + ερ̄

)
.

Also we note that

∥∥Fε(φ1) − Fε(φ2)
∥∥∗ � C

∥∥Nε(φ1) − Nε(φ2)
∥∥∗,

for φ1, φ2 ∈ Ar . Hence, Fε is a contraction if Nε is.
We have

∣∣Nε(φ1) − Nε(φ2)
∣∣ =

∣∣∣∣∂Nε

∂φ
(φ̄)

∣∣∣∣|φ1 − φ2|,

for some φ̄ on the line that join φ1 with φ2. It follows that

∥∥Nε(φ1) − Nε(φ2)
∥∥∗ � C

(‖φ̄‖min{p0−1,1}∗ + ‖φ̄‖min{2p∞−p0−1,1}∗
)‖φ1 − φ2‖∗.

Hence

∥∥Fε(φ1) − Fε(φ2)
∥∥∗ � C̃2

((
rερ̄

)min{p0−1,1} + (
rερ̄

)min{2p∞−p0−1,1})‖φ1 − φ2‖∗.

Now, choosing r > (3C̃1 + 2C̃2) one has
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∥∥Fε(φ)
∥∥∗ � rερ̄, ∀φ ∈ Ar,

and

∥∥Fε(φ1) − Fε(φ2)
∥∥∗ < ‖φ1 − φ2‖∗,

for ε > 0 sufficiently small.
Concerning to the differentiability properties, let us recall that φ is defined by the relation

B(
τ ,φ) := φ − Tε

(
Nε(φ) + Rε

) = 0.

Hence, we see that

Dφ B(
τ ,φ)[θ] = θ − Tε

(
θ Dψ Nε(φ)

) := θ + M̃(θ),

where M̃(θ) = −Tε(θ Dφ Nε(φ)). Now, note that if we use the fact that φ ∈ Ar one proves easily
from (3.16) that

∥∥M̃(θ)
∥∥∗ � Cερ̄‖θ‖∗.

This implies that for ε small, the linear operator Dφ B(
τ ,φ) is invertible in the space of the continuous
functions in R with bounded ‖ · ‖∗-norm, with uniformly bounded inverse depending continuously on
its parameters. Then, applying the Implicit Function Theorem we obtain that φ(
τ ) is a C1-function
into C∗ , with

D 
τ φ = −(
Dφ B(
τ ,φ)

)−1(
D 
τ B(
τ ,φ)

)
.

Since

D 
τ B(
τ ,φ) = −D 
τ
(
Nε(φ) + Rε

) − Tε

(
D 
τ Nε(φ) + D 
τ Rε

)
,

where all these expressions depend continuously on their parameters, it follows that

‖D 
τ φ‖∗ � C
(∥∥Nε(φ) + Rε

∥∥∗ + ∥∥D 
τ Nε(φ)
∥∥∗ + ‖D 
τ Rε‖∗

)
,

and using the first part of this proposition, the estimates in the previous lemmas, Proposition 3.1 and
the constraints (3.14), we conclude that

‖D 
τ φ‖∗ � Cερ̄ . �
4. The reduced functional and the proof of Theorem 1.1

Here we consider the constraints (3.14) and the function φ = φ(
τ ) given by Proposition 3.3. Ac-
cording to the previous sections, let us note that ci = 0 in (3.2), for all i = 1,2,3, . . . ,k, is equivalent
to say that v = V + φ(
τ ) is a solution of problem (2.1), and therefore

u(r) = r
N−2

2 v
(
ln r− N−2

2
)
, r ∈ (0,+∞),
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will be a solution of problem (1.1). A first result appearing to prove that problem (3.2) has solution,
consists in proving that this problem is equivalent to a variational problem. For this, it is convenient
to consider

Iε(
τ ) = Eε

(
V + φ(
τ )

)
.

Lemma 4.1. The function v = V + φ(
τ ) is a solution of (2.1) if and only if 
τ is a critical point of Iε .

Proof. First we assume that v = V + φ(
τ ) solves (2.1). Then directly one obtains

D Eε

(
V + φ(
τ )

)[∂(V + φ(
τ ))

∂τi

]
= 0, ∀i = 1,2,3, . . . ,k.

In other words

∂ Iε
∂τi

(
τ ) = 0, ∀i = 1,2,3, . . . ,k,

so that 
τ is a critical point of Iε .
On the other hand, if 
τ is a critical point of Iε , then

D Eε

(
V + φ(
τ )

)[∂(V + φ(
τ ))

∂τ j

]
= 0, ∀ j = 1,2,3, . . . ,k,

or equivalently, from (3.2),

k∑
i=1

ci
(

Zi Z j + o(1)
) = 0, ∀ j = 1,2,3, . . . ,k,

where o(1) → 0 uniformly in the ‖ · ‖∗-norm, because ∂(V +φ(
τ ))
∂τ j

= Z j + o(1). Now, noticing that the

last system on ci ’s is almost diagonal, one can conclude that ci = 0 for all i = 1,2,3, . . . ,k. Therefore
v = V + φ(
τ ) solves (2.1). �

The next step is to validate an expansion for Iε which will be crucial to find its critical points.

Proposition 4.1. Under the assumptions of Lemma 3.1, and considering V as in (2.6), φ = φ(
τ ) given by
Proposition 3.3 and N+σ

2 < γ , the following expansion holds

Iε(
τ ) = Eε(V ) + o(ε),

where o(ε) is uniformly of this size in the C1-sense on the vectors 
τ satisfying (3.14), for given A.

Proof. We note that

Iε(
τ ) − Eε(V ) = Eε(V + φ) − Eε(V ),
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where

Eε(v) = 1

2

+∞∫
−∞

(
v ′)2 + 1

2

+∞∫
−∞

v2 − 1

p0 + 1 + ε

+∞∫
−∞

eεse−βσ s K
(
eβs)v p0+1+ε.

It is easy to check from the Fundamental Theorem of Calculus and one integrating by parts that

Iε(
τ ) − Eε(V ) = −
1∫

0

t D2 Eε(V + tφ)[φ][φ]dt.

Now, note that after a Taylor expansion and integrating by parts, one has for each φ ∈ Hε that

D Eε(V + tφ)[φ] =
+∞∫

−∞

(−V ′′ + V + t
(−φ′′ + φ

) − eεse−βσ s K
(
eβs)(V + tφ)p0+ε

)
φ,

and since

−(V + φ)′′ + (V + φ) − β2eεte−βσ t K
(
eβt)(V + φ)p0+ε =

k∑
i=1

ci Zi in R,

and

+∞∫
−∞

Ziφ = 0, ∀i = 1,2,3, . . . ,k,

it follows that

D2 Eε(V + tφ)[φ,φ]

= (t − 1)

( +∞∫
−∞

(
Nε(φ) + Rε

)
φ

)
+

+∞∫
−∞

(
eεse−βσ s K

(
eβs)((V + φ)p0+ε − (V + tφ)p0+ε

))
φ.

Also, as 1
2 < ρ̄ < 1 and

∣∣∣∣∣
1∫

0

t(t − 1)

( +∞∫
−∞

(
Nε(φ) + Rε

)
φ

)
dt

∣∣∣∣∣

� 1

6

∥∥Nε(φ) + Rε

∥∥∗‖φ‖∗
+∞∫

−∞

(
k∑

i=1

e2(−η̄|t−τi |)
)−1

dt

� C
(∥∥Nε(φ)

∥∥∗ + ‖Rε‖∗
)‖φ‖∗

� Cε2ρ̄
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we have that

1∫
0

t(t − 1)

( +∞∫
−∞

(
Nε(φ) + Rε

)
φ

)
dt = o(ε).

On the other hand, after a Taylor expansion, we get

1∫
0

t

( +∞∫
−∞

(
eεse−βσ s K

(
eβs)((V + φ)p0+ε − (V + tφ)p0+ε

))
φ

)
dt

= (ε + p0)

1∫
0

t(1 − t)

( +∞∫
−∞

eεse−βσ s K
(
eβs)V ε+p0−1φ2

)
dt

and given that 1
2 < ρ̄ < 1 and

∣∣∣∣∣
t1∫

−∞
eεse−βσ s K

(
eβs)V ε+p0−1φ2

∣∣∣∣∣ � Ce−(p0+1)τ1‖φ‖2∗

t1∫
−∞

e(p0−p∞)se(p0−1)se2s = O
(
ε1+2ρ̄

)
,

∣∣∣∣∣
t2∫

t1

eεse−βσ s K
(
eβs)V ε+p0−1φ2

∣∣∣∣∣ � Ce−(p0+1)τ1‖φ‖2∗

t2∫
t1

e−βσ se(p0−1)se2s = O
(
ε1+2ρ̄

)
,

∣∣∣∣∣
+∞∫
t2

eεse−βσ s K
(
eβs)V ε+p0−1φ2

∣∣∣∣∣ � C‖φ‖2∗

+∞∫
t2

V p0+1 = O
(
ε2ρ̄

)
,

it follows that

∣∣∣∣∣−
1∫

0

t

( +∞∫
−∞

(
eεse−βσ s K

(
eβs)((V + φ)p0+ε − (V + tφ)p0+ε

))
φ

)
dt

∣∣∣∣∣ � o(ε).

Therefore

Iε(
τ ) − Eε(V ) = o(ε).

For the differentiability only note that

∂

∂τi

(
Iε(
τ ) − Eε(V )

)

= −
1∫

0

t(t − 1)

( +∞∫
−∞

∂

∂τi

((
Nε(φ) + Rε

)
φ
))

dt

− (ε + p0)

1∫
t(1 − t)

( +∞∫
eεse−βσ s K

(
eβs) ∂

∂τi

(
V ε+p0−1φ2))dt + o(ε)
0 −∞
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and that (∥∥∥∥ ∂

∂τi
Nε(φ)

∥∥∥∥∗
+

∥∥∥∥ ∂

∂τi
Rε

∥∥∥∥∗

)
‖φ‖∗ + (∥∥Nε(φ)

∥∥∗ + ‖Rε‖∗
)∥∥∥∥ ∂

∂τi
φ

∥∥∥∥∗
= O

(
ε2ρ̄

)
and

‖φ‖2∗ + ‖φ‖∗
∥∥∥∥ ∂

∂τi
φ

∥∥∥∥∗
= O

(
ε2ρ̄

)
.

Therefore

∂

∂τi

(
Iε(
τ ) − Eε(V )

) = o(ε). �
Proof of Theorem 1.1. Consider the change of variables

τ1 = − 1

p0 + 1
logε − logλ1,

τi+1 − τi = − logε − logλi ∀i = 2,3, . . . ,k,

where the λi ’s are positive parameters. Hence, it is sufficient to find critical points of

Φε(
λ) = ε−1 Iε
(
τ (
λ)

)
.

From the previous lemma and the expansion given by Lemma 3.1, we obtain

∇Φε(
λ) = ∇Ψk(
λ) + o(1),

where o(1) → 0 uniformly on the vectors 
λ satisfying M−1 < λi < M for any M fixed large sufficiently
large. As we pointed in Remark 1, Ψk(
λ) has an only one critical point 
λ∗ which is non-degenerate.
It follows from local theory degree that deg(∇Φε, U ,0) is well defined and is non-zero, where U de-
notes an arbitrarily small neighborhood of 
λ∗. Then, for ε > 0 small enough we have

deg(Iε, U ,0) �= 0.

We conclude that there exists a critical point 
λ∗ of Φε such that


λ∗
ε = 
λ∗ + o(1).

Hence, for 
τ ∗ = 
τ (
λ∗
ε) we get

v∗(t) =
k∑

i=1

U
(
t − τ ∗

i

) + φ
(
τ ∗

i

) =
k∑

i=1

U
(
t − τ ∗

i

)(
1 + o(1)

)

is a solution of (2.1), and then we get

u(x) = ξσ

k∑
ε

−(i−1)+ 1
p0+1 α∗

i

(
1 + (

α∗
i

)p0−1
ε

−((i−1)− 1
p0+1 )(p0−1)|x|2+σ

)− 2
p0−1

(
1 + o(1)

)

i=1
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is a solution of (1.1), where α∗
i = ∏i

j=1(λ
∗
j )

−1 and


λ∗ =
((

kα5

α3(p0 + 1)

) 1
p0+1

,
(k − 1)α5

α2
,
(k − 2)α5

α2
, . . . ,

2α5

α2
,
α5

α2

)
. �
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